2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
6 * Interactivity improvements by Mike Galbraith
9 * Various enhancements by Dmitry Adamushko.
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
16 * Scaled math optimizations by Thomas Gleixner
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
153 case SCHED_TUNABLESCALING_LINEAR:
156 case SCHED_TUNABLESCALING_LOG:
158 factor = 1 + ilog2(cpus);
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
177 void sched_init_granularity(void)
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
189 if (likely(lw->inv_weight))
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 if (!cfs_rq->on_list) {
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
329 if (se->cfs_rq == pse->cfs_rq)
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343 int se_depth, pse_depth;
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
356 while (se_depth > pse_depth) {
358 *se = parent_entity(*se);
361 while (pse_depth > se_depth) {
363 *pse = parent_entity(*pse);
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
374 static inline struct task_struct *task_of(struct sched_entity *se)
376 return container_of(se, struct task_struct, se);
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381 return container_of(cfs_rq, struct rq, cfs);
384 #define entity_is_task(se) 1
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
391 return &task_rq(p)->cfs;
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
440 s64 delta = (s64)(vruntime - max_vruntime);
442 max_vruntime = vruntime;
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
449 s64 delta = (s64)(vruntime - min_vruntime);
451 min_vruntime = vruntime;
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
459 return (s64)(a->vruntime - b->vruntime) < 0;
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
464 u64 vruntime = cfs_rq->min_vruntime;
467 vruntime = cfs_rq->curr->vruntime;
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
475 vruntime = se->vruntime;
477 vruntime = min_vruntime(vruntime, se->vruntime);
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
489 * Enqueue an entity into the rb-tree:
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
499 * Find the right place in the rbtree:
503 entry = rb_entry(parent, struct sched_entity, run_node);
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
511 link = &parent->rb_right;
517 * Maintain a cache of leftmost tree entries (it is frequently
521 cfs_rq->rb_leftmost = &se->run_node;
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
541 struct rb_node *left = cfs_rq->rb_leftmost;
546 return rb_entry(left, struct sched_entity, run_node);
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551 struct rb_node *next = rb_next(&se->run_node);
556 return rb_entry(next, struct sched_entity, run_node);
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
567 return rb_entry(last, struct sched_entity, run_node);
570 /**************************************************************
571 * Scheduling class statistics methods:
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
610 * The idea is to set a period in which each task runs once.
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
615 * p = (nr <= nl) ? l : l*nr/nl
617 static u64 __sched_period(unsigned long nr_running)
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
647 if (unlikely(!se->on_rq)) {
650 update_load_add(&lw, se->load.weight);
653 slice = __calc_delta(slice, se->load.weight, load);
659 * We calculate the vruntime slice of a to-be-inserted task.
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
685 void init_task_runnable_average(struct task_struct *p)
691 * Update the current task's runtime statistics.
693 static void update_curr(struct cfs_rq *cfs_rq)
695 struct sched_entity *curr = cfs_rq->curr;
696 u64 now = rq_clock_task(rq_of(cfs_rq));
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
706 curr->exec_start = now;
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721 cpuacct_charge(curtask, delta_exec);
722 account_group_exec_runtime(curtask, delta_exec);
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
728 static void update_curr_fair(struct rq *rq)
730 update_curr(cfs_rq_of(&rq->curr->se));
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
740 * Task is being enqueued - update stats:
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
748 if (se != cfs_rq->curr)
749 update_stats_wait_start(cfs_rq, se);
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766 schedstat_set(se->statistics.wait_start, 0);
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 * Mark the end of the wait period if dequeueing a
776 if (se != cfs_rq->curr)
777 update_stats_wait_end(cfs_rq, se);
781 * We are picking a new current task - update its stats:
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 * We are starting a new run period:
789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 /**************************************************
793 * Scheduling class queueing methods:
796 #ifdef CONFIG_NUMA_BALANCING
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
833 static unsigned int task_scan_min(struct task_struct *p)
835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 unsigned int scan, floor;
837 unsigned int windows = 1;
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
841 floor = 1000 / windows;
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
847 static unsigned int task_scan_max(struct task_struct *p)
849 unsigned int smin = task_scan_min(p);
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
872 spinlock_t lock; /* nr_tasks, tasks */
877 nodemask_t active_nodes;
878 unsigned long total_faults;
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
884 unsigned long *faults_cpu;
885 unsigned long faults[0];
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897 pid_t task_numa_group_id(struct task_struct *p)
899 return p->numa_group ? p->numa_group->gid : 0;
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922 static inline unsigned long group_faults(struct task_struct *p, int nid)
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937 /* Handle placement on systems where not all nodes are directly connected. */
938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
941 unsigned long score = 0;
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
948 if (sched_numa_topology_type == NUMA_DIRECT)
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
963 if (dist == sched_max_numa_distance || node == nid)
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
977 /* Add up the faults from nearby nodes. */
979 faults = task_faults(p, node);
981 faults = group_faults(p, node);
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1008 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 unsigned long faults, total_faults;
1013 if (!p->numa_faults)
1016 total_faults = p->total_numa_faults;
1021 faults = task_faults(p, nid);
1022 faults += score_nearby_nodes(p, nid, dist, true);
1024 return 1000 * faults / total_faults;
1027 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 unsigned long faults, total_faults;
1035 total_faults = p->numa_group->total_faults;
1040 faults = group_faults(p, nid);
1041 faults += score_nearby_nodes(p, nid, dist, false);
1043 return 1000 * faults / total_faults;
1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1089 if (!node_isset(dst_nid, ng->active_nodes))
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1096 if (!node_isset(src_nid, ng->active_nodes))
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109 static unsigned long weighted_cpuload(const int cpu);
1110 static unsigned long source_load(int cpu, int type);
1111 static unsigned long target_load(int cpu, int type);
1112 static unsigned long capacity_of(int cpu);
1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1115 /* Cached statistics for all CPUs within a node */
1117 unsigned long nr_running;
1120 /* Total compute capacity of CPUs on a node */
1121 unsigned long compute_capacity;
1123 /* Approximate capacity in terms of runnable tasks on a node */
1124 unsigned long task_capacity;
1125 int has_free_capacity;
1129 * XXX borrowed from update_sg_lb_stats
1131 static void update_numa_stats(struct numa_stats *ns, int nid)
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
1142 ns->compute_capacity += capacity_of(cpu);
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167 struct task_numa_env {
1168 struct task_struct *p;
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
1173 struct numa_stats src_stats, dst_stats;
1178 struct task_struct *best_task;
1183 static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1187 put_task_struct(env->best_task);
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1196 static bool load_too_imbalanced(long src_load, long dst_load,
1197 struct task_numa_env *env)
1200 long orig_src_load, orig_dst_load;
1201 long src_capacity, dst_capacity;
1204 * The load is corrected for the CPU capacity available on each node.
1207 * ------------ vs ---------
1208 * src_capacity dst_capacity
1210 src_capacity = env->src_stats.compute_capacity;
1211 dst_capacity = env->dst_stats.compute_capacity;
1213 /* We care about the slope of the imbalance, not the direction. */
1214 if (dst_load < src_load)
1215 swap(dst_load, src_load);
1217 /* Is the difference below the threshold? */
1218 imb = dst_load * src_capacity * 100 -
1219 src_load * dst_capacity * env->imbalance_pct;
1224 * The imbalance is above the allowed threshold.
1225 * Compare it with the old imbalance.
1227 orig_src_load = env->src_stats.load;
1228 orig_dst_load = env->dst_stats.load;
1230 if (orig_dst_load < orig_src_load)
1231 swap(orig_dst_load, orig_src_load);
1233 old_imb = orig_dst_load * src_capacity * 100 -
1234 orig_src_load * dst_capacity * env->imbalance_pct;
1236 /* Would this change make things worse? */
1237 return (imb > old_imb);
1241 * This checks if the overall compute and NUMA accesses of the system would
1242 * be improved if the source tasks was migrated to the target dst_cpu taking
1243 * into account that it might be best if task running on the dst_cpu should
1244 * be exchanged with the source task
1246 static void task_numa_compare(struct task_numa_env *env,
1247 long taskimp, long groupimp)
1249 struct rq *src_rq = cpu_rq(env->src_cpu);
1250 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1251 struct task_struct *cur;
1252 long src_load, dst_load;
1254 long imp = env->p->numa_group ? groupimp : taskimp;
1256 int dist = env->dist;
1260 raw_spin_lock_irq(&dst_rq->lock);
1263 * No need to move the exiting task, and this ensures that ->curr
1264 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1265 * is safe under RCU read lock.
1266 * Note that rcu_read_lock() itself can't protect from the final
1267 * put_task_struct() after the last schedule().
1269 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1271 raw_spin_unlock_irq(&dst_rq->lock);
1274 * Because we have preemption enabled we can get migrated around and
1275 * end try selecting ourselves (current == env->p) as a swap candidate.
1281 * "imp" is the fault differential for the source task between the
1282 * source and destination node. Calculate the total differential for
1283 * the source task and potential destination task. The more negative
1284 * the value is, the more rmeote accesses that would be expected to
1285 * be incurred if the tasks were swapped.
1288 /* Skip this swap candidate if cannot move to the source cpu */
1289 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1293 * If dst and source tasks are in the same NUMA group, or not
1294 * in any group then look only at task weights.
1296 if (cur->numa_group == env->p->numa_group) {
1297 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1298 task_weight(cur, env->dst_nid, dist);
1300 * Add some hysteresis to prevent swapping the
1301 * tasks within a group over tiny differences.
1303 if (cur->numa_group)
1307 * Compare the group weights. If a task is all by
1308 * itself (not part of a group), use the task weight
1311 if (cur->numa_group)
1312 imp += group_weight(cur, env->src_nid, dist) -
1313 group_weight(cur, env->dst_nid, dist);
1315 imp += task_weight(cur, env->src_nid, dist) -
1316 task_weight(cur, env->dst_nid, dist);
1320 if (imp <= env->best_imp && moveimp <= env->best_imp)
1324 /* Is there capacity at our destination? */
1325 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1326 !env->dst_stats.has_free_capacity)
1332 /* Balance doesn't matter much if we're running a task per cpu */
1333 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1334 dst_rq->nr_running == 1)
1338 * In the overloaded case, try and keep the load balanced.
1341 load = task_h_load(env->p);
1342 dst_load = env->dst_stats.load + load;
1343 src_load = env->src_stats.load - load;
1345 if (moveimp > imp && moveimp > env->best_imp) {
1347 * If the improvement from just moving env->p direction is
1348 * better than swapping tasks around, check if a move is
1349 * possible. Store a slightly smaller score than moveimp,
1350 * so an actually idle CPU will win.
1352 if (!load_too_imbalanced(src_load, dst_load, env)) {
1359 if (imp <= env->best_imp)
1363 load = task_h_load(cur);
1368 if (load_too_imbalanced(src_load, dst_load, env))
1372 * One idle CPU per node is evaluated for a task numa move.
1373 * Call select_idle_sibling to maybe find a better one.
1376 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379 task_numa_assign(env, cur, imp);
1384 static void task_numa_find_cpu(struct task_numa_env *env,
1385 long taskimp, long groupimp)
1389 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1390 /* Skip this CPU if the source task cannot migrate */
1391 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1395 task_numa_compare(env, taskimp, groupimp);
1399 static int task_numa_migrate(struct task_struct *p)
1401 struct task_numa_env env = {
1404 .src_cpu = task_cpu(p),
1405 .src_nid = task_node(p),
1407 .imbalance_pct = 112,
1413 struct sched_domain *sd;
1414 unsigned long taskweight, groupweight;
1416 long taskimp, groupimp;
1419 * Pick the lowest SD_NUMA domain, as that would have the smallest
1420 * imbalance and would be the first to start moving tasks about.
1422 * And we want to avoid any moving of tasks about, as that would create
1423 * random movement of tasks -- counter the numa conditions we're trying
1427 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1429 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1433 * Cpusets can break the scheduler domain tree into smaller
1434 * balance domains, some of which do not cross NUMA boundaries.
1435 * Tasks that are "trapped" in such domains cannot be migrated
1436 * elsewhere, so there is no point in (re)trying.
1438 if (unlikely(!sd)) {
1439 p->numa_preferred_nid = task_node(p);
1443 env.dst_nid = p->numa_preferred_nid;
1444 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1445 taskweight = task_weight(p, env.src_nid, dist);
1446 groupweight = group_weight(p, env.src_nid, dist);
1447 update_numa_stats(&env.src_stats, env.src_nid);
1448 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1449 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1450 update_numa_stats(&env.dst_stats, env.dst_nid);
1452 /* Try to find a spot on the preferred nid. */
1453 task_numa_find_cpu(&env, taskimp, groupimp);
1456 * Look at other nodes in these cases:
1457 * - there is no space available on the preferred_nid
1458 * - the task is part of a numa_group that is interleaved across
1459 * multiple NUMA nodes; in order to better consolidate the group,
1460 * we need to check other locations.
1462 if (env.best_cpu == -1 || (p->numa_group &&
1463 nodes_weight(p->numa_group->active_nodes) > 1)) {
1464 for_each_online_node(nid) {
1465 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1468 dist = node_distance(env.src_nid, env.dst_nid);
1469 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1471 taskweight = task_weight(p, env.src_nid, dist);
1472 groupweight = group_weight(p, env.src_nid, dist);
1475 /* Only consider nodes where both task and groups benefit */
1476 taskimp = task_weight(p, nid, dist) - taskweight;
1477 groupimp = group_weight(p, nid, dist) - groupweight;
1478 if (taskimp < 0 && groupimp < 0)
1483 update_numa_stats(&env.dst_stats, env.dst_nid);
1484 task_numa_find_cpu(&env, taskimp, groupimp);
1489 * If the task is part of a workload that spans multiple NUMA nodes,
1490 * and is migrating into one of the workload's active nodes, remember
1491 * this node as the task's preferred numa node, so the workload can
1493 * A task that migrated to a second choice node will be better off
1494 * trying for a better one later. Do not set the preferred node here.
1496 if (p->numa_group) {
1497 if (env.best_cpu == -1)
1502 if (node_isset(nid, p->numa_group->active_nodes))
1503 sched_setnuma(p, env.dst_nid);
1506 /* No better CPU than the current one was found. */
1507 if (env.best_cpu == -1)
1511 * Reset the scan period if the task is being rescheduled on an
1512 * alternative node to recheck if the tasks is now properly placed.
1514 p->numa_scan_period = task_scan_min(p);
1516 if (env.best_task == NULL) {
1517 ret = migrate_task_to(p, env.best_cpu);
1519 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1523 ret = migrate_swap(p, env.best_task);
1525 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1526 put_task_struct(env.best_task);
1530 /* Attempt to migrate a task to a CPU on the preferred node. */
1531 static void numa_migrate_preferred(struct task_struct *p)
1533 unsigned long interval = HZ;
1535 /* This task has no NUMA fault statistics yet */
1536 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1539 /* Periodically retry migrating the task to the preferred node */
1540 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1541 p->numa_migrate_retry = jiffies + interval;
1543 /* Success if task is already running on preferred CPU */
1544 if (task_node(p) == p->numa_preferred_nid)
1547 /* Otherwise, try migrate to a CPU on the preferred node */
1548 task_numa_migrate(p);
1552 * Find the nodes on which the workload is actively running. We do this by
1553 * tracking the nodes from which NUMA hinting faults are triggered. This can
1554 * be different from the set of nodes where the workload's memory is currently
1557 * The bitmask is used to make smarter decisions on when to do NUMA page
1558 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1559 * are added when they cause over 6/16 of the maximum number of faults, but
1560 * only removed when they drop below 3/16.
1562 static void update_numa_active_node_mask(struct numa_group *numa_group)
1564 unsigned long faults, max_faults = 0;
1567 for_each_online_node(nid) {
1568 faults = group_faults_cpu(numa_group, nid);
1569 if (faults > max_faults)
1570 max_faults = faults;
1573 for_each_online_node(nid) {
1574 faults = group_faults_cpu(numa_group, nid);
1575 if (!node_isset(nid, numa_group->active_nodes)) {
1576 if (faults > max_faults * 6 / 16)
1577 node_set(nid, numa_group->active_nodes);
1578 } else if (faults < max_faults * 3 / 16)
1579 node_clear(nid, numa_group->active_nodes);
1584 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1585 * increments. The more local the fault statistics are, the higher the scan
1586 * period will be for the next scan window. If local/(local+remote) ratio is
1587 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1588 * the scan period will decrease. Aim for 70% local accesses.
1590 #define NUMA_PERIOD_SLOTS 10
1591 #define NUMA_PERIOD_THRESHOLD 7
1594 * Increase the scan period (slow down scanning) if the majority of
1595 * our memory is already on our local node, or if the majority of
1596 * the page accesses are shared with other processes.
1597 * Otherwise, decrease the scan period.
1599 static void update_task_scan_period(struct task_struct *p,
1600 unsigned long shared, unsigned long private)
1602 unsigned int period_slot;
1606 unsigned long remote = p->numa_faults_locality[0];
1607 unsigned long local = p->numa_faults_locality[1];
1610 * If there were no record hinting faults then either the task is
1611 * completely idle or all activity is areas that are not of interest
1612 * to automatic numa balancing. Related to that, if there were failed
1613 * migration then it implies we are migrating too quickly or the local
1614 * node is overloaded. In either case, scan slower
1616 if (local + shared == 0 || p->numa_faults_locality[2]) {
1617 p->numa_scan_period = min(p->numa_scan_period_max,
1618 p->numa_scan_period << 1);
1620 p->mm->numa_next_scan = jiffies +
1621 msecs_to_jiffies(p->numa_scan_period);
1627 * Prepare to scale scan period relative to the current period.
1628 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1629 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1630 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1632 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1633 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1634 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1635 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1638 diff = slot * period_slot;
1640 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1643 * Scale scan rate increases based on sharing. There is an
1644 * inverse relationship between the degree of sharing and
1645 * the adjustment made to the scanning period. Broadly
1646 * speaking the intent is that there is little point
1647 * scanning faster if shared accesses dominate as it may
1648 * simply bounce migrations uselessly
1650 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1651 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1654 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1655 task_scan_min(p), task_scan_max(p));
1656 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1660 * Get the fraction of time the task has been running since the last
1661 * NUMA placement cycle. The scheduler keeps similar statistics, but
1662 * decays those on a 32ms period, which is orders of magnitude off
1663 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1664 * stats only if the task is so new there are no NUMA statistics yet.
1666 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1668 u64 runtime, delta, now;
1669 /* Use the start of this time slice to avoid calculations. */
1670 now = p->se.exec_start;
1671 runtime = p->se.sum_exec_runtime;
1673 if (p->last_task_numa_placement) {
1674 delta = runtime - p->last_sum_exec_runtime;
1675 *period = now - p->last_task_numa_placement;
1677 delta = p->se.avg.runnable_avg_sum;
1678 *period = p->se.avg.runnable_avg_period;
1681 p->last_sum_exec_runtime = runtime;
1682 p->last_task_numa_placement = now;
1688 * Determine the preferred nid for a task in a numa_group. This needs to
1689 * be done in a way that produces consistent results with group_weight,
1690 * otherwise workloads might not converge.
1692 static int preferred_group_nid(struct task_struct *p, int nid)
1697 /* Direct connections between all NUMA nodes. */
1698 if (sched_numa_topology_type == NUMA_DIRECT)
1702 * On a system with glueless mesh NUMA topology, group_weight
1703 * scores nodes according to the number of NUMA hinting faults on
1704 * both the node itself, and on nearby nodes.
1706 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1707 unsigned long score, max_score = 0;
1708 int node, max_node = nid;
1710 dist = sched_max_numa_distance;
1712 for_each_online_node(node) {
1713 score = group_weight(p, node, dist);
1714 if (score > max_score) {
1723 * Finding the preferred nid in a system with NUMA backplane
1724 * interconnect topology is more involved. The goal is to locate
1725 * tasks from numa_groups near each other in the system, and
1726 * untangle workloads from different sides of the system. This requires
1727 * searching down the hierarchy of node groups, recursively searching
1728 * inside the highest scoring group of nodes. The nodemask tricks
1729 * keep the complexity of the search down.
1731 nodes = node_online_map;
1732 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1733 unsigned long max_faults = 0;
1734 nodemask_t max_group = NODE_MASK_NONE;
1737 /* Are there nodes at this distance from each other? */
1738 if (!find_numa_distance(dist))
1741 for_each_node_mask(a, nodes) {
1742 unsigned long faults = 0;
1743 nodemask_t this_group;
1744 nodes_clear(this_group);
1746 /* Sum group's NUMA faults; includes a==b case. */
1747 for_each_node_mask(b, nodes) {
1748 if (node_distance(a, b) < dist) {
1749 faults += group_faults(p, b);
1750 node_set(b, this_group);
1751 node_clear(b, nodes);
1755 /* Remember the top group. */
1756 if (faults > max_faults) {
1757 max_faults = faults;
1758 max_group = this_group;
1760 * subtle: at the smallest distance there is
1761 * just one node left in each "group", the
1762 * winner is the preferred nid.
