2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
7 * Copyright (c) 2006-2012 Jiri Kosina
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
45 #define DRIVER_DESC "HID core driver"
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
57 * Register a new report for a device.
60 struct hid_report *hid_register_report(struct hid_device *device,
61 unsigned int type, unsigned int id,
62 unsigned int application)
64 struct hid_report_enum *report_enum = device->report_enum + type;
65 struct hid_report *report;
67 if (id >= HID_MAX_IDS)
69 if (report_enum->report_id_hash[id])
70 return report_enum->report_id_hash[id];
72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
77 report_enum->numbered = 1;
82 report->device = device;
83 report->application = application;
84 report_enum->report_id_hash[id] = report;
86 list_add_tail(&report->list, &report_enum->report_list);
90 EXPORT_SYMBOL_GPL(hid_register_report);
93 * Register a new field for this report.
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
98 struct hid_field *field;
100 if (report->maxfield == HID_MAX_FIELDS) {
101 hid_err(report->device, "too many fields in report\n");
105 field = kzalloc((sizeof(struct hid_field) +
106 usages * sizeof(struct hid_usage) +
107 values * sizeof(unsigned)), GFP_KERNEL);
111 field->index = report->maxfield++;
112 report->field[field->index] = field;
113 field->usage = (struct hid_usage *)(field + 1);
114 field->value = (s32 *)(field->usage + usages);
115 field->report = report;
121 * Open a collection. The type/usage is pushed on the stack.
124 static int open_collection(struct hid_parser *parser, unsigned type)
126 struct hid_collection *collection;
128 int collection_index;
130 usage = parser->local.usage[0];
132 if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 unsigned int *collection_stack;
134 unsigned int new_size = parser->collection_stack_size +
135 HID_COLLECTION_STACK_SIZE;
137 collection_stack = krealloc(parser->collection_stack,
138 new_size * sizeof(unsigned int),
140 if (!collection_stack)
143 parser->collection_stack = collection_stack;
144 parser->collection_stack_size = new_size;
147 if (parser->device->maxcollection == parser->device->collection_size) {
148 collection = kmalloc(
149 array3_size(sizeof(struct hid_collection),
150 parser->device->collection_size,
153 if (collection == NULL) {
154 hid_err(parser->device, "failed to reallocate collection array\n");
157 memcpy(collection, parser->device->collection,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 memset(collection + parser->device->collection_size, 0,
161 sizeof(struct hid_collection) *
162 parser->device->collection_size);
163 kfree(parser->device->collection);
164 parser->device->collection = collection;
165 parser->device->collection_size *= 2;
168 parser->collection_stack[parser->collection_stack_ptr++] =
169 parser->device->maxcollection;
171 collection_index = parser->device->maxcollection++;
172 collection = parser->device->collection + collection_index;
173 collection->type = type;
174 collection->usage = usage;
175 collection->level = parser->collection_stack_ptr - 1;
176 collection->parent_idx = (collection->level == 0) ? -1 :
177 parser->collection_stack[collection->level - 1];
179 if (type == HID_COLLECTION_APPLICATION)
180 parser->device->maxapplication++;
186 * Close a collection.
189 static int close_collection(struct hid_parser *parser)
191 if (!parser->collection_stack_ptr) {
192 hid_err(parser->device, "collection stack underflow\n");
195 parser->collection_stack_ptr--;
200 * Climb up the stack, search for the specified collection type
201 * and return the usage.
204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
206 struct hid_collection *collection = parser->device->collection;
209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 unsigned index = parser->collection_stack[n];
211 if (collection[index].type == type)
212 return collection[index].usage;
214 return 0; /* we know nothing about this usage type */
218 * Add a usage to the temporary parser table.
221 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
223 if (parser->local.usage_index >= HID_MAX_USAGES) {
224 hid_err(parser->device, "usage index exceeded\n");
227 parser->local.usage[parser->local.usage_index] = usage;
228 parser->local.collection_index[parser->local.usage_index] =
229 parser->collection_stack_ptr ?
230 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
231 parser->local.usage_index++;
236 * Register a new field for this report.
239 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
241 struct hid_report *report;
242 struct hid_field *field;
246 unsigned int application;
248 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
250 report = hid_register_report(parser->device, report_type,
251 parser->global.report_id, application);
253 hid_err(parser->device, "hid_register_report failed\n");
257 /* Handle both signed and unsigned cases properly */
258 if ((parser->global.logical_minimum < 0 &&
259 parser->global.logical_maximum <
260 parser->global.logical_minimum) ||
261 (parser->global.logical_minimum >= 0 &&
262 (__u32)parser->global.logical_maximum <
263 (__u32)parser->global.logical_minimum)) {
264 dbg_hid("logical range invalid 0x%x 0x%x\n",
265 parser->global.logical_minimum,
266 parser->global.logical_maximum);
270 offset = report->size;
271 report->size += parser->global.report_size * parser->global.report_count;
273 if (!parser->local.usage_index) /* Ignore padding fields */
276 usages = max_t(unsigned, parser->local.usage_index,
277 parser->global.report_count);
279 field = hid_register_field(report, usages, parser->global.report_count);
283 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
284 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
285 field->application = application;
287 for (i = 0; i < usages; i++) {
289 /* Duplicate the last usage we parsed if we have excess values */
290 if (i >= parser->local.usage_index)
291 j = parser->local.usage_index - 1;
292 field->usage[i].hid = parser->local.usage[j];
293 field->usage[i].collection_index =
294 parser->local.collection_index[j];
295 field->usage[i].usage_index = i;
296 field->usage[i].resolution_multiplier = 1;
299 field->maxusage = usages;
300 field->flags = flags;
301 field->report_offset = offset;
302 field->report_type = report_type;
303 field->report_size = parser->global.report_size;
304 field->report_count = parser->global.report_count;
305 field->logical_minimum = parser->global.logical_minimum;
306 field->logical_maximum = parser->global.logical_maximum;
307 field->physical_minimum = parser->global.physical_minimum;
308 field->physical_maximum = parser->global.physical_maximum;
309 field->unit_exponent = parser->global.unit_exponent;
310 field->unit = parser->global.unit;
316 * Read data value from item.
319 static u32 item_udata(struct hid_item *item)
321 switch (item->size) {
322 case 1: return item->data.u8;
323 case 2: return item->data.u16;
324 case 4: return item->data.u32;
329 static s32 item_sdata(struct hid_item *item)
331 switch (item->size) {
332 case 1: return item->data.s8;
333 case 2: return item->data.s16;
334 case 4: return item->data.s32;
340 * Process a global item.
