4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
96 ktime_t soft, hard, now;
99 if (hrtimer_active(period_timer))
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
118 void update_rq_clock(struct rq *rq)
122 lockdep_assert_held(&rq->lock);
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
131 update_rq_clock_task(rq, delta);
135 * Debugging: various feature bits
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
157 static int sched_feat_show(struct seq_file *m, void *v)
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
164 seq_printf(m, "%s ", sched_feat_names[i]);
171 #ifdef HAVE_JUMP_LABEL
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
185 static void sched_feat_disable(int i)
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
191 static void sched_feat_enable(int i)
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
201 static int sched_feat_set(char *cmp)
206 if (strncmp(cmp, "NO_", 3) == 0) {
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
239 if (copy_from_user(&buf, ubuf, cnt))
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
258 static int sched_feat_open(struct inode *inode, struct file *filp)
260 return single_open(filp, sched_feat_show, NULL);
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
268 .release = single_release,
271 static __init int sched_init_debug(void)
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
288 * period over which we average the RT time consumption, measured
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
296 * period over which we measure -rt task cpu usage in us.
299 unsigned int sysctl_sched_rt_period = 1000000;
301 __read_mostly int scheduler_running;
304 * part of the period that we allow rt tasks to run in us.
307 int sysctl_sched_rt_runtime = 950000;
310 * this_rq_lock - lock this runqueue and disable interrupts.
312 static struct rq *this_rq_lock(void)
319 raw_spin_lock(&rq->lock);
324 #ifdef CONFIG_SCHED_HRTICK
326 * Use HR-timers to deliver accurate preemption points.
329 static void hrtick_clear(struct rq *rq)
331 if (hrtimer_active(&rq->hrtick_timer))
332 hrtimer_cancel(&rq->hrtick_timer);
336 * High-resolution timer tick.
337 * Runs from hardirq context with interrupts disabled.
339 static enum hrtimer_restart hrtick(struct hrtimer *timer)
341 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
345 raw_spin_lock(&rq->lock);
347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 raw_spin_unlock(&rq->lock);
350 return HRTIMER_NORESTART;
355 static int __hrtick_restart(struct rq *rq)
357 struct hrtimer *timer = &rq->hrtick_timer;
358 ktime_t time = hrtimer_get_softexpires(timer);
360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 * called from hardirq (IPI) context
366 static void __hrtick_start(void *arg)
370 raw_spin_lock(&rq->lock);
371 __hrtick_restart(rq);
372 rq->hrtick_csd_pending = 0;
373 raw_spin_unlock(&rq->lock);
377 * Called to set the hrtick timer state.
379 * called with rq->lock held and irqs disabled
381 void hrtick_start(struct rq *rq, u64 delay)
383 struct hrtimer *timer = &rq->hrtick_timer;
388 * Don't schedule slices shorter than 10000ns, that just
389 * doesn't make sense and can cause timer DoS.
391 delta = max_t(s64, delay, 10000LL);
392 time = ktime_add_ns(timer->base->get_time(), delta);
394 hrtimer_set_expires(timer, time);
396 if (rq == this_rq()) {
397 __hrtick_restart(rq);
398 } else if (!rq->hrtick_csd_pending) {
399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 rq->hrtick_csd_pending = 1;
405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
407 int cpu = (int)(long)hcpu;
410 case CPU_UP_CANCELED:
411 case CPU_UP_CANCELED_FROZEN:
412 case CPU_DOWN_PREPARE:
413 case CPU_DOWN_PREPARE_FROZEN:
415 case CPU_DEAD_FROZEN:
416 hrtick_clear(cpu_rq(cpu));
423 static __init void init_hrtick(void)
425 hotcpu_notifier(hotplug_hrtick, 0);
429 * Called to set the hrtick timer state.
431 * called with rq->lock held and irqs disabled
433 void hrtick_start(struct rq *rq, u64 delay)
436 * Don't schedule slices shorter than 10000ns, that just
437 * doesn't make sense. Rely on vruntime for fairness.
439 delay = max_t(u64, delay, 10000LL);
440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441 HRTIMER_MODE_REL_PINNED, 0);
444 static inline void init_hrtick(void)
447 #endif /* CONFIG_SMP */
449 static void init_rq_hrtick(struct rq *rq)
452 rq->hrtick_csd_pending = 0;
454 rq->hrtick_csd.flags = 0;
455 rq->hrtick_csd.func = __hrtick_start;
456 rq->hrtick_csd.info = rq;
459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 rq->hrtick_timer.function = hrtick;
462 #else /* CONFIG_SCHED_HRTICK */
463 static inline void hrtick_clear(struct rq *rq)
467 static inline void init_rq_hrtick(struct rq *rq)
471 static inline void init_hrtick(void)
474 #endif /* CONFIG_SCHED_HRTICK */
477 * cmpxchg based fetch_or, macro so it works for different integer types
479 #define fetch_or(ptr, val) \
480 ({ typeof(*(ptr)) __old, __val = *(ptr); \
482 __old = cmpxchg((ptr), __val, __val | (val)); \
483 if (__old == __val) \
490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493 * this avoids any races wrt polling state changes and thereby avoids
496 static bool set_nr_and_not_polling(struct task_struct *p)
498 struct thread_info *ti = task_thread_info(p);
499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
505 * If this returns true, then the idle task promises to call
506 * sched_ttwu_pending() and reschedule soon.
508 static bool set_nr_if_polling(struct task_struct *p)
510 struct thread_info *ti = task_thread_info(p);
511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
514 if (!(val & _TIF_POLLING_NRFLAG))
516 if (val & _TIF_NEED_RESCHED)
518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
527 static bool set_nr_and_not_polling(struct task_struct *p)
529 set_tsk_need_resched(p);
534 static bool set_nr_if_polling(struct task_struct *p)
542 * resched_curr - mark rq's current task 'to be rescheduled now'.
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
548 void resched_curr(struct rq *rq)
550 struct task_struct *curr = rq->curr;
553 lockdep_assert_held(&rq->lock);
555 if (test_tsk_need_resched(curr))
560 if (cpu == smp_processor_id()) {
561 set_tsk_need_resched(curr);
562 set_preempt_need_resched();
566 if (set_nr_and_not_polling(curr))
567 smp_send_reschedule(cpu);
569 trace_sched_wake_idle_without_ipi(cpu);
572 void resched_cpu(int cpu)
574 struct rq *rq = cpu_rq(cpu);
577 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
580 raw_spin_unlock_irqrestore(&rq->lock, flags);
584 #ifdef CONFIG_NO_HZ_COMMON
586 * In the semi idle case, use the nearest busy cpu for migrating timers
587 * from an idle cpu. This is good for power-savings.
589 * We don't do similar optimization for completely idle system, as
590 * selecting an idle cpu will add more delays to the timers than intended
591 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
593 int get_nohz_timer_target(int pinned)
595 int cpu = smp_processor_id();
597 struct sched_domain *sd;
599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 for_each_domain(cpu, sd) {
604 for_each_cpu(i, sched_domain_span(sd)) {
616 * When add_timer_on() enqueues a timer into the timer wheel of an
617 * idle CPU then this timer might expire before the next timer event
618 * which is scheduled to wake up that CPU. In case of a completely
619 * idle system the next event might even be infinite time into the
620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621 * leaves the inner idle loop so the newly added timer is taken into
622 * account when the CPU goes back to idle and evaluates the timer
623 * wheel for the next timer event.
625 static void wake_up_idle_cpu(int cpu)
627 struct rq *rq = cpu_rq(cpu);
629 if (cpu == smp_processor_id())
632 if (set_nr_and_not_polling(rq->idle))
633 smp_send_reschedule(cpu);
635 trace_sched_wake_idle_without_ipi(cpu);
638 static bool wake_up_full_nohz_cpu(int cpu)
641 * We just need the target to call irq_exit() and re-evaluate
642 * the next tick. The nohz full kick at least implies that.
643 * If needed we can still optimize that later with an
646 if (tick_nohz_full_cpu(cpu)) {
647 if (cpu != smp_processor_id() ||
648 tick_nohz_tick_stopped())
649 tick_nohz_full_kick_cpu(cpu);
656 void wake_up_nohz_cpu(int cpu)
658 if (!wake_up_full_nohz_cpu(cpu))
659 wake_up_idle_cpu(cpu);
662 static inline bool got_nohz_idle_kick(void)
664 int cpu = smp_processor_id();
666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
669 if (idle_cpu(cpu) && !need_resched())
673 * We can't run Idle Load Balance on this CPU for this time so we
674 * cancel it and clear NOHZ_BALANCE_KICK
676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 #else /* CONFIG_NO_HZ_COMMON */
682 static inline bool got_nohz_idle_kick(void)
687 #endif /* CONFIG_NO_HZ_COMMON */
689 #ifdef CONFIG_NO_HZ_FULL
690 bool sched_can_stop_tick(void)
693 * More than one running task need preemption.
694 * nr_running update is assumed to be visible
695 * after IPI is sent from wakers.
697 if (this_rq()->nr_running > 1)
702 #endif /* CONFIG_NO_HZ_FULL */
704 void sched_avg_update(struct rq *rq)
706 s64 period = sched_avg_period();
708 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
710 * Inline assembly required to prevent the compiler
711 * optimising this loop into a divmod call.
712 * See __iter_div_u64_rem() for another example of this.
714 asm("" : "+rm" (rq->age_stamp));
715 rq->age_stamp += period;
720 #endif /* CONFIG_SMP */
722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
723 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
725 * Iterate task_group tree rooted at *from, calling @down when first entering a
726 * node and @up when leaving it for the final time.
728 * Caller must hold rcu_lock or sufficient equivalent.
730 int walk_tg_tree_from(struct task_group *from,
731 tg_visitor down, tg_visitor up, void *data)
733 struct task_group *parent, *child;
739 ret = (*down)(parent, data);
742 list_for_each_entry_rcu(child, &parent->children, siblings) {
749 ret = (*up)(parent, data);
750 if (ret || parent == from)
754 parent = parent->parent;
761 int tg_nop(struct task_group *tg, void *data)
767 static void set_load_weight(struct task_struct *p)
769 int prio = p->static_prio - MAX_RT_PRIO;
770 struct load_weight *load = &p->se.load;
773 * SCHED_IDLE tasks get minimal weight:
775 if (p->policy == SCHED_IDLE) {
776 load->weight = scale_load(WEIGHT_IDLEPRIO);
777 load->inv_weight = WMULT_IDLEPRIO;
781 load->weight = scale_load(prio_to_weight[prio]);
782 load->inv_weight = prio_to_wmult[prio];
785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
788 sched_info_queued(rq, p);
789 p->sched_class->enqueue_task(rq, p, flags);
792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
795 sched_info_dequeued(rq, p);
796 p->sched_class->dequeue_task(rq, p, flags);
799 void activate_task(struct rq *rq, struct task_struct *p, int flags)
801 if (task_contributes_to_load(p))
802 rq->nr_uninterruptible--;
804 enqueue_task(rq, p, flags);
807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
809 if (task_contributes_to_load(p))
810 rq->nr_uninterruptible++;
812 dequeue_task(rq, p, flags);
815 static void update_rq_clock_task(struct rq *rq, s64 delta)
818 * In theory, the compile should just see 0 here, and optimize out the call
819 * to sched_rt_avg_update. But I don't trust it...
821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
822 s64 steal = 0, irq_delta = 0;
824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
825 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
828 * Since irq_time is only updated on {soft,}irq_exit, we might run into
829 * this case when a previous update_rq_clock() happened inside a
832 * When this happens, we stop ->clock_task and only update the
833 * prev_irq_time stamp to account for the part that fit, so that a next
834 * update will consume the rest. This ensures ->clock_task is
837 * It does however cause some slight miss-attribution of {soft,}irq
838 * time, a more accurate solution would be to update the irq_time using
839 * the current rq->clock timestamp, except that would require using
842 if (irq_delta > delta)
845 rq->prev_irq_time += irq_delta;
848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
849 if (static_key_false((¶virt_steal_rq_enabled))) {
850 steal = paravirt_steal_clock(cpu_of(rq));
851 steal -= rq->prev_steal_time_rq;
853 if (unlikely(steal > delta))
856 rq->prev_steal_time_rq += steal;
861 rq->clock_task += delta;
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
865 sched_rt_avg_update(rq, irq_delta + steal);
869 void sched_set_stop_task(int cpu, struct task_struct *stop)
871 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
872 struct task_struct *old_stop = cpu_rq(cpu)->stop;
876 * Make it appear like a SCHED_FIFO task, its something
877 * userspace knows about and won't get confused about.
879 * Also, it will make PI more or less work without too
880 * much confusion -- but then, stop work should not
881 * rely on PI working anyway.
883 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
885 stop->sched_class = &stop_sched_class;
888 cpu_rq(cpu)->stop = stop;
892 * Reset it back to a normal scheduling class so that
893 * it can die in pieces.
895 old_stop->sched_class = &rt_sched_class;
900 * __normal_prio - return the priority that is based on the static prio
902 static inline int __normal_prio(struct task_struct *p)
904 return p->static_prio;
908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
914 static inline int normal_prio(struct task_struct *p)
918 if (task_has_dl_policy(p))
919 prio = MAX_DL_PRIO-1;
920 else if (task_has_rt_policy(p))
921 prio = MAX_RT_PRIO-1 - p->rt_priority;
923 prio = __normal_prio(p);
928 * Calculate the current priority, i.e. the priority
929 * taken into account by the scheduler. This value might
930 * be boosted by RT tasks, or might be boosted by
931 * interactivity modifiers. Will be RT if the task got
932 * RT-boosted. If not then it returns p->normal_prio.
934 static int effective_prio(struct task_struct *p)
936 p->normal_prio = normal_prio(p);
938 * If we are RT tasks or we were boosted to RT priority,
939 * keep the priority unchanged. Otherwise, update priority
940 * to the normal priority:
942 if (!rt_prio(p->prio))
943 return p->normal_prio;
948 * task_curr - is this task currently executing on a CPU?
949 * @p: the task in question.
951 * Return: 1 if the task is currently executing. 0 otherwise.
953 inline int task_curr(const struct task_struct *p)
955 return cpu_curr(task_cpu(p)) == p;
959 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
961 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
962 const struct sched_class *prev_class,
965 if (prev_class != p->sched_class) {
966 if (prev_class->switched_from)
967 prev_class->switched_from(rq, p);
968 /* Possble rq->lock 'hole'. */
969 p->sched_class->switched_to(rq, p);
970 } else if (oldprio != p->prio || dl_task(p))
971 p->sched_class->prio_changed(rq, p, oldprio);
974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
976 const struct sched_class *class;
978 if (p->sched_class == rq->curr->sched_class) {
979 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
981 for_each_class(class) {
982 if (class == rq->curr->sched_class)
984 if (class == p->sched_class) {
992 * A queue event has occurred, and we're going to schedule. In
993 * this case, we can save a useless back to back clock update.
995 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
996 rq_clock_skip_update(rq, true);
1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1002 #ifdef CONFIG_SCHED_DEBUG
1004 * We should never call set_task_cpu() on a blocked task,
1005 * ttwu() will sort out the placement.
1007 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1010 #ifdef CONFIG_LOCKDEP
1012 * The caller should hold either p->pi_lock or rq->lock, when changing
1013 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1015 * sched_move_task() holds both and thus holding either pins the cgroup,
1018 * Furthermore, all task_rq users should acquire both locks, see
1021 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1022 lockdep_is_held(&task_rq(p)->lock)));
1026 trace_sched_migrate_task(p, new_cpu);
1028 if (task_cpu(p) != new_cpu) {
1029 if (p->sched_class->migrate_task_rq)
1030 p->sched_class->migrate_task_rq(p, new_cpu);
1031 p->se.nr_migrations++;
1032 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1035 __set_task_cpu(p, new_cpu);
1038 static void __migrate_swap_task(struct task_struct *p, int cpu)
1040 if (task_on_rq_queued(p)) {
1041 struct rq *src_rq, *dst_rq;
1043 src_rq = task_rq(p);
1044 dst_rq = cpu_rq(cpu);
1046 deactivate_task(src_rq, p, 0);
1047 set_task_cpu(p, cpu);
1048 activate_task(dst_rq, p, 0);
1049 check_preempt_curr(dst_rq, p, 0);
1052 * Task isn't running anymore; make it appear like we migrated
1053 * it before it went to sleep. This means on wakeup we make the
1054 * previous cpu our targer instead of where it really is.
1060 struct migration_swap_arg {
1061 struct task_struct *src_task, *dst_task;
1062 int src_cpu, dst_cpu;
1065 static int migrate_swap_stop(void *data)
1067 struct migration_swap_arg *arg = data;
1068 struct rq *src_rq, *dst_rq;
1071 src_rq = cpu_rq(arg->src_cpu);
1072 dst_rq = cpu_rq(arg->dst_cpu);
1074 double_raw_lock(&arg->src_task->pi_lock,
1075 &arg->dst_task->pi_lock);
1076 double_rq_lock(src_rq, dst_rq);
1077 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1080 if (task_cpu(arg->src_task) != arg->src_cpu)
1083 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1086 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1089 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1090 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1095 double_rq_unlock(src_rq, dst_rq);
1096 raw_spin_unlock(&arg->dst_task->pi_lock);
1097 raw_spin_unlock(&arg->src_task->pi_lock);
1103 * Cross migrate two tasks
1105 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1107 struct migration_swap_arg arg;
1110 arg = (struct migration_swap_arg){
1112 .src_cpu = task_cpu(cur),
1114 .dst_cpu = task_cpu(p),
1117 if (arg.src_cpu == arg.dst_cpu)
1121 * These three tests are all lockless; this is OK since all of them
1122 * will be re-checked with proper locks held further down the line.
1124 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1127 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1130 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1133 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1134 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1140 struct migration_arg {
1141 struct task_struct *task;
1145 static int migration_cpu_stop(void *data);
1148 * wait_task_inactive - wait for a thread to unschedule.
1150 * If @match_state is nonzero, it's the @p->state value just checked and
1151 * not expected to change. If it changes, i.e. @p might have woken up,
1152 * then return zero. When we succeed in waiting for @p to be off its CPU,
1153 * we return a positive number (its total switch count). If a second call
1154 * a short while later returns the same number, the caller can be sure that
1155 * @p has remained unscheduled the whole time.
1157 * The caller must ensure that the task *will* unschedule sometime soon,
1158 * else this function might spin for a *long* time. This function can't
1159 * be called with interrupts off, or it may introduce deadlock with
1160 * smp_call_function() if an IPI is sent by the same process we are
1161 * waiting to become inactive.
1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1165 unsigned long flags;
1166 int running, queued;
1172 * We do the initial early heuristics without holding
1173 * any task-queue locks at all. We'll only try to get
1174 * the runqueue lock when things look like they will
1180 * If the task is actively running on another CPU
1181 * still, just relax and busy-wait without holding
1184 * NOTE! Since we don't hold any locks, it's not
1185 * even sure that "rq" stays as the right runqueue!
1186 * But we don't care, since "task_running()" will
1187 * return false if the runqueue has changed and p
1188 * is actually now running somewhere else!
1190 while (task_running(rq, p)) {
1191 if (match_state && unlikely(p->state != match_state))
1197 * Ok, time to look more closely! We need the rq
1198 * lock now, to be *sure*. If we're wrong, we'll
1199 * just go back and repeat.
1201 rq = task_rq_lock(p, &flags);
1202 trace_sched_wait_task(p);
1203 running = task_running(rq, p);
1204 queued = task_on_rq_queued(p);
1206 if (!match_state || p->state == match_state)
1207 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1208 task_rq_unlock(rq, p, &flags);
1211 * If it changed from the expected state, bail out now.
1213 if (unlikely(!ncsw))
1217 * Was it really running after all now that we
1218 * checked with the proper locks actually held?
1220 * Oops. Go back and try again..
1222 if (unlikely(running)) {
1228 * It's not enough that it's not actively running,
1229 * it must be off the runqueue _entirely_, and not
1232 * So if it was still runnable (but just not actively
1233 * running right now), it's preempted, and we should
1234 * yield - it could be a while.
1236 if (unlikely(queued)) {
1237 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1239 set_current_state(TASK_UNINTERRUPTIBLE);
1240 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1245 * Ahh, all good. It wasn't running, and it wasn't
1246 * runnable, which means that it will never become
1247 * running in the future either. We're all done!
1256 * kick_process - kick a running thread to enter/exit the kernel
1257 * @p: the to-be-kicked thread
1259 * Cause a process which is running on another CPU to enter
1260 * kernel-mode, without any delay. (to get signals handled.)
1262 * NOTE: this function doesn't have to take the runqueue lock,
1263 * because all it wants to ensure is that the remote task enters
1264 * the kernel. If the IPI races and the task has been migrated
1265 * to another CPU then no harm is done and the purpose has been
1268 void kick_process(struct task_struct *p)
1274 if ((cpu != smp_processor_id()) && task_curr(p))
1275 smp_send_reschedule(cpu);
1278 EXPORT_SYMBOL_GPL(kick_process);
1279 #endif /* CONFIG_SMP */
1283 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1285 static int select_fallback_rq(int cpu, struct task_struct *p)
1287 int nid = cpu_to_node(cpu);
1288 const struct cpumask *nodemask = NULL;
1289 enum { cpuset, possible, fail } state = cpuset;
1293 * If the node that the cpu is on has been offlined, cpu_to_node()
1294 * will return -1. There is no cpu on the node, and we should
1295 * select the cpu on the other node.
