2 * Performance events x86 architecture code
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
30 #include <asm/stacktrace.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
40 #include "perf_event.h"
42 struct x86_pmu x86_pmu __read_mostly;
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
64 u64 x86_perf_event_update(struct perf_event *event)
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 * Careful: an NMI might modify the previous event value.
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
95 * Careful, not all hw sign-extends above the physical width
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
104 return new_raw_count;
108 * Find and validate any extra registers to set up.
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
115 reg = &event->hw.extra_reg;
117 if (!x86_pmu.extra_regs)
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
123 if (event->attr.config1 & ~er->valid_mask)
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
130 reg->config = event->attr.config1;
137 static atomic_t active_events;
138 static DEFINE_MUTEX(pmc_reserve_mutex);
140 #ifdef CONFIG_X86_LOCAL_APIC
142 static bool reserve_pmc_hardware(void)
146 for (i = 0; i < x86_pmu.num_counters; i++) {
147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
159 for (i--; i >= 0; i--)
160 release_evntsel_nmi(x86_pmu_config_addr(i));
162 i = x86_pmu.num_counters;
165 for (i--; i >= 0; i--)
166 release_perfctr_nmi(x86_pmu_event_addr(i));
171 static void release_pmc_hardware(void)
175 for (i = 0; i < x86_pmu.num_counters; i++) {
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
183 static bool reserve_pmc_hardware(void) { return true; }
184 static void release_pmc_hardware(void) {}
188 static bool check_hw_exists(void)
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
195 * Check to see if the BIOS enabled any of the counters, if so
198 for (i = 0; i < x86_pmu.num_counters; i++) {
199 reg = x86_pmu_config_addr(i);
200 ret = rdmsrl_safe(reg, &val);
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
216 if (val & (0x03 << i*4)) {
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
229 reg = x86_pmu_event_addr(0);
230 if (rdmsrl_safe(reg, &val))
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
235 if (ret || val != val_new)
239 * We still allow the PMU driver to operate:
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
257 static void hw_perf_event_destroy(struct perf_event *event)
259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
260 release_pmc_hardware();
261 release_ds_buffers();
262 mutex_unlock(&pmc_reserve_mutex);
266 static inline int x86_pmu_initialized(void)
268 return x86_pmu.handle_irq != NULL;
272 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
274 struct perf_event_attr *attr = &event->attr;
275 unsigned int cache_type, cache_op, cache_result;
278 config = attr->config;
280 cache_type = (config >> 0) & 0xff;
281 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
284 cache_op = (config >> 8) & 0xff;
285 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
288 cache_result = (config >> 16) & 0xff;
289 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
292 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
302 return x86_pmu_extra_regs(val, event);
305 int x86_setup_perfctr(struct perf_event *event)
307 struct perf_event_attr *attr = &event->attr;
308 struct hw_perf_event *hwc = &event->hw;
311 if (!is_sampling_event(event)) {
312 hwc->sample_period = x86_pmu.max_period;
313 hwc->last_period = hwc->sample_period;
314 local64_set(&hwc->period_left, hwc->sample_period);
317 if (attr->type == PERF_TYPE_RAW)
318 return x86_pmu_extra_regs(event->attr.config, event);
320 if (attr->type == PERF_TYPE_HW_CACHE)
321 return set_ext_hw_attr(hwc, event);
323 if (attr->config >= x86_pmu.max_events)
329 config = x86_pmu.event_map(attr->config);
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
342 /* BTS is not supported by this architecture. */
343 if (!x86_pmu.bts_active)
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
351 hwc->config |= config;
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
362 static inline int precise_br_compat(struct perf_event *event)
364 u64 m = event->attr.branch_sample_type;
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
386 int x86_pmu_hw_config(struct perf_event *event)
388 if (event->attr.precise_ip) {
391 /* Support for constant skid */
392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
395 /* Support for IP fixup */
396 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
400 if (event->attr.precise_ip > precise)
403 * check that PEBS LBR correction does not conflict with
404 * whatever the user is asking with attr->branch_sample_type
406 if (event->attr.precise_ip > 1 &&
407 x86_pmu.intel_cap.pebs_format < 2) {
408 u64 *br_type = &event->attr.branch_sample_type;
410 if (has_branch_stack(event)) {
411 if (!precise_br_compat(event))
414 /* branch_sample_type is compatible */
418 * user did not specify branch_sample_type
420 * For PEBS fixups, we capture all
421 * the branches at the priv level of the
424 *br_type = PERF_SAMPLE_BRANCH_ANY;
426 if (!event->attr.exclude_user)
427 *br_type |= PERF_SAMPLE_BRANCH_USER;
429 if (!event->attr.exclude_kernel)
430 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
437 * (keep 'enabled' bit clear for now)