343 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
347 case HID_GLOBAL_ITEM_TAG_PUSH:
349 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
350 hid_err(parser->device, "global environment stack overflow\n");
354 memcpy(parser->global_stack + parser->global_stack_ptr++,
355 &parser->global, sizeof(struct hid_global));
358 case HID_GLOBAL_ITEM_TAG_POP:
360 if (!parser->global_stack_ptr) {
361 hid_err(parser->device, "global environment stack underflow\n");
365 memcpy(&parser->global, parser->global_stack +
366 --parser->global_stack_ptr, sizeof(struct hid_global));
369 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
370 parser->global.usage_page = item_udata(item);
373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
374 parser->global.logical_minimum = item_sdata(item);
377 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
378 if (parser->global.logical_minimum < 0)
379 parser->global.logical_maximum = item_sdata(item);
381 parser->global.logical_maximum = item_udata(item);
384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
385 parser->global.physical_minimum = item_sdata(item);
388 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
389 if (parser->global.physical_minimum < 0)
390 parser->global.physical_maximum = item_sdata(item);
392 parser->global.physical_maximum = item_udata(item);
395 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
396 /* Many devices provide unit exponent as a two's complement
397 * nibble due to the common misunderstanding of HID
398 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
399 * both this and the standard encoding. */
400 raw_value = item_sdata(item);
401 if (!(raw_value & 0xfffffff0))
402 parser->global.unit_exponent = hid_snto32(raw_value, 4);
404 parser->global.unit_exponent = raw_value;
407 case HID_GLOBAL_ITEM_TAG_UNIT:
408 parser->global.unit = item_udata(item);
411 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
412 parser->global.report_size = item_udata(item);
413 if (parser->global.report_size > 256) {
414 hid_err(parser->device, "invalid report_size %d\n",
415 parser->global.report_size);
420 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
421 parser->global.report_count = item_udata(item);
422 if (parser->global.report_count > HID_MAX_USAGES) {
423 hid_err(parser->device, "invalid report_count %d\n",
424 parser->global.report_count);
429 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
430 parser->global.report_id = item_udata(item);
431 if (parser->global.report_id == 0 ||
432 parser->global.report_id >= HID_MAX_IDS) {
433 hid_err(parser->device, "report_id %u is invalid\n",
434 parser->global.report_id);
440 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
446 * Process a local item.
449 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
455 data = item_udata(item);
458 case HID_LOCAL_ITEM_TAG_DELIMITER:
462 * We treat items before the first delimiter
463 * as global to all usage sets (branch 0).
464 * In the moment we process only these global
465 * items and the first delimiter set.
467 if (parser->local.delimiter_depth != 0) {
468 hid_err(parser->device, "nested delimiters\n");
471 parser->local.delimiter_depth++;
472 parser->local.delimiter_branch++;
474 if (parser->local.delimiter_depth < 1) {
475 hid_err(parser->device, "bogus close delimiter\n");
478 parser->local.delimiter_depth--;
482 case HID_LOCAL_ITEM_TAG_USAGE:
484 if (parser->local.delimiter_branch > 1) {
485 dbg_hid("alternative usage ignored\n");
490 data = (parser->global.usage_page << 16) + data;
492 return hid_add_usage(parser, data);
494 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
496 if (parser->local.delimiter_branch > 1) {
497 dbg_hid("alternative usage ignored\n");
502 data = (parser->global.usage_page << 16) + data;
504 parser->local.usage_minimum = data;
507 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
509 if (parser->local.delimiter_branch > 1) {
510 dbg_hid("alternative usage ignored\n");
515 data = (parser->global.usage_page << 16) + data;
517 count = data - parser->local.usage_minimum;
518 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
520 * We do not warn if the name is not set, we are
521 * actually pre-scanning the device.
523 if (dev_name(&parser->device->dev))
524 hid_warn(parser->device,
525 "ignoring exceeding usage max\n");
526 data = HID_MAX_USAGES - parser->local.usage_index +
527 parser->local.usage_minimum - 1;
529 hid_err(parser->device,
530 "no more usage index available\n");
535 for (n = parser->local.usage_minimum; n <= data; n++)
536 if (hid_add_usage(parser, n)) {
537 dbg_hid("hid_add_usage failed\n");
544 dbg_hid("unknown local item tag 0x%x\n", item->tag);
551 * Process a main item.
554 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
559 data = item_udata(item);
562 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
563 ret = open_collection(parser, data & 0xff);
565 case HID_MAIN_ITEM_TAG_END_COLLECTION:
566 ret = close_collection(parser);
568 case HID_MAIN_ITEM_TAG_INPUT:
569 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
571 case HID_MAIN_ITEM_TAG_OUTPUT:
572 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
574 case HID_MAIN_ITEM_TAG_FEATURE:
575 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
578 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
582 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
588 * Process a reserved item.
591 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
593 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
598 * Free a report and all registered fields. The field->usage and
599 * field->value table's are allocated behind the field, so we need
600 * only to free(field) itself.
603 static void hid_free_report(struct hid_report *report)
607 for (n = 0; n < report->maxfield; n++)
608 kfree(report->field[n]);
613 * Close report. This function returns the device
614 * state to the point prior to hid_open_report().
616 static void hid_close_report(struct hid_device *device)
620 for (i = 0; i < HID_REPORT_TYPES; i++) {
621 struct hid_report_enum *report_enum = device->report_enum + i;
623 for (j = 0; j < HID_MAX_IDS; j++) {
624 struct hid_report *report = report_enum->report_id_hash[j];
626 hid_free_report(report);
628 memset(report_enum, 0, sizeof(*report_enum));
629 INIT_LIST_HEAD(&report_enum->report_list);
632 kfree(device->rdesc);
633 device->rdesc = NULL;
636 kfree(device->collection);
637 device->collection = NULL;
638 device->collection_size = 0;
639 device->maxcollection = 0;
640 device->maxapplication = 0;
642 device->status &= ~HID_STAT_PARSED;
646 * Free a device structure, all reports, and all fields.
649 static void hid_device_release(struct device *dev)
651 struct hid_device *hid = to_hid_device(dev);
653 hid_close_report(hid);
654 kfree(hid->dev_rdesc);
659 * Fetch a report description item from the data stream. We support long
660 * items, though they are not used yet.