1298 nodemask = cpumask_of_node(nid);
1300 /* Look for allowed, online CPU in same node. */
1301 for_each_cpu(dest_cpu, nodemask) {
1302 if (!cpu_online(dest_cpu))
1304 if (!cpu_active(dest_cpu))
1306 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1312 /* Any allowed, online CPU? */
1313 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1314 if (!cpu_online(dest_cpu))
1316 if (!cpu_active(dest_cpu))
1323 /* No more Mr. Nice Guy. */
1324 cpuset_cpus_allowed_fallback(p);
1329 do_set_cpus_allowed(p, cpu_possible_mask);
1340 if (state != cpuset) {
1342 * Don't tell them about moving exiting tasks or
1343 * kernel threads (both mm NULL), since they never
1346 if (p->mm && printk_ratelimit()) {
1347 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1348 task_pid_nr(p), p->comm, cpu);
1356 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1361 if (p->nr_cpus_allowed > 1)
1362 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1365 * In order not to call set_task_cpu() on a blocking task we need
1366 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1369 * Since this is common to all placement strategies, this lives here.
1371 * [ this allows ->select_task() to simply return task_cpu(p) and
1372 * not worry about this generic constraint ]
1374 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1376 cpu = select_fallback_rq(task_cpu(p), p);
1381 static void update_avg(u64 *avg, u64 sample)
1383 s64 diff = sample - *avg;
1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1391 #ifdef CONFIG_SCHEDSTATS
1392 struct rq *rq = this_rq();
1395 int this_cpu = smp_processor_id();
1397 if (cpu == this_cpu) {
1398 schedstat_inc(rq, ttwu_local);
1399 schedstat_inc(p, se.statistics.nr_wakeups_local);
1401 struct sched_domain *sd;
1403 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1405 for_each_domain(this_cpu, sd) {
1406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1407 schedstat_inc(sd, ttwu_wake_remote);
1414 if (wake_flags & WF_MIGRATED)
1415 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1417 #endif /* CONFIG_SMP */
1419 schedstat_inc(rq, ttwu_count);
1420 schedstat_inc(p, se.statistics.nr_wakeups);
1422 if (wake_flags & WF_SYNC)
1423 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1425 #endif /* CONFIG_SCHEDSTATS */
1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1430 activate_task(rq, p, en_flags);
1431 p->on_rq = TASK_ON_RQ_QUEUED;
1433 /* if a worker is waking up, notify workqueue */
1434 if (p->flags & PF_WQ_WORKER)
1435 wq_worker_waking_up(p, cpu_of(rq));
1439 * Mark the task runnable and perform wakeup-preemption.
1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1444 check_preempt_curr(rq, p, wake_flags);
1445 trace_sched_wakeup(p, true);
1447 p->state = TASK_RUNNING;
1449 if (p->sched_class->task_woken)
1450 p->sched_class->task_woken(rq, p);
1452 if (rq->idle_stamp) {
1453 u64 delta = rq_clock(rq) - rq->idle_stamp;
1454 u64 max = 2*rq->max_idle_balance_cost;
1456 update_avg(&rq->avg_idle, delta);
1458 if (rq->avg_idle > max)
1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1470 if (p->sched_contributes_to_load)
1471 rq->nr_uninterruptible--;
1474 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1475 ttwu_do_wakeup(rq, p, wake_flags);
1479 * Called in case the task @p isn't fully descheduled from its runqueue,
1480 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1481 * since all we need to do is flip p->state to TASK_RUNNING, since
1482 * the task is still ->on_rq.
1484 static int ttwu_remote(struct task_struct *p, int wake_flags)
1489 rq = __task_rq_lock(p);
1490 if (task_on_rq_queued(p)) {
1491 /* check_preempt_curr() may use rq clock */
1492 update_rq_clock(rq);
1493 ttwu_do_wakeup(rq, p, wake_flags);
1496 __task_rq_unlock(rq);
1502 void sched_ttwu_pending(void)
1504 struct rq *rq = this_rq();
1505 struct llist_node *llist = llist_del_all(&rq->wake_list);
1506 struct task_struct *p;
1507 unsigned long flags;
1512 raw_spin_lock_irqsave(&rq->lock, flags);
1515 p = llist_entry(llist, struct task_struct, wake_entry);
1516 llist = llist_next(llist);
1517 ttwu_do_activate(rq, p, 0);
1520 raw_spin_unlock_irqrestore(&rq->lock, flags);
1523 void scheduler_ipi(void)
1526 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1527 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530 preempt_fold_need_resched();
1532 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1536 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1537 * traditionally all their work was done from the interrupt return
1538 * path. Now that we actually do some work, we need to make sure
1541 * Some archs already do call them, luckily irq_enter/exit nest
1544 * Arguably we should visit all archs and update all handlers,
1545 * however a fair share of IPIs are still resched only so this would
1546 * somewhat pessimize the simple resched case.
1549 sched_ttwu_pending();
1552 * Check if someone kicked us for doing the nohz idle load balance.
1554 if (unlikely(got_nohz_idle_kick())) {
1555 this_rq()->idle_balance = 1;
1556 raise_softirq_irqoff(SCHED_SOFTIRQ);
1561 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1563 struct rq *rq = cpu_rq(cpu);
1565 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1566 if (!set_nr_if_polling(rq->idle))
1567 smp_send_reschedule(cpu);
1569 trace_sched_wake_idle_without_ipi(cpu);
1573 void wake_up_if_idle(int cpu)
1575 struct rq *rq = cpu_rq(cpu);
1576 unsigned long flags;
1580 if (!is_idle_task(rcu_dereference(rq->curr)))
1583 if (set_nr_if_polling(rq->idle)) {
1584 trace_sched_wake_idle_without_ipi(cpu);
1586 raw_spin_lock_irqsave(&rq->lock, flags);
1587 if (is_idle_task(rq->curr))
1588 smp_send_reschedule(cpu);
1589 /* Else cpu is not in idle, do nothing here */
1590 raw_spin_unlock_irqrestore(&rq->lock, flags);
1597 bool cpus_share_cache(int this_cpu, int that_cpu)
1599 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1601 #endif /* CONFIG_SMP */
1603 static void ttwu_queue(struct task_struct *p, int cpu)
1605 struct rq *rq = cpu_rq(cpu);
1607 #if defined(CONFIG_SMP)
1608 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1609 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1610 ttwu_queue_remote(p, cpu);
1615 raw_spin_lock(&rq->lock);
1616 ttwu_do_activate(rq, p, 0);
1617 raw_spin_unlock(&rq->lock);
1621 * try_to_wake_up - wake up a thread
1622 * @p: the thread to be awakened
1623 * @state: the mask of task states that can be woken
1624 * @wake_flags: wake modifier flags (WF_*)
1626 * Put it on the run-queue if it's not already there. The "current"
1627 * thread is always on the run-queue (except when the actual
1628 * re-schedule is in progress), and as such you're allowed to do
1629 * the simpler "current->state = TASK_RUNNING" to mark yourself
1630 * runnable without the overhead of this.
1632 * Return: %true if @p was woken up, %false if it was already running.
1633 * or @state didn't match @p's state.
1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1638 unsigned long flags;
1639 int cpu, success = 0;
1642 * If we are going to wake up a thread waiting for CONDITION we
1643 * need to ensure that CONDITION=1 done by the caller can not be
1644 * reordered with p->state check below. This pairs with mb() in
1645 * set_current_state() the waiting thread does.
1647 smp_mb__before_spinlock();
1648 raw_spin_lock_irqsave(&p->pi_lock, flags);
1649 if (!(p->state & state))
1652 success = 1; /* we're going to change ->state */
1655 if (p->on_rq && ttwu_remote(p, wake_flags))
1660 * If the owning (remote) cpu is still in the middle of schedule() with
1661 * this task as prev, wait until its done referencing the task.
1666 * Pairs with the smp_wmb() in finish_lock_switch().
1670 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1671 p->state = TASK_WAKING;
1673 if (p->sched_class->task_waking)
1674 p->sched_class->task_waking(p);
1676 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1677 if (task_cpu(p) != cpu) {
1678 wake_flags |= WF_MIGRATED;
1679 set_task_cpu(p, cpu);
1681 #endif /* CONFIG_SMP */
1685 ttwu_stat(p, cpu, wake_flags);
1687 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1693 * try_to_wake_up_local - try to wake up a local task with rq lock held
1694 * @p: the thread to be awakened
1696 * Put @p on the run-queue if it's not already there. The caller must
1697 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1700 static void try_to_wake_up_local(struct task_struct *p)
1702 struct rq *rq = task_rq(p);
1704 if (WARN_ON_ONCE(rq != this_rq()) ||
1705 WARN_ON_ONCE(p == current))
1708 lockdep_assert_held(&rq->lock);
1710 if (!raw_spin_trylock(&p->pi_lock)) {
1711 raw_spin_unlock(&rq->lock);
1712 raw_spin_lock(&p->pi_lock);
1713 raw_spin_lock(&rq->lock);
1716 if (!(p->state & TASK_NORMAL))
1719 if (!task_on_rq_queued(p))
1720 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1722 ttwu_do_wakeup(rq, p, 0);
1723 ttwu_stat(p, smp_processor_id(), 0);
1725 raw_spin_unlock(&p->pi_lock);
1729 * wake_up_process - Wake up a specific process
1730 * @p: The process to be woken up.
1732 * Attempt to wake up the nominated process and move it to the set of runnable
1735 * Return: 1 if the process was woken up, 0 if it was already running.
1737 * It may be assumed that this function implies a write memory barrier before
1738 * changing the task state if and only if any tasks are woken up.
1740 int wake_up_process(struct task_struct *p)
1742 WARN_ON(task_is_stopped_or_traced(p));
1743 return try_to_wake_up(p, TASK_NORMAL, 0);
1745 EXPORT_SYMBOL(wake_up_process);
1747 int wake_up_state(struct task_struct *p, unsigned int state)
1749 return try_to_wake_up(p, state, 0);
1753 * This function clears the sched_dl_entity static params.
1755 void __dl_clear_params(struct task_struct *p)
1757 struct sched_dl_entity *dl_se = &p->dl;
1759 dl_se->dl_runtime = 0;
1760 dl_se->dl_deadline = 0;
1761 dl_se->dl_period = 0;
1765 dl_se->dl_throttled = 0;
1767 dl_se->dl_yielded = 0;
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1774 * __sched_fork() is basic setup used by init_idle() too:
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1781 p->se.exec_start = 0;
1782 p->se.sum_exec_runtime = 0;
1783 p->se.prev_sum_exec_runtime = 0;
1784 p->se.nr_migrations = 0;
1787 p->se.avg.decay_count = 0;
1789 INIT_LIST_HEAD(&p->se.group_node);
1791 #ifdef CONFIG_SCHEDSTATS
1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1795 RB_CLEAR_NODE(&p->dl.rb_node);
1796 init_dl_task_timer(&p->dl);
1797 __dl_clear_params(p);
1799 INIT_LIST_HEAD(&p->rt.run_list);
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 INIT_HLIST_HEAD(&p->preempt_notifiers);
1805 #ifdef CONFIG_NUMA_BALANCING
1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 p->mm->numa_scan_seq = 0;
1811 if (clone_flags & CLONE_VM)
1812 p->numa_preferred_nid = current->numa_preferred_nid;
1814 p->numa_preferred_nid = -1;
1816 p->node_stamp = 0ULL;
1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 p->numa_work.next = &p->numa_work;
1820 p->numa_faults = NULL;
1821 p->last_task_numa_placement = 0;
1822 p->last_sum_exec_runtime = 0;
1824 p->numa_group = NULL;
1825 #endif /* CONFIG_NUMA_BALANCING */
1828 #ifdef CONFIG_NUMA_BALANCING
1829 #ifdef CONFIG_SCHED_DEBUG
1830 void set_numabalancing_state(bool enabled)
1833 sched_feat_set("NUMA");
1835 sched_feat_set("NO_NUMA");
1838 __read_mostly bool numabalancing_enabled;
1840 void set_numabalancing_state(bool enabled)
1842 numabalancing_enabled = enabled;
1844 #endif /* CONFIG_SCHED_DEBUG */
1846 #ifdef CONFIG_PROC_SYSCTL
1847 int sysctl_numa_balancing(struct ctl_table *table, int write,
1848 void __user *buffer, size_t *lenp, loff_t *ppos)
1852 int state = numabalancing_enabled;
1854 if (write && !capable(CAP_SYS_ADMIN))
1859 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1863 set_numabalancing_state(state);
1870 * fork()/clone()-time setup:
1872 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1874 unsigned long flags;
1875 int cpu = get_cpu();
1877 __sched_fork(clone_flags, p);
1879 * We mark the process as running here. This guarantees that
1880 * nobody will actually run it, and a signal or other external
1881 * event cannot wake it up and insert it on the runqueue either.
1883 p->state = TASK_RUNNING;
1886 * Make sure we do not leak PI boosting priority to the child.
1888 p->prio = current->normal_prio;
1891 * Revert to default priority/policy on fork if requested.
1893 if (unlikely(p->sched_reset_on_fork)) {
1894 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1895 p->policy = SCHED_NORMAL;
1896 p->static_prio = NICE_TO_PRIO(0);
1898 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1899 p->static_prio = NICE_TO_PRIO(0);
1901 p->prio = p->normal_prio = __normal_prio(p);
1905 * We don't need the reset flag anymore after the fork. It has
1906 * fulfilled its duty:
1908 p->sched_reset_on_fork = 0;
1911 if (dl_prio(p->prio)) {
1914 } else if (rt_prio(p->prio)) {
1915 p->sched_class = &rt_sched_class;
1917 p->sched_class = &fair_sched_class;
1920 if (p->sched_class->task_fork)
1921 p->sched_class->task_fork(p);
1924 * The child is not yet in the pid-hash so no cgroup attach races,
1925 * and the cgroup is pinned to this child due to cgroup_fork()
1926 * is ran before sched_fork().
1928 * Silence PROVE_RCU.
1930 raw_spin_lock_irqsave(&p->pi_lock, flags);
1931 set_task_cpu(p, cpu);
1932 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1935 if (likely(sched_info_on()))
1936 memset(&p->sched_info, 0, sizeof(p->sched_info));
1938 #if defined(CONFIG_SMP)
1941 init_task_preempt_count(p);
1943 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1944 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1951 unsigned long to_ratio(u64 period, u64 runtime)
1953 if (runtime == RUNTIME_INF)
1957 * Doing this here saves a lot of checks in all
1958 * the calling paths, and returning zero seems
1959 * safe for them anyway.
1964 return div64_u64(runtime << 20, period);
1968 inline struct dl_bw *dl_bw_of(int i)
1970 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1971 "sched RCU must be held");
1972 return &cpu_rq(i)->rd->dl_bw;
1975 static inline int dl_bw_cpus(int i)
1977 struct root_domain *rd = cpu_rq(i)->rd;
1980 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1981 "sched RCU must be held");
1982 for_each_cpu_and(i, rd->span, cpu_active_mask)
1988 inline struct dl_bw *dl_bw_of(int i)
1990 return &cpu_rq(i)->dl.dl_bw;
1993 static inline int dl_bw_cpus(int i)
2000 * We must be sure that accepting a new task (or allowing changing the
2001 * parameters of an existing one) is consistent with the bandwidth
2002 * constraints. If yes, this function also accordingly updates the currently
2003 * allocated bandwidth to reflect the new situation.
2005 * This function is called while holding p's rq->lock.
2007 * XXX we should delay bw change until the task's 0-lag point, see
2010 static int dl_overflow(struct task_struct *p, int policy,
2011 const struct sched_attr *attr)
2014 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2015 u64 period = attr->sched_period ?: attr->sched_deadline;
2016 u64 runtime = attr->sched_runtime;
2017 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2020 if (new_bw == p->dl.dl_bw)
2024 * Either if a task, enters, leave, or stays -deadline but changes
2025 * its parameters, we may need to update accordingly the total
2026 * allocated bandwidth of the container.
2028 raw_spin_lock(&dl_b->lock);
2029 cpus = dl_bw_cpus(task_cpu(p));
2030 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2031 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2032 __dl_add(dl_b, new_bw);
2034 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2035 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2036 __dl_clear(dl_b, p->dl.dl_bw);
2037 __dl_add(dl_b, new_bw);
2039 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2040 __dl_clear(dl_b, p->dl.dl_bw);
2043 raw_spin_unlock(&dl_b->lock);
2048 extern void init_dl_bw(struct dl_bw *dl_b);
2051 * wake_up_new_task - wake up a newly created task for the first time.
2053 * This function will do some initial scheduler statistics housekeeping
2054 * that must be done for every newly created context, then puts the task
2055 * on the runqueue and wakes it.
2057 void wake_up_new_task(struct task_struct *p)
2059 unsigned long flags;
2062 raw_spin_lock_irqsave(&p->pi_lock, flags);
2065 * Fork balancing, do it here and not earlier because:
2066 * - cpus_allowed can change in the fork path
2067 * - any previously selected cpu might disappear through hotplug
2069 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2072 /* Initialize new task's runnable average */
2073 init_task_runnable_average(p);
2074 rq = __task_rq_lock(p);
2075 activate_task(rq, p, 0);
2076 p->on_rq = TASK_ON_RQ_QUEUED;
2077 trace_sched_wakeup_new(p, true);
2078 check_preempt_curr(rq, p, WF_FORK);
2080 if (p->sched_class->task_woken)
2081 p->sched_class->task_woken(rq, p);
2083 task_rq_unlock(rq, p, &flags);
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2089 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2090 * @notifier: notifier struct to register
2092 void preempt_notifier_register(struct preempt_notifier *notifier)
2094 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2096 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2099 * preempt_notifier_unregister - no longer interested in preemption notifications
2100 * @notifier: notifier struct to unregister
2102 * This is safe to call from within a preemption notifier.
2104 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2106 hlist_del(¬ifier->link);
2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2112 struct preempt_notifier *notifier;
2114 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2115 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2119 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2120 struct task_struct *next)
2122 struct preempt_notifier *notifier;
2124 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2125 notifier->ops->sched_out(notifier, next);
2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2135 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2136 struct task_struct *next)
2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2143 * prepare_task_switch - prepare to switch tasks
2144 * @rq: the runqueue preparing to switch
2145 * @prev: the current task that is being switched out
2146 * @next: the task we are going to switch to.
2148 * This is called with the rq lock held and interrupts off. It must
2149 * be paired with a subsequent finish_task_switch after the context
2152 * prepare_task_switch sets up locking and calls architecture specific
2156 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2157 struct task_struct *next)
2159 trace_sched_switch(prev, next);
2160 sched_info_switch(rq, prev, next);
2161 perf_event_task_sched_out(prev, next);
2162 fire_sched_out_preempt_notifiers(prev, next);
2163 prepare_lock_switch(rq, next);
2164 prepare_arch_switch(next);
2168 * finish_task_switch - clean up after a task-switch
2169 * @prev: the thread we just switched away from.
2171 * finish_task_switch must be called after the context switch, paired
2172 * with a prepare_task_switch call before the context switch.
2173 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2174 * and do any other architecture-specific cleanup actions.
2176 * Note that we may have delayed dropping an mm in context_switch(). If
2177 * so, we finish that here outside of the runqueue lock. (Doing it
2178 * with the lock held can cause deadlocks; see schedule() for
2181 * The context switch have flipped the stack from under us and restored the
2182 * local variables which were saved when this task called schedule() in the
2183 * past. prev == current is still correct but we need to recalculate this_rq
2184 * because prev may have moved to another CPU.
2186 static struct rq *finish_task_switch(struct task_struct *prev)
2187 __releases(rq->lock)
2189 struct rq *rq = this_rq();
2190 struct mm_struct *mm = rq->prev_mm;
2196 * A task struct has one reference for the use as "current".
2197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2198 * schedule one last time. The schedule call will never return, and
2199 * the scheduled task must drop that reference.
2200 * The test for TASK_DEAD must occur while the runqueue locks are
2201 * still held, otherwise prev could be scheduled on another cpu, die
2202 * there before we look at prev->state, and then the reference would
2206 prev_state = prev->state;
2207 vtime_task_switch(prev);
2208 finish_arch_switch(prev);
2209 perf_event_task_sched_in(prev, current);
2210 finish_lock_switch(rq, prev);
2211 finish_arch_post_lock_switch();
2213 fire_sched_in_preempt_notifiers(current);
2216 if (unlikely(prev_state == TASK_DEAD)) {
2217 if (prev->sched_class->task_dead)
2218 prev->sched_class->task_dead(prev);
2221 * Remove function-return probe instances associated with this
2222 * task and put them back on the free list.
2224 kprobe_flush_task(prev);
2225 put_task_struct(prev);
2228 tick_nohz_task_switch(current);
2234 /* rq->lock is NOT held, but preemption is disabled */
2235 static inline void post_schedule(struct rq *rq)
2237 if (rq->post_schedule) {
2238 unsigned long flags;
2240 raw_spin_lock_irqsave(&rq->lock, flags);
2241 if (rq->curr->sched_class->post_schedule)
2242 rq->curr->sched_class->post_schedule(rq);
2243 raw_spin_unlock_irqrestore(&rq->lock, flags);
2245 rq->post_schedule = 0;
2251 static inline void post_schedule(struct rq *rq)
2258 * schedule_tail - first thing a freshly forked thread must call.
2259 * @prev: the thread we just switched away from.
2261 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2262 __releases(rq->lock)
2266 /* finish_task_switch() drops rq->lock and enables preemtion */
2268 rq = finish_task_switch(prev);
2272 if (current->set_child_tid)
2273 put_user(task_pid_vnr(current), current->set_child_tid);
2277 * context_switch - switch to the new MM and the new thread's register state.
