2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
24 * Authors: Dave Airlie
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
31 #include <drm/amdgpu_drm.h>
33 #include "amdgpu_trace.h"
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
72 /* address where to copy page table entries from */
74 /* indirect buffer to fill with commands */
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
80 /* indicate update pt or its shadow */
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86 struct amdgpu_device *adev;
87 struct dma_fence_cb cb;
91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
93 * @adev: amdgpu_device pointer
95 * Calculate the number of entries in a page directory or page table.
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
101 /* For the root directory */
102 return adev->vm_manager.max_pfn >>
103 (adev->vm_manager.block_size *
104 adev->vm_manager.num_level);
105 else if (level == adev->vm_manager.num_level)
106 /* For the page tables on the leaves */
107 return AMDGPU_VM_PTE_COUNT(adev);
109 /* Everything in between */
110 return 1 << adev->vm_manager.block_size;
114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
116 * @adev: amdgpu_device pointer
118 * Calculate the size of the BO for a page directory or page table in bytes.
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
128 * @vm: vm providing the BOs
129 * @validated: head of validation list
130 * @entry: entry to add
132 * Add the page directory to the list of BOs to
133 * validate for command submission.
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136 struct list_head *validated,
137 struct amdgpu_bo_list_entry *entry)
139 entry->robj = vm->root.bo;
141 entry->tv.bo = &entry->robj->tbo;
142 entry->tv.shared = true;
143 entry->user_pages = NULL;
144 list_add(&entry->tv.head, validated);
148 * amdgpu_vm_validate_layer - validate a single page table level
150 * @parent: parent page table level
151 * @validate: callback to do the validation
152 * @param: parameter for the validation callback
154 * Validate the page table BOs on command submission if neccessary.
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157 int (*validate)(void *, struct amdgpu_bo *),
163 if (!parent->entries)
166 for (i = 0; i <= parent->last_entry_used; ++i) {
167 struct amdgpu_vm_pt *entry = &parent->entries[i];
172 r = validate(param, entry->bo);
177 * Recurse into the sub directory. This is harmless because we
178 * have only a maximum of 5 layers.
180 r = amdgpu_vm_validate_level(entry, validate, param);
189 * amdgpu_vm_validate_pt_bos - validate the page table BOs
191 * @adev: amdgpu device pointer
192 * @vm: vm providing the BOs
193 * @validate: callback to do the validation
194 * @param: parameter for the validation callback
196 * Validate the page table BOs on command submission if neccessary.
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199 int (*validate)(void *p, struct amdgpu_bo *bo),
202 uint64_t num_evictions;
204 /* We only need to validate the page tables
205 * if they aren't already valid.
207 num_evictions = atomic64_read(&adev->num_evictions);
208 if (num_evictions == vm->last_eviction_counter)
211 return amdgpu_vm_validate_level(&vm->root, validate, param);
215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
217 * @adev: amdgpu device instance
218 * @vm: vm providing the BOs
220 * Move the PT BOs to the tail of the LRU.
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
226 if (!parent->entries)
229 for (i = 0; i <= parent->last_entry_used; ++i) {
230 struct amdgpu_vm_pt *entry = &parent->entries[i];
235 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236 amdgpu_vm_move_level_in_lru(entry);
241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
243 * @adev: amdgpu device instance
244 * @vm: vm providing the BOs
246 * Move the PT BOs to the tail of the LRU.