663 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
667 if ((end - start) <= 0)
672 item->type = (b >> 2) & 3;
673 item->tag = (b >> 4) & 15;
675 if (item->tag == HID_ITEM_TAG_LONG) {
677 item->format = HID_ITEM_FORMAT_LONG;
679 if ((end - start) < 2)
682 item->size = *start++;
683 item->tag = *start++;
685 if ((end - start) < item->size)
688 item->data.longdata = start;
693 item->format = HID_ITEM_FORMAT_SHORT;
696 switch (item->size) {
701 if ((end - start) < 1)
703 item->data.u8 = *start++;
707 if ((end - start) < 2)
709 item->data.u16 = get_unaligned_le16(start);
710 start = (__u8 *)((__le16 *)start + 1);
715 if ((end - start) < 4)
717 item->data.u32 = get_unaligned_le32(start);
718 start = (__u8 *)((__le32 *)start + 1);
725 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
727 struct hid_device *hid = parser->device;
729 if (usage == HID_DG_CONTACTID)
730 hid->group = HID_GROUP_MULTITOUCH;
733 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
735 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
736 parser->global.report_size == 8)
737 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
740 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
742 struct hid_device *hid = parser->device;
745 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
746 type == HID_COLLECTION_PHYSICAL)
747 hid->group = HID_GROUP_SENSOR_HUB;
749 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
750 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
751 hid->group == HID_GROUP_MULTITOUCH)
752 hid->group = HID_GROUP_GENERIC;
754 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
755 for (i = 0; i < parser->local.usage_index; i++)
756 if (parser->local.usage[i] == HID_GD_POINTER)
757 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
759 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
760 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
763 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
768 data = item_udata(item);
771 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
772 hid_scan_collection(parser, data & 0xff);
774 case HID_MAIN_ITEM_TAG_END_COLLECTION:
776 case HID_MAIN_ITEM_TAG_INPUT:
777 /* ignore constant inputs, they will be ignored by hid-input */
778 if (data & HID_MAIN_ITEM_CONSTANT)
780 for (i = 0; i < parser->local.usage_index; i++)
781 hid_scan_input_usage(parser, parser->local.usage[i]);
783 case HID_MAIN_ITEM_TAG_OUTPUT:
785 case HID_MAIN_ITEM_TAG_FEATURE:
786 for (i = 0; i < parser->local.usage_index; i++)
787 hid_scan_feature_usage(parser, parser->local.usage[i]);
791 /* Reset the local parser environment */
792 memset(&parser->local, 0, sizeof(parser->local));
798 * Scan a report descriptor before the device is added to the bus.
799 * Sets device groups and other properties that determine what driver
802 static int hid_scan_report(struct hid_device *hid)
804 struct hid_parser *parser;
805 struct hid_item item;
806 __u8 *start = hid->dev_rdesc;
807 __u8 *end = start + hid->dev_rsize;
808 static int (*dispatch_type[])(struct hid_parser *parser,
809 struct hid_item *item) = {
816 parser = vzalloc(sizeof(struct hid_parser));
820 parser->device = hid;
821 hid->group = HID_GROUP_GENERIC;
824 * The parsing is simpler than the one in hid_open_report() as we should
825 * be robust against hid errors. Those errors will be raised by
826 * hid_open_report() anyway.
828 while ((start = fetch_item(start, end, &item)) != NULL)
829 dispatch_type[item.type](parser, &item);
832 * Handle special flags set during scanning.
834 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
835 (hid->group == HID_GROUP_MULTITOUCH))
836 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
839 * Vendor specific handlings
841 switch (hid->vendor) {
842 case USB_VENDOR_ID_WACOM:
843 hid->group = HID_GROUP_WACOM;
845 case USB_VENDOR_ID_SYNAPTICS:
846 if (hid->group == HID_GROUP_GENERIC)
847 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
848 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
850 * hid-rmi should take care of them,
853 hid->group = HID_GROUP_RMI;
857 kfree(parser->collection_stack);
863 * hid_parse_report - parse device report
865 * @device: hid device
866 * @start: report start
869 * Allocate the device report as read by the bus driver. This function should
870 * only be called from parse() in ll drivers.
872 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
874 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
877 hid->dev_rsize = size;
880 EXPORT_SYMBOL_GPL(hid_parse_report);
882 static const char * const hid_report_names[] = {
885 "HID_FEATURE_REPORT",
888 * hid_validate_values - validate existing device report's value indexes
890 * @device: hid device
891 * @type: which report type to examine
892 * @id: which report ID to examine (0 for first)
893 * @field_index: which report field to examine
894 * @report_counts: expected number of values
896 * Validate the number of values in a given field of a given report, after
899 struct hid_report *hid_validate_values(struct hid_device *hid,
900 unsigned int type, unsigned int id,
901 unsigned int field_index,
902 unsigned int report_counts)
904 struct hid_report *report;
906 if (type > HID_FEATURE_REPORT) {
907 hid_err(hid, "invalid HID report type %u\n", type);
911 if (id >= HID_MAX_IDS) {
912 hid_err(hid, "invalid HID report id %u\n", id);
917 * Explicitly not using hid_get_report() here since it depends on
918 * ->numbered being checked, which may not always be the case when
919 * drivers go to access report values.
923 * Validating on id 0 means we should examine the first
924 * report in the list.
927 hid->report_enum[type].report_list.next,
928 struct hid_report, list);
930 report = hid->report_enum[type].report_id_hash[id];
933 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
936 if (report->maxfield <= field_index) {
937 hid_err(hid, "not enough fields in %s %u\n",
938 hid_report_names[type], id);
941 if (report->field[field_index]->report_count < report_counts) {
942 hid_err(hid, "not enough values in %s %u field %u\n",
943 hid_report_names[type], id, field_index);
948 EXPORT_SYMBOL_GPL(hid_validate_values);
950 static int hid_calculate_multiplier(struct hid_device *hid,
951 struct hid_field *multiplier)
954 __s32 v = *multiplier->value;
955 __s32 lmin = multiplier->logical_minimum;
956 __s32 lmax = multiplier->logical_maximum;
957 __s32 pmin = multiplier->physical_minimum;
958 __s32 pmax = multiplier->physical_maximum;
961 * "Because OS implementations will generally divide the control's
962 * reported count by the Effective Resolution Multiplier, designers
963 * should take care not to establish a potential Effective
964 * Resolution Multiplier of zero."
965 * HID Usage Table, v1.12, Section 4.3.1, p31
967 if (lmax - lmin == 0)
970 * Handling the unit exponent is left as an exercise to whoever
971 * finds a device where that exponent is not 0.
973 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
974 if (unlikely(multiplier->unit_exponent != 0)) {
976 "unsupported Resolution Multiplier unit exponent %d\n",
977 multiplier->unit_exponent);
980 /* There are no devices with an effective multiplier > 255 */
981 if (unlikely(m == 0 || m > 255 || m < -255)) {
982 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
989 static void hid_apply_multiplier_to_field(struct hid_device *hid,
990 struct hid_field *field,
991 struct hid_collection *multiplier_collection,
992 int effective_multiplier)
994 struct hid_collection *collection;
995 struct hid_usage *usage;
999 * If multiplier_collection is NULL, the multiplier applies
1000 * to all fields in the report.
1001 * Otherwise, it is the Logical Collection the multiplier applies to
1002 * but our field may be in a subcollection of that collection.
