2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
28 #include "amdgpu_amdkfd.h"
31 #include "amdgpu_ucode.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
42 enum hqd_dequeue_request_type {
49 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
50 MAX_WATCH_ADDRESSES = 4
54 ADDRESS_WATCH_REG_ADDR_HI = 0,
55 ADDRESS_WATCH_REG_ADDR_LO,
56 ADDRESS_WATCH_REG_CNTL,
60 /* not defined in the CI/KV reg file */
62 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 /* extend the mask to 26 bits to match the low address field */
66 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
77 union TCP_WATCH_CNTL_BITS {
91 * Register access functions
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
96 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
101 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
102 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
103 uint32_t queue_id, uint32_t __user *wptr,
104 uint32_t wptr_shift, uint32_t wptr_mask,
105 struct mm_struct *mm);
106 static int kgd_hqd_dump(struct kgd_dev *kgd,
107 uint32_t pipe_id, uint32_t queue_id,
108 uint32_t (**dump)[2], uint32_t *n_regs);
109 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
110 uint32_t __user *wptr, struct mm_struct *mm);
111 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
112 uint32_t engine_id, uint32_t queue_id,
113 uint32_t (**dump)[2], uint32_t *n_regs);
114 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
115 uint32_t pipe_id, uint32_t queue_id);
117 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
118 enum kfd_preempt_type reset_type,
119 unsigned int utimeout, uint32_t pipe_id,
121 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
122 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
123 unsigned int utimeout);
124 static int kgd_address_watch_disable(struct kgd_dev *kgd);
125 static int kgd_address_watch_execute(struct kgd_dev *kgd,
126 unsigned int watch_point_id,
130 static int kgd_wave_control_execute(struct kgd_dev *kgd,
131 uint32_t gfx_index_val,
133 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
134 unsigned int watch_point_id,
135 unsigned int reg_offset);
137 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
138 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
141 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
142 static void set_scratch_backing_va(struct kgd_dev *kgd,
143 uint64_t va, uint32_t vmid);
144 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
145 uint64_t page_table_base);
146 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
147 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
148 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
150 /* Because of REG_GET_FIELD() being used, we put this function in the
151 * asic specific file.
153 static int get_tile_config(struct kgd_dev *kgd,
154 struct tile_config *config)
156 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
158 config->gb_addr_config = adev->gfx.config.gb_addr_config;
159 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
160 MC_ARB_RAMCFG, NOOFBANK);
161 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
162 MC_ARB_RAMCFG, NOOFRANKS);
164 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
165 config->num_tile_configs =
166 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
167 config->macro_tile_config_ptr =
168 adev->gfx.config.macrotile_mode_array;
169 config->num_macro_tile_configs =
170 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
175 static const struct kfd2kgd_calls kfd2kgd = {
176 .program_sh_mem_settings = kgd_program_sh_mem_settings,
177 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
178 .init_interrupts = kgd_init_interrupts,
179 .hqd_load = kgd_hqd_load,
180 .hqd_sdma_load = kgd_hqd_sdma_load,
181 .hqd_dump = kgd_hqd_dump,
182 .hqd_sdma_dump = kgd_hqd_sdma_dump,
183 .hqd_is_occupied = kgd_hqd_is_occupied,
184 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
185 .hqd_destroy = kgd_hqd_destroy,
186 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
187 .address_watch_disable = kgd_address_watch_disable,
188 .address_watch_execute = kgd_address_watch_execute,
189 .wave_control_execute = kgd_wave_control_execute,
190 .address_watch_get_offset = kgd_address_watch_get_offset,
191 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
192 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
193 .get_fw_version = get_fw_version,
194 .set_scratch_backing_va = set_scratch_backing_va,
195 .get_tile_config = get_tile_config,
196 .set_vm_context_page_table_base = set_vm_context_page_table_base,
197 .invalidate_tlbs = invalidate_tlbs,
198 .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
199 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
202 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
204 return (struct kfd2kgd_calls *)&kfd2kgd;
207 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
209 return (struct amdgpu_device *)kgd;
212 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
213 uint32_t queue, uint32_t vmid)
215 struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
218 mutex_lock(&adev->srbm_mutex);
219 WREG32(mmSRBM_GFX_CNTL, value);
222 static void unlock_srbm(struct kgd_dev *kgd)
224 struct amdgpu_device *adev = get_amdgpu_device(kgd);
226 WREG32(mmSRBM_GFX_CNTL, 0);
227 mutex_unlock(&adev->srbm_mutex);
230 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
233 struct amdgpu_device *adev = get_amdgpu_device(kgd);
235 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
236 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
238 lock_srbm(kgd, mec, pipe, queue_id, 0);
241 static void release_queue(struct kgd_dev *kgd)
246 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
247 uint32_t sh_mem_config,
248 uint32_t sh_mem_ape1_base,
249 uint32_t sh_mem_ape1_limit,
250 uint32_t sh_mem_bases)
252 struct amdgpu_device *adev = get_amdgpu_device(kgd);
254 lock_srbm(kgd, 0, 0, 0, vmid);
256 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
257 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
258 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
259 WREG32(mmSH_MEM_BASES, sh_mem_bases);
264 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
267 struct amdgpu_device *adev = get_amdgpu_device(kgd);
270 * We have to assume that there is no outstanding mapping.