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249 struct amdgpu_vm *vm)
251 struct ttm_bo_global *glob = adev->mman.bdev.glob;
253 spin_lock(&glob->lru_lock);
254 amdgpu_vm_move_level_in_lru(&vm->root);
255 spin_unlock(&glob->lru_lock);
259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
261 * @adev: amdgpu_device pointer
263 * @saddr: start of the address range
264 * @eaddr: end of the address range
266 * Make sure the page directories and page tables are allocated
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269 struct amdgpu_vm *vm,
270 struct amdgpu_vm_pt *parent,
271 uint64_t saddr, uint64_t eaddr,
274 unsigned shift = (adev->vm_manager.num_level - level) *
275 adev->vm_manager.block_size;
276 unsigned pt_idx, from, to;
279 if (!parent->entries) {
280 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
282 parent->entries = drm_calloc_large(num_entries,
283 sizeof(struct amdgpu_vm_pt));
284 if (!parent->entries)
286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
289 from = saddr >> shift;
291 if (from >= amdgpu_vm_num_entries(adev, level) ||
292 to >= amdgpu_vm_num_entries(adev, level))
295 if (to > parent->last_entry_used)
296 parent->last_entry_used = to;
299 saddr = saddr & ((1 << shift) - 1);
300 eaddr = eaddr & ((1 << shift) - 1);
302 /* walk over the address space and allocate the page tables */
303 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304 struct reservation_object *resv = vm->root.bo->tbo.resv;
305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306 struct amdgpu_bo *pt;
309 r = amdgpu_bo_create(adev,
310 amdgpu_vm_bo_size(adev, level),
311 AMDGPU_GPU_PAGE_SIZE, true,
312 AMDGPU_GEM_DOMAIN_VRAM,
313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314 AMDGPU_GEM_CREATE_SHADOW |
315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316 AMDGPU_GEM_CREATE_VRAM_CLEARED,
321 /* Keep a reference to the root directory to avoid
322 * freeing them up in the wrong order.
324 pt->parent = amdgpu_bo_ref(vm->root.bo);
330 if (level < adev->vm_manager.num_level) {
331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
345 * amdgpu_vm_alloc_pts - Allocate page tables.
347 * @adev: amdgpu_device pointer
348 * @vm: VM to allocate page tables for
349 * @saddr: Start address which needs to be allocated
350 * @size: Size from start address we need.
352 * Make sure the page tables are allocated.
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355 struct amdgpu_vm *vm,
356 uint64_t saddr, uint64_t size)
361 /* validate the parameters */
362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
365 eaddr = saddr + size - 1;
366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367 if (last_pfn >= adev->vm_manager.max_pfn) {
368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369 last_pfn, adev->vm_manager.max_pfn);
373 saddr /= AMDGPU_GPU_PAGE_SIZE;
374 eaddr /= AMDGPU_GPU_PAGE_SIZE;
376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
382 * @adev: amdgpu_device pointer
383 * @id: VMID structure
385 * Check if GPU reset occured since last use of the VMID.
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388 struct amdgpu_vm_id *id)
390 return id->current_gpu_reset_count !=
391 atomic_read(&adev->gpu_reset_counter);
394 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
396 return !!vm->reserved_vmid[vmhub];
399 /* idr_mgr->lock must be held */
400 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
401 struct amdgpu_ring *ring,
402 struct amdgpu_sync *sync,
403 struct dma_fence *fence,
404 struct amdgpu_job *job)
406 struct amdgpu_device *adev = ring->adev;
407 unsigned vmhub = ring->funcs->vmhub;
408 uint64_t fence_context = adev->fence_context + ring->idx;
409 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
410 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
411 struct dma_fence *updates = sync->last_vm_update;
413 struct dma_fence *flushed, *tmp;
414 bool needs_flush = false;
416 flushed = id->flushed_updates;
417 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
418 (atomic64_read(&id->owner) != vm->client_id) ||
419 (job->vm_pd_addr != id->pd_gpu_addr) ||
420 (updates && (!flushed || updates->context != flushed->context ||
421 dma_fence_is_later(updates, flushed))) ||
422 (!id->last_flush || (id->last_flush->context != fence_context &&
423 !dma_fence_is_signaled(id->last_flush)))) {
425 /* to prevent one context starved by another context */
427 tmp = amdgpu_sync_peek_fence(&id->active, ring);
429 r = amdgpu_sync_fence(adev, sync, tmp);
434 /* Good we can use this VMID. Remember this submission as
437 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
441 if (updates && (!flushed || updates->context != flushed->context ||
442 dma_fence_is_later(updates, flushed))) {
443 dma_fence_put(id->flushed_updates);
444 id->flushed_updates = dma_fence_get(updates);
446 id->pd_gpu_addr = job->vm_pd_addr;
447 atomic64_set(&id->owner, vm->client_id);
448 job->vm_needs_flush = needs_flush;
450 dma_fence_put(id->last_flush);
451 id->last_flush = NULL;
453 job->vm_id = id - id_mgr->ids;
454 trace_amdgpu_vm_grab_id(vm, ring, job);
460 * amdgpu_vm_grab_id - allocate the next free VMID
462 * @vm: vm to allocate id for
463 * @ring: ring we want to submit job to
464 * @sync: sync object where we add dependencies
465 * @fence: fence protecting ID from reuse
467 * Allocate an id for the vm, adding fences to the sync obj as necessary.