439 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
442 * Count user and OS events unless requested not to
444 if (!event->attr.exclude_user)
445 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
446 if (!event->attr.exclude_kernel)
447 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
449 if (event->attr.type == PERF_TYPE_RAW)
450 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
452 return x86_setup_perfctr(event);
456 * Setup the hardware configuration for a given attr_type
458 static int __x86_pmu_event_init(struct perf_event *event)
462 if (!x86_pmu_initialized())
466 if (!atomic_inc_not_zero(&active_events)) {
467 mutex_lock(&pmc_reserve_mutex);
468 if (atomic_read(&active_events) == 0) {
469 if (!reserve_pmc_hardware())
472 reserve_ds_buffers();
475 atomic_inc(&active_events);
476 mutex_unlock(&pmc_reserve_mutex);
481 event->destroy = hw_perf_event_destroy;
484 event->hw.last_cpu = -1;
485 event->hw.last_tag = ~0ULL;
488 event->hw.extra_reg.idx = EXTRA_REG_NONE;
489 event->hw.branch_reg.idx = EXTRA_REG_NONE;
491 return x86_pmu.hw_config(event);
494 void x86_pmu_disable_all(void)
496 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
499 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
502 if (!test_bit(idx, cpuc->active_mask))
504 rdmsrl(x86_pmu_config_addr(idx), val);
505 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
507 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
508 wrmsrl(x86_pmu_config_addr(idx), val);
512 static void x86_pmu_disable(struct pmu *pmu)
514 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
516 if (!x86_pmu_initialized())
526 x86_pmu.disable_all();
529 void x86_pmu_enable_all(int added)
531 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
534 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
535 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
537 if (!test_bit(idx, cpuc->active_mask))
540 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
544 static struct pmu pmu;
546 static inline int is_x86_event(struct perf_event *event)
548 return event->pmu == &pmu;
552 * Event scheduler state:
554 * Assign events iterating over all events and counters, beginning
555 * with events with least weights first. Keep the current iterator
556 * state in struct sched_state.
560 int event; /* event index */
561 int counter; /* counter index */
562 int unassigned; /* number of events to be assigned left */
563 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
566 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
567 #define SCHED_STATES_MAX 2
572 struct perf_event **events;
573 struct sched_state state;
575 struct sched_state saved[SCHED_STATES_MAX];
579 * Initialize interator that runs through all events and counters.
581 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
582 int num, int wmin, int wmax)
586 memset(sched, 0, sizeof(*sched));
587 sched->max_events = num;
588 sched->max_weight = wmax;
589 sched->events = events;
591 for (idx = 0; idx < num; idx++) {
592 if (events[idx]->hw.constraint->weight == wmin)
596 sched->state.event = idx; /* start with min weight */
597 sched->state.weight = wmin;
598 sched->state.unassigned = num;
601 static void perf_sched_save_state(struct perf_sched *sched)
603 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
606 sched->saved[sched->saved_states] = sched->state;
607 sched->saved_states++;
610 static bool perf_sched_restore_state(struct perf_sched *sched)
612 if (!sched->saved_states)
615 sched->saved_states--;
616 sched->state = sched->saved[sched->saved_states];
618 /* continue with next counter: */
619 clear_bit(sched->state.counter++, sched->state.used);
625 * Select a counter for the current event to schedule. Return true on
628 static bool __perf_sched_find_counter(struct perf_sched *sched)
630 struct event_constraint *c;
633 if (!sched->state.unassigned)
636 if (sched->state.event >= sched->max_events)
639 c = sched->events[sched->state.event]->hw.constraint;
640 /* Prefer fixed purpose counters */
641 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642 idx = INTEL_PMC_IDX_FIXED;
643 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
644 if (!__test_and_set_bit(idx, sched->state.used))
648 /* Grab the first unused counter starting with idx */
649 idx = sched->state.counter;
650 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
651 if (!__test_and_set_bit(idx, sched->state.used))
658 sched->state.counter = idx;
661 perf_sched_save_state(sched);
666 static bool perf_sched_find_counter(struct perf_sched *sched)
668 while (!__perf_sched_find_counter(sched)) {
669 if (!perf_sched_restore_state(sched))
677 * Go through all unassigned events and find the next one to schedule.
678 * Take events with the least weight first. Return true on success.
680 static bool perf_sched_next_event(struct perf_sched *sched)
682 struct event_constraint *c;
684 if (!sched->state.unassigned || !--sched->state.unassigned)
689 sched->state.event++;
690 if (sched->state.event >= sched->max_events) {
692 sched->state.event = 0;
693 sched->state.weight++;
694 if (sched->state.weight > sched->max_weight)
697 c = sched->events[sched->state.event]->hw.constraint;
698 } while (c->weight != sched->state.weight);
700 sched->state.counter = 0; /* start with first counter */
706 * Assign a counter for each event.