1004 for (i = 0; i < field->maxusage; i++) {
1005 usage = &field->usage[i];
1007 collection = &hid->collection[usage->collection_index];
1008 while (collection->parent_idx != -1 &&
1009 collection != multiplier_collection)
1010 collection = &hid->collection[collection->parent_idx];
1012 if (collection->parent_idx != -1 ||
1013 multiplier_collection == NULL)
1014 usage->resolution_multiplier = effective_multiplier;
1019 static void hid_apply_multiplier(struct hid_device *hid,
1020 struct hid_field *multiplier)
1022 struct hid_report_enum *rep_enum;
1023 struct hid_report *rep;
1024 struct hid_field *field;
1025 struct hid_collection *multiplier_collection;
1026 int effective_multiplier;
1030 * "The Resolution Multiplier control must be contained in the same
1031 * Logical Collection as the control(s) to which it is to be applied.
1032 * If no Resolution Multiplier is defined, then the Resolution
1033 * Multiplier defaults to 1. If more than one control exists in a
1034 * Logical Collection, the Resolution Multiplier is associated with
1035 * all controls in the collection. If no Logical Collection is
1036 * defined, the Resolution Multiplier is associated with all
1037 * controls in the report."
1038 * HID Usage Table, v1.12, Section 4.3.1, p30
1040 * Thus, search from the current collection upwards until we find a
1041 * logical collection. Then search all fields for that same parent
1042 * collection. Those are the fields the multiplier applies to.
1044 * If we have more than one multiplier, it will overwrite the
1045 * applicable fields later.
1047 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1048 while (multiplier_collection->parent_idx != -1 &&
1049 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1050 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1052 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1054 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1055 list_for_each_entry(rep, &rep_enum->report_list, list) {
1056 for (i = 0; i < rep->maxfield; i++) {
1057 field = rep->field[i];
1058 hid_apply_multiplier_to_field(hid, field,
1059 multiplier_collection,
1060 effective_multiplier);
1066 * hid_setup_resolution_multiplier - set up all resolution multipliers
1068 * @device: hid device
1070 * Search for all Resolution Multiplier Feature Reports and apply their
1071 * value to all matching Input items. This only updates the internal struct
1074 * The Resolution Multiplier is applied by the hardware. If the multiplier
1075 * is anything other than 1, the hardware will send pre-multiplied events
1076 * so that the same physical interaction generates an accumulated
1077 * accumulated_value = value * * multiplier
1078 * This may be achieved by sending
1079 * - "value * multiplier" for each event, or
1080 * - "value" but "multiplier" times as frequently, or
1081 * - a combination of the above
1082 * The only guarantee is that the same physical interaction always generates
1083 * an accumulated 'value * multiplier'.
1085 * This function must be called before any event processing and after
1086 * any SetRequest to the Resolution Multiplier.
1088 void hid_setup_resolution_multiplier(struct hid_device *hid)
1090 struct hid_report_enum *rep_enum;
1091 struct hid_report *rep;
1092 struct hid_usage *usage;
1095 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1096 list_for_each_entry(rep, &rep_enum->report_list, list) {
1097 for (i = 0; i < rep->maxfield; i++) {
1098 /* Ignore if report count is out of bounds. */
1099 if (rep->field[i]->report_count < 1)
1102 for (j = 0; j < rep->field[i]->maxusage; j++) {
1103 usage = &rep->field[i]->usage[j];
1104 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1105 hid_apply_multiplier(hid,
1111 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1114 * hid_open_report - open a driver-specific device report
1116 * @device: hid device
1118 * Parse a report description into a hid_device structure. Reports are
1119 * enumerated, fields are attached to these reports.
1120 * 0 returned on success, otherwise nonzero error value.
1122 * This function (or the equivalent hid_parse() macro) should only be
1123 * called from probe() in drivers, before starting the device.
1125 int hid_open_report(struct hid_device *device)
1127 struct hid_parser *parser;
1128 struct hid_item item;
1134 static int (*dispatch_type[])(struct hid_parser *parser,
1135 struct hid_item *item) = {
1142 if (WARN_ON(device->status & HID_STAT_PARSED))
1145 start = device->dev_rdesc;
1146 if (WARN_ON(!start))
1148 size = device->dev_rsize;
1150 buf = kmemdup(start, size, GFP_KERNEL);
1154 if (device->driver->report_fixup)
1155 start = device->driver->report_fixup(device, buf, &size);
1159 start = kmemdup(start, size, GFP_KERNEL);
1164 device->rdesc = start;
1165 device->rsize = size;
1167 parser = vzalloc(sizeof(struct hid_parser));
1173 parser->device = device;
1177 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1178 sizeof(struct hid_collection), GFP_KERNEL);
1179 if (!device->collection) {
1183 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1186 while ((start = fetch_item(start, end, &item)) != NULL) {
1188 if (item.format != HID_ITEM_FORMAT_SHORT) {
1189 hid_err(device, "unexpected long global item\n");
1193 if (dispatch_type[item.type](parser, &item)) {
1194 hid_err(device, "item %u %u %u %u parsing failed\n",
1195 item.format, (unsigned)item.size,
1196 (unsigned)item.type, (unsigned)item.tag);
1201 if (parser->collection_stack_ptr) {
1202 hid_err(device, "unbalanced collection at end of report description\n");
1205 if (parser->local.delimiter_depth) {
1206 hid_err(device, "unbalanced delimiter at end of report description\n");
1211 * fetch initial values in case the device's
1212 * default multiplier isn't the recommended 1
1214 hid_setup_resolution_multiplier(device);
1216 kfree(parser->collection_stack);
1218 device->status |= HID_STAT_PARSED;
1224 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1226 kfree(parser->collection_stack);
1229 hid_close_report(device);
1232 EXPORT_SYMBOL_GPL(hid_open_report);
1235 * Convert a signed n-bit integer to signed 32-bit integer. Common
1236 * cases are done through the compiler, the screwed things has to be
1240 static s32 snto32(__u32 value, unsigned n)
1243 case 8: return ((__s8)value);
1244 case 16: return ((__s16)value);
1245 case 32: return ((__s32)value);
1247 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1250 s32 hid_snto32(__u32 value, unsigned n)
1252 return snto32(value, n);
1254 EXPORT_SYMBOL_GPL(hid_snto32);
1257 * Convert a signed 32-bit integer to a signed n-bit integer.
1260 static u32 s32ton(__s32 value, unsigned n)
1262 s32 a = value >> (n - 1);
1264 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1265 return value & ((1 << n) - 1);
1269 * Extract/implement a data field from/to a little endian report (bit array).
1271 * Code sort-of follows HID spec:
1272 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1274 * While the USB HID spec allows unlimited length bit fields in "report
1275 * descriptors", most devices never use more than 16 bits.