469 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
470 struct amdgpu_sync *sync, struct dma_fence *fence,
471 struct amdgpu_job *job)
473 struct amdgpu_device *adev = ring->adev;
474 unsigned vmhub = ring->funcs->vmhub;
475 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
476 uint64_t fence_context = adev->fence_context + ring->idx;
477 struct dma_fence *updates = sync->last_vm_update;
478 struct amdgpu_vm_id *id, *idle;
479 struct dma_fence **fences;
483 mutex_lock(&id_mgr->lock);
484 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
485 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
486 mutex_unlock(&id_mgr->lock);
489 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
491 mutex_unlock(&id_mgr->lock);
494 /* Check if we have an idle VMID */
496 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
497 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
503 /* If we can't find a idle VMID to use, wait till one becomes available */
504 if (&idle->list == &id_mgr->ids_lru) {
505 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
506 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
507 struct dma_fence_array *array;
510 for (j = 0; j < i; ++j)
511 dma_fence_get(fences[j]);
513 array = dma_fence_array_create(i, fences, fence_context,
516 for (j = 0; j < i; ++j)
517 dma_fence_put(fences[j]);
524 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
525 dma_fence_put(&array->base);
529 mutex_unlock(&id_mgr->lock);
535 job->vm_needs_flush = false;
536 /* Check if we can use a VMID already assigned to this VM */
537 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
538 struct dma_fence *flushed;
539 bool needs_flush = false;
541 /* Check all the prerequisites to using this VMID */
542 if (amdgpu_vm_had_gpu_reset(adev, id))
545 if (atomic64_read(&id->owner) != vm->client_id)
548 if (job->vm_pd_addr != id->pd_gpu_addr)
551 if (!id->last_flush ||
552 (id->last_flush->context != fence_context &&
553 !dma_fence_is_signaled(id->last_flush)))
556 flushed = id->flushed_updates;
557 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
560 /* Concurrent flushes are only possible starting with Vega10 */
561 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
564 /* Good we can use this VMID. Remember this submission as
567 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
571 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
572 dma_fence_put(id->flushed_updates);
573 id->flushed_updates = dma_fence_get(updates);
579 goto no_flush_needed;
583 /* Still no ID to use? Then use the idle one found earlier */
586 /* Remember this submission as user of the VMID */
587 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
591 id->pd_gpu_addr = job->vm_pd_addr;
592 dma_fence_put(id->flushed_updates);
593 id->flushed_updates = dma_fence_get(updates);
594 atomic64_set(&id->owner, vm->client_id);
597 job->vm_needs_flush = true;
598 dma_fence_put(id->last_flush);
599 id->last_flush = NULL;
602 list_move_tail(&id->list, &id_mgr->ids_lru);
604 job->vm_id = id - id_mgr->ids;
605 trace_amdgpu_vm_grab_id(vm, ring, job);
608 mutex_unlock(&id_mgr->lock);
612 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
613 struct amdgpu_vm *vm,
616 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
618 mutex_lock(&id_mgr->lock);
619 if (vm->reserved_vmid[vmhub]) {
620 list_add(&vm->reserved_vmid[vmhub]->list,
622 vm->reserved_vmid[vmhub] = NULL;
623 atomic_dec(&id_mgr->reserved_vmid_num);
625 mutex_unlock(&id_mgr->lock);
628 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
629 struct amdgpu_vm *vm,
632 struct amdgpu_vm_id_manager *id_mgr;
633 struct amdgpu_vm_id *idle;
636 id_mgr = &adev->vm_manager.id_mgr[vmhub];
637 mutex_lock(&id_mgr->lock);
638 if (vm->reserved_vmid[vmhub])
640 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
641 AMDGPU_VM_MAX_RESERVED_VMID) {
642 DRM_ERROR("Over limitation of reserved vmid\n");
643 atomic_dec(&id_mgr->reserved_vmid_num);
647 /* Select the first entry VMID */