708 int perf_assign_events(struct perf_event **events, int n,
709 int wmin, int wmax, int *assign)
711 struct perf_sched sched;
713 perf_sched_init(&sched, events, n, wmin, wmax);
716 if (!perf_sched_find_counter(&sched))
719 assign[sched.state.event] = sched.state.counter;
720 } while (perf_sched_next_event(&sched));
722 return sched.state.unassigned;
724 EXPORT_SYMBOL_GPL(perf_assign_events);
726 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
728 struct event_constraint *c;
729 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
730 struct perf_event *e;
731 int i, wmin, wmax, num = 0;
732 struct hw_perf_event *hwc;
734 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
736 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
737 hwc = &cpuc->event_list[i]->hw;
738 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
741 wmin = min(wmin, c->weight);
742 wmax = max(wmax, c->weight);
746 * fastpath, try to reuse previous register
748 for (i = 0; i < n; i++) {
749 hwc = &cpuc->event_list[i]->hw;
756 /* constraint still honored */
757 if (!test_bit(hwc->idx, c->idxmsk))
760 /* not already used */
761 if (test_bit(hwc->idx, used_mask))
764 __set_bit(hwc->idx, used_mask);
766 assign[i] = hwc->idx;
771 num = perf_assign_events(cpuc->event_list, n, wmin,
775 * Mark the event as committed, so we do not put_constraint()
776 * in case new events are added and fail scheduling.
778 if (!num && assign) {
779 for (i = 0; i < n; i++) {
780 e = cpuc->event_list[i];
781 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
785 * scheduling failed or is just a simulation,
786 * free resources if necessary
788 if (!assign || num) {
789 for (i = 0; i < n; i++) {
790 e = cpuc->event_list[i];
792 * do not put_constraint() on comitted events,
793 * because they are good to go
795 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
798 if (x86_pmu.put_event_constraints)
799 x86_pmu.put_event_constraints(cpuc, e);
802 return num ? -EINVAL : 0;
806 * dogrp: true if must collect siblings events (group)
807 * returns total number of events and error code
809 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
811 struct perf_event *event;
814 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
816 /* current number of events already accepted */
819 if (is_x86_event(leader)) {
822 cpuc->event_list[n] = leader;
828 list_for_each_entry(event, &leader->sibling_list, group_entry) {
829 if (!is_x86_event(event) ||
830 event->state <= PERF_EVENT_STATE_OFF)
836 cpuc->event_list[n] = event;
842 static inline void x86_assign_hw_event(struct perf_event *event,
843 struct cpu_hw_events *cpuc, int i)
845 struct hw_perf_event *hwc = &event->hw;
847 hwc->idx = cpuc->assign[i];
848 hwc->last_cpu = smp_processor_id();
849 hwc->last_tag = ++cpuc->tags[i];
851 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
852 hwc->config_base = 0;
854 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
855 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
856 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
857 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
859 hwc->config_base = x86_pmu_config_addr(hwc->idx);
860 hwc->event_base = x86_pmu_event_addr(hwc->idx);
861 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
865 static inline int match_prev_assignment(struct hw_perf_event *hwc,
866 struct cpu_hw_events *cpuc,
869 return hwc->idx == cpuc->assign[i] &&
870 hwc->last_cpu == smp_processor_id() &&
871 hwc->last_tag == cpuc->tags[i];
874 static void x86_pmu_start(struct perf_event *event, int flags);
876 static void x86_pmu_enable(struct pmu *pmu)
878 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
879 struct perf_event *event;
880 struct hw_perf_event *hwc;
881 int i, added = cpuc->n_added;
883 if (!x86_pmu_initialized())
890 int n_running = cpuc->n_events - cpuc->n_added;
892 * apply assignment obtained either from
893 * hw_perf_group_sched_in() or x86_pmu_enable()
895 * step1: save events moving to new counters
897 for (i = 0; i < n_running; i++) {
898 event = cpuc->event_list[i];
902 * we can avoid reprogramming counter if:
903 * - assigned same counter as last time
904 * - running on same CPU as last time
905 * - no other event has used the counter since
907 if (hwc->idx == -1 ||
908 match_prev_assignment(hwc, cpuc, i))
912 * Ensure we don't accidentally enable a stopped
913 * counter simply because we rescheduled.
915 if (hwc->state & PERF_HES_STOPPED)
916 hwc->state |= PERF_HES_ARCH;
918 x86_pmu_stop(event, PERF_EF_UPDATE);
922 * step2: reprogram moved events into new counters
924 for (i = 0; i < cpuc->n_events; i++) {
925 event = cpuc->event_list[i];
928 if (!match_prev_assignment(hwc, cpuc, i))
929 x86_assign_hw_event(event, cpuc, i);
930 else if (i < n_running)
933 if (hwc->state & PERF_HES_ARCH)
936 x86_pmu_start(event, PERF_EF_RELOAD);
939 perf_events_lapic_init();
945 x86_pmu.enable_all(added);
948 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
951 * Set the next IRQ period, based on the hwc->period_left value.