1276 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1277 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1280 static u32 __extract(u8 *report, unsigned offset, int n)
1282 unsigned int idx = offset / 8;
1283 unsigned int bit_nr = 0;
1284 unsigned int bit_shift = offset % 8;
1285 int bits_to_copy = 8 - bit_shift;
1287 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1290 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1292 bit_nr += bits_to_copy;
1298 return value & mask;
1301 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1302 unsigned offset, unsigned n)
1305 hid_warn(hid, "hid_field_extract() called with n (%d) > 256! (%s)\n",
1310 return __extract(report, offset, n);
1312 EXPORT_SYMBOL_GPL(hid_field_extract);
1315 * "implement" : set bits in a little endian bit stream.
1316 * Same concepts as "extract" (see comments above).
1317 * The data mangled in the bit stream remains in little endian
1318 * order the whole time. It make more sense to talk about
1319 * endianness of register values by considering a register
1320 * a "cached" copy of the little endian bit stream.
1323 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1325 unsigned int idx = offset / 8;
1326 unsigned int bit_shift = offset % 8;
1327 int bits_to_set = 8 - bit_shift;
1329 while (n - bits_to_set >= 0) {
1330 report[idx] &= ~(0xff << bit_shift);
1331 report[idx] |= value << bit_shift;
1332 value >>= bits_to_set;
1341 u8 bit_mask = ((1U << n) - 1);
1342 report[idx] &= ~(bit_mask << bit_shift);
1343 report[idx] |= value << bit_shift;
1347 static void implement(const struct hid_device *hid, u8 *report,
1348 unsigned offset, unsigned n, u32 value)
1350 if (unlikely(n > 32)) {
1351 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1352 __func__, n, current->comm);
1354 } else if (n < 32) {
1355 u32 m = (1U << n) - 1;
1357 if (unlikely(value > m)) {
1359 "%s() called with too large value %d (n: %d)! (%s)\n",
1360 __func__, value, n, current->comm);
1366 __implement(report, offset, n, value);
1370 * Search an array for a value.
1373 static int search(__s32 *array, __s32 value, unsigned n)
1376 if (*array++ == value)
1383 * hid_match_report - check if driver's raw_event should be called
1386 * @report_type: type to match against
1388 * compare hid->driver->report_table->report_type to report->type
1390 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1392 const struct hid_report_id *id = hid->driver->report_table;
1394 if (!id) /* NULL means all */
1397 for (; id->report_type != HID_TERMINATOR; id++)
1398 if (id->report_type == HID_ANY_ID ||
1399 id->report_type == report->type)
1405 * hid_match_usage - check if driver's event should be called
1408 * @usage: usage to match against
1410 * compare hid->driver->usage_table->usage_{type,code} to
1411 * usage->usage_{type,code}
1413 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1415 const struct hid_usage_id *id = hid->driver->usage_table;
1417 if (!id) /* NULL means all */
1420 for (; id->usage_type != HID_ANY_ID - 1; id++)
1421 if ((id->usage_hid == HID_ANY_ID ||
1422 id->usage_hid == usage->hid) &&
1423 (id->usage_type == HID_ANY_ID ||
1424 id->usage_type == usage->type) &&
1425 (id->usage_code == HID_ANY_ID ||
1426 id->usage_code == usage->code))
1431 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1432 struct hid_usage *usage, __s32 value, int interrupt)
1434 struct hid_driver *hdrv = hid->driver;
1437 if (!list_empty(&hid->debug_list))
1438 hid_dump_input(hid, usage, value);
1440 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1441 ret = hdrv->event(hid, field, usage, value);
1444 hid_err(hid, "%s's event failed with %d\n",
1450 if (hid->claimed & HID_CLAIMED_INPUT)
1451 hidinput_hid_event(hid, field, usage, value);
1452 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1453 hid->hiddev_hid_event(hid, field, usage, value);
1457 * Analyse a received field, and fetch the data from it. The field
1458 * content is stored for next report processing (we do differential
1459 * reporting to the layer).
1462 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1463 __u8 *data, int interrupt)
1466 unsigned count = field->report_count;
1467 unsigned offset = field->report_offset;
1468 unsigned size = field->report_size;
1469 __s32 min = field->logical_minimum;
1470 __s32 max = field->logical_maximum;
1473 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1477 for (n = 0; n < count; n++) {
1479 value[n] = min < 0 ?
1480 snto32(hid_field_extract(hid, data, offset + n * size,
1482 hid_field_extract(hid, data, offset + n * size, size);
1484 /* Ignore report if ErrorRollOver */
1485 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1486 value[n] >= min && value[n] <= max &&
1487 value[n] - min < field->maxusage &&
1488 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1492 for (n = 0; n < count; n++) {
1494 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1495 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1499 if (field->value[n] >= min && field->value[n] <= max
1500 && field->value[n] - min < field->maxusage
1501 && field->usage[field->value[n] - min].hid
1502 && search(value, field->value[n], count))
1503 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1505 if (value[n] >= min && value[n] <= max
1506 && value[n] - min < field->maxusage
1507 && field->usage[value[n] - min].hid
1508 && search(field->value, value[n], count))
1509 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1512 memcpy(field->value, value, count * sizeof(__s32));
1518 * Output the field into the report.
1521 static void hid_output_field(const struct hid_device *hid,
1522 struct hid_field *field, __u8 *data)
1524 unsigned count = field->report_count;
1525 unsigned offset = field->report_offset;
1526 unsigned size = field->report_size;
1529 for (n = 0; n < count; n++) {
1530 if (field->logical_minimum < 0) /* signed values */
1531 implement(hid, data, offset + n * size, size,
1532 s32ton(field->value[n], size));
1533 else /* unsigned values */
1534 implement(hid, data, offset + n * size, size,
1540 * Create a report. 'data' has to be allocated using
1541 * hid_alloc_report_buf() so that it has proper size.