2279 static inline struct rq *
2280 context_switch(struct rq *rq, struct task_struct *prev,
2281 struct task_struct *next)
2283 struct mm_struct *mm, *oldmm;
2285 prepare_task_switch(rq, prev, next);
2288 oldmm = prev->active_mm;
2290 * For paravirt, this is coupled with an exit in switch_to to
2291 * combine the page table reload and the switch backend into
2294 arch_start_context_switch(prev);
2297 next->active_mm = oldmm;
2298 atomic_inc(&oldmm->mm_count);
2299 enter_lazy_tlb(oldmm, next);
2301 switch_mm(oldmm, mm, next);
2304 prev->active_mm = NULL;
2305 rq->prev_mm = oldmm;
2308 * Since the runqueue lock will be released by the next
2309 * task (which is an invalid locking op but in the case
2310 * of the scheduler it's an obvious special-case), so we
2311 * do an early lockdep release here:
2313 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2315 context_tracking_task_switch(prev, next);
2316 /* Here we just switch the register state and the stack. */
2317 switch_to(prev, next, prev);
2320 return finish_task_switch(prev);
2324 * nr_running and nr_context_switches:
2326 * externally visible scheduler statistics: current number of runnable
2327 * threads, total number of context switches performed since bootup.
2329 unsigned long nr_running(void)
2331 unsigned long i, sum = 0;
2333 for_each_online_cpu(i)
2334 sum += cpu_rq(i)->nr_running;
2340 * Check if only the current task is running on the cpu.
2342 bool single_task_running(void)
2344 if (cpu_rq(smp_processor_id())->nr_running == 1)
2349 EXPORT_SYMBOL(single_task_running);
2351 unsigned long long nr_context_switches(void)
2354 unsigned long long sum = 0;
2356 for_each_possible_cpu(i)
2357 sum += cpu_rq(i)->nr_switches;
2362 unsigned long nr_iowait(void)
2364 unsigned long i, sum = 0;
2366 for_each_possible_cpu(i)
2367 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2372 unsigned long nr_iowait_cpu(int cpu)
2374 struct rq *this = cpu_rq(cpu);
2375 return atomic_read(&this->nr_iowait);
2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2380 struct rq *this = this_rq();
2381 *nr_waiters = atomic_read(&this->nr_iowait);
2382 *load = this->cpu_load[0];
2388 * sched_exec - execve() is a valuable balancing opportunity, because at
2389 * this point the task has the smallest effective memory and cache footprint.
2391 void sched_exec(void)
2393 struct task_struct *p = current;
2394 unsigned long flags;
2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2399 if (dest_cpu == smp_processor_id())
2402 if (likely(cpu_active(dest_cpu))) {
2403 struct migration_arg arg = { p, dest_cpu };
2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2415 DEFINE_PER_CPU(struct kernel_stat, kstat);
2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2418 EXPORT_PER_CPU_SYMBOL(kstat);
2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2422 * Return accounted runtime for the task.
2423 * In case the task is currently running, return the runtime plus current's
2424 * pending runtime that have not been accounted yet.
2426 unsigned long long task_sched_runtime(struct task_struct *p)
2428 unsigned long flags;
2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2434 * 64-bit doesn't need locks to atomically read a 64bit value.
2435 * So we have a optimization chance when the task's delta_exec is 0.
2436 * Reading ->on_cpu is racy, but this is ok.
2438 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2439 * If we race with it entering cpu, unaccounted time is 0. This is
2440 * indistinguishable from the read occurring a few cycles earlier.
2441 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2442 * been accounted, so we're correct here as well.
2444 if (!p->on_cpu || !task_on_rq_queued(p))
2445 return p->se.sum_exec_runtime;
2448 rq = task_rq_lock(p, &flags);
2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2451 * project cycles that may never be accounted to this
2452 * thread, breaking clock_gettime().
2454 if (task_current(rq, p) && task_on_rq_queued(p)) {
2455 update_rq_clock(rq);
2456 p->sched_class->update_curr(rq);
2458 ns = p->se.sum_exec_runtime;
2459 task_rq_unlock(rq, p, &flags);
2465 * This function gets called by the timer code, with HZ frequency.
2466 * We call it with interrupts disabled.
2468 void scheduler_tick(void)
2470 int cpu = smp_processor_id();
2471 struct rq *rq = cpu_rq(cpu);
2472 struct task_struct *curr = rq->curr;
2476 raw_spin_lock(&rq->lock);
2477 update_rq_clock(rq);
2478 curr->sched_class->task_tick(rq, curr, 0);
2479 update_cpu_load_active(rq);
2480 raw_spin_unlock(&rq->lock);
2482 perf_event_task_tick();
2485 rq->idle_balance = idle_cpu(cpu);
2486 trigger_load_balance(rq);
2488 rq_last_tick_reset(rq);
2491 #ifdef CONFIG_NO_HZ_FULL
2493 * scheduler_tick_max_deferment
2495 * Keep at least one tick per second when a single
2496 * active task is running because the scheduler doesn't
2497 * yet completely support full dynticks environment.
2499 * This makes sure that uptime, CFS vruntime, load
2500 * balancing, etc... continue to move forward, even
2501 * with a very low granularity.
2503 * Return: Maximum deferment in nanoseconds.
2505 u64 scheduler_tick_max_deferment(void)
2507 struct rq *rq = this_rq();
2508 unsigned long next, now = ACCESS_ONCE(jiffies);
2510 next = rq->last_sched_tick + HZ;
2512 if (time_before_eq(next, now))
2515 return jiffies_to_nsecs(next - now);
2519 notrace unsigned long get_parent_ip(unsigned long addr)
2521 if (in_lock_functions(addr)) {
2522 addr = CALLER_ADDR2;
2523 if (in_lock_functions(addr))
2524 addr = CALLER_ADDR3;
2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2530 defined(CONFIG_PREEMPT_TRACER))
2532 void preempt_count_add(int val)
2534 #ifdef CONFIG_DEBUG_PREEMPT
2538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2541 __preempt_count_add(val);
2542 #ifdef CONFIG_DEBUG_PREEMPT
2544 * Spinlock count overflowing soon?
2546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2549 if (preempt_count() == val) {
2550 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 current->preempt_disable_ip = ip;
2554 trace_preempt_off(CALLER_ADDR0, ip);
2557 EXPORT_SYMBOL(preempt_count_add);
2558 NOKPROBE_SYMBOL(preempt_count_add);
2560 void preempt_count_sub(int val)
2562 #ifdef CONFIG_DEBUG_PREEMPT
2566 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2569 * Is the spinlock portion underflowing?
2571 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2572 !(preempt_count() & PREEMPT_MASK)))
2576 if (preempt_count() == val)
2577 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2578 __preempt_count_sub(val);
2580 EXPORT_SYMBOL(preempt_count_sub);
2581 NOKPROBE_SYMBOL(preempt_count_sub);
2586 * Print scheduling while atomic bug:
2588 static noinline void __schedule_bug(struct task_struct *prev)
2590 if (oops_in_progress)
2593 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2594 prev->comm, prev->pid, preempt_count());
2596 debug_show_held_locks(prev);
2598 if (irqs_disabled())
2599 print_irqtrace_events(prev);
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 if (in_atomic_preempt_off()) {
2602 pr_err("Preemption disabled at:");
2603 print_ip_sym(current->preempt_disable_ip);
2608 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2612 * Various schedule()-time debugging checks and statistics:
2614 static inline void schedule_debug(struct task_struct *prev)
2616 #ifdef CONFIG_SCHED_STACK_END_CHECK
2617 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2620 * Test if we are atomic. Since do_exit() needs to call into
2621 * schedule() atomically, we ignore that path. Otherwise whine
2622 * if we are scheduling when we should not.
2624 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2625 __schedule_bug(prev);
2628 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2630 schedstat_inc(this_rq(), sched_count);
2634 * Pick up the highest-prio task:
2636 static inline struct task_struct *
2637 pick_next_task(struct rq *rq, struct task_struct *prev)
2639 const struct sched_class *class = &fair_sched_class;
2640 struct task_struct *p;
2643 * Optimization: we know that if all tasks are in
2644 * the fair class we can call that function directly:
2646 if (likely(prev->sched_class == class &&
2647 rq->nr_running == rq->cfs.h_nr_running)) {
2648 p = fair_sched_class.pick_next_task(rq, prev);
2649 if (unlikely(p == RETRY_TASK))
2652 /* assumes fair_sched_class->next == idle_sched_class */
2654 p = idle_sched_class.pick_next_task(rq, prev);
2660 for_each_class(class) {
2661 p = class->pick_next_task(rq, prev);
2663 if (unlikely(p == RETRY_TASK))
2669 BUG(); /* the idle class will always have a runnable task */
2673 * __schedule() is the main scheduler function.
2675 * The main means of driving the scheduler and thus entering this function are:
2677 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2679 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2680 * paths. For example, see arch/x86/entry_64.S.
2682 * To drive preemption between tasks, the scheduler sets the flag in timer
2683 * interrupt handler scheduler_tick().
2685 * 3. Wakeups don't really cause entry into schedule(). They add a
2686 * task to the run-queue and that's it.
2688 * Now, if the new task added to the run-queue preempts the current
2689 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2690 * called on the nearest possible occasion:
2692 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2694 * - in syscall or exception context, at the next outmost
2695 * preempt_enable(). (this might be as soon as the wake_up()'s
2698 * - in IRQ context, return from interrupt-handler to
2699 * preemptible context
2701 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2704 * - cond_resched() call
2705 * - explicit schedule() call
2706 * - return from syscall or exception to user-space
2707 * - return from interrupt-handler to user-space
2709 * WARNING: all callers must re-check need_resched() afterward and reschedule
2710 * accordingly in case an event triggered the need for rescheduling (such as
2711 * an interrupt waking up a task) while preemption was disabled in __schedule().
2713 static void __sched __schedule(void)
2715 struct task_struct *prev, *next;
2716 unsigned long *switch_count;
2721 cpu = smp_processor_id();
2723 rcu_note_context_switch();
2726 schedule_debug(prev);
2728 if (sched_feat(HRTICK))
2732 * Make sure that signal_pending_state()->signal_pending() below
2733 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2734 * done by the caller to avoid the race with signal_wake_up().
2736 smp_mb__before_spinlock();
2737 raw_spin_lock_irq(&rq->lock);
2739 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2741 switch_count = &prev->nivcsw;
2742 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2743 if (unlikely(signal_pending_state(prev->state, prev))) {
2744 prev->state = TASK_RUNNING;
2746 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2750 * If a worker went to sleep, notify and ask workqueue
2751 * whether it wants to wake up a task to maintain
2754 if (prev->flags & PF_WQ_WORKER) {
2755 struct task_struct *to_wakeup;
2757 to_wakeup = wq_worker_sleeping(prev, cpu);
2759 try_to_wake_up_local(to_wakeup);
2762 switch_count = &prev->nvcsw;
2765 if (task_on_rq_queued(prev))
2766 update_rq_clock(rq);
2768 next = pick_next_task(rq, prev);
2769 clear_tsk_need_resched(prev);
2770 clear_preempt_need_resched();
2771 rq->clock_skip_update = 0;
2773 if (likely(prev != next)) {
2778 rq = context_switch(rq, prev, next); /* unlocks the rq */
2781 raw_spin_unlock_irq(&rq->lock);
2785 sched_preempt_enable_no_resched();
2788 static inline void sched_submit_work(struct task_struct *tsk)
2790 if (!tsk->state || tsk_is_pi_blocked(tsk))
2793 * If we are going to sleep and we have plugged IO queued,
2794 * make sure to submit it to avoid deadlocks.
2796 if (blk_needs_flush_plug(tsk))
2797 blk_schedule_flush_plug(tsk);
2800 asmlinkage __visible void __sched schedule(void)
2802 struct task_struct *tsk = current;
2804 sched_submit_work(tsk);
2807 } while (need_resched());
2809 EXPORT_SYMBOL(schedule);
2811 #ifdef CONFIG_CONTEXT_TRACKING
2812 asmlinkage __visible void __sched schedule_user(void)
2815 * If we come here after a random call to set_need_resched(),
2816 * or we have been woken up remotely but the IPI has not yet arrived,
2817 * we haven't yet exited the RCU idle mode. Do it here manually until
2818 * we find a better solution.
2820 * NB: There are buggy callers of this function. Ideally we
2821 * should warn if prev_state != IN_USER, but that will trigger
2822 * too frequently to make sense yet.
2824 enum ctx_state prev_state = exception_enter();
2826 exception_exit(prev_state);
2831 * schedule_preempt_disabled - called with preemption disabled
2833 * Returns with preemption disabled. Note: preempt_count must be 1
2835 void __sched schedule_preempt_disabled(void)
2837 sched_preempt_enable_no_resched();
2842 static void __sched notrace preempt_schedule_common(void)
2845 __preempt_count_add(PREEMPT_ACTIVE);
2847 __preempt_count_sub(PREEMPT_ACTIVE);
2850 * Check again in case we missed a preemption opportunity
2851 * between schedule and now.
2854 } while (need_resched());
2857 #ifdef CONFIG_PREEMPT
2859 * this is the entry point to schedule() from in-kernel preemption
2860 * off of preempt_enable. Kernel preemptions off return from interrupt
2861 * occur there and call schedule directly.
2863 asmlinkage __visible void __sched notrace preempt_schedule(void)
2866 * If there is a non-zero preempt_count or interrupts are disabled,
2867 * we do not want to preempt the current task. Just return..
2869 if (likely(!preemptible()))
2872 preempt_schedule_common();
2874 NOKPROBE_SYMBOL(preempt_schedule);
2875 EXPORT_SYMBOL(preempt_schedule);
2877 #ifdef CONFIG_CONTEXT_TRACKING
2879 * preempt_schedule_context - preempt_schedule called by tracing
2881 * The tracing infrastructure uses preempt_enable_notrace to prevent
2882 * recursion and tracing preempt enabling caused by the tracing
2883 * infrastructure itself. But as tracing can happen in areas coming
2884 * from userspace or just about to enter userspace, a preempt enable
2885 * can occur before user_exit() is called. This will cause the scheduler
2886 * to be called when the system is still in usermode.
2888 * To prevent this, the preempt_enable_notrace will use this function
2889 * instead of preempt_schedule() to exit user context if needed before
2890 * calling the scheduler.
2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2894 enum ctx_state prev_ctx;
2896 if (likely(!preemptible()))
2900 __preempt_count_add(PREEMPT_ACTIVE);
2902 * Needs preempt disabled in case user_exit() is traced
2903 * and the tracer calls preempt_enable_notrace() causing
2904 * an infinite recursion.
2906 prev_ctx = exception_enter();
2908 exception_exit(prev_ctx);
2910 __preempt_count_sub(PREEMPT_ACTIVE);
2912 } while (need_resched());
2914 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2915 #endif /* CONFIG_CONTEXT_TRACKING */
2917 #endif /* CONFIG_PREEMPT */
2920 * this is the entry point to schedule() from kernel preemption
2921 * off of irq context.
2922 * Note, that this is called and return with irqs disabled. This will
2923 * protect us against recursive calling from irq.
2925 asmlinkage __visible void __sched preempt_schedule_irq(void)
2927 enum ctx_state prev_state;
2929 /* Catch callers which need to be fixed */
2930 BUG_ON(preempt_count() || !irqs_disabled());
2932 prev_state = exception_enter();
2935 __preempt_count_add(PREEMPT_ACTIVE);
2938 local_irq_disable();
2939 __preempt_count_sub(PREEMPT_ACTIVE);
2942 * Check again in case we missed a preemption opportunity
2943 * between schedule and now.
2946 } while (need_resched());
2948 exception_exit(prev_state);
2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2954 return try_to_wake_up(curr->private, mode, wake_flags);
2956 EXPORT_SYMBOL(default_wake_function);
2958 #ifdef CONFIG_RT_MUTEXES
2961 * rt_mutex_setprio - set the current priority of a task
2963 * @prio: prio value (kernel-internal form)
2965 * This function changes the 'effective' priority of a task. It does
2966 * not touch ->normal_prio like __setscheduler().
2968 * Used by the rt_mutex code to implement priority inheritance
2969 * logic. Call site only calls if the priority of the task changed.
2971 void rt_mutex_setprio(struct task_struct *p, int prio)
2973 int oldprio, queued, running, enqueue_flag = 0;
2975 const struct sched_class *prev_class;
2977 BUG_ON(prio > MAX_PRIO);
2979 rq = __task_rq_lock(p);
2982 * Idle task boosting is a nono in general. There is one
2983 * exception, when PREEMPT_RT and NOHZ is active:
2985 * The idle task calls get_next_timer_interrupt() and holds
2986 * the timer wheel base->lock on the CPU and another CPU wants
2987 * to access the timer (probably to cancel it). We can safely
2988 * ignore the boosting request, as the idle CPU runs this code
2989 * with interrupts disabled and will complete the lock
2990 * protected section without being interrupted. So there is no
2991 * real need to boost.
2993 if (unlikely(p == rq->idle)) {
2994 WARN_ON(p != rq->curr);
2995 WARN_ON(p->pi_blocked_on);
2999 trace_sched_pi_setprio(p, prio);
3001 prev_class = p->sched_class;
3002 queued = task_on_rq_queued(p);
3003 running = task_current(rq, p);
3005 dequeue_task(rq, p, 0);
3007 put_prev_task(rq, p);
3010 * Boosting condition are:
3011 * 1. -rt task is running and holds mutex A
3012 * --> -dl task blocks on mutex A
3014 * 2. -dl task is running and holds mutex A
3015 * --> -dl task blocks on mutex A and could preempt the
3018 if (dl_prio(prio)) {
3019 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3020 if (!dl_prio(p->normal_prio) ||
3021 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3022 p->dl.dl_boosted = 1;
3023 p->dl.dl_throttled = 0;
3024 enqueue_flag = ENQUEUE_REPLENISH;
3026 p->dl.dl_boosted = 0;
3027 p->sched_class = &dl_sched_class;
3028 } else if (rt_prio(prio)) {
3029 if (dl_prio(oldprio))
3030 p->dl.dl_boosted = 0;
3032 enqueue_flag = ENQUEUE_HEAD;
3033 p->sched_class = &rt_sched_class;
3035 if (dl_prio(oldprio))
3036 p->dl.dl_boosted = 0;
3037 if (rt_prio(oldprio))
3039 p->sched_class = &fair_sched_class;
3045 p->sched_class->set_curr_task(rq);
3047 enqueue_task(rq, p, enqueue_flag);
3049 check_class_changed(rq, p, prev_class, oldprio);
3051 __task_rq_unlock(rq);
3055 void set_user_nice(struct task_struct *p, long nice)
3057 int old_prio, delta, queued;
3058 unsigned long flags;
3061 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3064 * We have to be careful, if called from sys_setpriority(),
3065 * the task might be in the middle of scheduling on another CPU.
3067 rq = task_rq_lock(p, &flags);
3069 * The RT priorities are set via sched_setscheduler(), but we still
3070 * allow the 'normal' nice value to be set - but as expected
3071 * it wont have any effect on scheduling until the task is
3072 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3074 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3075 p->static_prio = NICE_TO_PRIO(nice);
3078 queued = task_on_rq_queued(p);
3080 dequeue_task(rq, p, 0);
3082 p->static_prio = NICE_TO_PRIO(nice);
3085 p->prio = effective_prio(p);
3086 delta = p->prio - old_prio;
3089 enqueue_task(rq, p, 0);
3091 * If the task increased its priority or is running and
3092 * lowered its priority, then reschedule its CPU:
3094 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3098 task_rq_unlock(rq, p, &flags);
3100 EXPORT_SYMBOL(set_user_nice);
3103 * can_nice - check if a task can reduce its nice value
3107 int can_nice(const struct task_struct *p, const int nice)
3109 /* convert nice value [19,-20] to rlimit style value [1,40] */
3110 int nice_rlim = nice_to_rlimit(nice);
3112 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3113 capable(CAP_SYS_NICE));
3116 #ifdef __ARCH_WANT_SYS_NICE
3119 * sys_nice - change the priority of the current process.
3120 * @increment: priority increment
3122 * sys_setpriority is a more generic, but much slower function that
3123 * does similar things.
3125 SYSCALL_DEFINE1(nice, int, increment)
3130 * Setpriority might change our priority at the same moment.
3131 * We don't have to worry. Conceptually one call occurs first
3132 * and we have a single winner.
3134 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3135 nice = task_nice(current) + increment;
3137 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3138 if (increment < 0 && !can_nice(current, nice))
3141 retval = security_task_setnice(current, nice);
3145 set_user_nice(current, nice);
3152 * task_prio - return the priority value of a given task.
3153 * @p: the task in question.
3155 * Return: The priority value as seen by users in /proc.
3156 * RT tasks are offset by -200. Normal tasks are centered
3157 * around 0, value goes from -16 to +15.
3159 int task_prio(const struct task_struct *p)
3161 return p->prio - MAX_RT_PRIO;
3165 * idle_cpu - is a given cpu idle currently?
3166 * @cpu: the processor in question.
3168 * Return: 1 if the CPU is currently idle. 0 otherwise.
3170 int idle_cpu(int cpu)
3172 struct rq *rq = cpu_rq(cpu);
3174 if (rq->curr != rq->idle)
3181 if (!llist_empty(&rq->wake_list))
3189 * idle_task - return the idle task for a given cpu.
3190 * @cpu: the processor in question.
3192 * Return: The idle task for the cpu @cpu.
3194 struct task_struct *idle_task(int cpu)
3196 return cpu_rq(cpu)->idle;
3200 * find_process_by_pid - find a process with a matching PID value.
3201 * @pid: the pid in question.
3203 * The task of @pid, if found. %NULL otherwise.
3205 static struct task_struct *find_process_by_pid(pid_t pid)
3207 return pid ? find_task_by_vpid(pid) : current;
3211 * This function initializes the sched_dl_entity of a newly becoming
3212 * SCHED_DEADLINE task.
3214 * Only the static values are considered here, the actual runtime and the
3215 * absolute deadline will be properly calculated when the task is enqueued
3216 * for the first time with its new policy.