648 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
649 list_del_init(&idle->list);
650 vm->reserved_vmid[vmhub] = idle;
651 mutex_unlock(&id_mgr->lock);
655 mutex_unlock(&id_mgr->lock);
659 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
660 struct amdgpu_job *job)
662 struct amdgpu_device *adev = ring->adev;
663 unsigned vmhub = ring->funcs->vmhub;
664 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
665 struct amdgpu_vm_id *id;
666 bool gds_switch_needed;
667 bool vm_flush_needed = job->vm_needs_flush ||
668 amdgpu_ring_has_compute_vm_bug(ring);
672 id = &id_mgr->ids[job->vm_id];
673 gds_switch_needed = ring->funcs->emit_gds_switch && (
674 id->gds_base != job->gds_base ||
675 id->gds_size != job->gds_size ||
676 id->gws_base != job->gws_base ||
677 id->gws_size != job->gws_size ||
678 id->oa_base != job->oa_base ||
679 id->oa_size != job->oa_size);
681 if (amdgpu_vm_had_gpu_reset(adev, id))
684 return vm_flush_needed || gds_switch_needed;
688 * amdgpu_vm_flush - hardware flush the vm
690 * @ring: ring to use for flush
691 * @vm_id: vmid number to use
692 * @pd_addr: address of the page directory
694 * Emit a VM flush when it is necessary.
696 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
698 struct amdgpu_device *adev = ring->adev;
699 unsigned vmhub = ring->funcs->vmhub;
700 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
701 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
702 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
703 id->gds_base != job->gds_base ||
704 id->gds_size != job->gds_size ||
705 id->gws_base != job->gws_base ||
706 id->gws_size != job->gws_size ||
707 id->oa_base != job->oa_base ||
708 id->oa_size != job->oa_size);
709 bool vm_flush_needed = job->vm_needs_flush;
710 unsigned patch_offset = 0;
713 if (amdgpu_vm_had_gpu_reset(adev, id)) {
714 gds_switch_needed = true;
715 vm_flush_needed = true;
718 if (!vm_flush_needed && !gds_switch_needed)
721 if (ring->funcs->init_cond_exec)
722 patch_offset = amdgpu_ring_init_cond_exec(ring);
724 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
725 struct dma_fence *fence;
727 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
728 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
730 r = amdgpu_fence_emit(ring, &fence);
734 mutex_lock(&id_mgr->lock);
735 dma_fence_put(id->last_flush);
736 id->last_flush = fence;
737 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
738 mutex_unlock(&id_mgr->lock);
741 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
742 id->gds_base = job->gds_base;
743 id->gds_size = job->gds_size;
744 id->gws_base = job->gws_base;
745 id->gws_size = job->gws_size;
746 id->oa_base = job->oa_base;
747 id->oa_size = job->oa_size;
748 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
749 job->gds_size, job->gws_base,
750 job->gws_size, job->oa_base,
754 if (ring->funcs->patch_cond_exec)
755 amdgpu_ring_patch_cond_exec(ring, patch_offset);
757 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
758 if (ring->funcs->emit_switch_buffer) {
759 amdgpu_ring_emit_switch_buffer(ring);
760 amdgpu_ring_emit_switch_buffer(ring);
766 * amdgpu_vm_reset_id - reset VMID to zero
768 * @adev: amdgpu device structure
769 * @vm_id: vmid number to use
771 * Reset saved GDW, GWS and OA to force switch on next flush.
773 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
776 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
777 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
779 atomic64_set(&id->owner, 0);
789 * amdgpu_vm_reset_all_id - reset VMID to zero
791 * @adev: amdgpu device structure
793 * Reset VMID to force flush on next use
795 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
799 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
800 struct amdgpu_vm_id_manager *id_mgr =
801 &adev->vm_manager.id_mgr[i];
803 for (j = 1; j < id_mgr->num_ids; ++j)
804 amdgpu_vm_reset_id(adev, i, j);
809 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
812 * @bo: requested buffer object
814 * Find @bo inside the requested vm.