1767 /* Next round, evaluate the nodes within max_group. */
1773 static void task_numa_placement(struct task_struct *p)
1775 int seq, nid, max_nid = -1, max_group_nid = -1;
1776 unsigned long max_faults = 0, max_group_faults = 0;
1777 unsigned long fault_types[2] = { 0, 0 };
1778 unsigned long total_faults;
1779 u64 runtime, period;
1780 spinlock_t *group_lock = NULL;
1782 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1783 if (p->numa_scan_seq == seq)
1785 p->numa_scan_seq = seq;
1786 p->numa_scan_period_max = task_scan_max(p);
1788 total_faults = p->numa_faults_locality[0] +
1789 p->numa_faults_locality[1];
1790 runtime = numa_get_avg_runtime(p, &period);
1792 /* If the task is part of a group prevent parallel updates to group stats */
1793 if (p->numa_group) {
1794 group_lock = &p->numa_group->lock;
1795 spin_lock_irq(group_lock);
1798 /* Find the node with the highest number of faults */
1799 for_each_online_node(nid) {
1800 /* Keep track of the offsets in numa_faults array */
1801 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1802 unsigned long faults = 0, group_faults = 0;
1805 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1806 long diff, f_diff, f_weight;
1808 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1809 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1810 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1811 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1813 /* Decay existing window, copy faults since last scan */
1814 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1815 fault_types[priv] += p->numa_faults[membuf_idx];
1816 p->numa_faults[membuf_idx] = 0;
1819 * Normalize the faults_from, so all tasks in a group
1820 * count according to CPU use, instead of by the raw
1821 * number of faults. Tasks with little runtime have
1822 * little over-all impact on throughput, and thus their
1823 * faults are less important.
1825 f_weight = div64_u64(runtime << 16, period + 1);
1826 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1828 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1829 p->numa_faults[cpubuf_idx] = 0;
1831 p->numa_faults[mem_idx] += diff;
1832 p->numa_faults[cpu_idx] += f_diff;
1833 faults += p->numa_faults[mem_idx];
1834 p->total_numa_faults += diff;
1835 if (p->numa_group) {
1837 * safe because we can only change our own group
1839 * mem_idx represents the offset for a given
1840 * nid and priv in a specific region because it
1841 * is at the beginning of the numa_faults array.
1843 p->numa_group->faults[mem_idx] += diff;
1844 p->numa_group->faults_cpu[mem_idx] += f_diff;
1845 p->numa_group->total_faults += diff;
1846 group_faults += p->numa_group->faults[mem_idx];
1850 if (faults > max_faults) {
1851 max_faults = faults;
1855 if (group_faults > max_group_faults) {
1856 max_group_faults = group_faults;
1857 max_group_nid = nid;
1861 update_task_scan_period(p, fault_types[0], fault_types[1]);
1863 if (p->numa_group) {
1864 update_numa_active_node_mask(p->numa_group);
1865 spin_unlock_irq(group_lock);
1866 max_nid = preferred_group_nid(p, max_group_nid);
1870 /* Set the new preferred node */
1871 if (max_nid != p->numa_preferred_nid)
1872 sched_setnuma(p, max_nid);
1874 if (task_node(p) != p->numa_preferred_nid)
1875 numa_migrate_preferred(p);
1879 static inline int get_numa_group(struct numa_group *grp)
1881 return atomic_inc_not_zero(&grp->refcount);
1884 static inline void put_numa_group(struct numa_group *grp)
1886 if (atomic_dec_and_test(&grp->refcount))
1887 kfree_rcu(grp, rcu);
1890 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1893 struct numa_group *grp, *my_grp;
1894 struct task_struct *tsk;
1896 int cpu = cpupid_to_cpu(cpupid);
1899 if (unlikely(!p->numa_group)) {
1900 unsigned int size = sizeof(struct numa_group) +
1901 4*nr_node_ids*sizeof(unsigned long);
1903 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1907 atomic_set(&grp->refcount, 1);
1908 spin_lock_init(&grp->lock);
1910 /* Second half of the array tracks nids where faults happen */
1911 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1914 node_set(task_node(current), grp->active_nodes);
1916 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1917 grp->faults[i] = p->numa_faults[i];
1919 grp->total_faults = p->total_numa_faults;
1922 rcu_assign_pointer(p->numa_group, grp);
1926 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1928 if (!cpupid_match_pid(tsk, cpupid))
1931 grp = rcu_dereference(tsk->numa_group);
1935 my_grp = p->numa_group;
1940 * Only join the other group if its bigger; if we're the bigger group,
1941 * the other task will join us.
1943 if (my_grp->nr_tasks > grp->nr_tasks)
1947 * Tie-break on the grp address.
1949 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1952 /* Always join threads in the same process. */
1953 if (tsk->mm == current->mm)
1956 /* Simple filter to avoid false positives due to PID collisions */
1957 if (flags & TNF_SHARED)
1960 /* Update priv based on whether false sharing was detected */
1963 if (join && !get_numa_group(grp))
1971 BUG_ON(irqs_disabled());
1972 double_lock_irq(&my_grp->lock, &grp->lock);
1974 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1975 my_grp->faults[i] -= p->numa_faults[i];
1976 grp->faults[i] += p->numa_faults[i];
1978 my_grp->total_faults -= p->total_numa_faults;
1979 grp->total_faults += p->total_numa_faults;
1984 spin_unlock(&my_grp->lock);
1985 spin_unlock_irq(&grp->lock);
1987 rcu_assign_pointer(p->numa_group, grp);
1989 put_numa_group(my_grp);
1997 void task_numa_free(struct task_struct *p)
1999 struct numa_group *grp = p->numa_group;
2000 void *numa_faults = p->numa_faults;
2001 unsigned long flags;
2005 spin_lock_irqsave(&grp->lock, flags);
2006 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2007 grp->faults[i] -= p->numa_faults[i];
2008 grp->total_faults -= p->total_numa_faults;
2011 spin_unlock_irqrestore(&grp->lock, flags);
2012 RCU_INIT_POINTER(p->numa_group, NULL);
2013 put_numa_group(grp);
2016 p->numa_faults = NULL;
2021 * Got a PROT_NONE fault for a page on @node.
2023 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2025 struct task_struct *p = current;
2026 bool migrated = flags & TNF_MIGRATED;
2027 int cpu_node = task_node(current);
2028 int local = !!(flags & TNF_FAULT_LOCAL);
2031 if (!numabalancing_enabled)
2034 /* for example, ksmd faulting in a user's mm */
2038 /* Allocate buffer to track faults on a per-node basis */
2039 if (unlikely(!p->numa_faults)) {
2040 int size = sizeof(*p->numa_faults) *
2041 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2043 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2044 if (!p->numa_faults)
2047 p->total_numa_faults = 0;
2048 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2052 * First accesses are treated as private, otherwise consider accesses
2053 * to be private if the accessing pid has not changed
2055 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2058 priv = cpupid_match_pid(p, last_cpupid);
2059 if (!priv && !(flags & TNF_NO_GROUP))
2060 task_numa_group(p, last_cpupid, flags, &priv);
2064 * If a workload spans multiple NUMA nodes, a shared fault that
2065 * occurs wholly within the set of nodes that the workload is
2066 * actively using should be counted as local. This allows the
2067 * scan rate to slow down when a workload has settled down.
2069 if (!priv && !local && p->numa_group &&
2070 node_isset(cpu_node, p->numa_group->active_nodes) &&
2071 node_isset(mem_node, p->numa_group->active_nodes))
2074 task_numa_placement(p);
2077 * Retry task to preferred node migration periodically, in case it
2078 * case it previously failed, or the scheduler moved us.
2080 if (time_after(jiffies, p->numa_migrate_retry))
2081 numa_migrate_preferred(p);
2084 p->numa_pages_migrated += pages;
2085 if (flags & TNF_MIGRATE_FAIL)
2086 p->numa_faults_locality[2] += pages;
2088 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2089 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2090 p->numa_faults_locality[local] += pages;
2093 static void reset_ptenuma_scan(struct task_struct *p)
2095 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2096 p->mm->numa_scan_offset = 0;
2100 * The expensive part of numa migration is done from task_work context.
2101 * Triggered from task_tick_numa().
2103 void task_numa_work(struct callback_head *work)
2105 unsigned long migrate, next_scan, now = jiffies;
2106 struct task_struct *p = current;
2107 struct mm_struct *mm = p->mm;
2108 struct vm_area_struct *vma;
2109 unsigned long start, end;
2110 unsigned long nr_pte_updates = 0;
2113 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2115 work->next = work; /* protect against double add */
2117 * Who cares about NUMA placement when they're dying.
2119 * NOTE: make sure not to dereference p->mm before this check,
2120 * exit_task_work() happens _after_ exit_mm() so we could be called
2121 * without p->mm even though we still had it when we enqueued this
2124 if (p->flags & PF_EXITING)
2127 if (!mm->numa_next_scan) {
2128 mm->numa_next_scan = now +
2129 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2133 * Enforce maximal scan/migration frequency..
2135 migrate = mm->numa_next_scan;
2136 if (time_before(now, migrate))
2139 if (p->numa_scan_period == 0) {
2140 p->numa_scan_period_max = task_scan_max(p);
2141 p->numa_scan_period = task_scan_min(p);
2144 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2145 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2149 * Delay this task enough that another task of this mm will likely win
2150 * the next time around.
2152 p->node_stamp += 2 * TICK_NSEC;
2154 start = mm->numa_scan_offset;
2155 pages = sysctl_numa_balancing_scan_size;
2156 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2160 down_read(&mm->mmap_sem);
2161 vma = find_vma(mm, start);
2163 reset_ptenuma_scan(p);
2167 for (; vma; vma = vma->vm_next) {
2168 if (!vma_migratable(vma) || !vma_policy_mof(vma))
2172 * Shared library pages mapped by multiple processes are not
2173 * migrated as it is expected they are cache replicated. Avoid
2174 * hinting faults in read-only file-backed mappings or the vdso
2175 * as migrating the pages will be of marginal benefit.
2178 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2182 * Skip inaccessible VMAs to avoid any confusion between
2183 * PROT_NONE and NUMA hinting ptes
2185 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2189 start = max(start, vma->vm_start);
2190 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2191 end = min(end, vma->vm_end);
2192 nr_pte_updates += change_prot_numa(vma, start, end);
2195 * Scan sysctl_numa_balancing_scan_size but ensure that
2196 * at least one PTE is updated so that unused virtual
2197 * address space is quickly skipped.
2200 pages -= (end - start) >> PAGE_SHIFT;
2207 } while (end != vma->vm_end);
2212 * It is possible to reach the end of the VMA list but the last few
2213 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2214 * would find the !migratable VMA on the next scan but not reset the
2215 * scanner to the start so check it now.
2218 mm->numa_scan_offset = start;
2220 reset_ptenuma_scan(p);
2221 up_read(&mm->mmap_sem);
2225 * Drive the periodic memory faults..
2227 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2229 struct callback_head *work = &curr->numa_work;
2233 * We don't care about NUMA placement if we don't have memory.
2235 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2239 * Using runtime rather than walltime has the dual advantage that
2240 * we (mostly) drive the selection from busy threads and that the
2241 * task needs to have done some actual work before we bother with
2244 now = curr->se.sum_exec_runtime;
2245 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2247 if (now - curr->node_stamp > period) {
2248 if (!curr->node_stamp)
2249 curr->numa_scan_period = task_scan_min(curr);
2250 curr->node_stamp += period;
2252 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2253 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2254 task_work_add(curr, work, true);
2259 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2263 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2267 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2270 #endif /* CONFIG_NUMA_BALANCING */
2273 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2275 update_load_add(&cfs_rq->load, se->load.weight);
2276 if (!parent_entity(se))
2277 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2279 if (entity_is_task(se)) {
2280 struct rq *rq = rq_of(cfs_rq);
2282 account_numa_enqueue(rq, task_of(se));
2283 list_add(&se->group_node, &rq->cfs_tasks);
2286 cfs_rq->nr_running++;
2290 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2292 update_load_sub(&cfs_rq->load, se->load.weight);
2293 if (!parent_entity(se))
2294 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2295 if (entity_is_task(se)) {
2296 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2297 list_del_init(&se->group_node);
2299 cfs_rq->nr_running--;
2302 #ifdef CONFIG_FAIR_GROUP_SCHED
2304 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2309 * Use this CPU's actual weight instead of the last load_contribution
2310 * to gain a more accurate current total weight. See
2311 * update_cfs_rq_load_contribution().
2313 tg_weight = atomic_long_read(&tg->load_avg);
2314 tg_weight -= cfs_rq->tg_load_contrib;
2315 tg_weight += cfs_rq->load.weight;
2320 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2322 long tg_weight, load, shares;
2324 tg_weight = calc_tg_weight(tg, cfs_rq);
2325 load = cfs_rq->load.weight;
2327 shares = (tg->shares * load);
2329 shares /= tg_weight;
2331 if (shares < MIN_SHARES)
2332 shares = MIN_SHARES;
2333 if (shares > tg->shares)
2334 shares = tg->shares;
2338 # else /* CONFIG_SMP */
2339 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2343 # endif /* CONFIG_SMP */
2344 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2345 unsigned long weight)
2348 /* commit outstanding execution time */
2349 if (cfs_rq->curr == se)
2350 update_curr(cfs_rq);
2351 account_entity_dequeue(cfs_rq, se);
2354 update_load_set(&se->load, weight);
2357 account_entity_enqueue(cfs_rq, se);
2360 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2362 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2364 struct task_group *tg;
2365 struct sched_entity *se;
2369 se = tg->se[cpu_of(rq_of(cfs_rq))];
2370 if (!se || throttled_hierarchy(cfs_rq))
2373 if (likely(se->load.weight == tg->shares))
2376 shares = calc_cfs_shares(cfs_rq, tg);
2378 reweight_entity(cfs_rq_of(se), se, shares);
2380 #else /* CONFIG_FAIR_GROUP_SCHED */
2381 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2384 #endif /* CONFIG_FAIR_GROUP_SCHED */
2388 * We choose a half-life close to 1 scheduling period.
2389 * Note: The tables below are dependent on this value.
2391 #define LOAD_AVG_PERIOD 32
2392 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2393 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2395 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2396 static const u32 runnable_avg_yN_inv[] = {
2397 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2398 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2399 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2400 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2401 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2402 0x85aac367, 0x82cd8698,
2406 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2407 * over-estimates when re-combining.
2409 static const u32 runnable_avg_yN_sum[] = {
2410 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2411 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2412 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2417 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2419 static __always_inline u64 decay_load(u64 val, u64 n)
2421 unsigned int local_n;
2425 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2428 /* after bounds checking we can collapse to 32-bit */
2432 * As y^PERIOD = 1/2, we can combine
2433 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2434 * With a look-up table which covers y^n (n<PERIOD)
2436 * To achieve constant time decay_load.
2438 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2439 val >>= local_n / LOAD_AVG_PERIOD;
2440 local_n %= LOAD_AVG_PERIOD;
2443 val *= runnable_avg_yN_inv[local_n];
2444 /* We don't use SRR here since we always want to round down. */
2449 * For updates fully spanning n periods, the contribution to runnable
2450 * average will be: \Sum 1024*y^n
2452 * We can compute this reasonably efficiently by combining:
2453 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2455 static u32 __compute_runnable_contrib(u64 n)
2459 if (likely(n <= LOAD_AVG_PERIOD))
2460 return runnable_avg_yN_sum[n];
2461 else if (unlikely(n >= LOAD_AVG_MAX_N))
2462 return LOAD_AVG_MAX;
2464 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2466 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2467 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2469 n -= LOAD_AVG_PERIOD;
2470 } while (n > LOAD_AVG_PERIOD);
2472 contrib = decay_load(contrib, n);
2473 return contrib + runnable_avg_yN_sum[n];
2477 * We can represent the historical contribution to runnable average as the
2478 * coefficients of a geometric series. To do this we sub-divide our runnable
2479 * history into segments of approximately 1ms (1024us); label the segment that
2480 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2482 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2484 * (now) (~1ms ago) (~2ms ago)
2486 * Let u_i denote the fraction of p_i that the entity was runnable.
2488 * We then designate the fractions u_i as our co-efficients, yielding the
2489 * following representation of historical load:
2490 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2492 * We choose y based on the with of a reasonably scheduling period, fixing:
2495 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2496 * approximately half as much as the contribution to load within the last ms
2499 * When a period "rolls over" and we have new u_0`, multiplying the previous
2500 * sum again by y is sufficient to update:
2501 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2502 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2504 static __always_inline int __update_entity_runnable_avg(u64 now,
2505 struct sched_avg *sa,
2509 u32 runnable_contrib;
2510 int delta_w, decayed = 0;
2512 delta = now - sa->last_runnable_update;
2514 * This should only happen when time goes backwards, which it
2515 * unfortunately does during sched clock init when we swap over to TSC.
2517 if ((s64)delta < 0) {
2518 sa->last_runnable_update = now;
2523 * Use 1024ns as the unit of measurement since it's a reasonable
2524 * approximation of 1us and fast to compute.
2529 sa->last_runnable_update = now;
2531 /* delta_w is the amount already accumulated against our next period */
2532 delta_w = sa->runnable_avg_period % 1024;
2533 if (delta + delta_w >= 1024) {
2534 /* period roll-over */
2538 * Now that we know we're crossing a period boundary, figure
2539 * out how much from delta we need to complete the current
2540 * period and accrue it.
2542 delta_w = 1024 - delta_w;
2544 sa->runnable_avg_sum += delta_w;
2545 sa->runnable_avg_period += delta_w;
2549 /* Figure out how many additional periods this update spans */
2550 periods = delta / 1024;
2553 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2555 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2558 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2559 runnable_contrib = __compute_runnable_contrib(periods);
2561 sa->runnable_avg_sum += runnable_contrib;
2562 sa->runnable_avg_period += runnable_contrib;
2565 /* Remainder of delta accrued against u_0` */
2567 sa->runnable_avg_sum += delta;
2568 sa->runnable_avg_period += delta;
2573 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2574 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2576 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2577 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2579 decays -= se->avg.decay_count;
2580 se->avg.decay_count = 0;
2584 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2589 #ifdef CONFIG_FAIR_GROUP_SCHED
2590 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2593 struct task_group *tg = cfs_rq->tg;
2596 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2597 tg_contrib -= cfs_rq->tg_load_contrib;
2602 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2603 atomic_long_add(tg_contrib, &tg->load_avg);
2604 cfs_rq->tg_load_contrib += tg_contrib;
2609 * Aggregate cfs_rq runnable averages into an equivalent task_group
2610 * representation for computing load contributions.
2612 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2613 struct cfs_rq *cfs_rq)
2615 struct task_group *tg = cfs_rq->tg;
2618 /* The fraction of a cpu used by this cfs_rq */
2619 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2620 sa->runnable_avg_period + 1);
2621 contrib -= cfs_rq->tg_runnable_contrib;
2623 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2624 atomic_add(contrib, &tg->runnable_avg);
2625 cfs_rq->tg_runnable_contrib += contrib;
2629 static inline void __update_group_entity_contrib(struct sched_entity *se)
2631 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2632 struct task_group *tg = cfs_rq->tg;
2637 contrib = cfs_rq->tg_load_contrib * tg->shares;
2638 se->avg.load_avg_contrib = div_u64(contrib,
2639 atomic_long_read(&tg->load_avg) + 1);
2642 * For group entities we need to compute a correction term in the case
2643 * that they are consuming <1 cpu so that we would contribute the same
2644 * load as a task of equal weight.
2646 * Explicitly co-ordinating this measurement would be expensive, but
2647 * fortunately the sum of each cpus contribution forms a usable
2648 * lower-bound on the true value.
2650 * Consider the aggregate of 2 contributions. Either they are disjoint
2651 * (and the sum represents true value) or they are disjoint and we are
2652 * understating by the aggregate of their overlap.
2654 * Extending this to N cpus, for a given overlap, the maximum amount we
2655 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2656 * cpus that overlap for this interval and w_i is the interval width.
2658 * On a small machine; the first term is well-bounded which bounds the
2659 * total error since w_i is a subset of the period. Whereas on a
2660 * larger machine, while this first term can be larger, if w_i is the
2661 * of consequential size guaranteed to see n_i*w_i quickly converge to
2662 * our upper bound of 1-cpu.