3219 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3221 struct sched_dl_entity *dl_se = &p->dl;
3223 dl_se->dl_runtime = attr->sched_runtime;
3224 dl_se->dl_deadline = attr->sched_deadline;
3225 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3226 dl_se->flags = attr->sched_flags;
3227 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3230 * Changing the parameters of a task is 'tricky' and we're not doing
3231 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3233 * What we SHOULD do is delay the bandwidth release until the 0-lag
3234 * point. This would include retaining the task_struct until that time
3235 * and change dl_overflow() to not immediately decrement the current
3238 * Instead we retain the current runtime/deadline and let the new
3239 * parameters take effect after the current reservation period lapses.
3240 * This is safe (albeit pessimistic) because the 0-lag point is always
3241 * before the current scheduling deadline.
3243 * We can still have temporary overloads because we do not delay the
3244 * change in bandwidth until that time; so admission control is
3245 * not on the safe side. It does however guarantee tasks will never
3246 * consume more than promised.
3251 * sched_setparam() passes in -1 for its policy, to let the functions
3252 * it calls know not to change it.
3254 #define SETPARAM_POLICY -1
3256 static void __setscheduler_params(struct task_struct *p,
3257 const struct sched_attr *attr)
3259 int policy = attr->sched_policy;
3261 if (policy == SETPARAM_POLICY)
3266 if (dl_policy(policy))
3267 __setparam_dl(p, attr);
3268 else if (fair_policy(policy))
3269 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3272 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3273 * !rt_policy. Always setting this ensures that things like
3274 * getparam()/getattr() don't report silly values for !rt tasks.
3276 p->rt_priority = attr->sched_priority;
3277 p->normal_prio = normal_prio(p);
3281 /* Actually do priority change: must hold pi & rq lock. */
3282 static void __setscheduler(struct rq *rq, struct task_struct *p,
3283 const struct sched_attr *attr)
3285 __setscheduler_params(p, attr);
3288 * If we get here, there was no pi waiters boosting the
3289 * task. It is safe to use the normal prio.
3291 p->prio = normal_prio(p);
3293 if (dl_prio(p->prio))
3294 p->sched_class = &dl_sched_class;
3295 else if (rt_prio(p->prio))
3296 p->sched_class = &rt_sched_class;
3298 p->sched_class = &fair_sched_class;
3302 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3304 struct sched_dl_entity *dl_se = &p->dl;
3306 attr->sched_priority = p->rt_priority;
3307 attr->sched_runtime = dl_se->dl_runtime;
3308 attr->sched_deadline = dl_se->dl_deadline;
3309 attr->sched_period = dl_se->dl_period;
3310 attr->sched_flags = dl_se->flags;
3314 * This function validates the new parameters of a -deadline task.
3315 * We ask for the deadline not being zero, and greater or equal
3316 * than the runtime, as well as the period of being zero or
3317 * greater than deadline. Furthermore, we have to be sure that
3318 * user parameters are above the internal resolution of 1us (we
3319 * check sched_runtime only since it is always the smaller one) and
3320 * below 2^63 ns (we have to check both sched_deadline and
3321 * sched_period, as the latter can be zero).
3324 __checkparam_dl(const struct sched_attr *attr)
3327 if (attr->sched_deadline == 0)
3331 * Since we truncate DL_SCALE bits, make sure we're at least
3334 if (attr->sched_runtime < (1ULL << DL_SCALE))
3338 * Since we use the MSB for wrap-around and sign issues, make
3339 * sure it's not set (mind that period can be equal to zero).
3341 if (attr->sched_deadline & (1ULL << 63) ||
3342 attr->sched_period & (1ULL << 63))
3345 /* runtime <= deadline <= period (if period != 0) */
3346 if ((attr->sched_period != 0 &&
3347 attr->sched_period < attr->sched_deadline) ||
3348 attr->sched_deadline < attr->sched_runtime)
3355 * check the target process has a UID that matches the current process's
3357 static bool check_same_owner(struct task_struct *p)
3359 const struct cred *cred = current_cred(), *pcred;
3363 pcred = __task_cred(p);
3364 match = (uid_eq(cred->euid, pcred->euid) ||
3365 uid_eq(cred->euid, pcred->uid));
3370 static bool dl_param_changed(struct task_struct *p,
3371 const struct sched_attr *attr)
3373 struct sched_dl_entity *dl_se = &p->dl;
3375 if (dl_se->dl_runtime != attr->sched_runtime ||
3376 dl_se->dl_deadline != attr->sched_deadline ||
3377 dl_se->dl_period != attr->sched_period ||
3378 dl_se->flags != attr->sched_flags)
3384 static int __sched_setscheduler(struct task_struct *p,
3385 const struct sched_attr *attr,
3388 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3389 MAX_RT_PRIO - 1 - attr->sched_priority;
3390 int retval, oldprio, oldpolicy = -1, queued, running;
3391 int policy = attr->sched_policy;
3392 unsigned long flags;
3393 const struct sched_class *prev_class;
3397 /* may grab non-irq protected spin_locks */
3398 BUG_ON(in_interrupt());
3400 /* double check policy once rq lock held */
3402 reset_on_fork = p->sched_reset_on_fork;
3403 policy = oldpolicy = p->policy;
3405 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3407 if (policy != SCHED_DEADLINE &&
3408 policy != SCHED_FIFO && policy != SCHED_RR &&
3409 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3410 policy != SCHED_IDLE)
3414 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3418 * Valid priorities for SCHED_FIFO and SCHED_RR are
3419 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3420 * SCHED_BATCH and SCHED_IDLE is 0.
3422 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3423 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3425 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3426 (rt_policy(policy) != (attr->sched_priority != 0)))
3430 * Allow unprivileged RT tasks to decrease priority:
3432 if (user && !capable(CAP_SYS_NICE)) {
3433 if (fair_policy(policy)) {
3434 if (attr->sched_nice < task_nice(p) &&
3435 !can_nice(p, attr->sched_nice))
3439 if (rt_policy(policy)) {
3440 unsigned long rlim_rtprio =
3441 task_rlimit(p, RLIMIT_RTPRIO);
3443 /* can't set/change the rt policy */
3444 if (policy != p->policy && !rlim_rtprio)
3447 /* can't increase priority */
3448 if (attr->sched_priority > p->rt_priority &&
3449 attr->sched_priority > rlim_rtprio)
3454 * Can't set/change SCHED_DEADLINE policy at all for now
3455 * (safest behavior); in the future we would like to allow
3456 * unprivileged DL tasks to increase their relative deadline
3457 * or reduce their runtime (both ways reducing utilization)
3459 if (dl_policy(policy))
3463 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3464 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3466 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3467 if (!can_nice(p, task_nice(p)))
3471 /* can't change other user's priorities */
3472 if (!check_same_owner(p))
3475 /* Normal users shall not reset the sched_reset_on_fork flag */
3476 if (p->sched_reset_on_fork && !reset_on_fork)
3481 retval = security_task_setscheduler(p);
3487 * make sure no PI-waiters arrive (or leave) while we are
3488 * changing the priority of the task:
3490 * To be able to change p->policy safely, the appropriate
3491 * runqueue lock must be held.
3493 rq = task_rq_lock(p, &flags);
3496 * Changing the policy of the stop threads its a very bad idea
3498 if (p == rq->stop) {
3499 task_rq_unlock(rq, p, &flags);
3504 * If not changing anything there's no need to proceed further,
3505 * but store a possible modification of reset_on_fork.
3507 if (unlikely(policy == p->policy)) {
3508 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3510 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3512 if (dl_policy(policy) && dl_param_changed(p, attr))
3515 p->sched_reset_on_fork = reset_on_fork;
3516 task_rq_unlock(rq, p, &flags);
3522 #ifdef CONFIG_RT_GROUP_SCHED
3524 * Do not allow realtime tasks into groups that have no runtime
3527 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3528 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3529 !task_group_is_autogroup(task_group(p))) {
3530 task_rq_unlock(rq, p, &flags);
3535 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3536 cpumask_t *span = rq->rd->span;
3539 * Don't allow tasks with an affinity mask smaller than
3540 * the entire root_domain to become SCHED_DEADLINE. We
3541 * will also fail if there's no bandwidth available.
3543 if (!cpumask_subset(span, &p->cpus_allowed) ||
3544 rq->rd->dl_bw.bw == 0) {
3545 task_rq_unlock(rq, p, &flags);
3552 /* recheck policy now with rq lock held */
3553 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3554 policy = oldpolicy = -1;
3555 task_rq_unlock(rq, p, &flags);
3560 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3561 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3564 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3565 task_rq_unlock(rq, p, &flags);
3569 p->sched_reset_on_fork = reset_on_fork;
3573 * Special case for priority boosted tasks.
3575 * If the new priority is lower or equal (user space view)
3576 * than the current (boosted) priority, we just store the new
3577 * normal parameters and do not touch the scheduler class and
3578 * the runqueue. This will be done when the task deboost
3581 if (rt_mutex_check_prio(p, newprio)) {
3582 __setscheduler_params(p, attr);
3583 task_rq_unlock(rq, p, &flags);
3587 queued = task_on_rq_queued(p);
3588 running = task_current(rq, p);
3590 dequeue_task(rq, p, 0);
3592 put_prev_task(rq, p);
3594 prev_class = p->sched_class;
3595 __setscheduler(rq, p, attr);
3598 p->sched_class->set_curr_task(rq);
3601 * We enqueue to tail when the priority of a task is
3602 * increased (user space view).
3604 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3607 check_class_changed(rq, p, prev_class, oldprio);
3608 task_rq_unlock(rq, p, &flags);
3610 rt_mutex_adjust_pi(p);
3615 static int _sched_setscheduler(struct task_struct *p, int policy,
3616 const struct sched_param *param, bool check)
3618 struct sched_attr attr = {
3619 .sched_policy = policy,
3620 .sched_priority = param->sched_priority,
3621 .sched_nice = PRIO_TO_NICE(p->static_prio),
3624 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3625 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3626 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3627 policy &= ~SCHED_RESET_ON_FORK;
3628 attr.sched_policy = policy;
3631 return __sched_setscheduler(p, &attr, check);
3634 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3635 * @p: the task in question.
3636 * @policy: new policy.
3637 * @param: structure containing the new RT priority.
3639 * Return: 0 on success. An error code otherwise.
3641 * NOTE that the task may be already dead.
3643 int sched_setscheduler(struct task_struct *p, int policy,
3644 const struct sched_param *param)
3646 return _sched_setscheduler(p, policy, param, true);
3648 EXPORT_SYMBOL_GPL(sched_setscheduler);
3650 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3652 return __sched_setscheduler(p, attr, true);
3654 EXPORT_SYMBOL_GPL(sched_setattr);
3657 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3658 * @p: the task in question.
3659 * @policy: new policy.
3660 * @param: structure containing the new RT priority.
3662 * Just like sched_setscheduler, only don't bother checking if the
3663 * current context has permission. For example, this is needed in
3664 * stop_machine(): we create temporary high priority worker threads,
3665 * but our caller might not have that capability.
3667 * Return: 0 on success. An error code otherwise.
3669 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3670 const struct sched_param *param)
3672 return _sched_setscheduler(p, policy, param, false);
3676 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3678 struct sched_param lparam;
3679 struct task_struct *p;
3682 if (!param || pid < 0)
3684 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3689 p = find_process_by_pid(pid);
3691 retval = sched_setscheduler(p, policy, &lparam);
3698 * Mimics kernel/events/core.c perf_copy_attr().
3700 static int sched_copy_attr(struct sched_attr __user *uattr,
3701 struct sched_attr *attr)
3706 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3710 * zero the full structure, so that a short copy will be nice.
3712 memset(attr, 0, sizeof(*attr));
3714 ret = get_user(size, &uattr->size);
3718 if (size > PAGE_SIZE) /* silly large */
3721 if (!size) /* abi compat */
3722 size = SCHED_ATTR_SIZE_VER0;
3724 if (size < SCHED_ATTR_SIZE_VER0)
3728 * If we're handed a bigger struct than we know of,
3729 * ensure all the unknown bits are 0 - i.e. new
3730 * user-space does not rely on any kernel feature
3731 * extensions we dont know about yet.
3733 if (size > sizeof(*attr)) {
3734 unsigned char __user *addr;
3735 unsigned char __user *end;
3738 addr = (void __user *)uattr + sizeof(*attr);
3739 end = (void __user *)uattr + size;
3741 for (; addr < end; addr++) {
3742 ret = get_user(val, addr);
3748 size = sizeof(*attr);
3751 ret = copy_from_user(attr, uattr, size);
3756 * XXX: do we want to be lenient like existing syscalls; or do we want
3757 * to be strict and return an error on out-of-bounds values?
3759 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3764 put_user(sizeof(*attr), &uattr->size);
3769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3770 * @pid: the pid in question.
3771 * @policy: new policy.
3772 * @param: structure containing the new RT priority.
3774 * Return: 0 on success. An error code otherwise.
3776 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3777 struct sched_param __user *, param)
3779 /* negative values for policy are not valid */
3783 return do_sched_setscheduler(pid, policy, param);
3787 * sys_sched_setparam - set/change the RT priority of a thread
3788 * @pid: the pid in question.
3789 * @param: structure containing the new RT priority.
3791 * Return: 0 on success. An error code otherwise.
3793 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3795 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3799 * sys_sched_setattr - same as above, but with extended sched_attr
3800 * @pid: the pid in question.
3801 * @uattr: structure containing the extended parameters.
3802 * @flags: for future extension.
3804 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3805 unsigned int, flags)
3807 struct sched_attr attr;
3808 struct task_struct *p;
3811 if (!uattr || pid < 0 || flags)
3814 retval = sched_copy_attr(uattr, &attr);
3818 if ((int)attr.sched_policy < 0)
3823 p = find_process_by_pid(pid);
3825 retval = sched_setattr(p, &attr);
3832 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3833 * @pid: the pid in question.
3835 * Return: On success, the policy of the thread. Otherwise, a negative error
3838 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3840 struct task_struct *p;
3848 p = find_process_by_pid(pid);
3850 retval = security_task_getscheduler(p);
3853 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3860 * sys_sched_getparam - get the RT priority of a thread
3861 * @pid: the pid in question.
3862 * @param: structure containing the RT priority.
3864 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3867 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3869 struct sched_param lp = { .sched_priority = 0 };
3870 struct task_struct *p;
3873 if (!param || pid < 0)
3877 p = find_process_by_pid(pid);
3882 retval = security_task_getscheduler(p);
3886 if (task_has_rt_policy(p))
3887 lp.sched_priority = p->rt_priority;
3891 * This one might sleep, we cannot do it with a spinlock held ...
3893 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3902 static int sched_read_attr(struct sched_attr __user *uattr,
3903 struct sched_attr *attr,
3908 if (!access_ok(VERIFY_WRITE, uattr, usize))
3912 * If we're handed a smaller struct than we know of,
3913 * ensure all the unknown bits are 0 - i.e. old
3914 * user-space does not get uncomplete information.
3916 if (usize < sizeof(*attr)) {
3917 unsigned char *addr;
3920 addr = (void *)attr + usize;
3921 end = (void *)attr + sizeof(*attr);
3923 for (; addr < end; addr++) {
3931 ret = copy_to_user(uattr, attr, attr->size);
3939 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3940 * @pid: the pid in question.
3941 * @uattr: structure containing the extended parameters.
3942 * @size: sizeof(attr) for fwd/bwd comp.
3943 * @flags: for future extension.
3945 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3946 unsigned int, size, unsigned int, flags)
3948 struct sched_attr attr = {
3949 .size = sizeof(struct sched_attr),
3951 struct task_struct *p;
3954 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3955 size < SCHED_ATTR_SIZE_VER0 || flags)
3959 p = find_process_by_pid(pid);
3964 retval = security_task_getscheduler(p);
3968 attr.sched_policy = p->policy;
3969 if (p->sched_reset_on_fork)
3970 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3971 if (task_has_dl_policy(p))
3972 __getparam_dl(p, &attr);
3973 else if (task_has_rt_policy(p))
3974 attr.sched_priority = p->rt_priority;
3976 attr.sched_nice = task_nice(p);
3980 retval = sched_read_attr(uattr, &attr, size);
3988 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3990 cpumask_var_t cpus_allowed, new_mask;
3991 struct task_struct *p;
3996 p = find_process_by_pid(pid);
4002 /* Prevent p going away */
4006 if (p->flags & PF_NO_SETAFFINITY) {
4010 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4014 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4016 goto out_free_cpus_allowed;
4019 if (!check_same_owner(p)) {
4021 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4023 goto out_free_new_mask;
4028 retval = security_task_setscheduler(p);
4030 goto out_free_new_mask;
4033 cpuset_cpus_allowed(p, cpus_allowed);
4034 cpumask_and(new_mask, in_mask, cpus_allowed);
4037 * Since bandwidth control happens on root_domain basis,
4038 * if admission test is enabled, we only admit -deadline
4039 * tasks allowed to run on all the CPUs in the task's
4043 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4045 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4048 goto out_free_new_mask;
4054 retval = set_cpus_allowed_ptr(p, new_mask);
4057 cpuset_cpus_allowed(p, cpus_allowed);
4058 if (!cpumask_subset(new_mask, cpus_allowed)) {
4060 * We must have raced with a concurrent cpuset
4061 * update. Just reset the cpus_allowed to the
4062 * cpuset's cpus_allowed
4064 cpumask_copy(new_mask, cpus_allowed);
4069 free_cpumask_var(new_mask);
4070 out_free_cpus_allowed:
4071 free_cpumask_var(cpus_allowed);
4077 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4078 struct cpumask *new_mask)
4080 if (len < cpumask_size())
4081 cpumask_clear(new_mask);
4082 else if (len > cpumask_size())
4083 len = cpumask_size();
4085 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4089 * sys_sched_setaffinity - set the cpu affinity of a process
4090 * @pid: pid of the process
4091 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4092 * @user_mask_ptr: user-space pointer to the new cpu mask
4094 * Return: 0 on success. An error code otherwise.
4096 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4097 unsigned long __user *, user_mask_ptr)
4099 cpumask_var_t new_mask;
4102 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4105 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4107 retval = sched_setaffinity(pid, new_mask);
4108 free_cpumask_var(new_mask);
4112 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4114 struct task_struct *p;
4115 unsigned long flags;
4121 p = find_process_by_pid(pid);
4125 retval = security_task_getscheduler(p);
4129 raw_spin_lock_irqsave(&p->pi_lock, flags);
4130 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4131 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4140 * sys_sched_getaffinity - get the cpu affinity of a process
4141 * @pid: pid of the process
4142 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4143 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4145 * Return: 0 on success. An error code otherwise.
4147 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4148 unsigned long __user *, user_mask_ptr)
4153 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4155 if (len & (sizeof(unsigned long)-1))
4158 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4161 ret = sched_getaffinity(pid, mask);
4163 size_t retlen = min_t(size_t, len, cpumask_size());
4165 if (copy_to_user(user_mask_ptr, mask, retlen))
4170 free_cpumask_var(mask);
4176 * sys_sched_yield - yield the current processor to other threads.
4178 * This function yields the current CPU to other tasks. If there are no
4179 * other threads running on this CPU then this function will return.
4183 SYSCALL_DEFINE0(sched_yield)
4185 struct rq *rq = this_rq_lock();
4187 schedstat_inc(rq, yld_count);
4188 current->sched_class->yield_task(rq);
4191 * Since we are going to call schedule() anyway, there's
4192 * no need to preempt or enable interrupts:
4194 __release(rq->lock);
4195 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4196 do_raw_spin_unlock(&rq->lock);
4197 sched_preempt_enable_no_resched();
4204 int __sched _cond_resched(void)
4206 if (should_resched()) {
4207 preempt_schedule_common();
4212 EXPORT_SYMBOL(_cond_resched);
4215 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4216 * call schedule, and on return reacquire the lock.
4218 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4219 * operations here to prevent schedule() from being called twice (once via
4220 * spin_unlock(), once by hand).
4222 int __cond_resched_lock(spinlock_t *lock)
4224 int resched = should_resched();
4227 lockdep_assert_held(lock);
4229 if (spin_needbreak(lock) || resched) {
4232 preempt_schedule_common();
4240 EXPORT_SYMBOL(__cond_resched_lock);
4242 int __sched __cond_resched_softirq(void)
4244 BUG_ON(!in_softirq());
4246 if (should_resched()) {
4248 preempt_schedule_common();
4254 EXPORT_SYMBOL(__cond_resched_softirq);
4257 * yield - yield the current processor to other threads.
4259 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4261 * The scheduler is at all times free to pick the calling task as the most
4262 * eligible task to run, if removing the yield() call from your code breaks
4263 * it, its already broken.
4265 * Typical broken usage is:
4270 * where one assumes that yield() will let 'the other' process run that will
4271 * make event true. If the current task is a SCHED_FIFO task that will never
4272 * happen. Never use yield() as a progress guarantee!!
4274 * If you want to use yield() to wait for something, use wait_event().
4275 * If you want to use yield() to be 'nice' for others, use cond_resched().
4276 * If you still want to use yield(), do not!
4278 void __sched yield(void)
4280 set_current_state(TASK_RUNNING);
4283 EXPORT_SYMBOL(yield);
4286 * yield_to - yield the current processor to another thread in
4287 * your thread group, or accelerate that thread toward the
4288 * processor it's on.
4290 * @preempt: whether task preemption is allowed or not
4292 * It's the caller's job to ensure that the target task struct
4293 * can't go away on us before we can do any checks.
4296 * true (>0) if we indeed boosted the target task.
4297 * false (0) if we failed to boost the target.
4298 * -ESRCH if there's no task to yield to.
4300 int __sched yield_to(struct task_struct *p, bool preempt)
4302 struct task_struct *curr = current;
4303 struct rq *rq, *p_rq;
4304 unsigned long flags;
4307 local_irq_save(flags);
4313 * If we're the only runnable task on the rq and target rq also
4314 * has only one task, there's absolutely no point in yielding.