952 * To be called with the event disabled in hw:
954 int x86_perf_event_set_period(struct perf_event *event)
956 struct hw_perf_event *hwc = &event->hw;
957 s64 left = local64_read(&hwc->period_left);
958 s64 period = hwc->sample_period;
959 int ret = 0, idx = hwc->idx;
961 if (idx == INTEL_PMC_IDX_FIXED_BTS)
965 * If we are way outside a reasonable range then just skip forward:
967 if (unlikely(left <= -period)) {
969 local64_set(&hwc->period_left, left);
970 hwc->last_period = period;
974 if (unlikely(left <= 0)) {
976 local64_set(&hwc->period_left, left);
977 hwc->last_period = period;
981 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
983 if (unlikely(left < 2))
986 if (left > x86_pmu.max_period)
987 left = x86_pmu.max_period;
989 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
992 * The hw event starts counting from this event offset,
993 * mark it to be able to extra future deltas:
995 local64_set(&hwc->prev_count, (u64)-left);
997 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1000 * Due to erratum on certan cpu we need
1001 * a second write to be sure the register
1002 * is updated properly
1004 if (x86_pmu.perfctr_second_write) {
1005 wrmsrl(hwc->event_base,
1006 (u64)(-left) & x86_pmu.cntval_mask);
1009 perf_event_update_userpage(event);
1014 void x86_pmu_enable_event(struct perf_event *event)
1016 if (__this_cpu_read(cpu_hw_events.enabled))
1017 __x86_pmu_enable_event(&event->hw,
1018 ARCH_PERFMON_EVENTSEL_ENABLE);
1022 * Add a single event to the PMU.
1024 * The event is added to the group of enabled events
1025 * but only if it can be scehduled with existing events.
1027 static int x86_pmu_add(struct perf_event *event, int flags)
1029 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1030 struct hw_perf_event *hwc;
1031 int assign[X86_PMC_IDX_MAX];
1036 perf_pmu_disable(event->pmu);
1037 n0 = cpuc->n_events;
1038 ret = n = collect_events(cpuc, event, false);
1042 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1043 if (!(flags & PERF_EF_START))
1044 hwc->state |= PERF_HES_ARCH;
1047 * If group events scheduling transaction was started,
1048 * skip the schedulability test here, it will be performed
1049 * at commit time (->commit_txn) as a whole.
1051 if (cpuc->group_flag & PERF_EVENT_TXN)
1054 ret = x86_pmu.schedule_events(cpuc, n, assign);
1058 * copy new assignment, now we know it is possible
1059 * will be used by hw_perf_enable()
1061 memcpy(cpuc->assign, assign, n*sizeof(int));
1065 * Commit the collect_events() state. See x86_pmu_del() and
1069 cpuc->n_added += n - n0;
1070 cpuc->n_txn += n - n0;
1074 perf_pmu_enable(event->pmu);
1078 static void x86_pmu_start(struct perf_event *event, int flags)
1080 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1081 int idx = event->hw.idx;
1083 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1086 if (WARN_ON_ONCE(idx == -1))
1089 if (flags & PERF_EF_RELOAD) {
1090 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1091 x86_perf_event_set_period(event);
1094 event->hw.state = 0;
1096 cpuc->events[idx] = event;
1097 __set_bit(idx, cpuc->active_mask);
1098 __set_bit(idx, cpuc->running);
1099 x86_pmu.enable(event);
1100 perf_event_update_userpage(event);
1103 void perf_event_print_debug(void)
1105 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1107 struct cpu_hw_events *cpuc;
1108 unsigned long flags;
1111 if (!x86_pmu.num_counters)
1114 local_irq_save(flags);
1116 cpu = smp_processor_id();
1117 cpuc = &per_cpu(cpu_hw_events, cpu);
1119 if (x86_pmu.version >= 2) {
1120 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1121 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1122 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1123 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1124 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1127 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1128 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1129 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1130 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1131 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1133 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1135 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1136 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1137 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1139 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1141 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1142 cpu, idx, pmc_ctrl);
1143 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1144 cpu, idx, pmc_count);
1145 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1146 cpu, idx, prev_left);
1148 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1149 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1151 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1152 cpu, idx, pmc_count);
1154 local_irq_restore(flags);
1157 void x86_pmu_stop(struct perf_event *event, int flags)
1159 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1160 struct hw_perf_event *hwc = &event->hw;
1162 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1163 x86_pmu.disable(event);
1164 cpuc->events[hwc->idx] = NULL;
1165 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1166 hwc->state |= PERF_HES_STOPPED;
1169 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1171 * Drain the remaining delta count out of a event
1172 * that we are disabling:
1174 x86_perf_event_update(event);
1175 hwc->state |= PERF_HES_UPTODATE;
1179 static void x86_pmu_del(struct perf_event *event, int flags)
1181 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1185 * event is descheduled
1187 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1190 * If we're called during a txn, we don't need to do anything.
1191 * The events never got scheduled and ->cancel_txn will truncate
1194 * XXX assumes any ->del() called during a TXN will only be on
1195 * an event added during that same TXN.
1197 if (cpuc->group_flag & PERF_EVENT_TXN)
1201 * Not a TXN, therefore cleanup properly.
1203 x86_pmu_stop(event, PERF_EF_UPDATE);
1205 for (i = 0; i < cpuc->n_events; i++) {
1206 if (event == cpuc->event_list[i])
1210 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1213 /* If we have a newly added event; make sure to decrease n_added. */
1214 if (i >= cpuc->n_events - cpuc->n_added)
1217 if (x86_pmu.put_event_constraints)
1218 x86_pmu.put_event_constraints(cpuc, event);
1220 /* Delete the array entry. */
1221 while (++i < cpuc->n_events)
1222 cpuc->event_list[i-1] = cpuc->event_list[i];
1225 perf_event_update_userpage(event);
1228 int x86_pmu_handle_irq(struct pt_regs *regs)
1230 struct perf_sample_data data;
1231 struct cpu_hw_events *cpuc;
1232 struct perf_event *event;
1233 int idx, handled = 0;
1236 cpuc = this_cpu_ptr(&cpu_hw_events);
1239 * Some chipsets need to unmask the LVTPC in a particular spot
1240 * inside the nmi handler. As a result, the unmasking was pushed
1241 * into all the nmi handlers.