1544 void hid_output_report(struct hid_report *report, __u8 *data)
1549 *data++ = report->id;
1551 memset(data, 0, ((report->size - 1) >> 3) + 1);
1552 for (n = 0; n < report->maxfield; n++)
1553 hid_output_field(report->device, report->field[n], data);
1555 EXPORT_SYMBOL_GPL(hid_output_report);
1558 * Allocator for buffer that is going to be passed to hid_output_report()
1560 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1563 * 7 extra bytes are necessary to achieve proper functionality
1564 * of implement() working on 8 byte chunks
1567 u32 len = hid_report_len(report) + 7;
1569 return kmalloc(len, flags);
1571 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1574 * Set a field value. The report this field belongs to has to be
1575 * created and transferred to the device, to set this value in the
1579 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1586 size = field->report_size;
1588 hid_dump_input(field->report->device, field->usage + offset, value);
1590 if (offset >= field->report_count) {
1591 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1592 offset, field->report_count);
1595 if (field->logical_minimum < 0) {
1596 if (value != snto32(s32ton(value, size), size)) {
1597 hid_err(field->report->device, "value %d is out of range\n", value);
1601 field->value[offset] = value;
1604 EXPORT_SYMBOL_GPL(hid_set_field);
1606 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1609 struct hid_report *report;
1610 unsigned int n = 0; /* Normally report number is 0 */
1612 /* Device uses numbered reports, data[0] is report number */
1613 if (report_enum->numbered)
1616 report = report_enum->report_id_hash[n];
1618 dbg_hid("undefined report_id %u received\n", n);
1624 * Implement a generic .request() callback, using .raw_request()
1625 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1627 void __hid_request(struct hid_device *hid, struct hid_report *report,
1634 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1638 len = hid_report_len(report);
1640 if (reqtype == HID_REQ_SET_REPORT)
1641 hid_output_report(report, buf);
1643 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1644 report->type, reqtype);
1646 dbg_hid("unable to complete request: %d\n", ret);
1650 if (reqtype == HID_REQ_GET_REPORT)
1651 hid_input_report(hid, report->type, buf, ret, 0);
1656 EXPORT_SYMBOL_GPL(__hid_request);
1658 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1661 struct hid_report_enum *report_enum = hid->report_enum + type;
1662 struct hid_report *report;
1663 struct hid_driver *hdrv;
1665 u32 rsize, csize = size;
1669 report = hid_get_report(report_enum, data);
1673 if (report_enum->numbered) {
1678 rsize = ((report->size - 1) >> 3) + 1;
1680 if (rsize > HID_MAX_BUFFER_SIZE)
1681 rsize = HID_MAX_BUFFER_SIZE;
1683 if (csize < rsize) {
1684 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1686 memset(cdata + csize, 0, rsize - csize);
1689 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1690 hid->hiddev_report_event(hid, report);
1691 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1692 ret = hidraw_report_event(hid, data, size);
1697 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1698 for (a = 0; a < report->maxfield; a++)
1699 hid_input_field(hid, report->field[a], cdata, interrupt);
1701 if (hdrv && hdrv->report)
1702 hdrv->report(hid, report);
1705 if (hid->claimed & HID_CLAIMED_INPUT)
1706 hidinput_report_event(hid, report);
1710 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1713 * hid_input_report - report data from lower layer (usb, bt...)
1716 * @type: HID report type (HID_*_REPORT)
1717 * @data: report contents
1718 * @size: size of data parameter
1719 * @interrupt: distinguish between interrupt and control transfers
1721 * This is data entry for lower layers.
1723 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1725 struct hid_report_enum *report_enum;
1726 struct hid_driver *hdrv;
1727 struct hid_report *report;
1733 if (down_trylock(&hid->driver_input_lock))
1740 report_enum = hid->report_enum + type;
1744 dbg_hid("empty report\n");
1749 /* Avoid unnecessary overhead if debugfs is disabled */
1750 if (!list_empty(&hid->debug_list))
1751 hid_dump_report(hid, type, data, size);
1753 report = hid_get_report(report_enum, data);
1760 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1761 ret = hdrv->raw_event(hid, report, data, size);
1766 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1769 up(&hid->driver_input_lock);
1772 EXPORT_SYMBOL_GPL(hid_input_report);
1774 bool hid_match_one_id(const struct hid_device *hdev,
1775 const struct hid_device_id *id)
1777 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1778 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1779 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1780 (id->product == HID_ANY_ID || id->product == hdev->product);
1783 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1784 const struct hid_device_id *id)
1786 for (; id->bus; id++)
1787 if (hid_match_one_id(hdev, id))
1793 static const struct hid_device_id hid_hiddev_list[] = {
1794 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1799 static bool hid_hiddev(struct hid_device *hdev)
1801 return !!hid_match_id(hdev, hid_hiddev_list);
1806 read_report_descriptor(struct file *filp, struct kobject *kobj,
1807 struct bin_attribute *attr,
1808 char *buf, loff_t off, size_t count)
1810 struct device *dev = kobj_to_dev(kobj);
1811 struct hid_device *hdev = to_hid_device(dev);
1813 if (off >= hdev->rsize)
1816 if (off + count > hdev->rsize)
1817 count = hdev->rsize - off;
1819 memcpy(buf, hdev->rdesc + off, count);
1825 show_country(struct device *dev, struct device_attribute *attr,
1828 struct hid_device *hdev = to_hid_device(dev);
1830 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1833 static struct bin_attribute dev_bin_attr_report_desc = {
1834 .attr = { .name = "report_descriptor", .mode = 0444 },
1835 .read = read_report_descriptor,
1836 .size = HID_MAX_DESCRIPTOR_SIZE,
1839 static const struct device_attribute dev_attr_country = {
1840 .attr = { .name = "country", .mode = 0444 },
1841 .show = show_country,
1844 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1846 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1847 "Joystick", "Gamepad", "Keyboard", "Keypad",
1848 "Multi-Axis Controller"
1850 const char *type, *bus;
1856 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1857 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1858 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1859 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1860 if (hdev->bus != BUS_USB)
1861 connect_mask &= ~HID_CONNECT_HIDDEV;
1862 if (hid_hiddev(hdev))
1863 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1865 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1866 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1867 hdev->claimed |= HID_CLAIMED_INPUT;
1869 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1870 !hdev->hiddev_connect(hdev,
1871 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1872 hdev->claimed |= HID_CLAIMED_HIDDEV;
1873 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1874 hdev->claimed |= HID_CLAIMED_HIDRAW;
1876 if (connect_mask & HID_CONNECT_DRIVER)
1877 hdev->claimed |= HID_CLAIMED_DRIVER;
1879 /* Drivers with the ->raw_event callback set are not required to connect
1880 * to any other listener. */
1881 if (!hdev->claimed && !hdev->driver->raw_event) {
1882 hid_err(hdev, "device has no listeners, quitting\n");
1886 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1887 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1888 hdev->ff_init(hdev);
1891 if (hdev->claimed & HID_CLAIMED_INPUT)
1892 len += sprintf(buf + len, "input");
1893 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1894 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1895 ((struct hiddev *)hdev->hiddev)->minor);
1896 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1897 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1898 ((struct hidraw *)hdev->hidraw)->minor);
1901 for (i = 0; i < hdev->maxcollection; i++) {
1902 struct hid_collection *col = &hdev->collection[i];
1903 if (col->type == HID_COLLECTION_APPLICATION &&
1904 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1905 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1906 type = types[col->usage & 0xffff];
1911 switch (hdev->bus) {
1925 ret = device_create_file(&hdev->dev, &dev_attr_country);
1928 "can't create sysfs country code attribute err: %d\n", ret);
1930 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1931 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1932 type, hdev->name, hdev->phys);
1936 EXPORT_SYMBOL_GPL(hid_connect);
1938 void hid_disconnect(struct hid_device *hdev)
1940 device_remove_file(&hdev->dev, &dev_attr_country);
1941 if (hdev->claimed & HID_CLAIMED_INPUT)
1942 hidinput_disconnect(hdev);
1943 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1944 hdev->hiddev_disconnect(hdev);
1945 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1946 hidraw_disconnect(hdev);
1949 EXPORT_SYMBOL_GPL(hid_disconnect);
1952 * hid_hw_start - start underlying HW
1954 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1956 * Call this in probe function *after* hid_parse. This will setup HW
1957 * buffers and start the device (if not defeirred to device open).