271 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
272 * a mapping is in progress or because a mapping finished and the
273 * SW cleared it. So the protocol is to always wait & clear.
275 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
276 ATC_VMID0_PASID_MAPPING__VALID_MASK;
278 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
280 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
282 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
284 /* Mapping vmid to pasid also for IH block */
285 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
290 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
292 struct amdgpu_device *adev = get_amdgpu_device(kgd);
296 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
297 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
299 lock_srbm(kgd, mec, pipe, 0, 0);
301 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
302 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
309 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
313 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
314 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
316 pr_debug("kfd: sdma base address: 0x%x\n", retval);
321 static inline struct cik_mqd *get_mqd(void *mqd)
323 return (struct cik_mqd *)mqd;
326 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
328 return (struct cik_sdma_rlc_registers *)mqd;
331 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
332 uint32_t queue_id, uint32_t __user *wptr,
333 uint32_t wptr_shift, uint32_t wptr_mask,
334 struct mm_struct *mm)
336 struct amdgpu_device *adev = get_amdgpu_device(kgd);
339 uint32_t reg, wptr_val, data;
340 bool valid_wptr = false;
344 acquire_queue(kgd, pipe_id, queue_id);
346 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
347 mqd_hqd = &m->cp_mqd_base_addr_lo;
349 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
350 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
352 /* Copy userspace write pointer value to register.
353 * Activate doorbell logic to monitor subsequent changes.
355 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
356 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
357 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
359 /* read_user_ptr may take the mm->mmap_sem.
360 * release srbm_mutex to avoid circular dependency between
361 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
364 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
365 acquire_queue(kgd, pipe_id, queue_id);
367 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
369 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
370 WREG32(mmCP_HQD_ACTIVE, data);
377 static int kgd_hqd_dump(struct kgd_dev *kgd,
378 uint32_t pipe_id, uint32_t queue_id,
379 uint32_t (**dump)[2], uint32_t *n_regs)
381 struct amdgpu_device *adev = get_amdgpu_device(kgd);
383 #define HQD_N_REGS (35+4)
384 #define DUMP_REG(addr) do { \
385 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
387 (*dump)[i][0] = (addr) << 2; \
388 (*dump)[i++][1] = RREG32(addr); \
391 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
395 acquire_queue(kgd, pipe_id, queue_id);
397 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
398 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
399 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
400 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
402 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
407 WARN_ON_ONCE(i != HQD_N_REGS);
413 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
414 uint32_t __user *wptr, struct mm_struct *mm)
416 struct amdgpu_device *adev = get_amdgpu_device(kgd);
417 struct cik_sdma_rlc_registers *m;
418 unsigned long end_jiffies;
419 uint32_t sdma_base_addr;
422 m = get_sdma_mqd(mqd);
423 sdma_base_addr = get_sdma_base_addr(m);
425 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
426 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
428 end_jiffies = msecs_to_jiffies(2000) + jiffies;
430 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
431 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
433 if (time_after(jiffies, end_jiffies))
435 usleep_range(500, 1000);
437 if (m->sdma_engine_id) {
438 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
439 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
441 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
443 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
444 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
446 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
449 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
451 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
452 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
454 if (read_user_wptr(mm, wptr, data))
455 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
457 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
458 m->sdma_rlc_rb_rptr);
460 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
461 m->sdma_rlc_virtual_addr);
462 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
463 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