2664 runnable_avg = atomic_read(&tg->runnable_avg);
2665 if (runnable_avg < NICE_0_LOAD) {
2666 se->avg.load_avg_contrib *= runnable_avg;
2667 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2671 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2673 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2674 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2676 #else /* CONFIG_FAIR_GROUP_SCHED */
2677 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2678 int force_update) {}
2679 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2680 struct cfs_rq *cfs_rq) {}
2681 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2682 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2683 #endif /* CONFIG_FAIR_GROUP_SCHED */
2685 static inline void __update_task_entity_contrib(struct sched_entity *se)
2689 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2690 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2691 contrib /= (se->avg.runnable_avg_period + 1);
2692 se->avg.load_avg_contrib = scale_load(contrib);
2695 /* Compute the current contribution to load_avg by se, return any delta */
2696 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2698 long old_contrib = se->avg.load_avg_contrib;
2700 if (entity_is_task(se)) {
2701 __update_task_entity_contrib(se);
2703 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2704 __update_group_entity_contrib(se);
2707 return se->avg.load_avg_contrib - old_contrib;
2710 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2713 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2714 cfs_rq->blocked_load_avg -= load_contrib;
2716 cfs_rq->blocked_load_avg = 0;
2719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2721 /* Update a sched_entity's runnable average */
2722 static inline void update_entity_load_avg(struct sched_entity *se,
2725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2730 * For a group entity we need to use their owned cfs_rq_clock_task() in
2731 * case they are the parent of a throttled hierarchy.
2733 if (entity_is_task(se))
2734 now = cfs_rq_clock_task(cfs_rq);
2736 now = cfs_rq_clock_task(group_cfs_rq(se));
2738 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2741 contrib_delta = __update_entity_load_avg_contrib(se);
2747 cfs_rq->runnable_load_avg += contrib_delta;
2749 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2753 * Decay the load contributed by all blocked children and account this so that
2754 * their contribution may appropriately discounted when they wake up.
2756 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2758 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2761 decays = now - cfs_rq->last_decay;
2762 if (!decays && !force_update)
2765 if (atomic_long_read(&cfs_rq->removed_load)) {
2766 unsigned long removed_load;
2767 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2768 subtract_blocked_load_contrib(cfs_rq, removed_load);
2772 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2774 atomic64_add(decays, &cfs_rq->decay_counter);
2775 cfs_rq->last_decay = now;
2778 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2781 /* Add the load generated by se into cfs_rq's child load-average */
2782 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2783 struct sched_entity *se,
2787 * We track migrations using entity decay_count <= 0, on a wake-up
2788 * migration we use a negative decay count to track the remote decays
2789 * accumulated while sleeping.
2791 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2792 * are seen by enqueue_entity_load_avg() as a migration with an already
2793 * constructed load_avg_contrib.
2795 if (unlikely(se->avg.decay_count <= 0)) {
2796 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2797 if (se->avg.decay_count) {
2799 * In a wake-up migration we have to approximate the
2800 * time sleeping. This is because we can't synchronize
2801 * clock_task between the two cpus, and it is not
2802 * guaranteed to be read-safe. Instead, we can
2803 * approximate this using our carried decays, which are
2804 * explicitly atomically readable.
2806 se->avg.last_runnable_update -= (-se->avg.decay_count)
2808 update_entity_load_avg(se, 0);
2809 /* Indicate that we're now synchronized and on-rq */
2810 se->avg.decay_count = 0;
2814 __synchronize_entity_decay(se);
2817 /* migrated tasks did not contribute to our blocked load */
2819 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2820 update_entity_load_avg(se, 0);
2823 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2824 /* we force update consideration on load-balancer moves */
2825 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2829 * Remove se's load from this cfs_rq child load-average, if the entity is
2830 * transitioning to a blocked state we track its projected decay using
2833 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2834 struct sched_entity *se,
2837 update_entity_load_avg(se, 1);
2838 /* we force update consideration on load-balancer moves */
2839 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2841 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2843 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2844 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2845 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2849 * Update the rq's load with the elapsed running time before entering
2850 * idle. if the last scheduled task is not a CFS task, idle_enter will
2851 * be the only way to update the runnable statistic.
2853 void idle_enter_fair(struct rq *this_rq)
2855 update_rq_runnable_avg(this_rq, 1);
2859 * Update the rq's load with the elapsed idle time before a task is
2860 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2861 * be the only way to update the runnable statistic.
2863 void idle_exit_fair(struct rq *this_rq)
2865 update_rq_runnable_avg(this_rq, 0);
2868 static int idle_balance(struct rq *this_rq);
2870 #else /* CONFIG_SMP */
2872 static inline void update_entity_load_avg(struct sched_entity *se,
2873 int update_cfs_rq) {}
2874 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2875 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2876 struct sched_entity *se,
2878 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2879 struct sched_entity *se,
2881 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2882 int force_update) {}
2884 static inline int idle_balance(struct rq *rq)
2889 #endif /* CONFIG_SMP */
2891 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2893 #ifdef CONFIG_SCHEDSTATS
2894 struct task_struct *tsk = NULL;
2896 if (entity_is_task(se))
2899 if (se->statistics.sleep_start) {
2900 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2905 if (unlikely(delta > se->statistics.sleep_max))
2906 se->statistics.sleep_max = delta;
2908 se->statistics.sleep_start = 0;
2909 se->statistics.sum_sleep_runtime += delta;
2912 account_scheduler_latency(tsk, delta >> 10, 1);
2913 trace_sched_stat_sleep(tsk, delta);
2916 if (se->statistics.block_start) {
2917 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2922 if (unlikely(delta > se->statistics.block_max))
2923 se->statistics.block_max = delta;
2925 se->statistics.block_start = 0;
2926 se->statistics.sum_sleep_runtime += delta;
2929 if (tsk->in_iowait) {
2930 se->statistics.iowait_sum += delta;
2931 se->statistics.iowait_count++;
2932 trace_sched_stat_iowait(tsk, delta);
2935 trace_sched_stat_blocked(tsk, delta);
2938 * Blocking time is in units of nanosecs, so shift by
2939 * 20 to get a milliseconds-range estimation of the
2940 * amount of time that the task spent sleeping:
2942 if (unlikely(prof_on == SLEEP_PROFILING)) {
2943 profile_hits(SLEEP_PROFILING,
2944 (void *)get_wchan(tsk),
2947 account_scheduler_latency(tsk, delta >> 10, 0);
2953 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955 #ifdef CONFIG_SCHED_DEBUG
2956 s64 d = se->vruntime - cfs_rq->min_vruntime;
2961 if (d > 3*sysctl_sched_latency)
2962 schedstat_inc(cfs_rq, nr_spread_over);
2967 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2969 u64 vruntime = cfs_rq->min_vruntime;
2972 * The 'current' period is already promised to the current tasks,
2973 * however the extra weight of the new task will slow them down a
2974 * little, place the new task so that it fits in the slot that
2975 * stays open at the end.
2977 if (initial && sched_feat(START_DEBIT))
2978 vruntime += sched_vslice(cfs_rq, se);
2980 /* sleeps up to a single latency don't count. */
2982 unsigned long thresh = sysctl_sched_latency;
2985 * Halve their sleep time's effect, to allow
2986 * for a gentler effect of sleepers:
2988 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2994 /* ensure we never gain time by being placed backwards. */
2995 se->vruntime = max_vruntime(se->vruntime, vruntime);
2998 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3001 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3004 * Update the normalized vruntime before updating min_vruntime
3005 * through calling update_curr().
3007 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3008 se->vruntime += cfs_rq->min_vruntime;
3011 * Update run-time statistics of the 'current'.
3013 update_curr(cfs_rq);
3014 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3015 account_entity_enqueue(cfs_rq, se);
3016 update_cfs_shares(cfs_rq);
3018 if (flags & ENQUEUE_WAKEUP) {
3019 place_entity(cfs_rq, se, 0);
3020 enqueue_sleeper(cfs_rq, se);
3023 update_stats_enqueue(cfs_rq, se);
3024 check_spread(cfs_rq, se);
3025 if (se != cfs_rq->curr)
3026 __enqueue_entity(cfs_rq, se);
3029 if (cfs_rq->nr_running == 1) {
3030 list_add_leaf_cfs_rq(cfs_rq);
3031 check_enqueue_throttle(cfs_rq);
3035 static void __clear_buddies_last(struct sched_entity *se)
3037 for_each_sched_entity(se) {
3038 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3039 if (cfs_rq->last != se)
3042 cfs_rq->last = NULL;
3046 static void __clear_buddies_next(struct sched_entity *se)
3048 for_each_sched_entity(se) {
3049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3050 if (cfs_rq->next != se)
3053 cfs_rq->next = NULL;
3057 static void __clear_buddies_skip(struct sched_entity *se)
3059 for_each_sched_entity(se) {
3060 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3061 if (cfs_rq->skip != se)
3064 cfs_rq->skip = NULL;
3068 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3070 if (cfs_rq->last == se)
3071 __clear_buddies_last(se);
3073 if (cfs_rq->next == se)
3074 __clear_buddies_next(se);
3076 if (cfs_rq->skip == se)
3077 __clear_buddies_skip(se);
3080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3083 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3086 * Update run-time statistics of the 'current'.
3088 update_curr(cfs_rq);
3089 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3091 update_stats_dequeue(cfs_rq, se);
3092 if (flags & DEQUEUE_SLEEP) {
3093 #ifdef CONFIG_SCHEDSTATS
3094 if (entity_is_task(se)) {
3095 struct task_struct *tsk = task_of(se);
3097 if (tsk->state & TASK_INTERRUPTIBLE)
3098 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3099 if (tsk->state & TASK_UNINTERRUPTIBLE)
3100 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3105 clear_buddies(cfs_rq, se);
3107 if (se != cfs_rq->curr)
3108 __dequeue_entity(cfs_rq, se);
3110 account_entity_dequeue(cfs_rq, se);
3113 * Normalize the entity after updating the min_vruntime because the
3114 * update can refer to the ->curr item and we need to reflect this
3115 * movement in our normalized position.
3117 if (!(flags & DEQUEUE_SLEEP))
3118 se->vruntime -= cfs_rq->min_vruntime;
3120 /* return excess runtime on last dequeue */
3121 return_cfs_rq_runtime(cfs_rq);
3123 update_min_vruntime(cfs_rq);
3124 update_cfs_shares(cfs_rq);
3128 * Preempt the current task with a newly woken task if needed:
3131 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3133 unsigned long ideal_runtime, delta_exec;
3134 struct sched_entity *se;
3137 ideal_runtime = sched_slice(cfs_rq, curr);
3138 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3139 if (delta_exec > ideal_runtime) {
3140 resched_curr(rq_of(cfs_rq));
3142 * The current task ran long enough, ensure it doesn't get
3143 * re-elected due to buddy favours.
3145 clear_buddies(cfs_rq, curr);
3150 * Ensure that a task that missed wakeup preemption by a
3151 * narrow margin doesn't have to wait for a full slice.
3152 * This also mitigates buddy induced latencies under load.
3154 if (delta_exec < sysctl_sched_min_granularity)
3157 se = __pick_first_entity(cfs_rq);
3158 delta = curr->vruntime - se->vruntime;
3163 if (delta > ideal_runtime)
3164 resched_curr(rq_of(cfs_rq));
3168 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3170 /* 'current' is not kept within the tree. */
3173 * Any task has to be enqueued before it get to execute on
3174 * a CPU. So account for the time it spent waiting on the
3177 update_stats_wait_end(cfs_rq, se);
3178 __dequeue_entity(cfs_rq, se);
3181 update_stats_curr_start(cfs_rq, se);
3183 #ifdef CONFIG_SCHEDSTATS
3185 * Track our maximum slice length, if the CPU's load is at
3186 * least twice that of our own weight (i.e. dont track it
3187 * when there are only lesser-weight tasks around):
3189 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3190 se->statistics.slice_max = max(se->statistics.slice_max,
3191 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3194 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3198 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3201 * Pick the next process, keeping these things in mind, in this order:
3202 * 1) keep things fair between processes/task groups
3203 * 2) pick the "next" process, since someone really wants that to run
3204 * 3) pick the "last" process, for cache locality
3205 * 4) do not run the "skip" process, if something else is available
3207 static struct sched_entity *
3208 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3210 struct sched_entity *left = __pick_first_entity(cfs_rq);
3211 struct sched_entity *se;
3214 * If curr is set we have to see if its left of the leftmost entity
3215 * still in the tree, provided there was anything in the tree at all.
3217 if (!left || (curr && entity_before(curr, left)))
3220 se = left; /* ideally we run the leftmost entity */
3223 * Avoid running the skip buddy, if running something else can
3224 * be done without getting too unfair.
3226 if (cfs_rq->skip == se) {
3227 struct sched_entity *second;
3230 second = __pick_first_entity(cfs_rq);
3232 second = __pick_next_entity(se);
3233 if (!second || (curr && entity_before(curr, second)))
3237 if (second && wakeup_preempt_entity(second, left) < 1)
3242 * Prefer last buddy, try to return the CPU to a preempted task.
3244 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3248 * Someone really wants this to run. If it's not unfair, run it.
3250 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3253 clear_buddies(cfs_rq, se);
3258 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3260 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3263 * If still on the runqueue then deactivate_task()
3264 * was not called and update_curr() has to be done:
3267 update_curr(cfs_rq);
3269 /* throttle cfs_rqs exceeding runtime */
3270 check_cfs_rq_runtime(cfs_rq);
3272 check_spread(cfs_rq, prev);
3274 update_stats_wait_start(cfs_rq, prev);
3275 /* Put 'current' back into the tree. */
3276 __enqueue_entity(cfs_rq, prev);
3277 /* in !on_rq case, update occurred at dequeue */
3278 update_entity_load_avg(prev, 1);
3280 cfs_rq->curr = NULL;
3284 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3287 * Update run-time statistics of the 'current'.
3289 update_curr(cfs_rq);
3292 * Ensure that runnable average is periodically updated.
3294 update_entity_load_avg(curr, 1);
3295 update_cfs_rq_blocked_load(cfs_rq, 1);
3296 update_cfs_shares(cfs_rq);
3298 #ifdef CONFIG_SCHED_HRTICK
3300 * queued ticks are scheduled to match the slice, so don't bother
3301 * validating it and just reschedule.
3304 resched_curr(rq_of(cfs_rq));
3308 * don't let the period tick interfere with the hrtick preemption
3310 if (!sched_feat(DOUBLE_TICK) &&
3311 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3315 if (cfs_rq->nr_running > 1)
3316 check_preempt_tick(cfs_rq, curr);
3320 /**************************************************
3321 * CFS bandwidth control machinery
3324 #ifdef CONFIG_CFS_BANDWIDTH
3326 #ifdef HAVE_JUMP_LABEL
3327 static struct static_key __cfs_bandwidth_used;
3329 static inline bool cfs_bandwidth_used(void)
3331 return static_key_false(&__cfs_bandwidth_used);
3334 void cfs_bandwidth_usage_inc(void)
3336 static_key_slow_inc(&__cfs_bandwidth_used);
3339 void cfs_bandwidth_usage_dec(void)
3341 static_key_slow_dec(&__cfs_bandwidth_used);
3343 #else /* HAVE_JUMP_LABEL */
3344 static bool cfs_bandwidth_used(void)
3349 void cfs_bandwidth_usage_inc(void) {}
3350 void cfs_bandwidth_usage_dec(void) {}
3351 #endif /* HAVE_JUMP_LABEL */
3354 * default period for cfs group bandwidth.
3355 * default: 0.1s, units: nanoseconds
3357 static inline u64 default_cfs_period(void)
3359 return 100000000ULL;
3362 static inline u64 sched_cfs_bandwidth_slice(void)
3364 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3368 * Replenish runtime according to assigned quota and update expiration time.
3369 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3370 * additional synchronization around rq->lock.
3372 * requires cfs_b->lock
3374 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3378 if (cfs_b->quota == RUNTIME_INF)
3381 now = sched_clock_cpu(smp_processor_id());
3382 cfs_b->runtime = cfs_b->quota;
3383 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3386 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3388 return &tg->cfs_bandwidth;
3391 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3392 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3394 if (unlikely(cfs_rq->throttle_count))
3395 return cfs_rq->throttled_clock_task;
3397 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3400 /* returns 0 on failure to allocate runtime */
3401 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3403 struct task_group *tg = cfs_rq->tg;
3404 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3405 u64 amount = 0, min_amount, expires;
3407 /* note: this is a positive sum as runtime_remaining <= 0 */
3408 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3410 raw_spin_lock(&cfs_b->lock);
3411 if (cfs_b->quota == RUNTIME_INF)
3412 amount = min_amount;
3415 * If the bandwidth pool has become inactive, then at least one
3416 * period must have elapsed since the last consumption.
3417 * Refresh the global state and ensure bandwidth timer becomes
3420 if (!cfs_b->timer_active) {
3421 __refill_cfs_bandwidth_runtime(cfs_b);
3422 __start_cfs_bandwidth(cfs_b, false);
3425 if (cfs_b->runtime > 0) {
3426 amount = min(cfs_b->runtime, min_amount);
3427 cfs_b->runtime -= amount;
3431 expires = cfs_b->runtime_expires;
3432 raw_spin_unlock(&cfs_b->lock);
3434 cfs_rq->runtime_remaining += amount;
3436 * we may have advanced our local expiration to account for allowed
3437 * spread between our sched_clock and the one on which runtime was
3440 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3441 cfs_rq->runtime_expires = expires;
3443 return cfs_rq->runtime_remaining > 0;
3447 * Note: This depends on the synchronization provided by sched_clock and the
3448 * fact that rq->clock snapshots this value.
3450 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3452 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3454 /* if the deadline is ahead of our clock, nothing to do */
3455 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3458 if (cfs_rq->runtime_remaining < 0)
3462 * If the local deadline has passed we have to consider the
3463 * possibility that our sched_clock is 'fast' and the global deadline
3464 * has not truly expired.
3466 * Fortunately we can check determine whether this the case by checking
3467 * whether the global deadline has advanced. It is valid to compare
3468 * cfs_b->runtime_expires without any locks since we only care about
3469 * exact equality, so a partial write will still work.
3472 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3473 /* extend local deadline, drift is bounded above by 2 ticks */
3474 cfs_rq->runtime_expires += TICK_NSEC;
3476 /* global deadline is ahead, expiration has passed */
3477 cfs_rq->runtime_remaining = 0;
3481 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3483 /* dock delta_exec before expiring quota (as it could span periods) */
3484 cfs_rq->runtime_remaining -= delta_exec;
3485 expire_cfs_rq_runtime(cfs_rq);
3487 if (likely(cfs_rq->runtime_remaining > 0))
3491 * if we're unable to extend our runtime we resched so that the active
3492 * hierarchy can be throttled
3494 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3495 resched_curr(rq_of(cfs_rq));
3498 static __always_inline
3499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3501 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3504 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3507 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3509 return cfs_bandwidth_used() && cfs_rq->throttled;
3512 /* check whether cfs_rq, or any parent, is throttled */
3513 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3515 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3519 * Ensure that neither of the group entities corresponding to src_cpu or
3520 * dest_cpu are members of a throttled hierarchy when performing group
3521 * load-balance operations.