1958 * hid_hw_stop must be called if this was successful.
1960 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1964 error = hdev->ll_driver->start(hdev);
1969 error = hid_connect(hdev, connect_mask);
1971 hdev->ll_driver->stop(hdev);
1978 EXPORT_SYMBOL_GPL(hid_hw_start);
1981 * hid_hw_stop - stop underlying HW
1984 * This is usually called from remove function or from probe when something
1985 * failed and hid_hw_start was called already.
1987 void hid_hw_stop(struct hid_device *hdev)
1989 hid_disconnect(hdev);
1990 hdev->ll_driver->stop(hdev);
1992 EXPORT_SYMBOL_GPL(hid_hw_stop);
1995 * hid_hw_open - signal underlying HW to start delivering events
1998 * Tell underlying HW to start delivering events from the device.
1999 * This function should be called sometime after successful call
2000 * to hid_hw_start().
2002 int hid_hw_open(struct hid_device *hdev)
2006 ret = mutex_lock_killable(&hdev->ll_open_lock);
2010 if (!hdev->ll_open_count++) {
2011 ret = hdev->ll_driver->open(hdev);
2013 hdev->ll_open_count--;
2016 mutex_unlock(&hdev->ll_open_lock);
2019 EXPORT_SYMBOL_GPL(hid_hw_open);
2022 * hid_hw_close - signal underlaying HW to stop delivering events
2026 * This function indicates that we are not interested in the events
2027 * from this device anymore. Delivery of events may or may not stop,
2028 * depending on the number of users still outstanding.
2030 void hid_hw_close(struct hid_device *hdev)
2032 mutex_lock(&hdev->ll_open_lock);
2033 if (!--hdev->ll_open_count)
2034 hdev->ll_driver->close(hdev);
2035 mutex_unlock(&hdev->ll_open_lock);
2037 EXPORT_SYMBOL_GPL(hid_hw_close);
2040 struct list_head list;
2041 struct hid_device_id id;
2045 * store_new_id - add a new HID device ID to this driver and re-probe devices
2046 * @driver: target device driver
2047 * @buf: buffer for scanning device ID data
2048 * @count: input size
2050 * Adds a new dynamic hid device ID to this driver,
2051 * and causes the driver to probe for all devices again.
2053 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2056 struct hid_driver *hdrv = to_hid_driver(drv);
2057 struct hid_dynid *dynid;
2058 __u32 bus, vendor, product;
2059 unsigned long driver_data = 0;
2062 ret = sscanf(buf, "%x %x %x %lx",
2063 &bus, &vendor, &product, &driver_data);
2067 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2071 dynid->id.bus = bus;
2072 dynid->id.group = HID_GROUP_ANY;
2073 dynid->id.vendor = vendor;
2074 dynid->id.product = product;
2075 dynid->id.driver_data = driver_data;
2077 spin_lock(&hdrv->dyn_lock);
2078 list_add_tail(&dynid->list, &hdrv->dyn_list);
2079 spin_unlock(&hdrv->dyn_lock);
2081 ret = driver_attach(&hdrv->driver);
2083 return ret ? : count;
2085 static DRIVER_ATTR_WO(new_id);
2087 static struct attribute *hid_drv_attrs[] = {
2088 &driver_attr_new_id.attr,
2091 ATTRIBUTE_GROUPS(hid_drv);
2093 static void hid_free_dynids(struct hid_driver *hdrv)
2095 struct hid_dynid *dynid, *n;
2097 spin_lock(&hdrv->dyn_lock);
2098 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2099 list_del(&dynid->list);
2102 spin_unlock(&hdrv->dyn_lock);
2105 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2106 struct hid_driver *hdrv)
2108 struct hid_dynid *dynid;
2110 spin_lock(&hdrv->dyn_lock);
2111 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2112 if (hid_match_one_id(hdev, &dynid->id)) {
2113 spin_unlock(&hdrv->dyn_lock);
2117 spin_unlock(&hdrv->dyn_lock);
2119 return hid_match_id(hdev, hdrv->id_table);
2121 EXPORT_SYMBOL_GPL(hid_match_device);
2123 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2125 struct hid_driver *hdrv = to_hid_driver(drv);
2126 struct hid_device *hdev = to_hid_device(dev);
2128 return hid_match_device(hdev, hdrv) != NULL;
2132 * hid_compare_device_paths - check if both devices share the same path
2133 * @hdev_a: hid device
2134 * @hdev_b: hid device
2135 * @separator: char to use as separator
2137 * Check if two devices share the same path up to the last occurrence of
2138 * the separator char. Both paths must exist (i.e., zero-length paths
2141 bool hid_compare_device_paths(struct hid_device *hdev_a,
2142 struct hid_device *hdev_b, char separator)
2144 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2145 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2147 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2150 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2152 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2154 static int hid_device_probe(struct device *dev)
2156 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2157 struct hid_device *hdev = to_hid_device(dev);
2158 const struct hid_device_id *id;
2161 if (down_interruptible(&hdev->driver_input_lock)) {
2165 hdev->io_started = false;
2167 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2169 if (!hdev->driver) {
2170 id = hid_match_device(hdev, hdrv);
2177 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2183 * hid-generic implements .match(), so if
2184 * hid_ignore_special_drivers is set, we can safely
2187 if (hid_ignore_special_drivers) {
2193 /* reset the quirks that has been previously set */
2194 hdev->quirks = hid_lookup_quirk(hdev);
2195 hdev->driver = hdrv;
2197 ret = hdrv->probe(hdev, id);
2198 } else { /* default probe */
2199 ret = hid_open_report(hdev);
2201 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2204 hid_close_report(hdev);
2205 hdev->driver = NULL;
2209 if (!hdev->io_started)
2210 up(&hdev->driver_input_lock);
2215 static int hid_device_remove(struct device *dev)
2217 struct hid_device *hdev = to_hid_device(dev);
2218 struct hid_driver *hdrv;
2221 if (down_interruptible(&hdev->driver_input_lock)) {
2225 hdev->io_started = false;
2227 hdrv = hdev->driver;
2231 else /* default remove */
2233 hid_close_report(hdev);
2234 hdev->driver = NULL;
2237 if (!hdev->io_started)
2238 up(&hdev->driver_input_lock);
2243 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2246 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2248 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2249 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2251 static DEVICE_ATTR_RO(modalias);
2253 static struct attribute *hid_dev_attrs[] = {
2254 &dev_attr_modalias.attr,
2257 static struct bin_attribute *hid_dev_bin_attrs[] = {
2258 &dev_bin_attr_report_desc,
2261 static const struct attribute_group hid_dev_group = {
2262 .attrs = hid_dev_attrs,
2263 .bin_attrs = hid_dev_bin_attrs,
2265 __ATTRIBUTE_GROUPS(hid_dev);
2267 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2269 struct hid_device *hdev = to_hid_device(dev);
2271 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2272 hdev->bus, hdev->vendor, hdev->product))
2275 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2278 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2281 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2284 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2285 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2291 struct bus_type hid_bus_type = {
2293 .dev_groups = hid_dev_groups,
2294 .drv_groups = hid_drv_groups,
2295 .match = hid_bus_match,
2296 .probe = hid_device_probe,
2297 .remove = hid_device_remove,
2298 .uevent = hid_uevent,
2300 EXPORT_SYMBOL(hid_bus_type);
2302 int hid_add_device(struct hid_device *hdev)
2304 static atomic_t id = ATOMIC_INIT(0);
2307 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2310 hdev->quirks = hid_lookup_quirk(hdev);
2312 /* we need to kill them here, otherwise they will stay allocated to
2313 * wait for coming driver */
2314 if (hid_ignore(hdev))
2318 * Check for the mandatory transport channel.