1243 * This generic handler doesn't seem to have any issues where the
1244 * unmasking occurs so it was left at the top.
1246 apic_write(APIC_LVTPC, APIC_DM_NMI);
1248 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1249 if (!test_bit(idx, cpuc->active_mask)) {
1251 * Though we deactivated the counter some cpus
1252 * might still deliver spurious interrupts still
1253 * in flight. Catch them:
1255 if (__test_and_clear_bit(idx, cpuc->running))
1260 event = cpuc->events[idx];
1262 val = x86_perf_event_update(event);
1263 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1270 perf_sample_data_init(&data, 0, event->hw.last_period);
1272 if (!x86_perf_event_set_period(event))
1275 if (perf_event_overflow(event, &data, regs))
1276 x86_pmu_stop(event, 0);
1280 inc_irq_stat(apic_perf_irqs);
1285 void perf_events_lapic_init(void)
1287 if (!x86_pmu.apic || !x86_pmu_initialized())
1291 * Always use NMI for PMU
1293 apic_write(APIC_LVTPC, APIC_DM_NMI);
1297 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1303 if (!atomic_read(&active_events))
1306 start_clock = sched_clock();
1307 ret = x86_pmu.handle_irq(regs);
1308 finish_clock = sched_clock();
1310 perf_sample_event_took(finish_clock - start_clock);
1314 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1316 struct event_constraint emptyconstraint;
1317 struct event_constraint unconstrained;
1320 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1322 unsigned int cpu = (long)hcpu;
1323 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1324 int ret = NOTIFY_OK;
1326 switch (action & ~CPU_TASKS_FROZEN) {
1327 case CPU_UP_PREPARE:
1328 cpuc->kfree_on_online = NULL;
1329 if (x86_pmu.cpu_prepare)
1330 ret = x86_pmu.cpu_prepare(cpu);
1334 if (x86_pmu.cpu_starting)
1335 x86_pmu.cpu_starting(cpu);
1339 kfree(cpuc->kfree_on_online);
1343 if (x86_pmu.cpu_dying)
1344 x86_pmu.cpu_dying(cpu);
1347 case CPU_UP_CANCELED:
1349 if (x86_pmu.cpu_dead)
1350 x86_pmu.cpu_dead(cpu);
1360 static void __init pmu_check_apic(void)
1366 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1367 pr_info("no hardware sampling interrupt available.\n");
1370 * If we have a PMU initialized but no APIC
1371 * interrupts, we cannot sample hardware
1372 * events (user-space has to fall back and
1373 * sample via a hrtimer based software event):
1375 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1379 static struct attribute_group x86_pmu_format_group = {
1385 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1386 * out of events_attr attributes.
1388 static void __init filter_events(struct attribute **attrs)
1390 struct device_attribute *d;
1391 struct perf_pmu_events_attr *pmu_attr;
1394 for (i = 0; attrs[i]; i++) {
1395 d = (struct device_attribute *)attrs[i];
1396 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1398 if (pmu_attr->event_str)
1400 if (x86_pmu.event_map(i))
1403 for (j = i; attrs[j]; j++)
1404 attrs[j] = attrs[j + 1];
1406 /* Check the shifted attr. */
1411 /* Merge two pointer arrays */
1412 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1414 struct attribute **new;
1417 for (j = 0; a[j]; j++)
1419 for (i = 0; b[i]; i++)
1423 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1428 for (i = 0; a[i]; i++)
1430 for (i = 0; b[i]; i++)
1437 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1440 struct perf_pmu_events_attr *pmu_attr = \
1441 container_of(attr, struct perf_pmu_events_attr, attr);
1442 u64 config = x86_pmu.event_map(pmu_attr->id);
1444 /* string trumps id */
1445 if (pmu_attr->event_str)
1446 return sprintf(page, "%s", pmu_attr->event_str);
1448 return x86_pmu.events_sysfs_show(page, config);
1451 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1452 EVENT_ATTR(instructions, INSTRUCTIONS );
1453 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1454 EVENT_ATTR(cache-misses, CACHE_MISSES );
1455 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1456 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1457 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1458 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1459 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1460 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1462 static struct attribute *empty_attrs;
1464 static struct attribute *events_attr[] = {
1465 EVENT_PTR(CPU_CYCLES),
1466 EVENT_PTR(INSTRUCTIONS),
1467 EVENT_PTR(CACHE_REFERENCES),
1468 EVENT_PTR(CACHE_MISSES),
1469 EVENT_PTR(BRANCH_INSTRUCTIONS),
1470 EVENT_PTR(BRANCH_MISSES),
1471 EVENT_PTR(BUS_CYCLES),
1472 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1473 EVENT_PTR(STALLED_CYCLES_BACKEND),
1474 EVENT_PTR(REF_CPU_CYCLES),
1478 static struct attribute_group x86_pmu_events_group = {
1480 .attrs = events_attr,
1483 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1485 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1486 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1487 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1488 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1489 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1490 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1494 * We have whole page size to spend and just little data
1495 * to write, so we can safely use sprintf.