3523 static inline int throttled_lb_pair(struct task_group *tg,
3524 int src_cpu, int dest_cpu)
3526 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3528 src_cfs_rq = tg->cfs_rq[src_cpu];
3529 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3531 return throttled_hierarchy(src_cfs_rq) ||
3532 throttled_hierarchy(dest_cfs_rq);
3535 /* updated child weight may affect parent so we have to do this bottom up */
3536 static int tg_unthrottle_up(struct task_group *tg, void *data)
3538 struct rq *rq = data;
3539 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3541 cfs_rq->throttle_count--;
3543 if (!cfs_rq->throttle_count) {
3544 /* adjust cfs_rq_clock_task() */
3545 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3546 cfs_rq->throttled_clock_task;
3553 static int tg_throttle_down(struct task_group *tg, void *data)
3555 struct rq *rq = data;
3556 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3558 /* group is entering throttled state, stop time */
3559 if (!cfs_rq->throttle_count)
3560 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3561 cfs_rq->throttle_count++;
3566 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3568 struct rq *rq = rq_of(cfs_rq);
3569 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3570 struct sched_entity *se;
3571 long task_delta, dequeue = 1;
3573 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3575 /* freeze hierarchy runnable averages while throttled */
3577 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3580 task_delta = cfs_rq->h_nr_running;
3581 for_each_sched_entity(se) {
3582 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3583 /* throttled entity or throttle-on-deactivate */
3588 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3589 qcfs_rq->h_nr_running -= task_delta;
3591 if (qcfs_rq->load.weight)
3596 sub_nr_running(rq, task_delta);
3598 cfs_rq->throttled = 1;
3599 cfs_rq->throttled_clock = rq_clock(rq);
3600 raw_spin_lock(&cfs_b->lock);
3602 * Add to the _head_ of the list, so that an already-started
3603 * distribute_cfs_runtime will not see us
3605 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3606 if (!cfs_b->timer_active)
3607 __start_cfs_bandwidth(cfs_b, false);
3608 raw_spin_unlock(&cfs_b->lock);
3611 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3613 struct rq *rq = rq_of(cfs_rq);
3614 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3615 struct sched_entity *se;
3619 se = cfs_rq->tg->se[cpu_of(rq)];
3621 cfs_rq->throttled = 0;
3623 update_rq_clock(rq);
3625 raw_spin_lock(&cfs_b->lock);
3626 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3627 list_del_rcu(&cfs_rq->throttled_list);
3628 raw_spin_unlock(&cfs_b->lock);
3630 /* update hierarchical throttle state */
3631 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3633 if (!cfs_rq->load.weight)
3636 task_delta = cfs_rq->h_nr_running;
3637 for_each_sched_entity(se) {
3641 cfs_rq = cfs_rq_of(se);
3643 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3644 cfs_rq->h_nr_running += task_delta;
3646 if (cfs_rq_throttled(cfs_rq))
3651 add_nr_running(rq, task_delta);
3653 /* determine whether we need to wake up potentially idle cpu */
3654 if (rq->curr == rq->idle && rq->cfs.nr_running)
3658 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3659 u64 remaining, u64 expires)
3661 struct cfs_rq *cfs_rq;
3663 u64 starting_runtime = remaining;
3666 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3668 struct rq *rq = rq_of(cfs_rq);
3670 raw_spin_lock(&rq->lock);
3671 if (!cfs_rq_throttled(cfs_rq))
3674 runtime = -cfs_rq->runtime_remaining + 1;
3675 if (runtime > remaining)
3676 runtime = remaining;
3677 remaining -= runtime;
3679 cfs_rq->runtime_remaining += runtime;
3680 cfs_rq->runtime_expires = expires;
3682 /* we check whether we're throttled above */
3683 if (cfs_rq->runtime_remaining > 0)
3684 unthrottle_cfs_rq(cfs_rq);
3687 raw_spin_unlock(&rq->lock);
3694 return starting_runtime - remaining;
3698 * Responsible for refilling a task_group's bandwidth and unthrottling its
3699 * cfs_rqs as appropriate. If there has been no activity within the last
3700 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3701 * used to track this state.
3703 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3705 u64 runtime, runtime_expires;
3708 /* no need to continue the timer with no bandwidth constraint */
3709 if (cfs_b->quota == RUNTIME_INF)
3710 goto out_deactivate;
3712 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3713 cfs_b->nr_periods += overrun;
3716 * idle depends on !throttled (for the case of a large deficit), and if
3717 * we're going inactive then everything else can be deferred
3719 if (cfs_b->idle && !throttled)
3720 goto out_deactivate;
3723 * if we have relooped after returning idle once, we need to update our
3724 * status as actually running, so that other cpus doing
3725 * __start_cfs_bandwidth will stop trying to cancel us.
3727 cfs_b->timer_active = 1;
3729 __refill_cfs_bandwidth_runtime(cfs_b);
3732 /* mark as potentially idle for the upcoming period */
3737 /* account preceding periods in which throttling occurred */
3738 cfs_b->nr_throttled += overrun;
3740 runtime_expires = cfs_b->runtime_expires;
3743 * This check is repeated as we are holding onto the new bandwidth while
3744 * we unthrottle. This can potentially race with an unthrottled group
3745 * trying to acquire new bandwidth from the global pool. This can result
3746 * in us over-using our runtime if it is all used during this loop, but
3747 * only by limited amounts in that extreme case.
3749 while (throttled && cfs_b->runtime > 0) {
3750 runtime = cfs_b->runtime;
3751 raw_spin_unlock(&cfs_b->lock);
3752 /* we can't nest cfs_b->lock while distributing bandwidth */
3753 runtime = distribute_cfs_runtime(cfs_b, runtime,
3755 raw_spin_lock(&cfs_b->lock);
3757 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3759 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3763 * While we are ensured activity in the period following an
3764 * unthrottle, this also covers the case in which the new bandwidth is
3765 * insufficient to cover the existing bandwidth deficit. (Forcing the
3766 * timer to remain active while there are any throttled entities.)
3773 cfs_b->timer_active = 0;
3777 /* a cfs_rq won't donate quota below this amount */
3778 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3779 /* minimum remaining period time to redistribute slack quota */
3780 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3781 /* how long we wait to gather additional slack before distributing */
3782 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3785 * Are we near the end of the current quota period?
3787 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3788 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3789 * migrate_hrtimers, base is never cleared, so we are fine.
3791 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3793 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3796 /* if the call-back is running a quota refresh is already occurring */
3797 if (hrtimer_callback_running(refresh_timer))
3800 /* is a quota refresh about to occur? */
3801 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3802 if (remaining < min_expire)
3808 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3810 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3812 /* if there's a quota refresh soon don't bother with slack */
3813 if (runtime_refresh_within(cfs_b, min_left))
3816 start_bandwidth_timer(&cfs_b->slack_timer,
3817 ns_to_ktime(cfs_bandwidth_slack_period));
3820 /* we know any runtime found here is valid as update_curr() precedes return */
3821 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3823 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3824 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3826 if (slack_runtime <= 0)
3829 raw_spin_lock(&cfs_b->lock);
3830 if (cfs_b->quota != RUNTIME_INF &&
3831 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3832 cfs_b->runtime += slack_runtime;
3834 /* we are under rq->lock, defer unthrottling using a timer */
3835 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3836 !list_empty(&cfs_b->throttled_cfs_rq))
3837 start_cfs_slack_bandwidth(cfs_b);
3839 raw_spin_unlock(&cfs_b->lock);
3841 /* even if it's not valid for return we don't want to try again */
3842 cfs_rq->runtime_remaining -= slack_runtime;
3845 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3847 if (!cfs_bandwidth_used())
3850 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3853 __return_cfs_rq_runtime(cfs_rq);
3857 * This is done with a timer (instead of inline with bandwidth return) since
3858 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3860 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3862 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3865 /* confirm we're still not at a refresh boundary */
3866 raw_spin_lock(&cfs_b->lock);
3867 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3868 raw_spin_unlock(&cfs_b->lock);
3872 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3873 runtime = cfs_b->runtime;
3875 expires = cfs_b->runtime_expires;
3876 raw_spin_unlock(&cfs_b->lock);
3881 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3883 raw_spin_lock(&cfs_b->lock);
3884 if (expires == cfs_b->runtime_expires)
3885 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3886 raw_spin_unlock(&cfs_b->lock);
3890 * When a group wakes up we want to make sure that its quota is not already
3891 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3892 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3894 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3896 if (!cfs_bandwidth_used())
3899 /* an active group must be handled by the update_curr()->put() path */
3900 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3903 /* ensure the group is not already throttled */
3904 if (cfs_rq_throttled(cfs_rq))
3907 /* update runtime allocation */
3908 account_cfs_rq_runtime(cfs_rq, 0);
3909 if (cfs_rq->runtime_remaining <= 0)
3910 throttle_cfs_rq(cfs_rq);
3913 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3914 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3916 if (!cfs_bandwidth_used())
3919 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3923 * it's possible for a throttled entity to be forced into a running
3924 * state (e.g. set_curr_task), in this case we're finished.
3926 if (cfs_rq_throttled(cfs_rq))
3929 throttle_cfs_rq(cfs_rq);
3933 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3935 struct cfs_bandwidth *cfs_b =
3936 container_of(timer, struct cfs_bandwidth, slack_timer);
3937 do_sched_cfs_slack_timer(cfs_b);
3939 return HRTIMER_NORESTART;
3942 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3944 struct cfs_bandwidth *cfs_b =
3945 container_of(timer, struct cfs_bandwidth, period_timer);
3950 raw_spin_lock(&cfs_b->lock);
3952 now = hrtimer_cb_get_time(timer);
3953 overrun = hrtimer_forward(timer, now, cfs_b->period);
3958 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3960 raw_spin_unlock(&cfs_b->lock);
3962 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3965 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3967 raw_spin_lock_init(&cfs_b->lock);
3969 cfs_b->quota = RUNTIME_INF;
3970 cfs_b->period = ns_to_ktime(default_cfs_period());
3972 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3973 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3974 cfs_b->period_timer.function = sched_cfs_period_timer;
3975 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3976 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3979 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3981 cfs_rq->runtime_enabled = 0;
3982 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3985 /* requires cfs_b->lock, may release to reprogram timer */
3986 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3989 * The timer may be active because we're trying to set a new bandwidth
3990 * period or because we're racing with the tear-down path
3991 * (timer_active==0 becomes visible before the hrtimer call-back
3992 * terminates). In either case we ensure that it's re-programmed
3994 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3995 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3996 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3997 raw_spin_unlock(&cfs_b->lock);
3999 raw_spin_lock(&cfs_b->lock);
4000 /* if someone else restarted the timer then we're done */
4001 if (!force && cfs_b->timer_active)
4005 cfs_b->timer_active = 1;
4006 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4009 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4011 /* init_cfs_bandwidth() was not called */
4012 if (!cfs_b->throttled_cfs_rq.next)
4015 hrtimer_cancel(&cfs_b->period_timer);
4016 hrtimer_cancel(&cfs_b->slack_timer);
4019 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4021 struct cfs_rq *cfs_rq;
4023 for_each_leaf_cfs_rq(rq, cfs_rq) {
4024 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4026 raw_spin_lock(&cfs_b->lock);
4027 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4028 raw_spin_unlock(&cfs_b->lock);
4032 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4034 struct cfs_rq *cfs_rq;
4036 for_each_leaf_cfs_rq(rq, cfs_rq) {
4037 if (!cfs_rq->runtime_enabled)
4041 * clock_task is not advancing so we just need to make sure
4042 * there's some valid quota amount
4044 cfs_rq->runtime_remaining = 1;
4046 * Offline rq is schedulable till cpu is completely disabled
4047 * in take_cpu_down(), so we prevent new cfs throttling here.
4049 cfs_rq->runtime_enabled = 0;
4051 if (cfs_rq_throttled(cfs_rq))
4052 unthrottle_cfs_rq(cfs_rq);
4056 #else /* CONFIG_CFS_BANDWIDTH */
4057 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4059 return rq_clock_task(rq_of(cfs_rq));
4062 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4063 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4064 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4065 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4067 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4072 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4077 static inline int throttled_lb_pair(struct task_group *tg,
4078 int src_cpu, int dest_cpu)
4083 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4085 #ifdef CONFIG_FAIR_GROUP_SCHED
4086 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4089 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4093 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4094 static inline void update_runtime_enabled(struct rq *rq) {}
4095 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4097 #endif /* CONFIG_CFS_BANDWIDTH */
4099 /**************************************************
4100 * CFS operations on tasks:
4103 #ifdef CONFIG_SCHED_HRTICK
4104 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4106 struct sched_entity *se = &p->se;
4107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4109 WARN_ON(task_rq(p) != rq);
4111 if (cfs_rq->nr_running > 1) {
4112 u64 slice = sched_slice(cfs_rq, se);
4113 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4114 s64 delta = slice - ran;
4121 hrtick_start(rq, delta);
4126 * called from enqueue/dequeue and updates the hrtick when the
4127 * current task is from our class and nr_running is low enough
4130 static void hrtick_update(struct rq *rq)
4132 struct task_struct *curr = rq->curr;
4134 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4137 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4138 hrtick_start_fair(rq, curr);
4140 #else /* !CONFIG_SCHED_HRTICK */
4142 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4146 static inline void hrtick_update(struct rq *rq)
4152 * The enqueue_task method is called before nr_running is
4153 * increased. Here we update the fair scheduling stats and
4154 * then put the task into the rbtree:
4157 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4159 struct cfs_rq *cfs_rq;
4160 struct sched_entity *se = &p->se;
4162 for_each_sched_entity(se) {
4165 cfs_rq = cfs_rq_of(se);
4166 enqueue_entity(cfs_rq, se, flags);
4169 * end evaluation on encountering a throttled cfs_rq
4171 * note: in the case of encountering a throttled cfs_rq we will
4172 * post the final h_nr_running increment below.
4174 if (cfs_rq_throttled(cfs_rq))
4176 cfs_rq->h_nr_running++;
4178 flags = ENQUEUE_WAKEUP;
4181 for_each_sched_entity(se) {
4182 cfs_rq = cfs_rq_of(se);
4183 cfs_rq->h_nr_running++;
4185 if (cfs_rq_throttled(cfs_rq))
4188 update_cfs_shares(cfs_rq);
4189 update_entity_load_avg(se, 1);
4193 update_rq_runnable_avg(rq, rq->nr_running);
4194 add_nr_running(rq, 1);
4199 static void set_next_buddy(struct sched_entity *se);
4202 * The dequeue_task method is called before nr_running is
4203 * decreased. We remove the task from the rbtree and
4204 * update the fair scheduling stats:
4206 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4208 struct cfs_rq *cfs_rq;
4209 struct sched_entity *se = &p->se;
4210 int task_sleep = flags & DEQUEUE_SLEEP;
4212 for_each_sched_entity(se) {
4213 cfs_rq = cfs_rq_of(se);
4214 dequeue_entity(cfs_rq, se, flags);
4217 * end evaluation on encountering a throttled cfs_rq
4219 * note: in the case of encountering a throttled cfs_rq we will
4220 * post the final h_nr_running decrement below.
4222 if (cfs_rq_throttled(cfs_rq))
4224 cfs_rq->h_nr_running--;
4226 /* Don't dequeue parent if it has other entities besides us */
4227 if (cfs_rq->load.weight) {
4229 * Bias pick_next to pick a task from this cfs_rq, as
4230 * p is sleeping when it is within its sched_slice.
4232 if (task_sleep && parent_entity(se))
4233 set_next_buddy(parent_entity(se));
4235 /* avoid re-evaluating load for this entity */
4236 se = parent_entity(se);
4239 flags |= DEQUEUE_SLEEP;
4242 for_each_sched_entity(se) {
4243 cfs_rq = cfs_rq_of(se);
4244 cfs_rq->h_nr_running--;
4246 if (cfs_rq_throttled(cfs_rq))
4249 update_cfs_shares(cfs_rq);
4250 update_entity_load_avg(se, 1);
4254 sub_nr_running(rq, 1);
4255 update_rq_runnable_avg(rq, 1);
4261 /* Used instead of source_load when we know the type == 0 */
4262 static unsigned long weighted_cpuload(const int cpu)
4264 return cpu_rq(cpu)->cfs.runnable_load_avg;
4268 * Return a low guess at the load of a migration-source cpu weighted
4269 * according to the scheduling class and "nice" value.
4271 * We want to under-estimate the load of migration sources, to
4272 * balance conservatively.
4274 static unsigned long source_load(int cpu, int type)
4276 struct rq *rq = cpu_rq(cpu);
4277 unsigned long total = weighted_cpuload(cpu);
4279 if (type == 0 || !sched_feat(LB_BIAS))
4282 return min(rq->cpu_load[type-1], total);
4286 * Return a high guess at the load of a migration-target cpu weighted
4287 * according to the scheduling class and "nice" value.
4289 static unsigned long target_load(int cpu, int type)
4291 struct rq *rq = cpu_rq(cpu);
4292 unsigned long total = weighted_cpuload(cpu);
4294 if (type == 0 || !sched_feat(LB_BIAS))
4297 return max(rq->cpu_load[type-1], total);
4300 static unsigned long capacity_of(int cpu)
4302 return cpu_rq(cpu)->cpu_capacity;
4305 static unsigned long cpu_avg_load_per_task(int cpu)
4307 struct rq *rq = cpu_rq(cpu);
4308 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4309 unsigned long load_avg = rq->cfs.runnable_load_avg;
4312 return load_avg / nr_running;
4317 static void record_wakee(struct task_struct *p)
4320 * Rough decay (wiping) for cost saving, don't worry
4321 * about the boundary, really active task won't care
4324 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4325 current->wakee_flips >>= 1;
4326 current->wakee_flip_decay_ts = jiffies;
4329 if (current->last_wakee != p) {
4330 current->last_wakee = p;
4331 current->wakee_flips++;
4335 static void task_waking_fair(struct task_struct *p)
4337 struct sched_entity *se = &p->se;
4338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4341 #ifndef CONFIG_64BIT
4342 u64 min_vruntime_copy;
4345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4347 min_vruntime = cfs_rq->min_vruntime;
4348 } while (min_vruntime != min_vruntime_copy);
4350 min_vruntime = cfs_rq->min_vruntime;
4353 se->vruntime -= min_vruntime;
4357 #ifdef CONFIG_FAIR_GROUP_SCHED
4359 * effective_load() calculates the load change as seen from the root_task_group
4361 * Adding load to a group doesn't make a group heavier, but can cause movement
4362 * of group shares between cpus. Assuming the shares were perfectly aligned one
4363 * can calculate the shift in shares.
4365 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4366 * on this @cpu and results in a total addition (subtraction) of @wg to the
4367 * total group weight.
4369 * Given a runqueue weight distribution (rw_i) we can compute a shares
4370 * distribution (s_i) using:
4372 * s_i = rw_i / \Sum rw_j (1)
4374 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4375 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4376 * shares distribution (s_i):
4378 * rw_i = { 2, 4, 1, 0 }
4379 * s_i = { 2/7, 4/7, 1/7, 0 }
4381 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4382 * task used to run on and the CPU the waker is running on), we need to
4383 * compute the effect of waking a task on either CPU and, in case of a sync
4384 * wakeup, compute the effect of the current task going to sleep.
4386 * So for a change of @wl to the local @cpu with an overall group weight change
4387 * of @wl we can compute the new shares distribution (s'_i) using:
4389 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4391 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4392 * differences in waking a task to CPU 0. The additional task changes the
4393 * weight and shares distributions like:
4395 * rw'_i = { 3, 4, 1, 0 }
4396 * s'_i = { 3/8, 4/8, 1/8, 0 }
4398 * We can then compute the difference in effective weight by using:
4400 * dw_i = S * (s'_i - s_i) (3)
4402 * Where 'S' is the group weight as seen by its parent.
4404 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4405 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4406 * 4/7) times the weight of the group.
4408 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4410 struct sched_entity *se = tg->se[cpu];
4412 if (!tg->parent) /* the trivial, non-cgroup case */
4415 for_each_sched_entity(se) {
4421 * W = @wg + \Sum rw_j
4423 W = wg + calc_tg_weight(tg, se->my_q);
4428 w = se->my_q->load.weight + wl;
4431 * wl = S * s'_i; see (2)
4434 wl = (w * (long)tg->shares) / W;
4439 * Per the above, wl is the new se->load.weight value; since
4440 * those are clipped to [MIN_SHARES, ...) do so now. See
4441 * calc_cfs_shares().
4443 if (wl < MIN_SHARES)
4447 * wl = dw_i = S * (s'_i - s_i); see (3)
4449 wl -= se->load.weight;
4452 * Recursively apply this logic to all parent groups to compute
4453 * the final effective load change on the root group. Since
4454 * only the @tg group gets extra weight, all parent groups can
4455 * only redistribute existing shares. @wl is the shift in shares
4456 * resulting from this level per the above.
4465 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4472 static int wake_wide(struct task_struct *p)
4474 int factor = this_cpu_read(sd_llc_size);
4477 * Yeah, it's the switching-frequency, could means many wakee or
4478 * rapidly switch, use factor here will just help to automatically
4479 * adjust the loose-degree, so bigger node will lead to more pull.
4481 if (p->wakee_flips > factor) {
4483 * wakee is somewhat hot, it needs certain amount of cpu
4484 * resource, so if waker is far more hot, prefer to leave
4487 if (current->wakee_flips > (factor * p->wakee_flips))
4494 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4496 s64 this_load, load;
4497 s64 this_eff_load, prev_eff_load;
4498 int idx, this_cpu, prev_cpu;
4499 struct task_group *tg;
4500 unsigned long weight;
4504 * If we wake multiple tasks be careful to not bounce
4505 * ourselves around too much.