4316 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4321 double_rq_lock(rq, p_rq);
4322 if (task_rq(p) != p_rq) {
4323 double_rq_unlock(rq, p_rq);
4327 if (!curr->sched_class->yield_to_task)
4330 if (curr->sched_class != p->sched_class)
4333 if (task_running(p_rq, p) || p->state)
4336 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4338 schedstat_inc(rq, yld_count);
4340 * Make p's CPU reschedule; pick_next_entity takes care of
4343 if (preempt && rq != p_rq)
4348 double_rq_unlock(rq, p_rq);
4350 local_irq_restore(flags);
4357 EXPORT_SYMBOL_GPL(yield_to);
4360 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4361 * that process accounting knows that this is a task in IO wait state.
4363 long __sched io_schedule_timeout(long timeout)
4365 int old_iowait = current->in_iowait;
4369 current->in_iowait = 1;
4371 blk_schedule_flush_plug(current);
4373 blk_flush_plug(current);
4375 delayacct_blkio_start();
4377 atomic_inc(&rq->nr_iowait);
4378 ret = schedule_timeout(timeout);
4379 current->in_iowait = old_iowait;
4380 atomic_dec(&rq->nr_iowait);
4381 delayacct_blkio_end();
4385 EXPORT_SYMBOL(io_schedule_timeout);
4388 * sys_sched_get_priority_max - return maximum RT priority.
4389 * @policy: scheduling class.
4391 * Return: On success, this syscall returns the maximum
4392 * rt_priority that can be used by a given scheduling class.
4393 * On failure, a negative error code is returned.
4395 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4402 ret = MAX_USER_RT_PRIO-1;
4404 case SCHED_DEADLINE:
4415 * sys_sched_get_priority_min - return minimum RT priority.
4416 * @policy: scheduling class.
4418 * Return: On success, this syscall returns the minimum
4419 * rt_priority that can be used by a given scheduling class.
4420 * On failure, a negative error code is returned.
4422 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4431 case SCHED_DEADLINE:
4441 * sys_sched_rr_get_interval - return the default timeslice of a process.
4442 * @pid: pid of the process.
4443 * @interval: userspace pointer to the timeslice value.
4445 * this syscall writes the default timeslice value of a given process
4446 * into the user-space timespec buffer. A value of '0' means infinity.
4448 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4451 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4452 struct timespec __user *, interval)
4454 struct task_struct *p;
4455 unsigned int time_slice;
4456 unsigned long flags;
4466 p = find_process_by_pid(pid);
4470 retval = security_task_getscheduler(p);
4474 rq = task_rq_lock(p, &flags);
4476 if (p->sched_class->get_rr_interval)
4477 time_slice = p->sched_class->get_rr_interval(rq, p);
4478 task_rq_unlock(rq, p, &flags);
4481 jiffies_to_timespec(time_slice, &t);
4482 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4490 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4492 void sched_show_task(struct task_struct *p)
4494 unsigned long free = 0;
4496 unsigned long state = p->state;
4499 state = __ffs(state) + 1;
4500 printk(KERN_INFO "%-15.15s %c", p->comm,
4501 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4502 #if BITS_PER_LONG == 32
4503 if (state == TASK_RUNNING)
4504 printk(KERN_CONT " running ");
4506 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4508 if (state == TASK_RUNNING)
4509 printk(KERN_CONT " running task ");
4511 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4513 #ifdef CONFIG_DEBUG_STACK_USAGE
4514 free = stack_not_used(p);
4519 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4521 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4522 task_pid_nr(p), ppid,
4523 (unsigned long)task_thread_info(p)->flags);
4525 print_worker_info(KERN_INFO, p);
4526 show_stack(p, NULL);
4529 void show_state_filter(unsigned long state_filter)
4531 struct task_struct *g, *p;
4533 #if BITS_PER_LONG == 32
4535 " task PC stack pid father\n");
4538 " task PC stack pid father\n");
4541 for_each_process_thread(g, p) {
4543 * reset the NMI-timeout, listing all files on a slow
4544 * console might take a lot of time:
4546 touch_nmi_watchdog();
4547 if (!state_filter || (p->state & state_filter))
4551 touch_all_softlockup_watchdogs();
4553 #ifdef CONFIG_SCHED_DEBUG
4554 sysrq_sched_debug_show();
4558 * Only show locks if all tasks are dumped:
4561 debug_show_all_locks();
4564 void init_idle_bootup_task(struct task_struct *idle)
4566 idle->sched_class = &idle_sched_class;
4570 * init_idle - set up an idle thread for a given CPU
4571 * @idle: task in question
4572 * @cpu: cpu the idle task belongs to
4574 * NOTE: this function does not set the idle thread's NEED_RESCHED
4575 * flag, to make booting more robust.
4577 void init_idle(struct task_struct *idle, int cpu)
4579 struct rq *rq = cpu_rq(cpu);
4580 unsigned long flags;
4582 raw_spin_lock_irqsave(&rq->lock, flags);
4584 __sched_fork(0, idle);
4585 idle->state = TASK_RUNNING;
4586 idle->se.exec_start = sched_clock();
4588 do_set_cpus_allowed(idle, cpumask_of(cpu));
4590 * We're having a chicken and egg problem, even though we are
4591 * holding rq->lock, the cpu isn't yet set to this cpu so the
4592 * lockdep check in task_group() will fail.
4594 * Similar case to sched_fork(). / Alternatively we could
4595 * use task_rq_lock() here and obtain the other rq->lock.
4600 __set_task_cpu(idle, cpu);
4603 rq->curr = rq->idle = idle;
4604 idle->on_rq = TASK_ON_RQ_QUEUED;
4605 #if defined(CONFIG_SMP)
4608 raw_spin_unlock_irqrestore(&rq->lock, flags);
4610 /* Set the preempt count _outside_ the spinlocks! */
4611 init_idle_preempt_count(idle, cpu);
4614 * The idle tasks have their own, simple scheduling class:
4616 idle->sched_class = &idle_sched_class;
4617 ftrace_graph_init_idle_task(idle, cpu);
4618 vtime_init_idle(idle, cpu);
4619 #if defined(CONFIG_SMP)
4620 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4624 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4625 const struct cpumask *trial)
4627 int ret = 1, trial_cpus;
4628 struct dl_bw *cur_dl_b;
4629 unsigned long flags;
4631 if (!cpumask_weight(cur))
4634 rcu_read_lock_sched();
4635 cur_dl_b = dl_bw_of(cpumask_any(cur));
4636 trial_cpus = cpumask_weight(trial);
4638 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4639 if (cur_dl_b->bw != -1 &&
4640 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4642 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4643 rcu_read_unlock_sched();
4648 int task_can_attach(struct task_struct *p,
4649 const struct cpumask *cs_cpus_allowed)
4654 * Kthreads which disallow setaffinity shouldn't be moved
4655 * to a new cpuset; we don't want to change their cpu
4656 * affinity and isolating such threads by their set of
4657 * allowed nodes is unnecessary. Thus, cpusets are not
4658 * applicable for such threads. This prevents checking for
4659 * success of set_cpus_allowed_ptr() on all attached tasks
4660 * before cpus_allowed may be changed.
4662 if (p->flags & PF_NO_SETAFFINITY) {
4668 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4670 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4675 unsigned long flags;
4677 rcu_read_lock_sched();
4678 dl_b = dl_bw_of(dest_cpu);
4679 raw_spin_lock_irqsave(&dl_b->lock, flags);
4680 cpus = dl_bw_cpus(dest_cpu);
4681 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4686 * We reserve space for this task in the destination
4687 * root_domain, as we can't fail after this point.
4688 * We will free resources in the source root_domain
4689 * later on (see set_cpus_allowed_dl()).
4691 __dl_add(dl_b, p->dl.dl_bw);
4693 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4694 rcu_read_unlock_sched();
4704 * move_queued_task - move a queued task to new rq.
4706 * Returns (locked) new rq. Old rq's lock is released.
4708 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4710 struct rq *rq = task_rq(p);
4712 lockdep_assert_held(&rq->lock);
4714 dequeue_task(rq, p, 0);
4715 p->on_rq = TASK_ON_RQ_MIGRATING;
4716 set_task_cpu(p, new_cpu);
4717 raw_spin_unlock(&rq->lock);
4719 rq = cpu_rq(new_cpu);
4721 raw_spin_lock(&rq->lock);
4722 BUG_ON(task_cpu(p) != new_cpu);
4723 p->on_rq = TASK_ON_RQ_QUEUED;
4724 enqueue_task(rq, p, 0);
4725 check_preempt_curr(rq, p, 0);
4730 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732 if (p->sched_class->set_cpus_allowed)
4733 p->sched_class->set_cpus_allowed(p, new_mask);
4735 cpumask_copy(&p->cpus_allowed, new_mask);
4736 p->nr_cpus_allowed = cpumask_weight(new_mask);
4740 * This is how migration works:
4742 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 * 3) it checks whether the migrated task is still in the wrong runqueue.
4747 * 4) if it's in the wrong runqueue then the migration thread removes
4748 * it and puts it into the right queue.
4749 * 5) stopper completes and stop_one_cpu() returns and the migration
4754 * Change a given task's CPU affinity. Migrate the thread to a
4755 * proper CPU and schedule it away if the CPU it's executing on
4756 * is removed from the allowed bitmask.
4758 * NOTE: the caller must have a valid reference to the task, the
4759 * task must not exit() & deallocate itself prematurely. The
4760 * call is not atomic; no spinlocks may be held.
4762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4764 unsigned long flags;
4766 unsigned int dest_cpu;
4769 rq = task_rq_lock(p, &flags);
4771 if (cpumask_equal(&p->cpus_allowed, new_mask))
4774 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4779 do_set_cpus_allowed(p, new_mask);
4781 /* Can the task run on the task's current CPU? If so, we're done */
4782 if (cpumask_test_cpu(task_cpu(p), new_mask))
4785 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4786 if (task_running(rq, p) || p->state == TASK_WAKING) {
4787 struct migration_arg arg = { p, dest_cpu };
4788 /* Need help from migration thread: drop lock and wait. */
4789 task_rq_unlock(rq, p, &flags);
4790 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4791 tlb_migrate_finish(p->mm);
4793 } else if (task_on_rq_queued(p))
4794 rq = move_queued_task(p, dest_cpu);
4796 task_rq_unlock(rq, p, &flags);
4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4803 * Move (not current) task off this cpu, onto dest cpu. We're doing
4804 * this because either it can't run here any more (set_cpus_allowed()
4805 * away from this CPU, or CPU going down), or because we're
4806 * attempting to rebalance this task on exec (sched_exec).
4808 * So we race with normal scheduler movements, but that's OK, as long
4809 * as the task is no longer on this CPU.
4811 * Returns non-zero if task was successfully migrated.
4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4818 if (unlikely(!cpu_active(dest_cpu)))
4821 rq = cpu_rq(src_cpu);
4823 raw_spin_lock(&p->pi_lock);
4824 raw_spin_lock(&rq->lock);
4825 /* Already moved. */
4826 if (task_cpu(p) != src_cpu)
4829 /* Affinity changed (again). */
4830 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4834 * If we're not on a rq, the next wake-up will ensure we're
4837 if (task_on_rq_queued(p))
4838 rq = move_queued_task(p, dest_cpu);
4842 raw_spin_unlock(&rq->lock);
4843 raw_spin_unlock(&p->pi_lock);
4847 #ifdef CONFIG_NUMA_BALANCING
4848 /* Migrate current task p to target_cpu */
4849 int migrate_task_to(struct task_struct *p, int target_cpu)
4851 struct migration_arg arg = { p, target_cpu };
4852 int curr_cpu = task_cpu(p);
4854 if (curr_cpu == target_cpu)
4857 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4860 /* TODO: This is not properly updating schedstats */
4862 trace_sched_move_numa(p, curr_cpu, target_cpu);
4863 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4867 * Requeue a task on a given node and accurately track the number of NUMA
4868 * tasks on the runqueues
4870 void sched_setnuma(struct task_struct *p, int nid)
4873 unsigned long flags;
4874 bool queued, running;
4876 rq = task_rq_lock(p, &flags);
4877 queued = task_on_rq_queued(p);
4878 running = task_current(rq, p);
4881 dequeue_task(rq, p, 0);
4883 put_prev_task(rq, p);
4885 p->numa_preferred_nid = nid;
4888 p->sched_class->set_curr_task(rq);
4890 enqueue_task(rq, p, 0);
4891 task_rq_unlock(rq, p, &flags);
4896 * migration_cpu_stop - this will be executed by a highprio stopper thread
4897 * and performs thread migration by bumping thread off CPU then
4898 * 'pushing' onto another runqueue.
4900 static int migration_cpu_stop(void *data)
4902 struct migration_arg *arg = data;
4905 * The original target cpu might have gone down and we might
4906 * be on another cpu but it doesn't matter.
4908 local_irq_disable();
4910 * We need to explicitly wake pending tasks before running
4911 * __migrate_task() such that we will not miss enforcing cpus_allowed
4912 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4914 sched_ttwu_pending();
4915 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4920 #ifdef CONFIG_HOTPLUG_CPU
4923 * Ensures that the idle task is using init_mm right before its cpu goes
4926 void idle_task_exit(void)
4928 struct mm_struct *mm = current->active_mm;
4930 BUG_ON(cpu_online(smp_processor_id()));
4932 if (mm != &init_mm) {
4933 switch_mm(mm, &init_mm, current);
4934 finish_arch_post_lock_switch();
4940 * Since this CPU is going 'away' for a while, fold any nr_active delta
4941 * we might have. Assumes we're called after migrate_tasks() so that the
4942 * nr_active count is stable.
4944 * Also see the comment "Global load-average calculations".
4946 static void calc_load_migrate(struct rq *rq)
4948 long delta = calc_load_fold_active(rq);
4950 atomic_long_add(delta, &calc_load_tasks);
4953 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4957 static const struct sched_class fake_sched_class = {
4958 .put_prev_task = put_prev_task_fake,
4961 static struct task_struct fake_task = {
4963 * Avoid pull_{rt,dl}_task()
4965 .prio = MAX_PRIO + 1,
4966 .sched_class = &fake_sched_class,
4970 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4971 * try_to_wake_up()->select_task_rq().
4973 * Called with rq->lock held even though we'er in stop_machine() and
4974 * there's no concurrency possible, we hold the required locks anyway
4975 * because of lock validation efforts.
4977 static void migrate_tasks(unsigned int dead_cpu)
4979 struct rq *rq = cpu_rq(dead_cpu);
4980 struct task_struct *next, *stop = rq->stop;
4984 * Fudge the rq selection such that the below task selection loop
4985 * doesn't get stuck on the currently eligible stop task.
4987 * We're currently inside stop_machine() and the rq is either stuck
4988 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4989 * either way we should never end up calling schedule() until we're
4995 * put_prev_task() and pick_next_task() sched
4996 * class method both need to have an up-to-date
4997 * value of rq->clock[_task]
4999 update_rq_clock(rq);
5003 * There's this thread running, bail when that's the only
5006 if (rq->nr_running == 1)
5009 next = pick_next_task(rq, &fake_task);
5011 next->sched_class->put_prev_task(rq, next);
5013 /* Find suitable destination for @next, with force if needed. */
5014 dest_cpu = select_fallback_rq(dead_cpu, next);
5015 raw_spin_unlock(&rq->lock);
5017 __migrate_task(next, dead_cpu, dest_cpu);
5019 raw_spin_lock(&rq->lock);
5025 #endif /* CONFIG_HOTPLUG_CPU */
5027 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5029 static struct ctl_table sd_ctl_dir[] = {
5031 .procname = "sched_domain",
5037 static struct ctl_table sd_ctl_root[] = {
5039 .procname = "kernel",
5041 .child = sd_ctl_dir,
5046 static struct ctl_table *sd_alloc_ctl_entry(int n)
5048 struct ctl_table *entry =
5049 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5054 static void sd_free_ctl_entry(struct ctl_table **tablep)
5056 struct ctl_table *entry;
5059 * In the intermediate directories, both the child directory and
5060 * procname are dynamically allocated and could fail but the mode
5061 * will always be set. In the lowest directory the names are
5062 * static strings and all have proc handlers.
5064 for (entry = *tablep; entry->mode; entry++) {
5066 sd_free_ctl_entry(&entry->child);
5067 if (entry->proc_handler == NULL)
5068 kfree(entry->procname);
5075 static int min_load_idx = 0;
5076 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5079 set_table_entry(struct ctl_table *entry,
5080 const char *procname, void *data, int maxlen,
5081 umode_t mode, proc_handler *proc_handler,
5084 entry->procname = procname;
5086 entry->maxlen = maxlen;
5088 entry->proc_handler = proc_handler;
5091 entry->extra1 = &min_load_idx;
5092 entry->extra2 = &max_load_idx;
5096 static struct ctl_table *
5097 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5099 struct ctl_table *table = sd_alloc_ctl_entry(14);
5104 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5105 sizeof(long), 0644, proc_doulongvec_minmax, false);
5106 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5107 sizeof(long), 0644, proc_doulongvec_minmax, false);
5108 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5109 sizeof(int), 0644, proc_dointvec_minmax, true);
5110 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5111 sizeof(int), 0644, proc_dointvec_minmax, true);
5112 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5113 sizeof(int), 0644, proc_dointvec_minmax, true);
5114 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5115 sizeof(int), 0644, proc_dointvec_minmax, true);
5116 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5117 sizeof(int), 0644, proc_dointvec_minmax, true);
5118 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5119 sizeof(int), 0644, proc_dointvec_minmax, false);
5120 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5121 sizeof(int), 0644, proc_dointvec_minmax, false);
5122 set_table_entry(&table[9], "cache_nice_tries",
5123 &sd->cache_nice_tries,
5124 sizeof(int), 0644, proc_dointvec_minmax, false);
5125 set_table_entry(&table[10], "flags", &sd->flags,
5126 sizeof(int), 0644, proc_dointvec_minmax, false);
5127 set_table_entry(&table[11], "max_newidle_lb_cost",
5128 &sd->max_newidle_lb_cost,
5129 sizeof(long), 0644, proc_doulongvec_minmax, false);
5130 set_table_entry(&table[12], "name", sd->name,
5131 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5132 /* &table[13] is terminator */
5137 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5139 struct ctl_table *entry, *table;
5140 struct sched_domain *sd;
5141 int domain_num = 0, i;
5144 for_each_domain(cpu, sd)
5146 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5151 for_each_domain(cpu, sd) {
5152 snprintf(buf, 32, "domain%d", i);
5153 entry->procname = kstrdup(buf, GFP_KERNEL);
5155 entry->child = sd_alloc_ctl_domain_table(sd);
5162 static struct ctl_table_header *sd_sysctl_header;
5163 static void register_sched_domain_sysctl(void)
5165 int i, cpu_num = num_possible_cpus();
5166 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5169 WARN_ON(sd_ctl_dir[0].child);
5170 sd_ctl_dir[0].child = entry;
5175 for_each_possible_cpu(i) {
5176 snprintf(buf, 32, "cpu%d", i);
5177 entry->procname = kstrdup(buf, GFP_KERNEL);
5179 entry->child = sd_alloc_ctl_cpu_table(i);
5183 WARN_ON(sd_sysctl_header);
5184 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5187 /* may be called multiple times per register */
5188 static void unregister_sched_domain_sysctl(void)
5190 if (sd_sysctl_header)
5191 unregister_sysctl_table(sd_sysctl_header);
5192 sd_sysctl_header = NULL;
5193 if (sd_ctl_dir[0].child)
5194 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5197 static void register_sched_domain_sysctl(void)
5200 static void unregister_sched_domain_sysctl(void)
5205 static void set_rq_online(struct rq *rq)
5208 const struct sched_class *class;
5210 cpumask_set_cpu(rq->cpu, rq->rd->online);
5213 for_each_class(class) {
5214 if (class->rq_online)
5215 class->rq_online(rq);
5220 static void set_rq_offline(struct rq *rq)
5223 const struct sched_class *class;
5225 for_each_class(class) {
5226 if (class->rq_offline)
5227 class->rq_offline(rq);
5230 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5236 * migration_call - callback that gets triggered when a CPU is added.
5237 * Here we can start up the necessary migration thread for the new CPU.
5240 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5242 int cpu = (long)hcpu;
5243 unsigned long flags;
5244 struct rq *rq = cpu_rq(cpu);
5246 switch (action & ~CPU_TASKS_FROZEN) {
5248 case CPU_UP_PREPARE:
5249 rq->calc_load_update = calc_load_update;
5253 /* Update our root-domain */
5254 raw_spin_lock_irqsave(&rq->lock, flags);
5256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5260 raw_spin_unlock_irqrestore(&rq->lock, flags);
5263 #ifdef CONFIG_HOTPLUG_CPU
5265 sched_ttwu_pending();
5266 /* Update our root-domain */
5267 raw_spin_lock_irqsave(&rq->lock, flags);
5269 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5273 BUG_ON(rq->nr_running != 1); /* the migration thread */
5274 raw_spin_unlock_irqrestore(&rq->lock, flags);
5278 calc_load_migrate(rq);
5283 update_max_interval();
5289 * Register at high priority so that task migration (migrate_all_tasks)
5290 * happens before everything else. This has to be lower priority than
5291 * the notifier in the perf_event subsystem, though.