1497 ret = sprintf(page, "event=0x%02llx", event);
1500 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1503 ret += sprintf(page + ret, ",edge");
1506 ret += sprintf(page + ret, ",pc");
1509 ret += sprintf(page + ret, ",any");
1512 ret += sprintf(page + ret, ",inv");
1515 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1517 ret += sprintf(page + ret, "\n");
1522 static int __init init_hw_perf_events(void)
1524 struct x86_pmu_quirk *quirk;
1527 pr_info("Performance Events: ");
1529 switch (boot_cpu_data.x86_vendor) {
1530 case X86_VENDOR_INTEL:
1531 err = intel_pmu_init();
1533 case X86_VENDOR_AMD:
1534 err = amd_pmu_init();
1540 pr_cont("no PMU driver, software events only.\n");
1546 /* sanity check that the hardware exists or is emulated */
1547 if (!check_hw_exists())
1550 pr_cont("%s PMU driver.\n", x86_pmu.name);
1552 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1554 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1557 if (!x86_pmu.intel_ctrl)
1558 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1560 perf_events_lapic_init();
1561 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1563 unconstrained = (struct event_constraint)
1564 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1565 0, x86_pmu.num_counters, 0, 0);
1567 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1569 if (x86_pmu.event_attrs)
1570 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1572 if (!x86_pmu.events_sysfs_show)
1573 x86_pmu_events_group.attrs = &empty_attrs;
1575 filter_events(x86_pmu_events_group.attrs);
1577 if (x86_pmu.cpu_events) {
1578 struct attribute **tmp;
1580 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1582 x86_pmu_events_group.attrs = tmp;
1585 pr_info("... version: %d\n", x86_pmu.version);
1586 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1587 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1588 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1589 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1590 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1591 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1593 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1594 perf_cpu_notifier(x86_pmu_notifier);
1598 early_initcall(init_hw_perf_events);
1600 static inline void x86_pmu_read(struct perf_event *event)
1602 x86_perf_event_update(event);
1606 * Start group events scheduling transaction
1607 * Set the flag to make pmu::enable() not perform the
1608 * schedulability test, it will be performed at commit time
1610 static void x86_pmu_start_txn(struct pmu *pmu)
1612 perf_pmu_disable(pmu);
1613 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1614 __this_cpu_write(cpu_hw_events.n_txn, 0);
1618 * Stop group events scheduling transaction
1619 * Clear the flag and pmu::enable() will perform the
1620 * schedulability test.
1622 static void x86_pmu_cancel_txn(struct pmu *pmu)
1624 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1626 * Truncate collected array by the number of events added in this
1627 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1629 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1630 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1631 perf_pmu_enable(pmu);
1635 * Commit group events scheduling transaction
1636 * Perform the group schedulability test as a whole
1637 * Return 0 if success
1639 * Does not cancel the transaction on failure; expects the caller to do this.
1641 static int x86_pmu_commit_txn(struct pmu *pmu)
1643 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1644 int assign[X86_PMC_IDX_MAX];
1649 if (!x86_pmu_initialized())
1652 ret = x86_pmu.schedule_events(cpuc, n, assign);
1657 * copy new assignment, now we know it is possible
1658 * will be used by hw_perf_enable()
1660 memcpy(cpuc->assign, assign, n*sizeof(int));
1662 cpuc->group_flag &= ~PERF_EVENT_TXN;
1663 perf_pmu_enable(pmu);
1667 * a fake_cpuc is used to validate event groups. Due to
1668 * the extra reg logic, we need to also allocate a fake
1669 * per_core and per_cpu structure. Otherwise, group events
1670 * using extra reg may conflict without the kernel being
1671 * able to catch this when the last event gets added to
1674 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1676 kfree(cpuc->shared_regs);
1680 static struct cpu_hw_events *allocate_fake_cpuc(void)
1682 struct cpu_hw_events *cpuc;
1683 int cpu = raw_smp_processor_id();
1685 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1687 return ERR_PTR(-ENOMEM);
1689 /* only needed, if we have extra_regs */
1690 if (x86_pmu.extra_regs) {
1691 cpuc->shared_regs = allocate_shared_regs(cpu);
1692 if (!cpuc->shared_regs)
1698 free_fake_cpuc(cpuc);
1699 return ERR_PTR(-ENOMEM);
1703 * validate that we can schedule this event
1705 static int validate_event(struct perf_event *event)
1707 struct cpu_hw_events *fake_cpuc;
1708 struct event_constraint *c;
1711 fake_cpuc = allocate_fake_cpuc();
1712 if (IS_ERR(fake_cpuc))
1713 return PTR_ERR(fake_cpuc);
1715 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1717 if (!c || !c->weight)
1720 if (x86_pmu.put_event_constraints)
1721 x86_pmu.put_event_constraints(fake_cpuc, event);
1723 free_fake_cpuc(fake_cpuc);
1729 * validate a single event group
1731 * validation include:
1732 * - check events are compatible which each other
1733 * - events do not compete for the same counter
1734 * - number of events <= number of counters
1736 * validation ensures the group can be loaded onto the
1737 * PMU if it was the only group available.