4511 this_cpu = smp_processor_id();
4512 prev_cpu = task_cpu(p);
4513 load = source_load(prev_cpu, idx);
4514 this_load = target_load(this_cpu, idx);
4517 * If sync wakeup then subtract the (maximum possible)
4518 * effect of the currently running task from the load
4519 * of the current CPU:
4522 tg = task_group(current);
4523 weight = current->se.load.weight;
4525 this_load += effective_load(tg, this_cpu, -weight, -weight);
4526 load += effective_load(tg, prev_cpu, 0, -weight);
4530 weight = p->se.load.weight;
4533 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4534 * due to the sync cause above having dropped this_load to 0, we'll
4535 * always have an imbalance, but there's really nothing you can do
4536 * about that, so that's good too.
4538 * Otherwise check if either cpus are near enough in load to allow this
4539 * task to be woken on this_cpu.
4541 this_eff_load = 100;
4542 this_eff_load *= capacity_of(prev_cpu);
4544 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4545 prev_eff_load *= capacity_of(this_cpu);
4547 if (this_load > 0) {
4548 this_eff_load *= this_load +
4549 effective_load(tg, this_cpu, weight, weight);
4551 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4554 balanced = this_eff_load <= prev_eff_load;
4556 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4561 schedstat_inc(sd, ttwu_move_affine);
4562 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4568 * find_idlest_group finds and returns the least busy CPU group within the
4571 static struct sched_group *
4572 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4573 int this_cpu, int sd_flag)
4575 struct sched_group *idlest = NULL, *group = sd->groups;
4576 unsigned long min_load = ULONG_MAX, this_load = 0;
4577 int load_idx = sd->forkexec_idx;
4578 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4580 if (sd_flag & SD_BALANCE_WAKE)
4581 load_idx = sd->wake_idx;
4584 unsigned long load, avg_load;
4588 /* Skip over this group if it has no CPUs allowed */
4589 if (!cpumask_intersects(sched_group_cpus(group),
4590 tsk_cpus_allowed(p)))
4593 local_group = cpumask_test_cpu(this_cpu,
4594 sched_group_cpus(group));
4596 /* Tally up the load of all CPUs in the group */
4599 for_each_cpu(i, sched_group_cpus(group)) {
4600 /* Bias balancing toward cpus of our domain */
4602 load = source_load(i, load_idx);
4604 load = target_load(i, load_idx);
4609 /* Adjust by relative CPU capacity of the group */
4610 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4613 this_load = avg_load;
4614 } else if (avg_load < min_load) {
4615 min_load = avg_load;
4618 } while (group = group->next, group != sd->groups);
4620 if (!idlest || 100*this_load < imbalance*min_load)
4626 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4629 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4631 unsigned long load, min_load = ULONG_MAX;
4632 unsigned int min_exit_latency = UINT_MAX;
4633 u64 latest_idle_timestamp = 0;
4634 int least_loaded_cpu = this_cpu;
4635 int shallowest_idle_cpu = -1;
4638 /* Traverse only the allowed CPUs */
4639 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4641 struct rq *rq = cpu_rq(i);
4642 struct cpuidle_state *idle = idle_get_state(rq);
4643 if (idle && idle->exit_latency < min_exit_latency) {
4645 * We give priority to a CPU whose idle state
4646 * has the smallest exit latency irrespective
4647 * of any idle timestamp.
4649 min_exit_latency = idle->exit_latency;
4650 latest_idle_timestamp = rq->idle_stamp;
4651 shallowest_idle_cpu = i;
4652 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4653 rq->idle_stamp > latest_idle_timestamp) {
4655 * If equal or no active idle state, then
4656 * the most recently idled CPU might have
4659 latest_idle_timestamp = rq->idle_stamp;
4660 shallowest_idle_cpu = i;
4662 } else if (shallowest_idle_cpu == -1) {
4663 load = weighted_cpuload(i);
4664 if (load < min_load || (load == min_load && i == this_cpu)) {
4666 least_loaded_cpu = i;
4671 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4675 * Try and locate an idle CPU in the sched_domain.
4677 static int select_idle_sibling(struct task_struct *p, int target)
4679 struct sched_domain *sd;
4680 struct sched_group *sg;
4681 int i = task_cpu(p);
4683 if (idle_cpu(target))
4687 * If the prevous cpu is cache affine and idle, don't be stupid.
4689 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4693 * Otherwise, iterate the domains and find an elegible idle cpu.
4695 sd = rcu_dereference(per_cpu(sd_llc, target));
4696 for_each_lower_domain(sd) {
4699 if (!cpumask_intersects(sched_group_cpus(sg),
4700 tsk_cpus_allowed(p)))
4703 for_each_cpu(i, sched_group_cpus(sg)) {
4704 if (i == target || !idle_cpu(i))
4708 target = cpumask_first_and(sched_group_cpus(sg),
4709 tsk_cpus_allowed(p));
4713 } while (sg != sd->groups);
4720 * select_task_rq_fair: Select target runqueue for the waking task in domains
4721 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4722 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4724 * Balances load by selecting the idlest cpu in the idlest group, or under
4725 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4727 * Returns the target cpu number.
4729 * preempt must be disabled.
4732 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4734 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4735 int cpu = smp_processor_id();
4737 int want_affine = 0;
4738 int sync = wake_flags & WF_SYNC;
4740 if (sd_flag & SD_BALANCE_WAKE)
4741 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4744 for_each_domain(cpu, tmp) {
4745 if (!(tmp->flags & SD_LOAD_BALANCE))
4749 * If both cpu and prev_cpu are part of this domain,
4750 * cpu is a valid SD_WAKE_AFFINE target.
4752 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4753 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4758 if (tmp->flags & sd_flag)
4762 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4765 if (sd_flag & SD_BALANCE_WAKE) {
4766 new_cpu = select_idle_sibling(p, prev_cpu);
4771 struct sched_group *group;
4774 if (!(sd->flags & sd_flag)) {
4779 group = find_idlest_group(sd, p, cpu, sd_flag);
4785 new_cpu = find_idlest_cpu(group, p, cpu);
4786 if (new_cpu == -1 || new_cpu == cpu) {
4787 /* Now try balancing at a lower domain level of cpu */
4792 /* Now try balancing at a lower domain level of new_cpu */
4794 weight = sd->span_weight;
4796 for_each_domain(cpu, tmp) {
4797 if (weight <= tmp->span_weight)
4799 if (tmp->flags & sd_flag)
4802 /* while loop will break here if sd == NULL */
4811 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4812 * cfs_rq_of(p) references at time of call are still valid and identify the
4813 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4814 * other assumptions, including the state of rq->lock, should be made.
4817 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4819 struct sched_entity *se = &p->se;
4820 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4823 * Load tracking: accumulate removed load so that it can be processed
4824 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4825 * to blocked load iff they have a positive decay-count. It can never
4826 * be negative here since on-rq tasks have decay-count == 0.
4828 if (se->avg.decay_count) {
4829 se->avg.decay_count = -__synchronize_entity_decay(se);
4830 atomic_long_add(se->avg.load_avg_contrib,
4831 &cfs_rq->removed_load);
4834 /* We have migrated, no longer consider this task hot */
4837 #endif /* CONFIG_SMP */
4839 static unsigned long
4840 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4842 unsigned long gran = sysctl_sched_wakeup_granularity;
4845 * Since its curr running now, convert the gran from real-time
4846 * to virtual-time in his units.
4848 * By using 'se' instead of 'curr' we penalize light tasks, so
4849 * they get preempted easier. That is, if 'se' < 'curr' then
4850 * the resulting gran will be larger, therefore penalizing the
4851 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4852 * be smaller, again penalizing the lighter task.
4854 * This is especially important for buddies when the leftmost
4855 * task is higher priority than the buddy.
4857 return calc_delta_fair(gran, se);
4861 * Should 'se' preempt 'curr'.
4875 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4877 s64 gran, vdiff = curr->vruntime - se->vruntime;
4882 gran = wakeup_gran(curr, se);
4889 static void set_last_buddy(struct sched_entity *se)
4891 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4894 for_each_sched_entity(se)
4895 cfs_rq_of(se)->last = se;
4898 static void set_next_buddy(struct sched_entity *se)
4900 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4903 for_each_sched_entity(se)
4904 cfs_rq_of(se)->next = se;
4907 static void set_skip_buddy(struct sched_entity *se)
4909 for_each_sched_entity(se)
4910 cfs_rq_of(se)->skip = se;
4914 * Preempt the current task with a newly woken task if needed:
4916 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4918 struct task_struct *curr = rq->curr;
4919 struct sched_entity *se = &curr->se, *pse = &p->se;
4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 int scale = cfs_rq->nr_running >= sched_nr_latency;
4922 int next_buddy_marked = 0;
4924 if (unlikely(se == pse))
4928 * This is possible from callers such as attach_tasks(), in which we
4929 * unconditionally check_prempt_curr() after an enqueue (which may have
4930 * lead to a throttle). This both saves work and prevents false
4931 * next-buddy nomination below.
4933 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4936 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4937 set_next_buddy(pse);
4938 next_buddy_marked = 1;
4942 * We can come here with TIF_NEED_RESCHED already set from new task
4945 * Note: this also catches the edge-case of curr being in a throttled
4946 * group (e.g. via set_curr_task), since update_curr() (in the
4947 * enqueue of curr) will have resulted in resched being set. This
4948 * prevents us from potentially nominating it as a false LAST_BUDDY
4951 if (test_tsk_need_resched(curr))
4954 /* Idle tasks are by definition preempted by non-idle tasks. */
4955 if (unlikely(curr->policy == SCHED_IDLE) &&
4956 likely(p->policy != SCHED_IDLE))
4960 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4961 * is driven by the tick):
4963 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4966 find_matching_se(&se, &pse);
4967 update_curr(cfs_rq_of(se));
4969 if (wakeup_preempt_entity(se, pse) == 1) {
4971 * Bias pick_next to pick the sched entity that is
4972 * triggering this preemption.
4974 if (!next_buddy_marked)
4975 set_next_buddy(pse);
4984 * Only set the backward buddy when the current task is still
4985 * on the rq. This can happen when a wakeup gets interleaved
4986 * with schedule on the ->pre_schedule() or idle_balance()
4987 * point, either of which can * drop the rq lock.
4989 * Also, during early boot the idle thread is in the fair class,
4990 * for obvious reasons its a bad idea to schedule back to it.
4992 if (unlikely(!se->on_rq || curr == rq->idle))
4995 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4999 static struct task_struct *
5000 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5002 struct cfs_rq *cfs_rq = &rq->cfs;
5003 struct sched_entity *se;
5004 struct task_struct *p;
5008 #ifdef CONFIG_FAIR_GROUP_SCHED
5009 if (!cfs_rq->nr_running)
5012 if (prev->sched_class != &fair_sched_class)
5016 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5017 * likely that a next task is from the same cgroup as the current.
5019 * Therefore attempt to avoid putting and setting the entire cgroup
5020 * hierarchy, only change the part that actually changes.
5024 struct sched_entity *curr = cfs_rq->curr;
5027 * Since we got here without doing put_prev_entity() we also
5028 * have to consider cfs_rq->curr. If it is still a runnable
5029 * entity, update_curr() will update its vruntime, otherwise
5030 * forget we've ever seen it.
5032 if (curr && curr->on_rq)
5033 update_curr(cfs_rq);
5038 * This call to check_cfs_rq_runtime() will do the throttle and
5039 * dequeue its entity in the parent(s). Therefore the 'simple'
5040 * nr_running test will indeed be correct.
5042 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5045 se = pick_next_entity(cfs_rq, curr);
5046 cfs_rq = group_cfs_rq(se);
5052 * Since we haven't yet done put_prev_entity and if the selected task
5053 * is a different task than we started out with, try and touch the
5054 * least amount of cfs_rqs.
5057 struct sched_entity *pse = &prev->se;
5059 while (!(cfs_rq = is_same_group(se, pse))) {
5060 int se_depth = se->depth;
5061 int pse_depth = pse->depth;
5063 if (se_depth <= pse_depth) {
5064 put_prev_entity(cfs_rq_of(pse), pse);
5065 pse = parent_entity(pse);
5067 if (se_depth >= pse_depth) {
5068 set_next_entity(cfs_rq_of(se), se);
5069 se = parent_entity(se);
5073 put_prev_entity(cfs_rq, pse);
5074 set_next_entity(cfs_rq, se);
5077 if (hrtick_enabled(rq))
5078 hrtick_start_fair(rq, p);
5085 if (!cfs_rq->nr_running)
5088 put_prev_task(rq, prev);
5091 se = pick_next_entity(cfs_rq, NULL);
5092 set_next_entity(cfs_rq, se);
5093 cfs_rq = group_cfs_rq(se);
5098 if (hrtick_enabled(rq))
5099 hrtick_start_fair(rq, p);
5104 new_tasks = idle_balance(rq);
5106 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5107 * possible for any higher priority task to appear. In that case we
5108 * must re-start the pick_next_entity() loop.
5120 * Account for a descheduled task:
5122 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5124 struct sched_entity *se = &prev->se;
5125 struct cfs_rq *cfs_rq;
5127 for_each_sched_entity(se) {
5128 cfs_rq = cfs_rq_of(se);
5129 put_prev_entity(cfs_rq, se);
5134 * sched_yield() is very simple
5136 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5138 static void yield_task_fair(struct rq *rq)
5140 struct task_struct *curr = rq->curr;
5141 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5142 struct sched_entity *se = &curr->se;
5145 * Are we the only task in the tree?
5147 if (unlikely(rq->nr_running == 1))
5150 clear_buddies(cfs_rq, se);
5152 if (curr->policy != SCHED_BATCH) {
5153 update_rq_clock(rq);
5155 * Update run-time statistics of the 'current'.
5157 update_curr(cfs_rq);
5159 * Tell update_rq_clock() that we've just updated,
5160 * so we don't do microscopic update in schedule()
5161 * and double the fastpath cost.
5163 rq_clock_skip_update(rq, true);
5169 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5171 struct sched_entity *se = &p->se;
5173 /* throttled hierarchies are not runnable */
5174 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5177 /* Tell the scheduler that we'd really like pse to run next. */
5180 yield_task_fair(rq);
5186 /**************************************************
5187 * Fair scheduling class load-balancing methods.
5191 * The purpose of load-balancing is to achieve the same basic fairness the
5192 * per-cpu scheduler provides, namely provide a proportional amount of compute
5193 * time to each task. This is expressed in the following equation:
5195 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5197 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5198 * W_i,0 is defined as:
5200 * W_i,0 = \Sum_j w_i,j (2)
5202 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5203 * is derived from the nice value as per prio_to_weight[].
5205 * The weight average is an exponential decay average of the instantaneous
5208 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5210 * C_i is the compute capacity of cpu i, typically it is the
5211 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5212 * can also include other factors [XXX].
5214 * To achieve this balance we define a measure of imbalance which follows
5215 * directly from (1):
5217 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5219 * We them move tasks around to minimize the imbalance. In the continuous
5220 * function space it is obvious this converges, in the discrete case we get
5221 * a few fun cases generally called infeasible weight scenarios.
5224 * - infeasible weights;
5225 * - local vs global optima in the discrete case. ]
5230 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5231 * for all i,j solution, we create a tree of cpus that follows the hardware
5232 * topology where each level pairs two lower groups (or better). This results
5233 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5234 * tree to only the first of the previous level and we decrease the frequency
5235 * of load-balance at each level inv. proportional to the number of cpus in
5241 * \Sum { --- * --- * 2^i } = O(n) (5)
5243 * `- size of each group
5244 * | | `- number of cpus doing load-balance
5246 * `- sum over all levels
5248 * Coupled with a limit on how many tasks we can migrate every balance pass,
5249 * this makes (5) the runtime complexity of the balancer.
5251 * An important property here is that each CPU is still (indirectly) connected
5252 * to every other cpu in at most O(log n) steps:
5254 * The adjacency matrix of the resulting graph is given by:
5257 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5260 * And you'll find that:
5262 * A^(log_2 n)_i,j != 0 for all i,j (7)
5264 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5265 * The task movement gives a factor of O(m), giving a convergence complexity
5268 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5273 * In order to avoid CPUs going idle while there's still work to do, new idle
5274 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5275 * tree itself instead of relying on other CPUs to bring it work.
5277 * This adds some complexity to both (5) and (8) but it reduces the total idle
5285 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5288 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5293 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5295 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5297 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5300 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5301 * rewrite all of this once again.]
5304 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5306 enum fbq_type { regular, remote, all };
5308 #define LBF_ALL_PINNED 0x01
5309 #define LBF_NEED_BREAK 0x02
5310 #define LBF_DST_PINNED 0x04
5311 #define LBF_SOME_PINNED 0x08
5314 struct sched_domain *sd;
5322 struct cpumask *dst_grpmask;
5324 enum cpu_idle_type idle;
5326 /* The set of CPUs under consideration for load-balancing */
5327 struct cpumask *cpus;
5332 unsigned int loop_break;
5333 unsigned int loop_max;
5335 enum fbq_type fbq_type;
5336 struct list_head tasks;
5340 * Is this task likely cache-hot:
5342 static int task_hot(struct task_struct *p, struct lb_env *env)
5346 lockdep_assert_held(&env->src_rq->lock);
5348 if (p->sched_class != &fair_sched_class)
5351 if (unlikely(p->policy == SCHED_IDLE))
5355 * Buddy candidates are cache hot:
5357 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5358 (&p->se == cfs_rq_of(&p->se)->next ||
5359 &p->se == cfs_rq_of(&p->se)->last))
5362 if (sysctl_sched_migration_cost == -1)
5364 if (sysctl_sched_migration_cost == 0)
5367 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5369 return delta < (s64)sysctl_sched_migration_cost;
5372 #ifdef CONFIG_NUMA_BALANCING
5373 /* Returns true if the destination node has incurred more faults */
5374 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5376 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5377 int src_nid, dst_nid;
5379 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5380 !(env->sd->flags & SD_NUMA)) {
5384 src_nid = cpu_to_node(env->src_cpu);
5385 dst_nid = cpu_to_node(env->dst_cpu);
5387 if (src_nid == dst_nid)
5391 /* Task is already in the group's interleave set. */
5392 if (node_isset(src_nid, numa_group->active_nodes))
5395 /* Task is moving into the group's interleave set. */
5396 if (node_isset(dst_nid, numa_group->active_nodes))
5399 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5402 /* Encourage migration to the preferred node. */
5403 if (dst_nid == p->numa_preferred_nid)
5406 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5410 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5412 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5413 int src_nid, dst_nid;
5415 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5418 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5421 src_nid = cpu_to_node(env->src_cpu);
5422 dst_nid = cpu_to_node(env->dst_cpu);
5424 if (src_nid == dst_nid)
5428 /* Task is moving within/into the group's interleave set. */
5429 if (node_isset(dst_nid, numa_group->active_nodes))
5432 /* Task is moving out of the group's interleave set. */
5433 if (node_isset(src_nid, numa_group->active_nodes))
5436 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5439 /* Migrating away from the preferred node is always bad. */
5440 if (src_nid == p->numa_preferred_nid)
5443 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5447 static inline bool migrate_improves_locality(struct task_struct *p,
5453 static inline bool migrate_degrades_locality(struct task_struct *p,
5461 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5464 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5466 int tsk_cache_hot = 0;
5468 lockdep_assert_held(&env->src_rq->lock);
5471 * We do not migrate tasks that are:
5472 * 1) throttled_lb_pair, or
5473 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5474 * 3) running (obviously), or
5475 * 4) are cache-hot on their current CPU.
5477 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5480 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5483 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5485 env->flags |= LBF_SOME_PINNED;
5488 * Remember if this task can be migrated to any other cpu in
5489 * our sched_group. We may want to revisit it if we couldn't
5490 * meet load balance goals by pulling other tasks on src_cpu.
5492 * Also avoid computing new_dst_cpu if we have already computed
5493 * one in current iteration.
5495 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5498 /* Prevent to re-select dst_cpu via env's cpus */
5499 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5500 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5501 env->flags |= LBF_DST_PINNED;
5502 env->new_dst_cpu = cpu;
5510 /* Record that we found atleast one task that could run on dst_cpu */
5511 env->flags &= ~LBF_ALL_PINNED;
5513 if (task_running(env->src_rq, p)) {
5514 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5519 * Aggressive migration if:
5520 * 1) destination numa is preferred
5521 * 2) task is cache cold, or
5522 * 3) too many balance attempts have failed.