5293 static struct notifier_block migration_notifier = {
5294 .notifier_call = migration_call,
5295 .priority = CPU_PRI_MIGRATION,
5298 static void __cpuinit set_cpu_rq_start_time(void)
5300 int cpu = smp_processor_id();
5301 struct rq *rq = cpu_rq(cpu);
5302 rq->age_stamp = sched_clock_cpu(cpu);
5305 static int sched_cpu_active(struct notifier_block *nfb,
5306 unsigned long action, void *hcpu)
5308 switch (action & ~CPU_TASKS_FROZEN) {
5310 set_cpu_rq_start_time();
5312 case CPU_DOWN_FAILED:
5313 set_cpu_active((long)hcpu, true);
5320 static int sched_cpu_inactive(struct notifier_block *nfb,
5321 unsigned long action, void *hcpu)
5323 unsigned long flags;
5324 long cpu = (long)hcpu;
5327 switch (action & ~CPU_TASKS_FROZEN) {
5328 case CPU_DOWN_PREPARE:
5329 set_cpu_active(cpu, false);
5331 /* explicitly allow suspend */
5332 if (!(action & CPU_TASKS_FROZEN)) {
5336 rcu_read_lock_sched();
5337 dl_b = dl_bw_of(cpu);
5339 raw_spin_lock_irqsave(&dl_b->lock, flags);
5340 cpus = dl_bw_cpus(cpu);
5341 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5342 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5344 rcu_read_unlock_sched();
5347 return notifier_from_errno(-EBUSY);
5355 static int __init migration_init(void)
5357 void *cpu = (void *)(long)smp_processor_id();
5360 /* Initialize migration for the boot CPU */
5361 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5362 BUG_ON(err == NOTIFY_BAD);
5363 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5364 register_cpu_notifier(&migration_notifier);
5366 /* Register cpu active notifiers */
5367 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5368 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5372 early_initcall(migration_init);
5377 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5379 #ifdef CONFIG_SCHED_DEBUG
5381 static __read_mostly int sched_debug_enabled;
5383 static int __init sched_debug_setup(char *str)
5385 sched_debug_enabled = 1;
5389 early_param("sched_debug", sched_debug_setup);
5391 static inline bool sched_debug(void)
5393 return sched_debug_enabled;
5396 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5397 struct cpumask *groupmask)
5399 struct sched_group *group = sd->groups;
5401 cpumask_clear(groupmask);
5403 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5405 if (!(sd->flags & SD_LOAD_BALANCE)) {
5406 printk("does not load-balance\n");
5408 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5413 printk(KERN_CONT "span %*pbl level %s\n",
5414 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5416 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5417 printk(KERN_ERR "ERROR: domain->span does not contain "
5420 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5421 printk(KERN_ERR "ERROR: domain->groups does not contain"
5425 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5429 printk(KERN_ERR "ERROR: group is NULL\n");
5434 * Even though we initialize ->capacity to something semi-sane,
5435 * we leave capacity_orig unset. This allows us to detect if
5436 * domain iteration is still funny without causing /0 traps.
5438 if (!group->sgc->capacity_orig) {
5439 printk(KERN_CONT "\n");
5440 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5444 if (!cpumask_weight(sched_group_cpus(group))) {
5445 printk(KERN_CONT "\n");
5446 printk(KERN_ERR "ERROR: empty group\n");
5450 if (!(sd->flags & SD_OVERLAP) &&
5451 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5452 printk(KERN_CONT "\n");
5453 printk(KERN_ERR "ERROR: repeated CPUs\n");
5457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5459 printk(KERN_CONT " %*pbl",
5460 cpumask_pr_args(sched_group_cpus(group)));
5461 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5462 printk(KERN_CONT " (cpu_capacity = %d)",
5463 group->sgc->capacity);
5466 group = group->next;
5467 } while (group != sd->groups);
5468 printk(KERN_CONT "\n");
5470 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5471 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5474 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5475 printk(KERN_ERR "ERROR: parent span is not a superset "
5476 "of domain->span\n");
5480 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5484 if (!sched_debug_enabled)
5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5495 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5503 #else /* !CONFIG_SCHED_DEBUG */
5504 # define sched_domain_debug(sd, cpu) do { } while (0)
5505 static inline bool sched_debug(void)
5509 #endif /* CONFIG_SCHED_DEBUG */
5511 static int sd_degenerate(struct sched_domain *sd)
5513 if (cpumask_weight(sched_domain_span(sd)) == 1)
5516 /* Following flags need at least 2 groups */
5517 if (sd->flags & (SD_LOAD_BALANCE |
5518 SD_BALANCE_NEWIDLE |
5521 SD_SHARE_CPUCAPACITY |
5522 SD_SHARE_PKG_RESOURCES |
5523 SD_SHARE_POWERDOMAIN)) {
5524 if (sd->groups != sd->groups->next)
5528 /* Following flags don't use groups */
5529 if (sd->flags & (SD_WAKE_AFFINE))
5536 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5538 unsigned long cflags = sd->flags, pflags = parent->flags;
5540 if (sd_degenerate(parent))
5543 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5546 /* Flags needing groups don't count if only 1 group in parent */
5547 if (parent->groups == parent->groups->next) {
5548 pflags &= ~(SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5552 SD_SHARE_CPUCAPACITY |
5553 SD_SHARE_PKG_RESOURCES |
5555 SD_SHARE_POWERDOMAIN);
5556 if (nr_node_ids == 1)
5557 pflags &= ~SD_SERIALIZE;
5559 if (~cflags & pflags)
5565 static void free_rootdomain(struct rcu_head *rcu)
5567 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5569 cpupri_cleanup(&rd->cpupri);
5570 cpudl_cleanup(&rd->cpudl);
5571 free_cpumask_var(rd->dlo_mask);
5572 free_cpumask_var(rd->rto_mask);
5573 free_cpumask_var(rd->online);
5574 free_cpumask_var(rd->span);
5578 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5580 struct root_domain *old_rd = NULL;
5581 unsigned long flags;
5583 raw_spin_lock_irqsave(&rq->lock, flags);
5588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5591 cpumask_clear_cpu(rq->cpu, old_rd->span);
5594 * If we dont want to free the old_rd yet then
5595 * set old_rd to NULL to skip the freeing later
5598 if (!atomic_dec_and_test(&old_rd->refcount))
5602 atomic_inc(&rd->refcount);
5605 cpumask_set_cpu(rq->cpu, rd->span);
5606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5609 raw_spin_unlock_irqrestore(&rq->lock, flags);
5612 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5615 static int init_rootdomain(struct root_domain *rd)
5617 memset(rd, 0, sizeof(*rd));
5619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5623 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5625 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5628 init_dl_bw(&rd->dl_bw);
5629 if (cpudl_init(&rd->cpudl) != 0)
5632 if (cpupri_init(&rd->cpupri) != 0)
5637 free_cpumask_var(rd->rto_mask);
5639 free_cpumask_var(rd->dlo_mask);
5641 free_cpumask_var(rd->online);
5643 free_cpumask_var(rd->span);
5649 * By default the system creates a single root-domain with all cpus as
5650 * members (mimicking the global state we have today).
5652 struct root_domain def_root_domain;
5654 static void init_defrootdomain(void)
5656 init_rootdomain(&def_root_domain);
5658 atomic_set(&def_root_domain.refcount, 1);
5661 static struct root_domain *alloc_rootdomain(void)
5663 struct root_domain *rd;
5665 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5669 if (init_rootdomain(rd) != 0) {
5677 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5679 struct sched_group *tmp, *first;
5688 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5693 } while (sg != first);
5696 static void free_sched_domain(struct rcu_head *rcu)
5698 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5701 * If its an overlapping domain it has private groups, iterate and
5704 if (sd->flags & SD_OVERLAP) {
5705 free_sched_groups(sd->groups, 1);
5706 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5707 kfree(sd->groups->sgc);
5713 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5715 call_rcu(&sd->rcu, free_sched_domain);
5718 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5720 for (; sd; sd = sd->parent)
5721 destroy_sched_domain(sd, cpu);
5725 * Keep a special pointer to the highest sched_domain that has
5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727 * allows us to avoid some pointer chasing select_idle_sibling().
5729 * Also keep a unique ID per domain (we use the first cpu number in
5730 * the cpumask of the domain), this allows us to quickly tell if
5731 * two cpus are in the same cache domain, see cpus_share_cache().
5733 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5734 DEFINE_PER_CPU(int, sd_llc_size);
5735 DEFINE_PER_CPU(int, sd_llc_id);
5736 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5737 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5740 static void update_top_cache_domain(int cpu)
5742 struct sched_domain *sd;
5743 struct sched_domain *busy_sd = NULL;
5747 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5749 id = cpumask_first(sched_domain_span(sd));
5750 size = cpumask_weight(sched_domain_span(sd));
5751 busy_sd = sd->parent; /* sd_busy */
5753 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5755 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5756 per_cpu(sd_llc_size, cpu) = size;
5757 per_cpu(sd_llc_id, cpu) = id;
5759 sd = lowest_flag_domain(cpu, SD_NUMA);
5760 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5762 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5763 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768 * hold the hotplug lock.
5771 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5773 struct rq *rq = cpu_rq(cpu);
5774 struct sched_domain *tmp;
5776 /* Remove the sched domains which do not contribute to scheduling. */
5777 for (tmp = sd; tmp; ) {
5778 struct sched_domain *parent = tmp->parent;
5782 if (sd_parent_degenerate(tmp, parent)) {
5783 tmp->parent = parent->parent;
5785 parent->parent->child = tmp;
5787 * Transfer SD_PREFER_SIBLING down in case of a
5788 * degenerate parent; the spans match for this
5789 * so the property transfers.
5791 if (parent->flags & SD_PREFER_SIBLING)
5792 tmp->flags |= SD_PREFER_SIBLING;
5793 destroy_sched_domain(parent, cpu);
5798 if (sd && sd_degenerate(sd)) {
5801 destroy_sched_domain(tmp, cpu);
5806 sched_domain_debug(sd, cpu);
5808 rq_attach_root(rq, rd);
5810 rcu_assign_pointer(rq->sd, sd);
5811 destroy_sched_domains(tmp, cpu);
5813 update_top_cache_domain(cpu);
5816 /* cpus with isolated domains */
5817 static cpumask_var_t cpu_isolated_map;
5819 /* Setup the mask of cpus configured for isolated domains */
5820 static int __init isolated_cpu_setup(char *str)
5822 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5823 cpulist_parse(str, cpu_isolated_map);
5827 __setup("isolcpus=", isolated_cpu_setup);
5830 struct sched_domain ** __percpu sd;
5831 struct root_domain *rd;
5842 * Build an iteration mask that can exclude certain CPUs from the upwards
5845 * Asymmetric node setups can result in situations where the domain tree is of
5846 * unequal depth, make sure to skip domains that already cover the entire
5849 * In that case build_sched_domains() will have terminated the iteration early
5850 * and our sibling sd spans will be empty. Domains should always include the
5851 * cpu they're built on, so check that.
5854 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5856 const struct cpumask *span = sched_domain_span(sd);
5857 struct sd_data *sdd = sd->private;
5858 struct sched_domain *sibling;
5861 for_each_cpu(i, span) {
5862 sibling = *per_cpu_ptr(sdd->sd, i);
5863 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5866 cpumask_set_cpu(i, sched_group_mask(sg));
5871 * Return the canonical balance cpu for this group, this is the first cpu
5872 * of this group that's also in the iteration mask.
5874 int group_balance_cpu(struct sched_group *sg)
5876 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5880 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5882 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5883 const struct cpumask *span = sched_domain_span(sd);
5884 struct cpumask *covered = sched_domains_tmpmask;
5885 struct sd_data *sdd = sd->private;
5886 struct sched_domain *sibling;
5889 cpumask_clear(covered);
5891 for_each_cpu(i, span) {
5892 struct cpumask *sg_span;
5894 if (cpumask_test_cpu(i, covered))
5897 sibling = *per_cpu_ptr(sdd->sd, i);
5899 /* See the comment near build_group_mask(). */
5900 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5903 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5904 GFP_KERNEL, cpu_to_node(cpu));
5909 sg_span = sched_group_cpus(sg);
5911 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5913 cpumask_set_cpu(i, sg_span);
5915 cpumask_or(covered, covered, sg_span);
5917 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5918 if (atomic_inc_return(&sg->sgc->ref) == 1)
5919 build_group_mask(sd, sg);
5922 * Initialize sgc->capacity such that even if we mess up the
5923 * domains and no possible iteration will get us here, we won't
5926 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5927 sg->sgc->capacity_orig = sg->sgc->capacity;
5930 * Make sure the first group of this domain contains the
5931 * canonical balance cpu. Otherwise the sched_domain iteration
5932 * breaks. See update_sg_lb_stats().
5934 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5935 group_balance_cpu(sg) == cpu)
5945 sd->groups = groups;
5950 free_sched_groups(first, 0);
5955 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5957 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5958 struct sched_domain *child = sd->child;
5961 cpu = cpumask_first(sched_domain_span(child));
5964 *sg = *per_cpu_ptr(sdd->sg, cpu);
5965 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5966 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5973 * build_sched_groups will build a circular linked list of the groups
5974 * covered by the given span, and will set each group's ->cpumask correctly,
5975 * and ->cpu_capacity to 0.
5977 * Assumes the sched_domain tree is fully constructed
5980 build_sched_groups(struct sched_domain *sd, int cpu)
5982 struct sched_group *first = NULL, *last = NULL;
5983 struct sd_data *sdd = sd->private;
5984 const struct cpumask *span = sched_domain_span(sd);
5985 struct cpumask *covered;
5988 get_group(cpu, sdd, &sd->groups);
5989 atomic_inc(&sd->groups->ref);
5991 if (cpu != cpumask_first(span))
5994 lockdep_assert_held(&sched_domains_mutex);
5995 covered = sched_domains_tmpmask;
5997 cpumask_clear(covered);
5999 for_each_cpu(i, span) {
6000 struct sched_group *sg;
6003 if (cpumask_test_cpu(i, covered))
6006 group = get_group(i, sdd, &sg);
6007 cpumask_setall(sched_group_mask(sg));
6009 for_each_cpu(j, span) {
6010 if (get_group(j, sdd, NULL) != group)
6013 cpumask_set_cpu(j, covered);
6014 cpumask_set_cpu(j, sched_group_cpus(sg));
6029 * Initialize sched groups cpu_capacity.
6031 * cpu_capacity indicates the capacity of sched group, which is used while
6032 * distributing the load between different sched groups in a sched domain.
6033 * Typically cpu_capacity for all the groups in a sched domain will be same
6034 * unless there are asymmetries in the topology. If there are asymmetries,
6035 * group having more cpu_capacity will pickup more load compared to the
6036 * group having less cpu_capacity.
6038 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6040 struct sched_group *sg = sd->groups;
6045 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6047 } while (sg != sd->groups);
6049 if (cpu != group_balance_cpu(sg))
6052 update_group_capacity(sd, cpu);
6053 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6057 * Initializers for schedule domains
6058 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6061 static int default_relax_domain_level = -1;
6062 int sched_domain_level_max;
6064 static int __init setup_relax_domain_level(char *str)
6066 if (kstrtoint(str, 0, &default_relax_domain_level))
6067 pr_warn("Unable to set relax_domain_level\n");
6071 __setup("relax_domain_level=", setup_relax_domain_level);
6073 static void set_domain_attribute(struct sched_domain *sd,
6074 struct sched_domain_attr *attr)
6078 if (!attr || attr->relax_domain_level < 0) {
6079 if (default_relax_domain_level < 0)
6082 request = default_relax_domain_level;
6084 request = attr->relax_domain_level;
6085 if (request < sd->level) {
6086 /* turn off idle balance on this domain */
6087 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6089 /* turn on idle balance on this domain */
6090 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6094 static void __sdt_free(const struct cpumask *cpu_map);
6095 static int __sdt_alloc(const struct cpumask *cpu_map);
6097 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6098 const struct cpumask *cpu_map)
6102 if (!atomic_read(&d->rd->refcount))
6103 free_rootdomain(&d->rd->rcu); /* fall through */
6105 free_percpu(d->sd); /* fall through */
6107 __sdt_free(cpu_map); /* fall through */
6113 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6114 const struct cpumask *cpu_map)
6116 memset(d, 0, sizeof(*d));
6118 if (__sdt_alloc(cpu_map))
6119 return sa_sd_storage;
6120 d->sd = alloc_percpu(struct sched_domain *);
6122 return sa_sd_storage;
6123 d->rd = alloc_rootdomain();
6126 return sa_rootdomain;
6130 * NULL the sd_data elements we've used to build the sched_domain and
6131 * sched_group structure so that the subsequent __free_domain_allocs()
6132 * will not free the data we're using.
6134 static void claim_allocations(int cpu, struct sched_domain *sd)
6136 struct sd_data *sdd = sd->private;
6138 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6139 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6141 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6142 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6144 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6145 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6149 static int sched_domains_numa_levels;
6150 enum numa_topology_type sched_numa_topology_type;
6151 static int *sched_domains_numa_distance;
6152 int sched_max_numa_distance;
6153 static struct cpumask ***sched_domains_numa_masks;
6154 static int sched_domains_curr_level;
6158 * SD_flags allowed in topology descriptions.
6160 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6161 * SD_SHARE_PKG_RESOURCES - describes shared caches
6162 * SD_NUMA - describes NUMA topologies
6163 * SD_SHARE_POWERDOMAIN - describes shared power domain
6166 * SD_ASYM_PACKING - describes SMT quirks
6168 #define TOPOLOGY_SD_FLAGS \
6169 (SD_SHARE_CPUCAPACITY | \
6170 SD_SHARE_PKG_RESOURCES | \
6173 SD_SHARE_POWERDOMAIN)
6175 static struct sched_domain *
6176 sd_init(struct sched_domain_topology_level *tl, int cpu)
6178 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6179 int sd_weight, sd_flags = 0;
6183 * Ugly hack to pass state to sd_numa_mask()...
6185 sched_domains_curr_level = tl->numa_level;
6188 sd_weight = cpumask_weight(tl->mask(cpu));
6191 sd_flags = (*tl->sd_flags)();
6192 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6193 "wrong sd_flags in topology description\n"))
6194 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6196 *sd = (struct sched_domain){
6197 .min_interval = sd_weight,
6198 .max_interval = 2*sd_weight,
6200 .imbalance_pct = 125,
6202 .cache_nice_tries = 0,
6209 .flags = 1*SD_LOAD_BALANCE
6210 | 1*SD_BALANCE_NEWIDLE
6215 | 0*SD_SHARE_CPUCAPACITY
6216 | 0*SD_SHARE_PKG_RESOURCES
6218 | 0*SD_PREFER_SIBLING
6223 .last_balance = jiffies,
6224 .balance_interval = sd_weight,
6226 .max_newidle_lb_cost = 0,
6227 .next_decay_max_lb_cost = jiffies,
6228 #ifdef CONFIG_SCHED_DEBUG
6234 * Convert topological properties into behaviour.
6237 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6238 sd->imbalance_pct = 110;
6239 sd->smt_gain = 1178; /* ~15% */
6241 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6242 sd->imbalance_pct = 117;
6243 sd->cache_nice_tries = 1;
6247 } else if (sd->flags & SD_NUMA) {
6248 sd->cache_nice_tries = 2;
6252 sd->flags |= SD_SERIALIZE;
6253 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6254 sd->flags &= ~(SD_BALANCE_EXEC |
6261 sd->flags |= SD_PREFER_SIBLING;
6262 sd->cache_nice_tries = 1;
6267 sd->private = &tl->data;
6273 * Topology list, bottom-up.
6275 static struct sched_domain_topology_level default_topology[] = {
6276 #ifdef CONFIG_SCHED_SMT
6277 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6279 #ifdef CONFIG_SCHED_MC
6280 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6282 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6286 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6288 #define for_each_sd_topology(tl) \
6289 for (tl = sched_domain_topology; tl->mask; tl++)
6291 void set_sched_topology(struct sched_domain_topology_level *tl)
6293 sched_domain_topology = tl;
6298 static const struct cpumask *sd_numa_mask(int cpu)
6300 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6303 static void sched_numa_warn(const char *str)
6305 static int done = false;
6313 printk(KERN_WARNING "ERROR: %s\n\n", str);
6315 for (i = 0; i < nr_node_ids; i++) {
6316 printk(KERN_WARNING " ");
6317 for (j = 0; j < nr_node_ids; j++)
6318 printk(KERN_CONT "%02d ", node_distance(i,j));
6319 printk(KERN_CONT "\n");
6321 printk(KERN_WARNING "\n");
6324 bool find_numa_distance(int distance)
6328 if (distance == node_distance(0, 0))
6331 for (i = 0; i < sched_domains_numa_levels; i++) {
6332 if (sched_domains_numa_distance[i] == distance)
6340 * A system can have three types of NUMA topology:
6341 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6342 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6343 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6345 * The difference between a glueless mesh topology and a backplane
6346 * topology lies in whether communication between not directly
6347 * connected nodes goes through intermediary nodes (where programs
6348 * could run), or through backplane controllers. This affects
6349 * placement of programs.
6351 * The type of topology can be discerned with the following tests:
6352 * - If the maximum distance between any nodes is 1 hop, the system
6353 * is directly connected.
6354 * - If for two nodes A and B, located N > 1 hops away from each other,
6355 * there is an intermediary node C, which is < N hops away from both
6356 * nodes A and B, the system is a glueless mesh.
6358 static void init_numa_topology_type(void)
6362 n = sched_max_numa_distance;
6365 sched_numa_topology_type = NUMA_DIRECT;
6367 for_each_online_node(a) {
6368 for_each_online_node(b) {
6369 /* Find two nodes furthest removed from each other. */
6370 if (node_distance(a, b) < n)
6373 /* Is there an intermediary node between a and b? */
6374 for_each_online_node(c) {
6375 if (node_distance(a, c) < n &&
6376 node_distance(b, c) < n) {
6377 sched_numa_topology_type =
6383 sched_numa_topology_type = NUMA_BACKPLANE;
6389 static void sched_init_numa(void)
6391 int next_distance, curr_distance = node_distance(0, 0);
6392 struct sched_domain_topology_level *tl;
6396 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6397 if (!sched_domains_numa_distance)
6401 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6402 * unique distances in the node_distance() table.
6404 * Assumes node_distance(0,j) includes all distances in
6405 * node_distance(i,j) in order to avoid cubic time.