464 m->sdma_rlc_rb_base_hi);
465 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
466 m->sdma_rlc_rb_rptr_addr_lo);
467 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
468 m->sdma_rlc_rb_rptr_addr_hi);
470 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
472 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
477 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
478 uint32_t engine_id, uint32_t queue_id,
479 uint32_t (**dump)[2], uint32_t *n_regs)
481 struct amdgpu_device *adev = get_amdgpu_device(kgd);
482 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
483 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
486 #define HQD_N_REGS (19+4)
488 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
492 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
493 DUMP_REG(sdma_offset + reg);
494 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
496 DUMP_REG(sdma_offset + reg);
498 WARN_ON_ONCE(i != HQD_N_REGS);
504 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
505 uint32_t pipe_id, uint32_t queue_id)
507 struct amdgpu_device *adev = get_amdgpu_device(kgd);
512 acquire_queue(kgd, pipe_id, queue_id);
513 act = RREG32(mmCP_HQD_ACTIVE);
515 low = lower_32_bits(queue_address >> 8);
516 high = upper_32_bits(queue_address >> 8);
518 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
519 high == RREG32(mmCP_HQD_PQ_BASE_HI))
526 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
528 struct amdgpu_device *adev = get_amdgpu_device(kgd);
529 struct cik_sdma_rlc_registers *m;
530 uint32_t sdma_base_addr;
531 uint32_t sdma_rlc_rb_cntl;
533 m = get_sdma_mqd(mqd);
534 sdma_base_addr = get_sdma_base_addr(m);
536 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
538 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
544 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
545 enum kfd_preempt_type reset_type,
546 unsigned int utimeout, uint32_t pipe_id,
549 struct amdgpu_device *adev = get_amdgpu_device(kgd);
551 enum hqd_dequeue_request_type type;
552 unsigned long flags, end_jiffies;
555 if (adev->in_gpu_reset)
558 acquire_queue(kgd, pipe_id, queue_id);
559 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
561 switch (reset_type) {
562 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
565 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
573 /* Workaround: If IQ timer is active and the wait time is close to or
574 * equal to 0, dequeueing is not safe. Wait until either the wait time
575 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
576 * cleared before continuing. Also, ensure wait times are set to at
579 local_irq_save(flags);
581 retry = 5000; /* wait for 500 usecs at maximum */
583 temp = RREG32(mmCP_HQD_IQ_TIMER);
584 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
585 pr_debug("HW is processing IQ\n");
588 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
589 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
590 == 3) /* SEM-rearm is safe */
592 /* Wait time 3 is safe for CP, but our MMIO read/write
593 * time is close to 1 microsecond, so check for 10 to
594 * leave more buffer room
596 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
599 pr_debug("IQ timer is active\n");
604 pr_err("CP HQD IQ timer status time out\n");
612 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
613 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
615 pr_debug("Dequeue request is pending\n");
618 pr_err("CP HQD dequeue request time out\n");
624 local_irq_restore(flags);
627 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
629 end_jiffies = (utimeout * HZ / 1000) + jiffies;
631 temp = RREG32(mmCP_HQD_ACTIVE);
632 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
634 if (time_after(jiffies, end_jiffies)) {
635 pr_err("cp queue preemption time out\n");
639 usleep_range(500, 1000);
646 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
647 unsigned int utimeout)
649 struct amdgpu_device *adev = get_amdgpu_device(kgd);
650 struct cik_sdma_rlc_registers *m;
651 uint32_t sdma_base_addr;
653 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
655 m = get_sdma_mqd(mqd);
656 sdma_base_addr = get_sdma_base_addr(m);
658 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
659 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
660 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
663 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
664 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
666 if (time_after(jiffies, end_jiffies))
668 usleep_range(500, 1000);
671 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
672 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
673 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
674 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
676 m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
681 static int kgd_address_watch_disable(struct kgd_dev *kgd)
683 struct amdgpu_device *adev = get_amdgpu_device(kgd);
684 union TCP_WATCH_CNTL_BITS cntl;
689 cntl.bitfields.valid = 0;
690 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
691 cntl.bitfields.atc = 1;