5524 tsk_cache_hot = task_hot(p, env);
5526 tsk_cache_hot = migrate_degrades_locality(p, env);
5528 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5529 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5530 if (tsk_cache_hot) {
5531 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5532 schedstat_inc(p, se.statistics.nr_forced_migrations);
5537 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5542 * detach_task() -- detach the task for the migration specified in env
5544 static void detach_task(struct task_struct *p, struct lb_env *env)
5546 lockdep_assert_held(&env->src_rq->lock);
5548 deactivate_task(env->src_rq, p, 0);
5549 p->on_rq = TASK_ON_RQ_MIGRATING;
5550 set_task_cpu(p, env->dst_cpu);
5554 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5555 * part of active balancing operations within "domain".
5557 * Returns a task if successful and NULL otherwise.
5559 static struct task_struct *detach_one_task(struct lb_env *env)
5561 struct task_struct *p, *n;
5563 lockdep_assert_held(&env->src_rq->lock);
5565 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5566 if (!can_migrate_task(p, env))
5569 detach_task(p, env);
5572 * Right now, this is only the second place where
5573 * lb_gained[env->idle] is updated (other is detach_tasks)
5574 * so we can safely collect stats here rather than
5575 * inside detach_tasks().
5577 schedstat_inc(env->sd, lb_gained[env->idle]);
5583 static const unsigned int sched_nr_migrate_break = 32;
5586 * detach_tasks() -- tries to detach up to imbalance weighted load from
5587 * busiest_rq, as part of a balancing operation within domain "sd".
5589 * Returns number of detached tasks if successful and 0 otherwise.
5591 static int detach_tasks(struct lb_env *env)
5593 struct list_head *tasks = &env->src_rq->cfs_tasks;
5594 struct task_struct *p;
5598 lockdep_assert_held(&env->src_rq->lock);
5600 if (env->imbalance <= 0)
5603 while (!list_empty(tasks)) {
5604 p = list_first_entry(tasks, struct task_struct, se.group_node);
5607 /* We've more or less seen every task there is, call it quits */
5608 if (env->loop > env->loop_max)
5611 /* take a breather every nr_migrate tasks */
5612 if (env->loop > env->loop_break) {
5613 env->loop_break += sched_nr_migrate_break;
5614 env->flags |= LBF_NEED_BREAK;
5618 if (!can_migrate_task(p, env))
5621 load = task_h_load(p);
5623 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5626 if ((load / 2) > env->imbalance)
5629 detach_task(p, env);
5630 list_add(&p->se.group_node, &env->tasks);
5633 env->imbalance -= load;
5635 #ifdef CONFIG_PREEMPT
5637 * NEWIDLE balancing is a source of latency, so preemptible
5638 * kernels will stop after the first task is detached to minimize
5639 * the critical section.
5641 if (env->idle == CPU_NEWLY_IDLE)
5646 * We only want to steal up to the prescribed amount of
5649 if (env->imbalance <= 0)
5654 list_move_tail(&p->se.group_node, tasks);
5658 * Right now, this is one of only two places we collect this stat
5659 * so we can safely collect detach_one_task() stats here rather
5660 * than inside detach_one_task().
5662 schedstat_add(env->sd, lb_gained[env->idle], detached);
5668 * attach_task() -- attach the task detached by detach_task() to its new rq.
5670 static void attach_task(struct rq *rq, struct task_struct *p)
5672 lockdep_assert_held(&rq->lock);
5674 BUG_ON(task_rq(p) != rq);
5675 p->on_rq = TASK_ON_RQ_QUEUED;
5676 activate_task(rq, p, 0);
5677 check_preempt_curr(rq, p, 0);
5681 * attach_one_task() -- attaches the task returned from detach_one_task() to
5684 static void attach_one_task(struct rq *rq, struct task_struct *p)
5686 raw_spin_lock(&rq->lock);
5688 raw_spin_unlock(&rq->lock);
5692 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5695 static void attach_tasks(struct lb_env *env)
5697 struct list_head *tasks = &env->tasks;
5698 struct task_struct *p;
5700 raw_spin_lock(&env->dst_rq->lock);
5702 while (!list_empty(tasks)) {
5703 p = list_first_entry(tasks, struct task_struct, se.group_node);
5704 list_del_init(&p->se.group_node);
5706 attach_task(env->dst_rq, p);
5709 raw_spin_unlock(&env->dst_rq->lock);
5712 #ifdef CONFIG_FAIR_GROUP_SCHED
5714 * update tg->load_weight by folding this cpu's load_avg
5716 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5718 struct sched_entity *se = tg->se[cpu];
5719 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5721 /* throttled entities do not contribute to load */
5722 if (throttled_hierarchy(cfs_rq))
5725 update_cfs_rq_blocked_load(cfs_rq, 1);
5728 update_entity_load_avg(se, 1);
5730 * We pivot on our runnable average having decayed to zero for
5731 * list removal. This generally implies that all our children
5732 * have also been removed (modulo rounding error or bandwidth
5733 * control); however, such cases are rare and we can fix these
5736 * TODO: fix up out-of-order children on enqueue.
5738 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5739 list_del_leaf_cfs_rq(cfs_rq);
5741 struct rq *rq = rq_of(cfs_rq);
5742 update_rq_runnable_avg(rq, rq->nr_running);
5746 static void update_blocked_averages(int cpu)
5748 struct rq *rq = cpu_rq(cpu);
5749 struct cfs_rq *cfs_rq;
5750 unsigned long flags;
5752 raw_spin_lock_irqsave(&rq->lock, flags);
5753 update_rq_clock(rq);
5755 * Iterates the task_group tree in a bottom up fashion, see
5756 * list_add_leaf_cfs_rq() for details.
5758 for_each_leaf_cfs_rq(rq, cfs_rq) {
5760 * Note: We may want to consider periodically releasing
5761 * rq->lock about these updates so that creating many task
5762 * groups does not result in continually extending hold time.
5764 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5767 raw_spin_unlock_irqrestore(&rq->lock, flags);
5771 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5772 * This needs to be done in a top-down fashion because the load of a child
5773 * group is a fraction of its parents load.
5775 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5777 struct rq *rq = rq_of(cfs_rq);
5778 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5779 unsigned long now = jiffies;
5782 if (cfs_rq->last_h_load_update == now)
5785 cfs_rq->h_load_next = NULL;
5786 for_each_sched_entity(se) {
5787 cfs_rq = cfs_rq_of(se);
5788 cfs_rq->h_load_next = se;
5789 if (cfs_rq->last_h_load_update == now)
5794 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5795 cfs_rq->last_h_load_update = now;
5798 while ((se = cfs_rq->h_load_next) != NULL) {
5799 load = cfs_rq->h_load;
5800 load = div64_ul(load * se->avg.load_avg_contrib,
5801 cfs_rq->runnable_load_avg + 1);
5802 cfs_rq = group_cfs_rq(se);
5803 cfs_rq->h_load = load;
5804 cfs_rq->last_h_load_update = now;
5808 static unsigned long task_h_load(struct task_struct *p)
5810 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5812 update_cfs_rq_h_load(cfs_rq);
5813 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5814 cfs_rq->runnable_load_avg + 1);
5817 static inline void update_blocked_averages(int cpu)
5821 static unsigned long task_h_load(struct task_struct *p)
5823 return p->se.avg.load_avg_contrib;
5827 /********** Helpers for find_busiest_group ************************/
5836 * sg_lb_stats - stats of a sched_group required for load_balancing
5838 struct sg_lb_stats {
5839 unsigned long avg_load; /*Avg load across the CPUs of the group */
5840 unsigned long group_load; /* Total load over the CPUs of the group */
5841 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5842 unsigned long load_per_task;
5843 unsigned long group_capacity;
5844 unsigned int sum_nr_running; /* Nr tasks running in the group */
5845 unsigned int group_capacity_factor;
5846 unsigned int idle_cpus;
5847 unsigned int group_weight;
5848 enum group_type group_type;
5849 int group_has_free_capacity;
5850 #ifdef CONFIG_NUMA_BALANCING
5851 unsigned int nr_numa_running;
5852 unsigned int nr_preferred_running;
5857 * sd_lb_stats - Structure to store the statistics of a sched_domain
5858 * during load balancing.
5860 struct sd_lb_stats {
5861 struct sched_group *busiest; /* Busiest group in this sd */
5862 struct sched_group *local; /* Local group in this sd */
5863 unsigned long total_load; /* Total load of all groups in sd */
5864 unsigned long total_capacity; /* Total capacity of all groups in sd */
5865 unsigned long avg_load; /* Average load across all groups in sd */
5867 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5868 struct sg_lb_stats local_stat; /* Statistics of the local group */
5871 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5874 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5875 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5876 * We must however clear busiest_stat::avg_load because
5877 * update_sd_pick_busiest() reads this before assignment.
5879 *sds = (struct sd_lb_stats){
5883 .total_capacity = 0UL,
5886 .sum_nr_running = 0,
5887 .group_type = group_other,
5893 * get_sd_load_idx - Obtain the load index for a given sched domain.
5894 * @sd: The sched_domain whose load_idx is to be obtained.
5895 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5897 * Return: The load index.
5899 static inline int get_sd_load_idx(struct sched_domain *sd,
5900 enum cpu_idle_type idle)
5906 load_idx = sd->busy_idx;
5909 case CPU_NEWLY_IDLE:
5910 load_idx = sd->newidle_idx;
5913 load_idx = sd->idle_idx;
5920 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5922 return SCHED_CAPACITY_SCALE;
5925 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5927 return default_scale_capacity(sd, cpu);
5930 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5932 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5933 return sd->smt_gain / sd->span_weight;
5935 return SCHED_CAPACITY_SCALE;
5938 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5940 return default_scale_cpu_capacity(sd, cpu);
5943 static unsigned long scale_rt_capacity(int cpu)
5945 struct rq *rq = cpu_rq(cpu);
5946 u64 total, available, age_stamp, avg;
5950 * Since we're reading these variables without serialization make sure
5951 * we read them once before doing sanity checks on them.
5953 age_stamp = ACCESS_ONCE(rq->age_stamp);
5954 avg = ACCESS_ONCE(rq->rt_avg);
5955 delta = __rq_clock_broken(rq) - age_stamp;
5957 if (unlikely(delta < 0))
5960 total = sched_avg_period() + delta;
5962 if (unlikely(total < avg)) {
5963 /* Ensures that capacity won't end up being negative */
5966 available = total - avg;
5969 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5970 total = SCHED_CAPACITY_SCALE;
5972 total >>= SCHED_CAPACITY_SHIFT;
5974 return div_u64(available, total);
5977 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5979 unsigned long capacity = SCHED_CAPACITY_SCALE;
5980 struct sched_group *sdg = sd->groups;
5982 if (sched_feat(ARCH_CAPACITY))
5983 capacity *= arch_scale_cpu_capacity(sd, cpu);
5985 capacity *= default_scale_cpu_capacity(sd, cpu);
5987 capacity >>= SCHED_CAPACITY_SHIFT;
5989 sdg->sgc->capacity_orig = capacity;
5991 if (sched_feat(ARCH_CAPACITY))
5992 capacity *= arch_scale_freq_capacity(sd, cpu);
5994 capacity *= default_scale_capacity(sd, cpu);
5996 capacity >>= SCHED_CAPACITY_SHIFT;
5998 capacity *= scale_rt_capacity(cpu);
5999 capacity >>= SCHED_CAPACITY_SHIFT;
6004 cpu_rq(cpu)->cpu_capacity = capacity;
6005 sdg->sgc->capacity = capacity;
6008 void update_group_capacity(struct sched_domain *sd, int cpu)
6010 struct sched_domain *child = sd->child;
6011 struct sched_group *group, *sdg = sd->groups;
6012 unsigned long capacity, capacity_orig;
6013 unsigned long interval;
6015 interval = msecs_to_jiffies(sd->balance_interval);
6016 interval = clamp(interval, 1UL, max_load_balance_interval);
6017 sdg->sgc->next_update = jiffies + interval;
6020 update_cpu_capacity(sd, cpu);
6024 capacity_orig = capacity = 0;
6026 if (child->flags & SD_OVERLAP) {
6028 * SD_OVERLAP domains cannot assume that child groups
6029 * span the current group.
6032 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6033 struct sched_group_capacity *sgc;
6034 struct rq *rq = cpu_rq(cpu);
6037 * build_sched_domains() -> init_sched_groups_capacity()
6038 * gets here before we've attached the domains to the
6041 * Use capacity_of(), which is set irrespective of domains
6042 * in update_cpu_capacity().
6044 * This avoids capacity/capacity_orig from being 0 and
6045 * causing divide-by-zero issues on boot.
6047 * Runtime updates will correct capacity_orig.
6049 if (unlikely(!rq->sd)) {
6050 capacity_orig += capacity_of(cpu);
6051 capacity += capacity_of(cpu);
6055 sgc = rq->sd->groups->sgc;
6056 capacity_orig += sgc->capacity_orig;
6057 capacity += sgc->capacity;
6061 * !SD_OVERLAP domains can assume that child groups
6062 * span the current group.
6065 group = child->groups;
6067 capacity_orig += group->sgc->capacity_orig;
6068 capacity += group->sgc->capacity;
6069 group = group->next;
6070 } while (group != child->groups);
6073 sdg->sgc->capacity_orig = capacity_orig;
6074 sdg->sgc->capacity = capacity;
6078 * Try and fix up capacity for tiny siblings, this is needed when
6079 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6080 * which on its own isn't powerful enough.
6082 * See update_sd_pick_busiest() and check_asym_packing().
6085 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6088 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6090 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6094 * If ~90% of the cpu_capacity is still there, we're good.
6096 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6103 * Group imbalance indicates (and tries to solve) the problem where balancing
6104 * groups is inadequate due to tsk_cpus_allowed() constraints.
6106 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6107 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6110 * { 0 1 2 3 } { 4 5 6 7 }
6113 * If we were to balance group-wise we'd place two tasks in the first group and
6114 * two tasks in the second group. Clearly this is undesired as it will overload
6115 * cpu 3 and leave one of the cpus in the second group unused.
6117 * The current solution to this issue is detecting the skew in the first group
6118 * by noticing the lower domain failed to reach balance and had difficulty
6119 * moving tasks due to affinity constraints.
6121 * When this is so detected; this group becomes a candidate for busiest; see
6122 * update_sd_pick_busiest(). And calculate_imbalance() and
6123 * find_busiest_group() avoid some of the usual balance conditions to allow it
6124 * to create an effective group imbalance.
6126 * This is a somewhat tricky proposition since the next run might not find the
6127 * group imbalance and decide the groups need to be balanced again. A most
6128 * subtle and fragile situation.
6131 static inline int sg_imbalanced(struct sched_group *group)
6133 return group->sgc->imbalance;
6137 * Compute the group capacity factor.
6139 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6140 * first dividing out the smt factor and computing the actual number of cores
6141 * and limit unit capacity with that.
6143 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6145 unsigned int capacity_factor, smt, cpus;
6146 unsigned int capacity, capacity_orig;
6148 capacity = group->sgc->capacity;
6149 capacity_orig = group->sgc->capacity_orig;
6150 cpus = group->group_weight;
6152 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6153 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6154 capacity_factor = cpus / smt; /* cores */
6156 capacity_factor = min_t(unsigned,
6157 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6158 if (!capacity_factor)
6159 capacity_factor = fix_small_capacity(env->sd, group);
6161 return capacity_factor;
6164 static enum group_type
6165 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6167 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6168 return group_overloaded;
6170 if (sg_imbalanced(group))
6171 return group_imbalanced;
6177 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6178 * @env: The load balancing environment.
6179 * @group: sched_group whose statistics are to be updated.
6180 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6181 * @local_group: Does group contain this_cpu.
6182 * @sgs: variable to hold the statistics for this group.
6183 * @overload: Indicate more than one runnable task for any CPU.
6185 static inline void update_sg_lb_stats(struct lb_env *env,
6186 struct sched_group *group, int load_idx,
6187 int local_group, struct sg_lb_stats *sgs,
6193 memset(sgs, 0, sizeof(*sgs));
6195 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6196 struct rq *rq = cpu_rq(i);
6198 /* Bias balancing toward cpus of our domain */
6200 load = target_load(i, load_idx);
6202 load = source_load(i, load_idx);
6204 sgs->group_load += load;
6205 sgs->sum_nr_running += rq->cfs.h_nr_running;
6207 if (rq->nr_running > 1)
6210 #ifdef CONFIG_NUMA_BALANCING
6211 sgs->nr_numa_running += rq->nr_numa_running;
6212 sgs->nr_preferred_running += rq->nr_preferred_running;
6214 sgs->sum_weighted_load += weighted_cpuload(i);
6219 /* Adjust by relative CPU capacity of the group */
6220 sgs->group_capacity = group->sgc->capacity;
6221 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6223 if (sgs->sum_nr_running)
6224 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6226 sgs->group_weight = group->group_weight;
6227 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6228 sgs->group_type = group_classify(group, sgs);
6230 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6231 sgs->group_has_free_capacity = 1;
6235 * update_sd_pick_busiest - return 1 on busiest group
6236 * @env: The load balancing environment.
6237 * @sds: sched_domain statistics
6238 * @sg: sched_group candidate to be checked for being the busiest
6239 * @sgs: sched_group statistics
6241 * Determine if @sg is a busier group than the previously selected
6244 * Return: %true if @sg is a busier group than the previously selected
6245 * busiest group. %false otherwise.
6247 static bool update_sd_pick_busiest(struct lb_env *env,
6248 struct sd_lb_stats *sds,
6249 struct sched_group *sg,
6250 struct sg_lb_stats *sgs)
6252 struct sg_lb_stats *busiest = &sds->busiest_stat;
6254 if (sgs->group_type > busiest->group_type)
6257 if (sgs->group_type < busiest->group_type)
6260 if (sgs->avg_load <= busiest->avg_load)
6263 /* This is the busiest node in its class. */
6264 if (!(env->sd->flags & SD_ASYM_PACKING))
6268 * ASYM_PACKING needs to move all the work to the lowest
6269 * numbered CPUs in the group, therefore mark all groups
6270 * higher than ourself as busy.
6272 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6276 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6283 #ifdef CONFIG_NUMA_BALANCING
6284 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6286 if (sgs->sum_nr_running > sgs->nr_numa_running)
6288 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6293 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6295 if (rq->nr_running > rq->nr_numa_running)
6297 if (rq->nr_running > rq->nr_preferred_running)
6302 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6307 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6311 #endif /* CONFIG_NUMA_BALANCING */
6314 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6315 * @env: The load balancing environment.
6316 * @sds: variable to hold the statistics for this sched_domain.
6318 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6320 struct sched_domain *child = env->sd->child;
6321 struct sched_group *sg = env->sd->groups;
6322 struct sg_lb_stats tmp_sgs;
6323 int load_idx, prefer_sibling = 0;
6324 bool overload = false;
6326 if (child && child->flags & SD_PREFER_SIBLING)
6329 load_idx = get_sd_load_idx(env->sd, env->idle);
6332 struct sg_lb_stats *sgs = &tmp_sgs;
6335 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6338 sgs = &sds->local_stat;
6340 if (env->idle != CPU_NEWLY_IDLE ||
6341 time_after_eq(jiffies, sg->sgc->next_update))
6342 update_group_capacity(env->sd, env->dst_cpu);
6345 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6352 * In case the child domain prefers tasks go to siblings
6353 * first, lower the sg capacity factor to one so that we'll try
6354 * and move all the excess tasks away. We lower the capacity
6355 * of a group only if the local group has the capacity to fit
6356 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6357 * extra check prevents the case where you always pull from the
6358 * heaviest group when it is already under-utilized (possible
6359 * with a large weight task outweighs the tasks on the system).
6361 if (prefer_sibling && sds->local &&
6362 sds->local_stat.group_has_free_capacity) {
6363 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6364 sgs->group_type = group_classify(sg, sgs);
6367 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6369 sds->busiest_stat = *sgs;
6373 /* Now, start updating sd_lb_stats */
6374 sds->total_load += sgs->group_load;
6375 sds->total_capacity += sgs->group_capacity;
6378 } while (sg != env->sd->groups);
6380 if (env->sd->flags & SD_NUMA)
6381 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6383 if (!env->sd->parent) {
6384 /* update overload indicator if we are at root domain */
6385 if (env->dst_rq->rd->overload != overload)
6386 env->dst_rq->rd->overload = overload;
6392 * check_asym_packing - Check to see if the group is packed into the
6395 * This is primarily intended to used at the sibling level. Some
6396 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6397 * case of POWER7, it can move to lower SMT modes only when higher
6398 * threads are idle. When in lower SMT modes, the threads will
6399 * perform better since they share less core resources. Hence when we
6400 * have idle threads, we want them to be the higher ones.