6407 next_distance = curr_distance;
6408 for (i = 0; i < nr_node_ids; i++) {
6409 for (j = 0; j < nr_node_ids; j++) {
6410 for (k = 0; k < nr_node_ids; k++) {
6411 int distance = node_distance(i, k);
6413 if (distance > curr_distance &&
6414 (distance < next_distance ||
6415 next_distance == curr_distance))
6416 next_distance = distance;
6419 * While not a strong assumption it would be nice to know
6420 * about cases where if node A is connected to B, B is not
6421 * equally connected to A.
6423 if (sched_debug() && node_distance(k, i) != distance)
6424 sched_numa_warn("Node-distance not symmetric");
6426 if (sched_debug() && i && !find_numa_distance(distance))
6427 sched_numa_warn("Node-0 not representative");
6429 if (next_distance != curr_distance) {
6430 sched_domains_numa_distance[level++] = next_distance;
6431 sched_domains_numa_levels = level;
6432 curr_distance = next_distance;
6437 * In case of sched_debug() we verify the above assumption.
6447 * 'level' contains the number of unique distances, excluding the
6448 * identity distance node_distance(i,i).
6450 * The sched_domains_numa_distance[] array includes the actual distance
6455 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6456 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6457 * the array will contain less then 'level' members. This could be
6458 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6459 * in other functions.
6461 * We reset it to 'level' at the end of this function.
6463 sched_domains_numa_levels = 0;
6465 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6466 if (!sched_domains_numa_masks)
6470 * Now for each level, construct a mask per node which contains all
6471 * cpus of nodes that are that many hops away from us.
6473 for (i = 0; i < level; i++) {
6474 sched_domains_numa_masks[i] =
6475 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6476 if (!sched_domains_numa_masks[i])
6479 for (j = 0; j < nr_node_ids; j++) {
6480 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6484 sched_domains_numa_masks[i][j] = mask;
6486 for (k = 0; k < nr_node_ids; k++) {
6487 if (node_distance(j, k) > sched_domains_numa_distance[i])
6490 cpumask_or(mask, mask, cpumask_of_node(k));
6495 /* Compute default topology size */
6496 for (i = 0; sched_domain_topology[i].mask; i++);
6498 tl = kzalloc((i + level + 1) *
6499 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6504 * Copy the default topology bits..
6506 for (i = 0; sched_domain_topology[i].mask; i++)
6507 tl[i] = sched_domain_topology[i];
6510 * .. and append 'j' levels of NUMA goodness.
6512 for (j = 0; j < level; i++, j++) {
6513 tl[i] = (struct sched_domain_topology_level){
6514 .mask = sd_numa_mask,
6515 .sd_flags = cpu_numa_flags,
6516 .flags = SDTL_OVERLAP,
6522 sched_domain_topology = tl;
6524 sched_domains_numa_levels = level;
6525 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6527 init_numa_topology_type();
6530 static void sched_domains_numa_masks_set(int cpu)
6533 int node = cpu_to_node(cpu);
6535 for (i = 0; i < sched_domains_numa_levels; i++) {
6536 for (j = 0; j < nr_node_ids; j++) {
6537 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6538 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6543 static void sched_domains_numa_masks_clear(int cpu)
6546 for (i = 0; i < sched_domains_numa_levels; i++) {
6547 for (j = 0; j < nr_node_ids; j++)
6548 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6553 * Update sched_domains_numa_masks[level][node] array when new cpus
6556 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6557 unsigned long action,
6560 int cpu = (long)hcpu;
6562 switch (action & ~CPU_TASKS_FROZEN) {
6564 sched_domains_numa_masks_set(cpu);
6568 sched_domains_numa_masks_clear(cpu);
6578 static inline void sched_init_numa(void)
6582 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6583 unsigned long action,
6588 #endif /* CONFIG_NUMA */
6590 static int __sdt_alloc(const struct cpumask *cpu_map)
6592 struct sched_domain_topology_level *tl;
6595 for_each_sd_topology(tl) {
6596 struct sd_data *sdd = &tl->data;
6598 sdd->sd = alloc_percpu(struct sched_domain *);
6602 sdd->sg = alloc_percpu(struct sched_group *);
6606 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6610 for_each_cpu(j, cpu_map) {
6611 struct sched_domain *sd;
6612 struct sched_group *sg;
6613 struct sched_group_capacity *sgc;
6615 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6616 GFP_KERNEL, cpu_to_node(j));
6620 *per_cpu_ptr(sdd->sd, j) = sd;
6622 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6623 GFP_KERNEL, cpu_to_node(j));
6629 *per_cpu_ptr(sdd->sg, j) = sg;
6631 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6632 GFP_KERNEL, cpu_to_node(j));
6636 *per_cpu_ptr(sdd->sgc, j) = sgc;
6643 static void __sdt_free(const struct cpumask *cpu_map)
6645 struct sched_domain_topology_level *tl;
6648 for_each_sd_topology(tl) {
6649 struct sd_data *sdd = &tl->data;
6651 for_each_cpu(j, cpu_map) {
6652 struct sched_domain *sd;
6655 sd = *per_cpu_ptr(sdd->sd, j);
6656 if (sd && (sd->flags & SD_OVERLAP))
6657 free_sched_groups(sd->groups, 0);
6658 kfree(*per_cpu_ptr(sdd->sd, j));
6662 kfree(*per_cpu_ptr(sdd->sg, j));
6664 kfree(*per_cpu_ptr(sdd->sgc, j));
6666 free_percpu(sdd->sd);
6668 free_percpu(sdd->sg);
6670 free_percpu(sdd->sgc);
6675 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6676 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6677 struct sched_domain *child, int cpu)
6679 struct sched_domain *sd = sd_init(tl, cpu);
6683 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6685 sd->level = child->level + 1;
6686 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6690 if (!cpumask_subset(sched_domain_span(child),
6691 sched_domain_span(sd))) {
6692 pr_err("BUG: arch topology borken\n");
6693 #ifdef CONFIG_SCHED_DEBUG
6694 pr_err(" the %s domain not a subset of the %s domain\n",
6695 child->name, sd->name);
6697 /* Fixup, ensure @sd has at least @child cpus. */
6698 cpumask_or(sched_domain_span(sd),
6699 sched_domain_span(sd),
6700 sched_domain_span(child));
6704 set_domain_attribute(sd, attr);
6710 * Build sched domains for a given set of cpus and attach the sched domains
6711 * to the individual cpus
6713 static int build_sched_domains(const struct cpumask *cpu_map,
6714 struct sched_domain_attr *attr)
6716 enum s_alloc alloc_state;
6717 struct sched_domain *sd;
6719 int i, ret = -ENOMEM;
6721 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6722 if (alloc_state != sa_rootdomain)
6725 /* Set up domains for cpus specified by the cpu_map. */
6726 for_each_cpu(i, cpu_map) {
6727 struct sched_domain_topology_level *tl;
6730 for_each_sd_topology(tl) {
6731 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6732 if (tl == sched_domain_topology)
6733 *per_cpu_ptr(d.sd, i) = sd;
6734 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6735 sd->flags |= SD_OVERLAP;
6736 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6741 /* Build the groups for the domains */
6742 for_each_cpu(i, cpu_map) {
6743 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6744 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6745 if (sd->flags & SD_OVERLAP) {
6746 if (build_overlap_sched_groups(sd, i))
6749 if (build_sched_groups(sd, i))
6755 /* Calculate CPU capacity for physical packages and nodes */
6756 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6757 if (!cpumask_test_cpu(i, cpu_map))
6760 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6761 claim_allocations(i, sd);
6762 init_sched_groups_capacity(i, sd);
6766 /* Attach the domains */
6768 for_each_cpu(i, cpu_map) {
6769 sd = *per_cpu_ptr(d.sd, i);
6770 cpu_attach_domain(sd, d.rd, i);
6776 __free_domain_allocs(&d, alloc_state, cpu_map);
6780 static cpumask_var_t *doms_cur; /* current sched domains */
6781 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6782 static struct sched_domain_attr *dattr_cur;
6783 /* attribues of custom domains in 'doms_cur' */
6786 * Special case: If a kmalloc of a doms_cur partition (array of
6787 * cpumask) fails, then fallback to a single sched domain,
6788 * as determined by the single cpumask fallback_doms.
6790 static cpumask_var_t fallback_doms;
6793 * arch_update_cpu_topology lets virtualized architectures update the
6794 * cpu core maps. It is supposed to return 1 if the topology changed
6795 * or 0 if it stayed the same.
6797 int __weak arch_update_cpu_topology(void)
6802 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6805 cpumask_var_t *doms;
6807 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6810 for (i = 0; i < ndoms; i++) {
6811 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6812 free_sched_domains(doms, i);
6819 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6822 for (i = 0; i < ndoms; i++)
6823 free_cpumask_var(doms[i]);
6828 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6829 * For now this just excludes isolated cpus, but could be used to
6830 * exclude other special cases in the future.
6832 static int init_sched_domains(const struct cpumask *cpu_map)
6836 arch_update_cpu_topology();
6838 doms_cur = alloc_sched_domains(ndoms_cur);
6840 doms_cur = &fallback_doms;
6841 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6842 err = build_sched_domains(doms_cur[0], NULL);
6843 register_sched_domain_sysctl();
6849 * Detach sched domains from a group of cpus specified in cpu_map
6850 * These cpus will now be attached to the NULL domain
6852 static void detach_destroy_domains(const struct cpumask *cpu_map)
6857 for_each_cpu(i, cpu_map)
6858 cpu_attach_domain(NULL, &def_root_domain, i);
6862 /* handle null as "default" */
6863 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6864 struct sched_domain_attr *new, int idx_new)
6866 struct sched_domain_attr tmp;
6873 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6874 new ? (new + idx_new) : &tmp,
6875 sizeof(struct sched_domain_attr));
6879 * Partition sched domains as specified by the 'ndoms_new'
6880 * cpumasks in the array doms_new[] of cpumasks. This compares
6881 * doms_new[] to the current sched domain partitioning, doms_cur[].
6882 * It destroys each deleted domain and builds each new domain.
6884 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6885 * The masks don't intersect (don't overlap.) We should setup one
6886 * sched domain for each mask. CPUs not in any of the cpumasks will
6887 * not be load balanced. If the same cpumask appears both in the
6888 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6891 * The passed in 'doms_new' should be allocated using
6892 * alloc_sched_domains. This routine takes ownership of it and will
6893 * free_sched_domains it when done with it. If the caller failed the
6894 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6895 * and partition_sched_domains() will fallback to the single partition
6896 * 'fallback_doms', it also forces the domains to be rebuilt.
6898 * If doms_new == NULL it will be replaced with cpu_online_mask.
6899 * ndoms_new == 0 is a special case for destroying existing domains,
6900 * and it will not create the default domain.
6902 * Call with hotplug lock held
6904 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6905 struct sched_domain_attr *dattr_new)
6910 mutex_lock(&sched_domains_mutex);
6912 /* always unregister in case we don't destroy any domains */
6913 unregister_sched_domain_sysctl();
6915 /* Let architecture update cpu core mappings. */
6916 new_topology = arch_update_cpu_topology();
6918 n = doms_new ? ndoms_new : 0;
6920 /* Destroy deleted domains */
6921 for (i = 0; i < ndoms_cur; i++) {
6922 for (j = 0; j < n && !new_topology; j++) {
6923 if (cpumask_equal(doms_cur[i], doms_new[j])
6924 && dattrs_equal(dattr_cur, i, dattr_new, j))
6927 /* no match - a current sched domain not in new doms_new[] */
6928 detach_destroy_domains(doms_cur[i]);
6934 if (doms_new == NULL) {
6936 doms_new = &fallback_doms;
6937 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6938 WARN_ON_ONCE(dattr_new);
6941 /* Build new domains */
6942 for (i = 0; i < ndoms_new; i++) {
6943 for (j = 0; j < n && !new_topology; j++) {
6944 if (cpumask_equal(doms_new[i], doms_cur[j])
6945 && dattrs_equal(dattr_new, i, dattr_cur, j))
6948 /* no match - add a new doms_new */
6949 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6954 /* Remember the new sched domains */
6955 if (doms_cur != &fallback_doms)
6956 free_sched_domains(doms_cur, ndoms_cur);
6957 kfree(dattr_cur); /* kfree(NULL) is safe */
6958 doms_cur = doms_new;
6959 dattr_cur = dattr_new;
6960 ndoms_cur = ndoms_new;
6962 register_sched_domain_sysctl();
6964 mutex_unlock(&sched_domains_mutex);
6967 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6970 * Update cpusets according to cpu_active mask. If cpusets are
6971 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6972 * around partition_sched_domains().
6974 * If we come here as part of a suspend/resume, don't touch cpusets because we
6975 * want to restore it back to its original state upon resume anyway.
6977 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6981 case CPU_ONLINE_FROZEN:
6982 case CPU_DOWN_FAILED_FROZEN:
6985 * num_cpus_frozen tracks how many CPUs are involved in suspend
6986 * resume sequence. As long as this is not the last online
6987 * operation in the resume sequence, just build a single sched
6988 * domain, ignoring cpusets.
6991 if (likely(num_cpus_frozen)) {
6992 partition_sched_domains(1, NULL, NULL);
6997 * This is the last CPU online operation. So fall through and
6998 * restore the original sched domains by considering the
6999 * cpuset configurations.
7003 case CPU_DOWN_FAILED:
7004 cpuset_update_active_cpus(true);
7012 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7016 case CPU_DOWN_PREPARE:
7017 cpuset_update_active_cpus(false);
7019 case CPU_DOWN_PREPARE_FROZEN:
7021 partition_sched_domains(1, NULL, NULL);
7029 void __init sched_init_smp(void)
7031 cpumask_var_t non_isolated_cpus;
7033 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7034 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7039 * There's no userspace yet to cause hotplug operations; hence all the
7040 * cpu masks are stable and all blatant races in the below code cannot
7043 mutex_lock(&sched_domains_mutex);
7044 init_sched_domains(cpu_active_mask);
7045 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7046 if (cpumask_empty(non_isolated_cpus))
7047 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7048 mutex_unlock(&sched_domains_mutex);
7050 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7051 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7052 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7056 /* Move init over to a non-isolated CPU */
7057 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7059 sched_init_granularity();
7060 free_cpumask_var(non_isolated_cpus);
7062 init_sched_rt_class();
7063 init_sched_dl_class();
7066 void __init sched_init_smp(void)
7068 sched_init_granularity();
7070 #endif /* CONFIG_SMP */
7072 const_debug unsigned int sysctl_timer_migration = 1;
7074 int in_sched_functions(unsigned long addr)
7076 return in_lock_functions(addr) ||
7077 (addr >= (unsigned long)__sched_text_start
7078 && addr < (unsigned long)__sched_text_end);
7081 #ifdef CONFIG_CGROUP_SCHED
7083 * Default task group.
7084 * Every task in system belongs to this group at bootup.
7086 struct task_group root_task_group;
7087 LIST_HEAD(task_groups);
7090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7092 void __init sched_init(void)
7095 unsigned long alloc_size = 0, ptr;
7097 #ifdef CONFIG_FAIR_GROUP_SCHED
7098 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7100 #ifdef CONFIG_RT_GROUP_SCHED
7101 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7104 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7106 #ifdef CONFIG_FAIR_GROUP_SCHED
7107 root_task_group.se = (struct sched_entity **)ptr;
7108 ptr += nr_cpu_ids * sizeof(void **);
7110 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7111 ptr += nr_cpu_ids * sizeof(void **);
7113 #endif /* CONFIG_FAIR_GROUP_SCHED */
7114 #ifdef CONFIG_RT_GROUP_SCHED
7115 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7116 ptr += nr_cpu_ids * sizeof(void **);
7118 root_task_group.rt_rq = (struct rt_rq **)ptr;
7119 ptr += nr_cpu_ids * sizeof(void **);
7121 #endif /* CONFIG_RT_GROUP_SCHED */
7123 #ifdef CONFIG_CPUMASK_OFFSTACK
7124 for_each_possible_cpu(i) {
7125 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7126 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7128 #endif /* CONFIG_CPUMASK_OFFSTACK */
7130 init_rt_bandwidth(&def_rt_bandwidth,
7131 global_rt_period(), global_rt_runtime());
7132 init_dl_bandwidth(&def_dl_bandwidth,
7133 global_rt_period(), global_rt_runtime());
7136 init_defrootdomain();
7139 #ifdef CONFIG_RT_GROUP_SCHED
7140 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7141 global_rt_period(), global_rt_runtime());
7142 #endif /* CONFIG_RT_GROUP_SCHED */
7144 #ifdef CONFIG_CGROUP_SCHED
7145 list_add(&root_task_group.list, &task_groups);
7146 INIT_LIST_HEAD(&root_task_group.children);
7147 INIT_LIST_HEAD(&root_task_group.siblings);
7148 autogroup_init(&init_task);
7150 #endif /* CONFIG_CGROUP_SCHED */
7152 for_each_possible_cpu(i) {
7156 raw_spin_lock_init(&rq->lock);
7158 rq->calc_load_active = 0;
7159 rq->calc_load_update = jiffies + LOAD_FREQ;
7160 init_cfs_rq(&rq->cfs);
7161 init_rt_rq(&rq->rt, rq);
7162 init_dl_rq(&rq->dl, rq);
7163 #ifdef CONFIG_FAIR_GROUP_SCHED
7164 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7165 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7167 * How much cpu bandwidth does root_task_group get?
7169 * In case of task-groups formed thr' the cgroup filesystem, it
7170 * gets 100% of the cpu resources in the system. This overall
7171 * system cpu resource is divided among the tasks of
7172 * root_task_group and its child task-groups in a fair manner,
7173 * based on each entity's (task or task-group's) weight
7174 * (se->load.weight).
7176 * In other words, if root_task_group has 10 tasks of weight
7177 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7178 * then A0's share of the cpu resource is:
7180 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7182 * We achieve this by letting root_task_group's tasks sit
7183 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7185 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7186 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7187 #endif /* CONFIG_FAIR_GROUP_SCHED */
7189 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7190 #ifdef CONFIG_RT_GROUP_SCHED
7191 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7194 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7195 rq->cpu_load[j] = 0;
7197 rq->last_load_update_tick = jiffies;
7202 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7203 rq->post_schedule = 0;
7204 rq->active_balance = 0;
7205 rq->next_balance = jiffies;
7210 rq->avg_idle = 2*sysctl_sched_migration_cost;
7211 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7213 INIT_LIST_HEAD(&rq->cfs_tasks);
7215 rq_attach_root(rq, &def_root_domain);
7216 #ifdef CONFIG_NO_HZ_COMMON
7219 #ifdef CONFIG_NO_HZ_FULL
7220 rq->last_sched_tick = 0;
7224 atomic_set(&rq->nr_iowait, 0);
7227 set_load_weight(&init_task);
7229 #ifdef CONFIG_PREEMPT_NOTIFIERS
7230 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7234 * The boot idle thread does lazy MMU switching as well:
7236 atomic_inc(&init_mm.mm_count);
7237 enter_lazy_tlb(&init_mm, current);
7240 * During early bootup we pretend to be a normal task:
7242 current->sched_class = &fair_sched_class;
7245 * Make us the idle thread. Technically, schedule() should not be
7246 * called from this thread, however somewhere below it might be,
7247 * but because we are the idle thread, we just pick up running again
7248 * when this runqueue becomes "idle".
7250 init_idle(current, smp_processor_id());
7252 calc_load_update = jiffies + LOAD_FREQ;
7255 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7256 /* May be allocated at isolcpus cmdline parse time */
7257 if (cpu_isolated_map == NULL)
7258 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7259 idle_thread_set_boot_cpu();
7260 set_cpu_rq_start_time();
7262 init_sched_fair_class();
7264 scheduler_running = 1;
7267 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7268 static inline int preempt_count_equals(int preempt_offset)
7270 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7272 return (nested == preempt_offset);
7275 void __might_sleep(const char *file, int line, int preempt_offset)
7278 * Blocking primitives will set (and therefore destroy) current->state,
7279 * since we will exit with TASK_RUNNING make sure we enter with it,
7280 * otherwise we will destroy state.
7282 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7283 "do not call blocking ops when !TASK_RUNNING; "
7284 "state=%lx set at [<%p>] %pS\n",
7286 (void *)current->task_state_change,
7287 (void *)current->task_state_change);
7289 ___might_sleep(file, line, preempt_offset);
7291 EXPORT_SYMBOL(__might_sleep);
7293 void ___might_sleep(const char *file, int line, int preempt_offset)
7295 static unsigned long prev_jiffy; /* ratelimiting */
7297 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7298 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7299 !is_idle_task(current)) ||
7300 system_state != SYSTEM_RUNNING || oops_in_progress)
7302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7304 prev_jiffy = jiffies;
7307 "BUG: sleeping function called from invalid context at %s:%d\n",
7310 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7311 in_atomic(), irqs_disabled(),
7312 current->pid, current->comm);
7314 if (task_stack_end_corrupted(current))
7315 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7317 debug_show_held_locks(current);
7318 if (irqs_disabled())
7319 print_irqtrace_events(current);
7320 #ifdef CONFIG_DEBUG_PREEMPT
7321 if (!preempt_count_equals(preempt_offset)) {
7322 pr_err("Preemption disabled at:");
7323 print_ip_sym(current->preempt_disable_ip);
7329 EXPORT_SYMBOL(___might_sleep);
7332 #ifdef CONFIG_MAGIC_SYSRQ
7333 static void normalize_task(struct rq *rq, struct task_struct *p)
7335 const struct sched_class *prev_class = p->sched_class;
7336 struct sched_attr attr = {
7337 .sched_policy = SCHED_NORMAL,
7339 int old_prio = p->prio;
7342 queued = task_on_rq_queued(p);
7344 dequeue_task(rq, p, 0);
7345 __setscheduler(rq, p, &attr);
7347 enqueue_task(rq, p, 0);
7351 check_class_changed(rq, p, prev_class, old_prio);
7354 void normalize_rt_tasks(void)
7356 struct task_struct *g, *p;
7357 unsigned long flags;
7360 read_lock(&tasklist_lock);
7361 for_each_process_thread(g, p) {
7363 * Only normalize user tasks:
7365 if (p->flags & PF_KTHREAD)
7368 p->se.exec_start = 0;
7369 #ifdef CONFIG_SCHEDSTATS
7370 p->se.statistics.wait_start = 0;
7371 p->se.statistics.sleep_start = 0;
7372 p->se.statistics.block_start = 0;
7375 if (!dl_task(p) && !rt_task(p)) {
7377 * Renice negative nice level userspace
7380 if (task_nice(p) < 0)
7381 set_user_nice(p, 0);
7385 rq = task_rq_lock(p, &flags);
7386 normalize_task(rq, p);
7387 task_rq_unlock(rq, p, &flags);
7389 read_unlock(&tasklist_lock);
7392 #endif /* CONFIG_MAGIC_SYSRQ */
7394 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7396 * These functions are only useful for the IA64 MCA handling, or kdb.