2320 if (!hdev->ll_driver->raw_request) {
2321 hid_err(hdev, "transport driver missing .raw_request()\n");
2326 * Read the device report descriptor once and use as template
2327 * for the driver-specific modifications.
2329 ret = hdev->ll_driver->parse(hdev);
2332 if (!hdev->dev_rdesc)
2336 * Scan generic devices for group information
2338 if (hid_ignore_special_drivers) {
2339 hdev->group = HID_GROUP_GENERIC;
2340 } else if (!hdev->group &&
2341 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2342 ret = hid_scan_report(hdev);
2344 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2347 /* XXX hack, any other cleaner solution after the driver core
2348 * is converted to allow more than 20 bytes as the device name? */
2349 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2350 hdev->vendor, hdev->product, atomic_inc_return(&id));
2352 hid_debug_register(hdev, dev_name(&hdev->dev));
2353 ret = device_add(&hdev->dev);
2355 hdev->status |= HID_STAT_ADDED;
2357 hid_debug_unregister(hdev);
2361 EXPORT_SYMBOL_GPL(hid_add_device);
2364 * hid_allocate_device - allocate new hid device descriptor
2366 * Allocate and initialize hid device, so that hid_destroy_device might be
2369 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2372 struct hid_device *hid_allocate_device(void)
2374 struct hid_device *hdev;
2377 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2379 return ERR_PTR(ret);
2381 device_initialize(&hdev->dev);
2382 hdev->dev.release = hid_device_release;
2383 hdev->dev.bus = &hid_bus_type;
2384 device_enable_async_suspend(&hdev->dev);
2386 hid_close_report(hdev);
2388 init_waitqueue_head(&hdev->debug_wait);
2389 INIT_LIST_HEAD(&hdev->debug_list);
2390 spin_lock_init(&hdev->debug_list_lock);
2391 sema_init(&hdev->driver_input_lock, 1);
2392 mutex_init(&hdev->ll_open_lock);
2396 EXPORT_SYMBOL_GPL(hid_allocate_device);
2398 static void hid_remove_device(struct hid_device *hdev)
2400 if (hdev->status & HID_STAT_ADDED) {
2401 device_del(&hdev->dev);
2402 hid_debug_unregister(hdev);
2403 hdev->status &= ~HID_STAT_ADDED;
2405 kfree(hdev->dev_rdesc);
2406 hdev->dev_rdesc = NULL;
2407 hdev->dev_rsize = 0;
2411 * hid_destroy_device - free previously allocated device
2415 * If you allocate hid_device through hid_allocate_device, you should ever
2416 * free by this function.
2418 void hid_destroy_device(struct hid_device *hdev)
2420 hid_remove_device(hdev);
2421 put_device(&hdev->dev);
2423 EXPORT_SYMBOL_GPL(hid_destroy_device);
2426 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2428 struct hid_driver *hdrv = data;
2429 struct hid_device *hdev = to_hid_device(dev);
2431 if (hdev->driver == hdrv &&
2432 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2433 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2434 return device_reprobe(dev);
2439 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2441 struct hid_driver *hdrv = to_hid_driver(drv);
2444 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2445 __hid_bus_reprobe_drivers);
2451 static int __bus_removed_driver(struct device_driver *drv, void *data)
2453 return bus_rescan_devices(&hid_bus_type);
2456 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2457 const char *mod_name)
2461 hdrv->driver.name = hdrv->name;
2462 hdrv->driver.bus = &hid_bus_type;
2463 hdrv->driver.owner = owner;
2464 hdrv->driver.mod_name = mod_name;
2466 INIT_LIST_HEAD(&hdrv->dyn_list);
2467 spin_lock_init(&hdrv->dyn_lock);
2469 ret = driver_register(&hdrv->driver);
2472 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2473 __hid_bus_driver_added);
2477 EXPORT_SYMBOL_GPL(__hid_register_driver);
2479 void hid_unregister_driver(struct hid_driver *hdrv)
2481 driver_unregister(&hdrv->driver);
2482 hid_free_dynids(hdrv);
2484 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2486 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2488 int hid_check_keys_pressed(struct hid_device *hid)
2490 struct hid_input *hidinput;
2493 if (!(hid->claimed & HID_CLAIMED_INPUT))
2496 list_for_each_entry(hidinput, &hid->inputs, list) {
2497 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2498 if (hidinput->input->key[i])
2505 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2507 static int __init hid_init(void)
2512 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2513 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2515 ret = bus_register(&hid_bus_type);
2517 pr_err("can't register hid bus\n");
2521 ret = hidraw_init();
2529 bus_unregister(&hid_bus_type);
2534 static void __exit hid_exit(void)
2538 bus_unregister(&hid_bus_type);
2539 hid_quirks_exit(HID_BUS_ANY);
2542 module_init(hid_init);
2543 module_exit(hid_exit);
2545 MODULE_AUTHOR("Andreas Gal");
2546 MODULE_AUTHOR("Vojtech Pavlik");
2547 MODULE_AUTHOR("Jiri Kosina");
2548 MODULE_LICENSE("GPL");