6402 * This packing function is run on idle threads. It checks to see if
6403 * the busiest CPU in this domain (core in the P7 case) has a higher
6404 * CPU number than the packing function is being run on. Here we are
6405 * assuming lower CPU number will be equivalent to lower a SMT thread
6408 * Return: 1 when packing is required and a task should be moved to
6409 * this CPU. The amount of the imbalance is returned in *imbalance.
6411 * @env: The load balancing environment.
6412 * @sds: Statistics of the sched_domain which is to be packed
6414 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6418 if (!(env->sd->flags & SD_ASYM_PACKING))
6424 busiest_cpu = group_first_cpu(sds->busiest);
6425 if (env->dst_cpu > busiest_cpu)
6428 env->imbalance = DIV_ROUND_CLOSEST(
6429 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6430 SCHED_CAPACITY_SCALE);
6436 * fix_small_imbalance - Calculate the minor imbalance that exists
6437 * amongst the groups of a sched_domain, during
6439 * @env: The load balancing environment.
6440 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6443 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6445 unsigned long tmp, capa_now = 0, capa_move = 0;
6446 unsigned int imbn = 2;
6447 unsigned long scaled_busy_load_per_task;
6448 struct sg_lb_stats *local, *busiest;
6450 local = &sds->local_stat;
6451 busiest = &sds->busiest_stat;
6453 if (!local->sum_nr_running)
6454 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6455 else if (busiest->load_per_task > local->load_per_task)
6458 scaled_busy_load_per_task =
6459 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6460 busiest->group_capacity;
6462 if (busiest->avg_load + scaled_busy_load_per_task >=
6463 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6464 env->imbalance = busiest->load_per_task;
6469 * OK, we don't have enough imbalance to justify moving tasks,
6470 * however we may be able to increase total CPU capacity used by
6474 capa_now += busiest->group_capacity *
6475 min(busiest->load_per_task, busiest->avg_load);
6476 capa_now += local->group_capacity *
6477 min(local->load_per_task, local->avg_load);
6478 capa_now /= SCHED_CAPACITY_SCALE;
6480 /* Amount of load we'd subtract */
6481 if (busiest->avg_load > scaled_busy_load_per_task) {
6482 capa_move += busiest->group_capacity *
6483 min(busiest->load_per_task,
6484 busiest->avg_load - scaled_busy_load_per_task);
6487 /* Amount of load we'd add */
6488 if (busiest->avg_load * busiest->group_capacity <
6489 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6490 tmp = (busiest->avg_load * busiest->group_capacity) /
6491 local->group_capacity;
6493 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6494 local->group_capacity;
6496 capa_move += local->group_capacity *
6497 min(local->load_per_task, local->avg_load + tmp);
6498 capa_move /= SCHED_CAPACITY_SCALE;
6500 /* Move if we gain throughput */
6501 if (capa_move > capa_now)
6502 env->imbalance = busiest->load_per_task;
6506 * calculate_imbalance - Calculate the amount of imbalance present within the
6507 * groups of a given sched_domain during load balance.
6508 * @env: load balance environment
6509 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6511 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6513 unsigned long max_pull, load_above_capacity = ~0UL;
6514 struct sg_lb_stats *local, *busiest;
6516 local = &sds->local_stat;
6517 busiest = &sds->busiest_stat;
6519 if (busiest->group_type == group_imbalanced) {
6521 * In the group_imb case we cannot rely on group-wide averages
6522 * to ensure cpu-load equilibrium, look at wider averages. XXX
6524 busiest->load_per_task =
6525 min(busiest->load_per_task, sds->avg_load);
6529 * In the presence of smp nice balancing, certain scenarios can have
6530 * max load less than avg load(as we skip the groups at or below
6531 * its cpu_capacity, while calculating max_load..)
6533 if (busiest->avg_load <= sds->avg_load ||
6534 local->avg_load >= sds->avg_load) {
6536 return fix_small_imbalance(env, sds);
6540 * If there aren't any idle cpus, avoid creating some.
6542 if (busiest->group_type == group_overloaded &&
6543 local->group_type == group_overloaded) {
6544 load_above_capacity =
6545 (busiest->sum_nr_running - busiest->group_capacity_factor);
6547 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6548 load_above_capacity /= busiest->group_capacity;
6552 * We're trying to get all the cpus to the average_load, so we don't
6553 * want to push ourselves above the average load, nor do we wish to
6554 * reduce the max loaded cpu below the average load. At the same time,
6555 * we also don't want to reduce the group load below the group capacity
6556 * (so that we can implement power-savings policies etc). Thus we look
6557 * for the minimum possible imbalance.
6559 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6561 /* How much load to actually move to equalise the imbalance */
6562 env->imbalance = min(
6563 max_pull * busiest->group_capacity,
6564 (sds->avg_load - local->avg_load) * local->group_capacity
6565 ) / SCHED_CAPACITY_SCALE;
6568 * if *imbalance is less than the average load per runnable task
6569 * there is no guarantee that any tasks will be moved so we'll have
6570 * a think about bumping its value to force at least one task to be
6573 if (env->imbalance < busiest->load_per_task)
6574 return fix_small_imbalance(env, sds);
6577 /******* find_busiest_group() helpers end here *********************/
6580 * find_busiest_group - Returns the busiest group within the sched_domain
6581 * if there is an imbalance. If there isn't an imbalance, and
6582 * the user has opted for power-savings, it returns a group whose
6583 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6584 * such a group exists.
6586 * Also calculates the amount of weighted load which should be moved
6587 * to restore balance.
6589 * @env: The load balancing environment.
6591 * Return: - The busiest group if imbalance exists.
6592 * - If no imbalance and user has opted for power-savings balance,
6593 * return the least loaded group whose CPUs can be
6594 * put to idle by rebalancing its tasks onto our group.
6596 static struct sched_group *find_busiest_group(struct lb_env *env)
6598 struct sg_lb_stats *local, *busiest;
6599 struct sd_lb_stats sds;
6601 init_sd_lb_stats(&sds);
6604 * Compute the various statistics relavent for load balancing at
6607 update_sd_lb_stats(env, &sds);
6608 local = &sds.local_stat;
6609 busiest = &sds.busiest_stat;
6611 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6612 check_asym_packing(env, &sds))
6615 /* There is no busy sibling group to pull tasks from */
6616 if (!sds.busiest || busiest->sum_nr_running == 0)
6619 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6620 / sds.total_capacity;
6623 * If the busiest group is imbalanced the below checks don't
6624 * work because they assume all things are equal, which typically
6625 * isn't true due to cpus_allowed constraints and the like.
6627 if (busiest->group_type == group_imbalanced)
6630 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6631 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6632 !busiest->group_has_free_capacity)
6636 * If the local group is busier than the selected busiest group
6637 * don't try and pull any tasks.
6639 if (local->avg_load >= busiest->avg_load)
6643 * Don't pull any tasks if this group is already above the domain
6646 if (local->avg_load >= sds.avg_load)
6649 if (env->idle == CPU_IDLE) {
6651 * This cpu is idle. If the busiest group is not overloaded
6652 * and there is no imbalance between this and busiest group
6653 * wrt idle cpus, it is balanced. The imbalance becomes
6654 * significant if the diff is greater than 1 otherwise we
6655 * might end up to just move the imbalance on another group
6657 if ((busiest->group_type != group_overloaded) &&
6658 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6662 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6663 * imbalance_pct to be conservative.
6665 if (100 * busiest->avg_load <=
6666 env->sd->imbalance_pct * local->avg_load)
6671 /* Looks like there is an imbalance. Compute it */
6672 calculate_imbalance(env, &sds);
6681 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6683 static struct rq *find_busiest_queue(struct lb_env *env,
6684 struct sched_group *group)
6686 struct rq *busiest = NULL, *rq;
6687 unsigned long busiest_load = 0, busiest_capacity = 1;
6690 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6691 unsigned long capacity, capacity_factor, wl;
6695 rt = fbq_classify_rq(rq);
6698 * We classify groups/runqueues into three groups:
6699 * - regular: there are !numa tasks
6700 * - remote: there are numa tasks that run on the 'wrong' node
6701 * - all: there is no distinction
6703 * In order to avoid migrating ideally placed numa tasks,
6704 * ignore those when there's better options.
6706 * If we ignore the actual busiest queue to migrate another
6707 * task, the next balance pass can still reduce the busiest
6708 * queue by moving tasks around inside the node.
6710 * If we cannot move enough load due to this classification
6711 * the next pass will adjust the group classification and
6712 * allow migration of more tasks.
6714 * Both cases only affect the total convergence complexity.
6716 if (rt > env->fbq_type)
6719 capacity = capacity_of(i);
6720 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6721 if (!capacity_factor)
6722 capacity_factor = fix_small_capacity(env->sd, group);
6724 wl = weighted_cpuload(i);
6727 * When comparing with imbalance, use weighted_cpuload()
6728 * which is not scaled with the cpu capacity.
6730 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6734 * For the load comparisons with the other cpu's, consider
6735 * the weighted_cpuload() scaled with the cpu capacity, so
6736 * that the load can be moved away from the cpu that is
6737 * potentially running at a lower capacity.
6739 * Thus we're looking for max(wl_i / capacity_i), crosswise
6740 * multiplication to rid ourselves of the division works out
6741 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6742 * our previous maximum.
6744 if (wl * busiest_capacity > busiest_load * capacity) {
6746 busiest_capacity = capacity;
6755 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6756 * so long as it is large enough.
6758 #define MAX_PINNED_INTERVAL 512
6760 /* Working cpumask for load_balance and load_balance_newidle. */
6761 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6763 static int need_active_balance(struct lb_env *env)
6765 struct sched_domain *sd = env->sd;
6767 if (env->idle == CPU_NEWLY_IDLE) {
6770 * ASYM_PACKING needs to force migrate tasks from busy but
6771 * higher numbered CPUs in order to pack all tasks in the
6772 * lowest numbered CPUs.
6774 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6778 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6781 static int active_load_balance_cpu_stop(void *data);
6783 static int should_we_balance(struct lb_env *env)
6785 struct sched_group *sg = env->sd->groups;
6786 struct cpumask *sg_cpus, *sg_mask;
6787 int cpu, balance_cpu = -1;
6790 * In the newly idle case, we will allow all the cpu's
6791 * to do the newly idle load balance.
6793 if (env->idle == CPU_NEWLY_IDLE)
6796 sg_cpus = sched_group_cpus(sg);
6797 sg_mask = sched_group_mask(sg);
6798 /* Try to find first idle cpu */
6799 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6800 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6807 if (balance_cpu == -1)
6808 balance_cpu = group_balance_cpu(sg);
6811 * First idle cpu or the first cpu(busiest) in this sched group
6812 * is eligible for doing load balancing at this and above domains.
6814 return balance_cpu == env->dst_cpu;
6818 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6819 * tasks if there is an imbalance.
6821 static int load_balance(int this_cpu, struct rq *this_rq,
6822 struct sched_domain *sd, enum cpu_idle_type idle,
6823 int *continue_balancing)
6825 int ld_moved, cur_ld_moved, active_balance = 0;
6826 struct sched_domain *sd_parent = sd->parent;
6827 struct sched_group *group;
6829 unsigned long flags;
6830 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6832 struct lb_env env = {
6834 .dst_cpu = this_cpu,
6836 .dst_grpmask = sched_group_cpus(sd->groups),
6838 .loop_break = sched_nr_migrate_break,
6841 .tasks = LIST_HEAD_INIT(env.tasks),
6845 * For NEWLY_IDLE load_balancing, we don't need to consider
6846 * other cpus in our group
6848 if (idle == CPU_NEWLY_IDLE)
6849 env.dst_grpmask = NULL;
6851 cpumask_copy(cpus, cpu_active_mask);
6853 schedstat_inc(sd, lb_count[idle]);
6856 if (!should_we_balance(&env)) {
6857 *continue_balancing = 0;
6861 group = find_busiest_group(&env);
6863 schedstat_inc(sd, lb_nobusyg[idle]);
6867 busiest = find_busiest_queue(&env, group);
6869 schedstat_inc(sd, lb_nobusyq[idle]);
6873 BUG_ON(busiest == env.dst_rq);
6875 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6878 if (busiest->nr_running > 1) {
6880 * Attempt to move tasks. If find_busiest_group has found
6881 * an imbalance but busiest->nr_running <= 1, the group is
6882 * still unbalanced. ld_moved simply stays zero, so it is
6883 * correctly treated as an imbalance.
6885 env.flags |= LBF_ALL_PINNED;
6886 env.src_cpu = busiest->cpu;
6887 env.src_rq = busiest;
6888 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6891 raw_spin_lock_irqsave(&busiest->lock, flags);
6894 * cur_ld_moved - load moved in current iteration
6895 * ld_moved - cumulative load moved across iterations
6897 cur_ld_moved = detach_tasks(&env);
6900 * We've detached some tasks from busiest_rq. Every
6901 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6902 * unlock busiest->lock, and we are able to be sure
6903 * that nobody can manipulate the tasks in parallel.
6904 * See task_rq_lock() family for the details.
6907 raw_spin_unlock(&busiest->lock);
6911 ld_moved += cur_ld_moved;
6914 local_irq_restore(flags);
6916 if (env.flags & LBF_NEED_BREAK) {
6917 env.flags &= ~LBF_NEED_BREAK;
6922 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6923 * us and move them to an alternate dst_cpu in our sched_group
6924 * where they can run. The upper limit on how many times we
6925 * iterate on same src_cpu is dependent on number of cpus in our
6928 * This changes load balance semantics a bit on who can move
6929 * load to a given_cpu. In addition to the given_cpu itself
6930 * (or a ilb_cpu acting on its behalf where given_cpu is
6931 * nohz-idle), we now have balance_cpu in a position to move
6932 * load to given_cpu. In rare situations, this may cause
6933 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6934 * _independently_ and at _same_ time to move some load to
6935 * given_cpu) causing exceess load to be moved to given_cpu.
6936 * This however should not happen so much in practice and
6937 * moreover subsequent load balance cycles should correct the
6938 * excess load moved.
6940 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6942 /* Prevent to re-select dst_cpu via env's cpus */
6943 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6945 env.dst_rq = cpu_rq(env.new_dst_cpu);
6946 env.dst_cpu = env.new_dst_cpu;
6947 env.flags &= ~LBF_DST_PINNED;
6949 env.loop_break = sched_nr_migrate_break;
6952 * Go back to "more_balance" rather than "redo" since we
6953 * need to continue with same src_cpu.
6959 * We failed to reach balance because of affinity.
6962 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6964 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6965 *group_imbalance = 1;
6968 /* All tasks on this runqueue were pinned by CPU affinity */
6969 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6970 cpumask_clear_cpu(cpu_of(busiest), cpus);
6971 if (!cpumask_empty(cpus)) {
6973 env.loop_break = sched_nr_migrate_break;
6976 goto out_all_pinned;
6981 schedstat_inc(sd, lb_failed[idle]);
6983 * Increment the failure counter only on periodic balance.
6984 * We do not want newidle balance, which can be very
6985 * frequent, pollute the failure counter causing
6986 * excessive cache_hot migrations and active balances.
6988 if (idle != CPU_NEWLY_IDLE)
6989 sd->nr_balance_failed++;
6991 if (need_active_balance(&env)) {
6992 raw_spin_lock_irqsave(&busiest->lock, flags);
6994 /* don't kick the active_load_balance_cpu_stop,
6995 * if the curr task on busiest cpu can't be
6998 if (!cpumask_test_cpu(this_cpu,
6999 tsk_cpus_allowed(busiest->curr))) {
7000 raw_spin_unlock_irqrestore(&busiest->lock,
7002 env.flags |= LBF_ALL_PINNED;
7003 goto out_one_pinned;
7007 * ->active_balance synchronizes accesses to
7008 * ->active_balance_work. Once set, it's cleared
7009 * only after active load balance is finished.
7011 if (!busiest->active_balance) {
7012 busiest->active_balance = 1;
7013 busiest->push_cpu = this_cpu;
7016 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7018 if (active_balance) {
7019 stop_one_cpu_nowait(cpu_of(busiest),
7020 active_load_balance_cpu_stop, busiest,
7021 &busiest->active_balance_work);
7025 * We've kicked active balancing, reset the failure
7028 sd->nr_balance_failed = sd->cache_nice_tries+1;
7031 sd->nr_balance_failed = 0;
7033 if (likely(!active_balance)) {
7034 /* We were unbalanced, so reset the balancing interval */
7035 sd->balance_interval = sd->min_interval;
7038 * If we've begun active balancing, start to back off. This
7039 * case may not be covered by the all_pinned logic if there
7040 * is only 1 task on the busy runqueue (because we don't call
7043 if (sd->balance_interval < sd->max_interval)
7044 sd->balance_interval *= 2;
7051 * We reach balance although we may have faced some affinity
7052 * constraints. Clear the imbalance flag if it was set.
7055 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7057 if (*group_imbalance)
7058 *group_imbalance = 0;
7063 * We reach balance because all tasks are pinned at this level so
7064 * we can't migrate them. Let the imbalance flag set so parent level
7065 * can try to migrate them.
7067 schedstat_inc(sd, lb_balanced[idle]);
7069 sd->nr_balance_failed = 0;
7072 /* tune up the balancing interval */
7073 if (((env.flags & LBF_ALL_PINNED) &&
7074 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7075 (sd->balance_interval < sd->max_interval))
7076 sd->balance_interval *= 2;
7083 static inline unsigned long
7084 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7086 unsigned long interval = sd->balance_interval;
7089 interval *= sd->busy_factor;
7091 /* scale ms to jiffies */
7092 interval = msecs_to_jiffies(interval);
7093 interval = clamp(interval, 1UL, max_load_balance_interval);
7099 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7101 unsigned long interval, next;
7103 interval = get_sd_balance_interval(sd, cpu_busy);
7104 next = sd->last_balance + interval;
7106 if (time_after(*next_balance, next))
7107 *next_balance = next;
7111 * idle_balance is called by schedule() if this_cpu is about to become
7112 * idle. Attempts to pull tasks from other CPUs.
7114 static int idle_balance(struct rq *this_rq)
7116 unsigned long next_balance = jiffies + HZ;
7117 int this_cpu = this_rq->cpu;
7118 struct sched_domain *sd;
7119 int pulled_task = 0;
7122 idle_enter_fair(this_rq);
7125 * We must set idle_stamp _before_ calling idle_balance(), such that we
7126 * measure the duration of idle_balance() as idle time.
7128 this_rq->idle_stamp = rq_clock(this_rq);
7130 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7131 !this_rq->rd->overload) {
7133 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7135 update_next_balance(sd, 0, &next_balance);
7142 * Drop the rq->lock, but keep IRQ/preempt disabled.
7144 raw_spin_unlock(&this_rq->lock);
7146 update_blocked_averages(this_cpu);
7148 for_each_domain(this_cpu, sd) {
7149 int continue_balancing = 1;
7150 u64 t0, domain_cost;
7152 if (!(sd->flags & SD_LOAD_BALANCE))
7155 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7156 update_next_balance(sd, 0, &next_balance);
7160 if (sd->flags & SD_BALANCE_NEWIDLE) {
7161 t0 = sched_clock_cpu(this_cpu);
7163 pulled_task = load_balance(this_cpu, this_rq,
7165 &continue_balancing);
7167 domain_cost = sched_clock_cpu(this_cpu) - t0;
7168 if (domain_cost > sd->max_newidle_lb_cost)
7169 sd->max_newidle_lb_cost = domain_cost;
7171 curr_cost += domain_cost;
7174 update_next_balance(sd, 0, &next_balance);
7177 * Stop searching for tasks to pull if there are
7178 * now runnable tasks on this rq.
7180 if (pulled_task || this_rq->nr_running > 0)
7185 raw_spin_lock(&this_rq->lock);
7187 if (curr_cost > this_rq->max_idle_balance_cost)
7188 this_rq->max_idle_balance_cost = curr_cost;
7191 * While browsing the domains, we released the rq lock, a task could
7192 * have been enqueued in the meantime. Since we're not going idle,
7193 * pretend we pulled a task.
7195 if (this_rq->cfs.h_nr_running && !pulled_task)
7199 /* Move the next balance forward */
7200 if (time_after(this_rq->next_balance, next_balance))
7201 this_rq->next_balance = next_balance;
7203 /* Is there a task of a high priority class? */
7204 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7208 idle_exit_fair(this_rq);
7209 this_rq->idle_stamp = 0;
7216 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7217 * running tasks off the busiest CPU onto idle CPUs. It requires at
7218 * least 1 task to be running on each physical CPU where possible, and
7219 * avoids physical / logical imbalances.