1739 static int validate_group(struct perf_event *event)
1741 struct perf_event *leader = event->group_leader;
1742 struct cpu_hw_events *fake_cpuc;
1743 int ret = -EINVAL, n;
1745 fake_cpuc = allocate_fake_cpuc();
1746 if (IS_ERR(fake_cpuc))
1747 return PTR_ERR(fake_cpuc);
1749 * the event is not yet connected with its
1750 * siblings therefore we must first collect
1751 * existing siblings, then add the new event
1752 * before we can simulate the scheduling
1754 n = collect_events(fake_cpuc, leader, true);
1758 fake_cpuc->n_events = n;
1759 n = collect_events(fake_cpuc, event, false);
1763 fake_cpuc->n_events = n;
1765 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1768 free_fake_cpuc(fake_cpuc);
1772 static int x86_pmu_event_init(struct perf_event *event)
1777 switch (event->attr.type) {
1779 case PERF_TYPE_HARDWARE:
1780 case PERF_TYPE_HW_CACHE:
1787 err = __x86_pmu_event_init(event);
1790 * we temporarily connect event to its pmu
1791 * such that validate_group() can classify
1792 * it as an x86 event using is_x86_event()
1797 if (event->group_leader != event)
1798 err = validate_group(event);
1800 err = validate_event(event);
1806 event->destroy(event);
1809 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1810 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1815 static void refresh_pce(void *ignored)
1818 load_mm_cr4(current->mm);
1821 static void x86_pmu_event_mapped(struct perf_event *event)
1823 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1826 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1)
1827 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1830 static void x86_pmu_event_unmapped(struct perf_event *event)
1835 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1838 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed))
1839 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1842 static int x86_pmu_event_idx(struct perf_event *event)
1844 int idx = event->hw.idx;
1846 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1849 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1850 idx -= INTEL_PMC_IDX_FIXED;
1857 static ssize_t get_attr_rdpmc(struct device *cdev,
1858 struct device_attribute *attr,
1861 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1864 static ssize_t set_attr_rdpmc(struct device *cdev,
1865 struct device_attribute *attr,
1866 const char *buf, size_t count)
1871 ret = kstrtoul(buf, 0, &val);
1878 if (x86_pmu.attr_rdpmc_broken)
1881 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1883 * Changing into or out of always available, aka
1884 * perf-event-bypassing mode. This path is extremely slow,
1885 * but only root can trigger it, so it's okay.
1888 static_key_slow_inc(&rdpmc_always_available);
1890 static_key_slow_dec(&rdpmc_always_available);
1891 on_each_cpu(refresh_pce, NULL, 1);
1894 x86_pmu.attr_rdpmc = val;
1899 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1901 static struct attribute *x86_pmu_attrs[] = {
1902 &dev_attr_rdpmc.attr,
1906 static struct attribute_group x86_pmu_attr_group = {
1907 .attrs = x86_pmu_attrs,
1910 static const struct attribute_group *x86_pmu_attr_groups[] = {
1911 &x86_pmu_attr_group,
1912 &x86_pmu_format_group,
1913 &x86_pmu_events_group,
1917 static void x86_pmu_flush_branch_stack(void)
1919 if (x86_pmu.flush_branch_stack)
1920 x86_pmu.flush_branch_stack();
1923 void perf_check_microcode(void)
1925 if (x86_pmu.check_microcode)
1926 x86_pmu.check_microcode();
1928 EXPORT_SYMBOL_GPL(perf_check_microcode);
1930 static struct pmu pmu = {
1931 .pmu_enable = x86_pmu_enable,
1932 .pmu_disable = x86_pmu_disable,
1934 .attr_groups = x86_pmu_attr_groups,
1936 .event_init = x86_pmu_event_init,
1938 .event_mapped = x86_pmu_event_mapped,
1939 .event_unmapped = x86_pmu_event_unmapped,
1943 .start = x86_pmu_start,
1944 .stop = x86_pmu_stop,
1945 .read = x86_pmu_read,
1947 .start_txn = x86_pmu_start_txn,
1948 .cancel_txn = x86_pmu_cancel_txn,
1949 .commit_txn = x86_pmu_commit_txn,
1951 .event_idx = x86_pmu_event_idx,
1952 .flush_branch_stack = x86_pmu_flush_branch_stack,
1955 void arch_perf_update_userpage(struct perf_event *event,
1956 struct perf_event_mmap_page *userpg, u64 now)
1958 struct cyc2ns_data *data;
1960 userpg->cap_user_time = 0;
1961 userpg->cap_user_time_zero = 0;
1962 userpg->cap_user_rdpmc =
1963 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
1964 userpg->pmc_width = x86_pmu.cntval_bits;
1966 if (!sched_clock_stable())
1969 data = cyc2ns_read_begin();
1971 userpg->cap_user_time = 1;
1972 userpg->time_mult = data->cyc2ns_mul;
1973 userpg->time_shift = data->cyc2ns_shift;
1974 userpg->time_offset = data->cyc2ns_offset - now;
1976 userpg->cap_user_time_zero = 1;
1977 userpg->time_zero = data->cyc2ns_offset;
1979 cyc2ns_read_end(data);
1986 static int backtrace_stack(void *data, char *name)
1991 static void backtrace_address(void *data, unsigned long addr, int reliable)