693 /* Turning off this address until we set all the registers */
694 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
695 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
696 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
701 static int kgd_address_watch_execute(struct kgd_dev *kgd,
702 unsigned int watch_point_id,
707 struct amdgpu_device *adev = get_amdgpu_device(kgd);
708 union TCP_WATCH_CNTL_BITS cntl;
710 cntl.u32All = cntl_val;
712 /* Turning off this watch point until we set all the registers */
713 cntl.bitfields.valid = 0;
714 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
715 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
717 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
718 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
720 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
721 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
723 /* Enable the watch point */
724 cntl.bitfields.valid = 1;
726 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
727 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
732 static int kgd_wave_control_execute(struct kgd_dev *kgd,
733 uint32_t gfx_index_val,
736 struct amdgpu_device *adev = get_amdgpu_device(kgd);
739 mutex_lock(&adev->grbm_idx_mutex);
741 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
742 WREG32(mmSQ_CMD, sq_cmd);
744 /* Restore the GRBM_GFX_INDEX register */
746 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
747 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
748 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
750 WREG32(mmGRBM_GFX_INDEX, data);
752 mutex_unlock(&adev->grbm_idx_mutex);
757 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
758 unsigned int watch_point_id,
759 unsigned int reg_offset)
761 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
764 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
768 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
770 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
771 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
774 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
778 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
780 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
781 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
784 static void set_scratch_backing_va(struct kgd_dev *kgd,
785 uint64_t va, uint32_t vmid)
787 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
789 lock_srbm(kgd, 0, 0, 0, vmid);
790 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
794 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
796 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
797 const union amdgpu_firmware_header *hdr;
801 hdr = (const union amdgpu_firmware_header *)
802 adev->gfx.pfp_fw->data;
806 hdr = (const union amdgpu_firmware_header *)
807 adev->gfx.me_fw->data;
811 hdr = (const union amdgpu_firmware_header *)
812 adev->gfx.ce_fw->data;
815 case KGD_ENGINE_MEC1:
816 hdr = (const union amdgpu_firmware_header *)
817 adev->gfx.mec_fw->data;
820 case KGD_ENGINE_MEC2:
821 hdr = (const union amdgpu_firmware_header *)
822 adev->gfx.mec2_fw->data;
826 hdr = (const union amdgpu_firmware_header *)
827 adev->gfx.rlc_fw->data;
830 case KGD_ENGINE_SDMA1:
831 hdr = (const union amdgpu_firmware_header *)
832 adev->sdma.instance[0].fw->data;
835 case KGD_ENGINE_SDMA2:
836 hdr = (const union amdgpu_firmware_header *)
837 adev->sdma.instance[1].fw->data;
847 /* Only 12 bit in use*/
848 return hdr->common.ucode_version;
851 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
852 uint64_t page_table_base)
854 struct amdgpu_device *adev = get_amdgpu_device(kgd);
856 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
857 pr_err("trying to set page table base for wrong VMID\n");
860 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
861 lower_32_bits(page_table_base));
864 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
866 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
870 if (adev->in_gpu_reset)
873 for (vmid = 0; vmid < 16; vmid++) {
874 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
877 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
878 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
879 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
880 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
881 RREG32(mmVM_INVALIDATE_RESPONSE);
889 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
891 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
893 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
894 pr_err("non kfd vmid\n");
898 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
899 RREG32(mmVM_INVALIDATE_RESPONSE);
904 * read_vmid_from_vmfault_reg - read vmid from register
906 * adev: amdgpu_device pointer
907 * @vmid: vmid pointer
908 * read vmid from register (CIK).
910 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
912 struct amdgpu_device *adev = get_amdgpu_device(kgd);
914 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
916 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);