7221 static int active_load_balance_cpu_stop(void *data)
7223 struct rq *busiest_rq = data;
7224 int busiest_cpu = cpu_of(busiest_rq);
7225 int target_cpu = busiest_rq->push_cpu;
7226 struct rq *target_rq = cpu_rq(target_cpu);
7227 struct sched_domain *sd;
7228 struct task_struct *p = NULL;
7230 raw_spin_lock_irq(&busiest_rq->lock);
7232 /* make sure the requested cpu hasn't gone down in the meantime */
7233 if (unlikely(busiest_cpu != smp_processor_id() ||
7234 !busiest_rq->active_balance))
7237 /* Is there any task to move? */
7238 if (busiest_rq->nr_running <= 1)
7242 * This condition is "impossible", if it occurs
7243 * we need to fix it. Originally reported by
7244 * Bjorn Helgaas on a 128-cpu setup.
7246 BUG_ON(busiest_rq == target_rq);
7248 /* Search for an sd spanning us and the target CPU. */
7250 for_each_domain(target_cpu, sd) {
7251 if ((sd->flags & SD_LOAD_BALANCE) &&
7252 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7257 struct lb_env env = {
7259 .dst_cpu = target_cpu,
7260 .dst_rq = target_rq,
7261 .src_cpu = busiest_rq->cpu,
7262 .src_rq = busiest_rq,
7266 schedstat_inc(sd, alb_count);
7268 p = detach_one_task(&env);
7270 schedstat_inc(sd, alb_pushed);
7272 schedstat_inc(sd, alb_failed);
7276 busiest_rq->active_balance = 0;
7277 raw_spin_unlock(&busiest_rq->lock);
7280 attach_one_task(target_rq, p);
7287 static inline int on_null_domain(struct rq *rq)
7289 return unlikely(!rcu_dereference_sched(rq->sd));
7292 #ifdef CONFIG_NO_HZ_COMMON
7294 * idle load balancing details
7295 * - When one of the busy CPUs notice that there may be an idle rebalancing
7296 * needed, they will kick the idle load balancer, which then does idle
7297 * load balancing for all the idle CPUs.
7300 cpumask_var_t idle_cpus_mask;
7302 unsigned long next_balance; /* in jiffy units */
7303 } nohz ____cacheline_aligned;
7305 static inline int find_new_ilb(void)
7307 int ilb = cpumask_first(nohz.idle_cpus_mask);
7309 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7316 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7317 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7318 * CPU (if there is one).
7320 static void nohz_balancer_kick(void)
7324 nohz.next_balance++;
7326 ilb_cpu = find_new_ilb();
7328 if (ilb_cpu >= nr_cpu_ids)
7331 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7334 * Use smp_send_reschedule() instead of resched_cpu().
7335 * This way we generate a sched IPI on the target cpu which
7336 * is idle. And the softirq performing nohz idle load balance
7337 * will be run before returning from the IPI.
7339 smp_send_reschedule(ilb_cpu);
7343 static inline void nohz_balance_exit_idle(int cpu)
7345 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7347 * Completely isolated CPUs don't ever set, so we must test.
7349 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7350 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7351 atomic_dec(&nohz.nr_cpus);
7353 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7357 static inline void set_cpu_sd_state_busy(void)
7359 struct sched_domain *sd;
7360 int cpu = smp_processor_id();
7363 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7365 if (!sd || !sd->nohz_idle)
7369 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7374 void set_cpu_sd_state_idle(void)
7376 struct sched_domain *sd;
7377 int cpu = smp_processor_id();
7380 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7382 if (!sd || sd->nohz_idle)
7386 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7392 * This routine will record that the cpu is going idle with tick stopped.
7393 * This info will be used in performing idle load balancing in the future.
7395 void nohz_balance_enter_idle(int cpu)
7398 * If this cpu is going down, then nothing needs to be done.
7400 if (!cpu_active(cpu))
7403 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7407 * If we're a completely isolated CPU, we don't play.
7409 if (on_null_domain(cpu_rq(cpu)))
7412 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7413 atomic_inc(&nohz.nr_cpus);
7414 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7417 static int sched_ilb_notifier(struct notifier_block *nfb,
7418 unsigned long action, void *hcpu)
7420 switch (action & ~CPU_TASKS_FROZEN) {
7422 nohz_balance_exit_idle(smp_processor_id());
7430 static DEFINE_SPINLOCK(balancing);
7433 * Scale the max load_balance interval with the number of CPUs in the system.
7434 * This trades load-balance latency on larger machines for less cross talk.
7436 void update_max_interval(void)
7438 max_load_balance_interval = HZ*num_online_cpus()/10;
7442 * It checks each scheduling domain to see if it is due to be balanced,
7443 * and initiates a balancing operation if so.
7445 * Balancing parameters are set up in init_sched_domains.
7447 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7449 int continue_balancing = 1;
7451 unsigned long interval;
7452 struct sched_domain *sd;
7453 /* Earliest time when we have to do rebalance again */
7454 unsigned long next_balance = jiffies + 60*HZ;
7455 int update_next_balance = 0;
7456 int need_serialize, need_decay = 0;
7459 update_blocked_averages(cpu);
7462 for_each_domain(cpu, sd) {
7464 * Decay the newidle max times here because this is a regular
7465 * visit to all the domains. Decay ~1% per second.
7467 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7468 sd->max_newidle_lb_cost =
7469 (sd->max_newidle_lb_cost * 253) / 256;
7470 sd->next_decay_max_lb_cost = jiffies + HZ;
7473 max_cost += sd->max_newidle_lb_cost;
7475 if (!(sd->flags & SD_LOAD_BALANCE))
7479 * Stop the load balance at this level. There is another
7480 * CPU in our sched group which is doing load balancing more
7483 if (!continue_balancing) {
7489 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7491 need_serialize = sd->flags & SD_SERIALIZE;
7492 if (need_serialize) {
7493 if (!spin_trylock(&balancing))
7497 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7498 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7500 * The LBF_DST_PINNED logic could have changed
7501 * env->dst_cpu, so we can't know our idle
7502 * state even if we migrated tasks. Update it.
7504 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7506 sd->last_balance = jiffies;
7507 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7510 spin_unlock(&balancing);
7512 if (time_after(next_balance, sd->last_balance + interval)) {
7513 next_balance = sd->last_balance + interval;
7514 update_next_balance = 1;
7519 * Ensure the rq-wide value also decays but keep it at a
7520 * reasonable floor to avoid funnies with rq->avg_idle.
7522 rq->max_idle_balance_cost =
7523 max((u64)sysctl_sched_migration_cost, max_cost);
7528 * next_balance will be updated only when there is a need.
7529 * When the cpu is attached to null domain for ex, it will not be
7532 if (likely(update_next_balance))
7533 rq->next_balance = next_balance;
7536 #ifdef CONFIG_NO_HZ_COMMON
7538 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7539 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7541 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7543 int this_cpu = this_rq->cpu;
7547 if (idle != CPU_IDLE ||
7548 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7551 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7552 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7556 * If this cpu gets work to do, stop the load balancing
7557 * work being done for other cpus. Next load
7558 * balancing owner will pick it up.
7563 rq = cpu_rq(balance_cpu);
7566 * If time for next balance is due,
7569 if (time_after_eq(jiffies, rq->next_balance)) {
7570 raw_spin_lock_irq(&rq->lock);
7571 update_rq_clock(rq);
7572 update_idle_cpu_load(rq);
7573 raw_spin_unlock_irq(&rq->lock);
7574 rebalance_domains(rq, CPU_IDLE);
7577 if (time_after(this_rq->next_balance, rq->next_balance))
7578 this_rq->next_balance = rq->next_balance;
7580 nohz.next_balance = this_rq->next_balance;
7582 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7586 * Current heuristic for kicking the idle load balancer in the presence
7587 * of an idle cpu is the system.
7588 * - This rq has more than one task.
7589 * - At any scheduler domain level, this cpu's scheduler group has multiple
7590 * busy cpu's exceeding the group's capacity.
7591 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7592 * domain span are idle.
7594 static inline int nohz_kick_needed(struct rq *rq)
7596 unsigned long now = jiffies;
7597 struct sched_domain *sd;
7598 struct sched_group_capacity *sgc;
7599 int nr_busy, cpu = rq->cpu;
7601 if (unlikely(rq->idle_balance))
7605 * We may be recently in ticked or tickless idle mode. At the first
7606 * busy tick after returning from idle, we will update the busy stats.
7608 set_cpu_sd_state_busy();
7609 nohz_balance_exit_idle(cpu);
7612 * None are in tickless mode and hence no need for NOHZ idle load
7615 if (likely(!atomic_read(&nohz.nr_cpus)))
7618 if (time_before(now, nohz.next_balance))
7621 if (rq->nr_running >= 2)
7625 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7628 sgc = sd->groups->sgc;
7629 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7632 goto need_kick_unlock;
7635 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7637 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7638 sched_domain_span(sd)) < cpu))
7639 goto need_kick_unlock;
7650 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7654 * run_rebalance_domains is triggered when needed from the scheduler tick.
7655 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7657 static void run_rebalance_domains(struct softirq_action *h)
7659 struct rq *this_rq = this_rq();
7660 enum cpu_idle_type idle = this_rq->idle_balance ?
7661 CPU_IDLE : CPU_NOT_IDLE;
7663 rebalance_domains(this_rq, idle);
7666 * If this cpu has a pending nohz_balance_kick, then do the
7667 * balancing on behalf of the other idle cpus whose ticks are
7670 nohz_idle_balance(this_rq, idle);
7674 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7676 void trigger_load_balance(struct rq *rq)
7678 /* Don't need to rebalance while attached to NULL domain */
7679 if (unlikely(on_null_domain(rq)))
7682 if (time_after_eq(jiffies, rq->next_balance))
7683 raise_softirq(SCHED_SOFTIRQ);
7684 #ifdef CONFIG_NO_HZ_COMMON
7685 if (nohz_kick_needed(rq))
7686 nohz_balancer_kick();
7690 static void rq_online_fair(struct rq *rq)
7694 update_runtime_enabled(rq);
7697 static void rq_offline_fair(struct rq *rq)
7701 /* Ensure any throttled groups are reachable by pick_next_task */
7702 unthrottle_offline_cfs_rqs(rq);
7705 #endif /* CONFIG_SMP */
7708 * scheduler tick hitting a task of our scheduling class:
7710 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7712 struct cfs_rq *cfs_rq;
7713 struct sched_entity *se = &curr->se;
7715 for_each_sched_entity(se) {
7716 cfs_rq = cfs_rq_of(se);
7717 entity_tick(cfs_rq, se, queued);
7720 if (numabalancing_enabled)
7721 task_tick_numa(rq, curr);
7723 update_rq_runnable_avg(rq, 1);
7727 * called on fork with the child task as argument from the parent's context
7728 * - child not yet on the tasklist
7729 * - preemption disabled
7731 static void task_fork_fair(struct task_struct *p)
7733 struct cfs_rq *cfs_rq;
7734 struct sched_entity *se = &p->se, *curr;
7735 int this_cpu = smp_processor_id();
7736 struct rq *rq = this_rq();
7737 unsigned long flags;
7739 raw_spin_lock_irqsave(&rq->lock, flags);
7741 update_rq_clock(rq);
7743 cfs_rq = task_cfs_rq(current);
7744 curr = cfs_rq->curr;
7747 * Not only the cpu but also the task_group of the parent might have
7748 * been changed after parent->se.parent,cfs_rq were copied to
7749 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7750 * of child point to valid ones.
7753 __set_task_cpu(p, this_cpu);
7756 update_curr(cfs_rq);
7759 se->vruntime = curr->vruntime;
7760 place_entity(cfs_rq, se, 1);
7762 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7764 * Upon rescheduling, sched_class::put_prev_task() will place
7765 * 'current' within the tree based on its new key value.
7767 swap(curr->vruntime, se->vruntime);
7771 se->vruntime -= cfs_rq->min_vruntime;
7773 raw_spin_unlock_irqrestore(&rq->lock, flags);
7777 * Priority of the task has changed. Check to see if we preempt
7781 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7783 if (!task_on_rq_queued(p))
7787 * Reschedule if we are currently running on this runqueue and
7788 * our priority decreased, or if we are not currently running on
7789 * this runqueue and our priority is higher than the current's
7791 if (rq->curr == p) {
7792 if (p->prio > oldprio)
7795 check_preempt_curr(rq, p, 0);
7798 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7800 struct sched_entity *se = &p->se;
7801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7804 * Ensure the task's vruntime is normalized, so that when it's
7805 * switched back to the fair class the enqueue_entity(.flags=0) will
7806 * do the right thing.
7808 * If it's queued, then the dequeue_entity(.flags=0) will already
7809 * have normalized the vruntime, if it's !queued, then only when
7810 * the task is sleeping will it still have non-normalized vruntime.
7812 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7814 * Fix up our vruntime so that the current sleep doesn't
7815 * cause 'unlimited' sleep bonus.
7817 place_entity(cfs_rq, se, 0);
7818 se->vruntime -= cfs_rq->min_vruntime;
7823 * Remove our load from contribution when we leave sched_fair
7824 * and ensure we don't carry in an old decay_count if we
7827 if (se->avg.decay_count) {
7828 __synchronize_entity_decay(se);
7829 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7835 * We switched to the sched_fair class.
7837 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7839 #ifdef CONFIG_FAIR_GROUP_SCHED
7840 struct sched_entity *se = &p->se;
7842 * Since the real-depth could have been changed (only FAIR
7843 * class maintain depth value), reset depth properly.
7845 se->depth = se->parent ? se->parent->depth + 1 : 0;
7847 if (!task_on_rq_queued(p))
7851 * We were most likely switched from sched_rt, so
7852 * kick off the schedule if running, otherwise just see
7853 * if we can still preempt the current task.
7858 check_preempt_curr(rq, p, 0);
7861 /* Account for a task changing its policy or group.
7863 * This routine is mostly called to set cfs_rq->curr field when a task
7864 * migrates between groups/classes.
7866 static void set_curr_task_fair(struct rq *rq)
7868 struct sched_entity *se = &rq->curr->se;
7870 for_each_sched_entity(se) {
7871 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7873 set_next_entity(cfs_rq, se);
7874 /* ensure bandwidth has been allocated on our new cfs_rq */
7875 account_cfs_rq_runtime(cfs_rq, 0);
7879 void init_cfs_rq(struct cfs_rq *cfs_rq)
7881 cfs_rq->tasks_timeline = RB_ROOT;
7882 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7883 #ifndef CONFIG_64BIT
7884 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7887 atomic64_set(&cfs_rq->decay_counter, 1);
7888 atomic_long_set(&cfs_rq->removed_load, 0);
7892 #ifdef CONFIG_FAIR_GROUP_SCHED
7893 static void task_move_group_fair(struct task_struct *p, int queued)
7895 struct sched_entity *se = &p->se;
7896 struct cfs_rq *cfs_rq;
7899 * If the task was not on the rq at the time of this cgroup movement
7900 * it must have been asleep, sleeping tasks keep their ->vruntime
7901 * absolute on their old rq until wakeup (needed for the fair sleeper
7902 * bonus in place_entity()).
7904 * If it was on the rq, we've just 'preempted' it, which does convert
7905 * ->vruntime to a relative base.
7907 * Make sure both cases convert their relative position when migrating
7908 * to another cgroup's rq. This does somewhat interfere with the
7909 * fair sleeper stuff for the first placement, but who cares.
7912 * When !queued, vruntime of the task has usually NOT been normalized.
7913 * But there are some cases where it has already been normalized:
7915 * - Moving a forked child which is waiting for being woken up by
7916 * wake_up_new_task().
7917 * - Moving a task which has been woken up by try_to_wake_up() and
7918 * waiting for actually being woken up by sched_ttwu_pending().
7920 * To prevent boost or penalty in the new cfs_rq caused by delta
7921 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7923 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7927 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7928 set_task_rq(p, task_cpu(p));
7929 se->depth = se->parent ? se->parent->depth + 1 : 0;
7931 cfs_rq = cfs_rq_of(se);
7932 se->vruntime += cfs_rq->min_vruntime;
7935 * migrate_task_rq_fair() will have removed our previous
7936 * contribution, but we must synchronize for ongoing future
7939 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7940 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7945 void free_fair_sched_group(struct task_group *tg)
7949 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7951 for_each_possible_cpu(i) {
7953 kfree(tg->cfs_rq[i]);
7962 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7964 struct cfs_rq *cfs_rq;
7965 struct sched_entity *se;
7968 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7971 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7975 tg->shares = NICE_0_LOAD;
7977 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7979 for_each_possible_cpu(i) {
7980 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7981 GFP_KERNEL, cpu_to_node(i));
7985 se = kzalloc_node(sizeof(struct sched_entity),
7986 GFP_KERNEL, cpu_to_node(i));
7990 init_cfs_rq(cfs_rq);
7991 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8002 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8004 struct rq *rq = cpu_rq(cpu);
8005 unsigned long flags;
8008 * Only empty task groups can be destroyed; so we can speculatively
8009 * check on_list without danger of it being re-added.
8011 if (!tg->cfs_rq[cpu]->on_list)
8014 raw_spin_lock_irqsave(&rq->lock, flags);
8015 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8016 raw_spin_unlock_irqrestore(&rq->lock, flags);
8019 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8020 struct sched_entity *se, int cpu,
8021 struct sched_entity *parent)
8023 struct rq *rq = cpu_rq(cpu);
8027 init_cfs_rq_runtime(cfs_rq);
8029 tg->cfs_rq[cpu] = cfs_rq;
8032 /* se could be NULL for root_task_group */
8037 se->cfs_rq = &rq->cfs;
8040 se->cfs_rq = parent->my_q;
8041 se->depth = parent->depth + 1;
8045 /* guarantee group entities always have weight */
8046 update_load_set(&se->load, NICE_0_LOAD);
8047 se->parent = parent;
8050 static DEFINE_MUTEX(shares_mutex);
8052 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8055 unsigned long flags;
8058 * We can't change the weight of the root cgroup.
8063 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8065 mutex_lock(&shares_mutex);
8066 if (tg->shares == shares)
8069 tg->shares = shares;
8070 for_each_possible_cpu(i) {
8071 struct rq *rq = cpu_rq(i);
8072 struct sched_entity *se;
8075 /* Propagate contribution to hierarchy */
8076 raw_spin_lock_irqsave(&rq->lock, flags);
8078 /* Possible calls to update_curr() need rq clock */
8079 update_rq_clock(rq);
8080 for_each_sched_entity(se)
8081 update_cfs_shares(group_cfs_rq(se));
8082 raw_spin_unlock_irqrestore(&rq->lock, flags);
8086 mutex_unlock(&shares_mutex);
8089 #else /* CONFIG_FAIR_GROUP_SCHED */
8091 void free_fair_sched_group(struct task_group *tg) { }
8093 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8098 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8100 #endif /* CONFIG_FAIR_GROUP_SCHED */
8103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8105 struct sched_entity *se = &task->se;
8106 unsigned int rr_interval = 0;
8109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8112 if (rq->cfs.load.weight)
8113 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8119 * All the scheduling class methods:
8121 const struct sched_class fair_sched_class = {
8122 .next = &idle_sched_class,
8123 .enqueue_task = enqueue_task_fair,
8124 .dequeue_task = dequeue_task_fair,
8125 .yield_task = yield_task_fair,
8126 .yield_to_task = yield_to_task_fair,
8128 .check_preempt_curr = check_preempt_wakeup,
8130 .pick_next_task = pick_next_task_fair,
8131 .put_prev_task = put_prev_task_fair,
8134 .select_task_rq = select_task_rq_fair,
8135 .migrate_task_rq = migrate_task_rq_fair,
8137 .rq_online = rq_online_fair,
8138 .rq_offline = rq_offline_fair,
8140 .task_waking = task_waking_fair,
8143 .set_curr_task = set_curr_task_fair,
8144 .task_tick = task_tick_fair,
8145 .task_fork = task_fork_fair,
8147 .prio_changed = prio_changed_fair,
8148 .switched_from = switched_from_fair,
8149 .switched_to = switched_to_fair,
8151 .get_rr_interval = get_rr_interval_fair,
8153 .update_curr = update_curr_fair,
8155 #ifdef CONFIG_FAIR_GROUP_SCHED
8156 .task_move_group = task_move_group_fair,
8160 #ifdef CONFIG_SCHED_DEBUG
8161 void print_cfs_stats(struct seq_file *m, int cpu)
8163 struct cfs_rq *cfs_rq;
8166 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8167 print_cfs_rq(m, cpu, cfs_rq);
8172 __init void init_sched_fair_class(void)
8175 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8177 #ifdef CONFIG_NO_HZ_COMMON
8178 nohz.next_balance = jiffies;
8179 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8180 cpu_notifier(sched_ilb_notifier, 0);