7398 * They can only be called when the whole system has been
7399 * stopped - every CPU needs to be quiescent, and no scheduling
7400 * activity can take place. Using them for anything else would
7401 * be a serious bug, and as a result, they aren't even visible
7402 * under any other configuration.
7406 * curr_task - return the current task for a given cpu.
7407 * @cpu: the processor in question.
7409 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7411 * Return: The current task for @cpu.
7413 struct task_struct *curr_task(int cpu)
7415 return cpu_curr(cpu);
7418 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7422 * set_curr_task - set the current task for a given cpu.
7423 * @cpu: the processor in question.
7424 * @p: the task pointer to set.
7426 * Description: This function must only be used when non-maskable interrupts
7427 * are serviced on a separate stack. It allows the architecture to switch the
7428 * notion of the current task on a cpu in a non-blocking manner. This function
7429 * must be called with all CPU's synchronized, and interrupts disabled, the
7430 * and caller must save the original value of the current task (see
7431 * curr_task() above) and restore that value before reenabling interrupts and
7432 * re-starting the system.
7434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7436 void set_curr_task(int cpu, struct task_struct *p)
7443 #ifdef CONFIG_CGROUP_SCHED
7444 /* task_group_lock serializes the addition/removal of task groups */
7445 static DEFINE_SPINLOCK(task_group_lock);
7447 static void free_sched_group(struct task_group *tg)
7449 free_fair_sched_group(tg);
7450 free_rt_sched_group(tg);
7455 /* allocate runqueue etc for a new task group */
7456 struct task_group *sched_create_group(struct task_group *parent)
7458 struct task_group *tg;
7460 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7462 return ERR_PTR(-ENOMEM);
7464 if (!alloc_fair_sched_group(tg, parent))
7467 if (!alloc_rt_sched_group(tg, parent))
7473 free_sched_group(tg);
7474 return ERR_PTR(-ENOMEM);
7477 void sched_online_group(struct task_group *tg, struct task_group *parent)
7479 unsigned long flags;
7481 spin_lock_irqsave(&task_group_lock, flags);
7482 list_add_rcu(&tg->list, &task_groups);
7484 WARN_ON(!parent); /* root should already exist */
7486 tg->parent = parent;
7487 INIT_LIST_HEAD(&tg->children);
7488 list_add_rcu(&tg->siblings, &parent->children);
7489 spin_unlock_irqrestore(&task_group_lock, flags);
7492 /* rcu callback to free various structures associated with a task group */
7493 static void free_sched_group_rcu(struct rcu_head *rhp)
7495 /* now it should be safe to free those cfs_rqs */
7496 free_sched_group(container_of(rhp, struct task_group, rcu));
7499 /* Destroy runqueue etc associated with a task group */
7500 void sched_destroy_group(struct task_group *tg)
7502 /* wait for possible concurrent references to cfs_rqs complete */
7503 call_rcu(&tg->rcu, free_sched_group_rcu);
7506 void sched_offline_group(struct task_group *tg)
7508 unsigned long flags;
7511 /* end participation in shares distribution */
7512 for_each_possible_cpu(i)
7513 unregister_fair_sched_group(tg, i);
7515 spin_lock_irqsave(&task_group_lock, flags);
7516 list_del_rcu(&tg->list);
7517 list_del_rcu(&tg->siblings);
7518 spin_unlock_irqrestore(&task_group_lock, flags);
7521 /* change task's runqueue when it moves between groups.
7522 * The caller of this function should have put the task in its new group
7523 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7524 * reflect its new group.
7526 void sched_move_task(struct task_struct *tsk)
7528 struct task_group *tg;
7529 int queued, running;
7530 unsigned long flags;
7533 rq = task_rq_lock(tsk, &flags);
7535 running = task_current(rq, tsk);
7536 queued = task_on_rq_queued(tsk);
7539 dequeue_task(rq, tsk, 0);
7540 if (unlikely(running))
7541 put_prev_task(rq, tsk);
7544 * All callers are synchronized by task_rq_lock(); we do not use RCU
7545 * which is pointless here. Thus, we pass "true" to task_css_check()
7546 * to prevent lockdep warnings.
7548 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7549 struct task_group, css);
7550 tg = autogroup_task_group(tsk, tg);
7551 tsk->sched_task_group = tg;
7553 #ifdef CONFIG_FAIR_GROUP_SCHED
7554 if (tsk->sched_class->task_move_group)
7555 tsk->sched_class->task_move_group(tsk, queued);
7558 set_task_rq(tsk, task_cpu(tsk));
7560 if (unlikely(running))
7561 tsk->sched_class->set_curr_task(rq);
7563 enqueue_task(rq, tsk, 0);
7565 task_rq_unlock(rq, tsk, &flags);
7567 #endif /* CONFIG_CGROUP_SCHED */
7569 #ifdef CONFIG_RT_GROUP_SCHED
7571 * Ensure that the real time constraints are schedulable.
7573 static DEFINE_MUTEX(rt_constraints_mutex);
7575 /* Must be called with tasklist_lock held */
7576 static inline int tg_has_rt_tasks(struct task_group *tg)
7578 struct task_struct *g, *p;
7581 * Autogroups do not have RT tasks; see autogroup_create().
7583 if (task_group_is_autogroup(tg))
7586 for_each_process_thread(g, p) {
7587 if (rt_task(p) && task_group(p) == tg)
7594 struct rt_schedulable_data {
7595 struct task_group *tg;
7600 static int tg_rt_schedulable(struct task_group *tg, void *data)
7602 struct rt_schedulable_data *d = data;
7603 struct task_group *child;
7604 unsigned long total, sum = 0;
7605 u64 period, runtime;
7607 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7608 runtime = tg->rt_bandwidth.rt_runtime;
7611 period = d->rt_period;
7612 runtime = d->rt_runtime;
7616 * Cannot have more runtime than the period.
7618 if (runtime > period && runtime != RUNTIME_INF)
7622 * Ensure we don't starve existing RT tasks.
7624 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7627 total = to_ratio(period, runtime);
7630 * Nobody can have more than the global setting allows.
7632 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7636 * The sum of our children's runtime should not exceed our own.
7638 list_for_each_entry_rcu(child, &tg->children, siblings) {
7639 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7640 runtime = child->rt_bandwidth.rt_runtime;
7642 if (child == d->tg) {
7643 period = d->rt_period;
7644 runtime = d->rt_runtime;
7647 sum += to_ratio(period, runtime);
7656 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7660 struct rt_schedulable_data data = {
7662 .rt_period = period,
7663 .rt_runtime = runtime,
7667 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7673 static int tg_set_rt_bandwidth(struct task_group *tg,
7674 u64 rt_period, u64 rt_runtime)
7679 * Disallowing the root group RT runtime is BAD, it would disallow the
7680 * kernel creating (and or operating) RT threads.
7682 if (tg == &root_task_group && rt_runtime == 0)
7685 /* No period doesn't make any sense. */
7689 mutex_lock(&rt_constraints_mutex);
7690 read_lock(&tasklist_lock);
7691 err = __rt_schedulable(tg, rt_period, rt_runtime);
7695 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7696 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7697 tg->rt_bandwidth.rt_runtime = rt_runtime;
7699 for_each_possible_cpu(i) {
7700 struct rt_rq *rt_rq = tg->rt_rq[i];
7702 raw_spin_lock(&rt_rq->rt_runtime_lock);
7703 rt_rq->rt_runtime = rt_runtime;
7704 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7706 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7708 read_unlock(&tasklist_lock);
7709 mutex_unlock(&rt_constraints_mutex);
7714 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7716 u64 rt_runtime, rt_period;
7718 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7719 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7720 if (rt_runtime_us < 0)
7721 rt_runtime = RUNTIME_INF;
7723 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7726 static long sched_group_rt_runtime(struct task_group *tg)
7730 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7733 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7734 do_div(rt_runtime_us, NSEC_PER_USEC);
7735 return rt_runtime_us;
7738 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7740 u64 rt_runtime, rt_period;
7742 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7743 rt_runtime = tg->rt_bandwidth.rt_runtime;
7745 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7748 static long sched_group_rt_period(struct task_group *tg)
7752 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 do_div(rt_period_us, NSEC_PER_USEC);
7754 return rt_period_us;
7756 #endif /* CONFIG_RT_GROUP_SCHED */
7758 #ifdef CONFIG_RT_GROUP_SCHED
7759 static int sched_rt_global_constraints(void)
7763 mutex_lock(&rt_constraints_mutex);
7764 read_lock(&tasklist_lock);
7765 ret = __rt_schedulable(NULL, 0, 0);
7766 read_unlock(&tasklist_lock);
7767 mutex_unlock(&rt_constraints_mutex);
7772 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7774 /* Don't accept realtime tasks when there is no way for them to run */
7775 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7781 #else /* !CONFIG_RT_GROUP_SCHED */
7782 static int sched_rt_global_constraints(void)
7784 unsigned long flags;
7787 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7788 for_each_possible_cpu(i) {
7789 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7791 raw_spin_lock(&rt_rq->rt_runtime_lock);
7792 rt_rq->rt_runtime = global_rt_runtime();
7793 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7795 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7799 #endif /* CONFIG_RT_GROUP_SCHED */
7801 static int sched_dl_global_constraints(void)
7803 u64 runtime = global_rt_runtime();
7804 u64 period = global_rt_period();
7805 u64 new_bw = to_ratio(period, runtime);
7808 unsigned long flags;
7811 * Here we want to check the bandwidth not being set to some
7812 * value smaller than the currently allocated bandwidth in
7813 * any of the root_domains.
7815 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7816 * cycling on root_domains... Discussion on different/better
7817 * solutions is welcome!
7819 for_each_possible_cpu(cpu) {
7820 rcu_read_lock_sched();
7821 dl_b = dl_bw_of(cpu);
7823 raw_spin_lock_irqsave(&dl_b->lock, flags);
7824 if (new_bw < dl_b->total_bw)
7826 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7828 rcu_read_unlock_sched();
7837 static void sched_dl_do_global(void)
7842 unsigned long flags;
7844 def_dl_bandwidth.dl_period = global_rt_period();
7845 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7847 if (global_rt_runtime() != RUNTIME_INF)
7848 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7851 * FIXME: As above...
7853 for_each_possible_cpu(cpu) {
7854 rcu_read_lock_sched();
7855 dl_b = dl_bw_of(cpu);
7857 raw_spin_lock_irqsave(&dl_b->lock, flags);
7859 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7861 rcu_read_unlock_sched();
7865 static int sched_rt_global_validate(void)
7867 if (sysctl_sched_rt_period <= 0)
7870 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7871 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7877 static void sched_rt_do_global(void)
7879 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7880 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7883 int sched_rt_handler(struct ctl_table *table, int write,
7884 void __user *buffer, size_t *lenp,
7887 int old_period, old_runtime;
7888 static DEFINE_MUTEX(mutex);
7892 old_period = sysctl_sched_rt_period;
7893 old_runtime = sysctl_sched_rt_runtime;
7895 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7897 if (!ret && write) {
7898 ret = sched_rt_global_validate();
7902 ret = sched_rt_global_constraints();
7906 ret = sched_dl_global_constraints();
7910 sched_rt_do_global();
7911 sched_dl_do_global();
7915 sysctl_sched_rt_period = old_period;
7916 sysctl_sched_rt_runtime = old_runtime;
7918 mutex_unlock(&mutex);
7923 int sched_rr_handler(struct ctl_table *table, int write,
7924 void __user *buffer, size_t *lenp,
7928 static DEFINE_MUTEX(mutex);
7931 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7932 /* make sure that internally we keep jiffies */
7933 /* also, writing zero resets timeslice to default */
7934 if (!ret && write) {
7935 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7936 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7938 mutex_unlock(&mutex);
7942 #ifdef CONFIG_CGROUP_SCHED
7944 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7946 return css ? container_of(css, struct task_group, css) : NULL;
7949 static struct cgroup_subsys_state *
7950 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7952 struct task_group *parent = css_tg(parent_css);
7953 struct task_group *tg;
7956 /* This is early initialization for the top cgroup */
7957 return &root_task_group.css;
7960 tg = sched_create_group(parent);
7962 return ERR_PTR(-ENOMEM);
7967 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7969 struct task_group *tg = css_tg(css);
7970 struct task_group *parent = css_tg(css->parent);
7973 sched_online_group(tg, parent);
7977 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7979 struct task_group *tg = css_tg(css);
7981 sched_destroy_group(tg);
7984 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7986 struct task_group *tg = css_tg(css);
7988 sched_offline_group(tg);
7991 static void cpu_cgroup_fork(struct task_struct *task)
7993 sched_move_task(task);
7996 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7997 struct cgroup_taskset *tset)
7999 struct task_struct *task;
8001 cgroup_taskset_for_each(task, tset) {
8002 #ifdef CONFIG_RT_GROUP_SCHED
8003 if (!sched_rt_can_attach(css_tg(css), task))
8006 /* We don't support RT-tasks being in separate groups */
8007 if (task->sched_class != &fair_sched_class)
8014 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8015 struct cgroup_taskset *tset)
8017 struct task_struct *task;
8019 cgroup_taskset_for_each(task, tset)
8020 sched_move_task(task);
8023 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8024 struct cgroup_subsys_state *old_css,
8025 struct task_struct *task)
8028 * cgroup_exit() is called in the copy_process() failure path.
8029 * Ignore this case since the task hasn't ran yet, this avoids
8030 * trying to poke a half freed task state from generic code.
8032 if (!(task->flags & PF_EXITING))
8035 sched_move_task(task);
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8040 struct cftype *cftype, u64 shareval)
8042 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8045 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8048 struct task_group *tg = css_tg(css);
8050 return (u64) scale_load_down(tg->shares);
8053 #ifdef CONFIG_CFS_BANDWIDTH
8054 static DEFINE_MUTEX(cfs_constraints_mutex);
8056 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8057 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8059 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8061 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8063 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8064 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8066 if (tg == &root_task_group)
8070 * Ensure we have at some amount of bandwidth every period. This is
8071 * to prevent reaching a state of large arrears when throttled via
8072 * entity_tick() resulting in prolonged exit starvation.
8074 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8078 * Likewise, bound things on the otherside by preventing insane quota
8079 * periods. This also allows us to normalize in computing quota
8082 if (period > max_cfs_quota_period)
8086 * Prevent race between setting of cfs_rq->runtime_enabled and
8087 * unthrottle_offline_cfs_rqs().
8090 mutex_lock(&cfs_constraints_mutex);
8091 ret = __cfs_schedulable(tg, period, quota);
8095 runtime_enabled = quota != RUNTIME_INF;
8096 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8098 * If we need to toggle cfs_bandwidth_used, off->on must occur
8099 * before making related changes, and on->off must occur afterwards
8101 if (runtime_enabled && !runtime_was_enabled)
8102 cfs_bandwidth_usage_inc();
8103 raw_spin_lock_irq(&cfs_b->lock);
8104 cfs_b->period = ns_to_ktime(period);
8105 cfs_b->quota = quota;
8107 __refill_cfs_bandwidth_runtime(cfs_b);
8108 /* restart the period timer (if active) to handle new period expiry */
8109 if (runtime_enabled && cfs_b->timer_active) {
8110 /* force a reprogram */
8111 __start_cfs_bandwidth(cfs_b, true);
8113 raw_spin_unlock_irq(&cfs_b->lock);
8115 for_each_online_cpu(i) {
8116 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8117 struct rq *rq = cfs_rq->rq;
8119 raw_spin_lock_irq(&rq->lock);
8120 cfs_rq->runtime_enabled = runtime_enabled;
8121 cfs_rq->runtime_remaining = 0;
8123 if (cfs_rq->throttled)
8124 unthrottle_cfs_rq(cfs_rq);
8125 raw_spin_unlock_irq(&rq->lock);
8127 if (runtime_was_enabled && !runtime_enabled)
8128 cfs_bandwidth_usage_dec();
8130 mutex_unlock(&cfs_constraints_mutex);
8136 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8140 period = ktime_to_ns(tg->cfs_bandwidth.period);
8141 if (cfs_quota_us < 0)
8142 quota = RUNTIME_INF;
8144 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8146 return tg_set_cfs_bandwidth(tg, period, quota);
8149 long tg_get_cfs_quota(struct task_group *tg)
8153 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8156 quota_us = tg->cfs_bandwidth.quota;
8157 do_div(quota_us, NSEC_PER_USEC);
8162 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8166 period = (u64)cfs_period_us * NSEC_PER_USEC;
8167 quota = tg->cfs_bandwidth.quota;
8169 return tg_set_cfs_bandwidth(tg, period, quota);
8172 long tg_get_cfs_period(struct task_group *tg)
8176 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8177 do_div(cfs_period_us, NSEC_PER_USEC);
8179 return cfs_period_us;
8182 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8185 return tg_get_cfs_quota(css_tg(css));
8188 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cftype, s64 cfs_quota_us)
8191 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8194 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8197 return tg_get_cfs_period(css_tg(css));
8200 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cftype, u64 cfs_period_us)
8203 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8206 struct cfs_schedulable_data {
8207 struct task_group *tg;
8212 * normalize group quota/period to be quota/max_period
8213 * note: units are usecs
8215 static u64 normalize_cfs_quota(struct task_group *tg,
8216 struct cfs_schedulable_data *d)
8224 period = tg_get_cfs_period(tg);
8225 quota = tg_get_cfs_quota(tg);
8228 /* note: these should typically be equivalent */
8229 if (quota == RUNTIME_INF || quota == -1)
8232 return to_ratio(period, quota);
8235 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8237 struct cfs_schedulable_data *d = data;
8238 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8239 s64 quota = 0, parent_quota = -1;
8242 quota = RUNTIME_INF;
8244 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8246 quota = normalize_cfs_quota(tg, d);
8247 parent_quota = parent_b->hierarchical_quota;
8250 * ensure max(child_quota) <= parent_quota, inherit when no
8253 if (quota == RUNTIME_INF)
8254 quota = parent_quota;
8255 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8258 cfs_b->hierarchical_quota = quota;
8263 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8266 struct cfs_schedulable_data data = {
8272 if (quota != RUNTIME_INF) {
8273 do_div(data.period, NSEC_PER_USEC);
8274 do_div(data.quota, NSEC_PER_USEC);
8278 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8284 static int cpu_stats_show(struct seq_file *sf, void *v)
8286 struct task_group *tg = css_tg(seq_css(sf));
8287 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8289 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8290 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8291 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8295 #endif /* CONFIG_CFS_BANDWIDTH */
8296 #endif /* CONFIG_FAIR_GROUP_SCHED */
8298 #ifdef CONFIG_RT_GROUP_SCHED
8299 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8300 struct cftype *cft, s64 val)
8302 return sched_group_set_rt_runtime(css_tg(css), val);
8305 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8308 return sched_group_rt_runtime(css_tg(css));
8311 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8312 struct cftype *cftype, u64 rt_period_us)
8314 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8317 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8320 return sched_group_rt_period(css_tg(css));
8322 #endif /* CONFIG_RT_GROUP_SCHED */
8324 static struct cftype cpu_files[] = {
8325 #ifdef CONFIG_FAIR_GROUP_SCHED
8328 .read_u64 = cpu_shares_read_u64,
8329 .write_u64 = cpu_shares_write_u64,
8332 #ifdef CONFIG_CFS_BANDWIDTH
8334 .name = "cfs_quota_us",
8335 .read_s64 = cpu_cfs_quota_read_s64,
8336 .write_s64 = cpu_cfs_quota_write_s64,
8339 .name = "cfs_period_us",
8340 .read_u64 = cpu_cfs_period_read_u64,
8341 .write_u64 = cpu_cfs_period_write_u64,
8345 .seq_show = cpu_stats_show,
8348 #ifdef CONFIG_RT_GROUP_SCHED
8350 .name = "rt_runtime_us",
8351 .read_s64 = cpu_rt_runtime_read,
8352 .write_s64 = cpu_rt_runtime_write,
8355 .name = "rt_period_us",
8356 .read_u64 = cpu_rt_period_read_uint,
8357 .write_u64 = cpu_rt_period_write_uint,
8363 struct cgroup_subsys cpu_cgrp_subsys = {
8364 .css_alloc = cpu_cgroup_css_alloc,
8365 .css_free = cpu_cgroup_css_free,
8366 .css_online = cpu_cgroup_css_online,
8367 .css_offline = cpu_cgroup_css_offline,
8368 .fork = cpu_cgroup_fork,
8369 .can_attach = cpu_cgroup_can_attach,
8370 .attach = cpu_cgroup_attach,
8371 .exit = cpu_cgroup_exit,
8372 .legacy_cftypes = cpu_files,
8376 #endif /* CONFIG_CGROUP_SCHED */
8378 void dump_cpu_task(int cpu)
8380 pr_info("Task dump for CPU %d:\n", cpu);
8381 sched_show_task(cpu_curr(cpu));