1993 struct perf_callchain_entry *entry = data;
1995 perf_callchain_store(entry, addr);
1998 static const struct stacktrace_ops backtrace_ops = {
1999 .stack = backtrace_stack,
2000 .address = backtrace_address,
2001 .walk_stack = print_context_stack_bp,
2005 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2007 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2008 /* TODO: We don't support guest os callchain now */
2012 perf_callchain_store(entry, regs->ip);
2014 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2018 valid_user_frame(const void __user *fp, unsigned long size)
2020 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2023 static unsigned long get_segment_base(unsigned int segment)
2025 struct desc_struct *desc;
2026 int idx = segment >> 3;
2028 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2029 if (idx > LDT_ENTRIES)
2032 if (idx > current->active_mm->context.size)
2035 desc = current->active_mm->context.ldt;
2037 if (idx > GDT_ENTRIES)
2040 desc = raw_cpu_ptr(gdt_page.gdt);
2043 return get_desc_base(desc + idx);
2046 #ifdef CONFIG_COMPAT
2048 #include <asm/compat.h>
2051 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2053 /* 32-bit process in 64-bit kernel. */
2054 unsigned long ss_base, cs_base;
2055 struct stack_frame_ia32 frame;
2056 const void __user *fp;
2058 if (!test_thread_flag(TIF_IA32))
2061 cs_base = get_segment_base(regs->cs);
2062 ss_base = get_segment_base(regs->ss);
2064 fp = compat_ptr(ss_base + regs->bp);
2065 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2066 unsigned long bytes;
2067 frame.next_frame = 0;
2068 frame.return_address = 0;
2070 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2074 if (!valid_user_frame(fp, sizeof(frame)))
2077 perf_callchain_store(entry, cs_base + frame.return_address);
2078 fp = compat_ptr(ss_base + frame.next_frame);
2084 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2091 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2093 struct stack_frame frame;
2094 const void __user *fp;
2096 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2097 /* TODO: We don't support guest os callchain now */
2102 * We don't know what to do with VM86 stacks.. ignore them for now.
2104 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2107 fp = (void __user *)regs->bp;
2109 perf_callchain_store(entry, regs->ip);
2114 if (perf_callchain_user32(regs, entry))
2117 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2118 unsigned long bytes;
2119 frame.next_frame = NULL;
2120 frame.return_address = 0;
2122 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2126 if (!valid_user_frame(fp, sizeof(frame)))
2129 perf_callchain_store(entry, frame.return_address);
2130 fp = frame.next_frame;
2135 * Deal with code segment offsets for the various execution modes:
2137 * VM86 - the good olde 16 bit days, where the linear address is
2138 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2140 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2141 * to figure out what the 32bit base address is.
2143 * X32 - has TIF_X32 set, but is running in x86_64
2145 * X86_64 - CS,DS,SS,ES are all zero based.
2147 static unsigned long code_segment_base(struct pt_regs *regs)
2150 * If we are in VM86 mode, add the segment offset to convert to a
2153 if (regs->flags & X86_VM_MASK)
2154 return 0x10 * regs->cs;
2157 * For IA32 we look at the GDT/LDT segment base to convert the
2158 * effective IP to a linear address.
2160 #ifdef CONFIG_X86_32
2161 if (user_mode(regs) && regs->cs != __USER_CS)
2162 return get_segment_base(regs->cs);
2164 if (test_thread_flag(TIF_IA32)) {
2165 if (user_mode(regs) && regs->cs != __USER32_CS)
2166 return get_segment_base(regs->cs);
2172 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2174 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2175 return perf_guest_cbs->get_guest_ip();
2177 return regs->ip + code_segment_base(regs);
2180 unsigned long perf_misc_flags(struct pt_regs *regs)
2184 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2185 if (perf_guest_cbs->is_user_mode())
2186 misc |= PERF_RECORD_MISC_GUEST_USER;
2188 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2190 if (user_mode(regs))
2191 misc |= PERF_RECORD_MISC_USER;
2193 misc |= PERF_RECORD_MISC_KERNEL;
2196 if (regs->flags & PERF_EFLAGS_EXACT)
2197 misc |= PERF_RECORD_MISC_EXACT_IP;
2202 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2204 cap->version = x86_pmu.version;
2205 cap->num_counters_gp = x86_pmu.num_counters;
2206 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2207 cap->bit_width_gp = x86_pmu.cntval_bits;
2208 cap->bit_width_fixed = x86_pmu.cntval_bits;
2209 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2210 cap->events_mask_len = x86_pmu.events_mask_len;
2212 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);