815 * Search inside the @bos vm list for the requested vm
816 * Returns the found bo_va or NULL if none is found
818 * Object has to be reserved!
820 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
821 struct amdgpu_bo *bo)
823 struct amdgpu_bo_va *bo_va;
825 list_for_each_entry(bo_va, &bo->va, bo_list) {
826 if (bo_va->vm == vm) {
834 * amdgpu_vm_do_set_ptes - helper to call the right asic function
836 * @params: see amdgpu_pte_update_params definition
837 * @pe: addr of the page entry
838 * @addr: dst addr to write into pe
839 * @count: number of page entries to update
840 * @incr: increase next addr by incr bytes
841 * @flags: hw access flags
843 * Traces the parameters and calls the right asic functions
844 * to setup the page table using the DMA.
846 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
847 uint64_t pe, uint64_t addr,
848 unsigned count, uint32_t incr,
851 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
854 amdgpu_vm_write_pte(params->adev, params->ib, pe,
855 addr | flags, count, incr);
858 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
864 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
866 * @params: see amdgpu_pte_update_params definition
867 * @pe: addr of the page entry
868 * @addr: dst addr to write into pe
869 * @count: number of page entries to update
870 * @incr: increase next addr by incr bytes
871 * @flags: hw access flags
873 * Traces the parameters and calls the DMA function to copy the PTEs.
875 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
876 uint64_t pe, uint64_t addr,
877 unsigned count, uint32_t incr,
880 uint64_t src = (params->src + (addr >> 12) * 8);
883 trace_amdgpu_vm_copy_ptes(pe, src, count);
885 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
889 * amdgpu_vm_map_gart - Resolve gart mapping of addr
891 * @pages_addr: optional DMA address to use for lookup
892 * @addr: the unmapped addr
894 * Look up the physical address of the page that the pte resolves
895 * to and return the pointer for the page table entry.
897 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
901 /* page table offset */
902 result = pages_addr[addr >> PAGE_SHIFT];
904 /* in case cpu page size != gpu page size*/
905 result |= addr & (~PAGE_MASK);
907 result &= 0xFFFFFFFFFFFFF000ULL;
913 * amdgpu_vm_update_level - update a single level in the hierarchy
915 * @adev: amdgpu_device pointer
917 * @parent: parent directory
919 * Makes sure all entries in @parent are up to date.
920 * Returns 0 for success, error for failure.
922 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
923 struct amdgpu_vm *vm,
924 struct amdgpu_vm_pt *parent,
927 struct amdgpu_bo *shadow;
928 struct amdgpu_ring *ring;
929 uint64_t pd_addr, shadow_addr;
930 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
931 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
932 unsigned count = 0, pt_idx, ndw;
933 struct amdgpu_job *job;
934 struct amdgpu_pte_update_params params;
935 struct dma_fence *fence = NULL;
939 if (!parent->entries)
941 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
946 /* assume the worst case */
947 ndw += parent->last_entry_used * 6;
949 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
951 shadow = parent->bo->shadow;
953 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
956 shadow_addr = amdgpu_bo_gpu_offset(shadow);
962 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
966 memset(¶ms, 0, sizeof(params));
968 params.ib = &job->ibs[0];
970 /* walk over the address space and update the directory */
971 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
972 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
979 struct amdgpu_bo *pt_shadow = bo->shadow;
981 r = amdgpu_ttm_bind(&pt_shadow->tbo,
982 &pt_shadow->tbo.mem);
987 pt = amdgpu_bo_gpu_offset(bo);
988 pt = amdgpu_gart_get_vm_pde(adev, pt);
989 if (parent->entries[pt_idx].addr == pt)
992 parent->entries[pt_idx].addr = pt;
994 pde = pd_addr + pt_idx * 8;
995 if (((last_pde + 8 * count) != pde) ||
996 ((last_pt + incr * count) != pt) ||
997 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1001 amdgpu_vm_do_set_ptes(¶ms,
1007 amdgpu_vm_do_set_ptes(¶ms, last_pde,
1008 last_pt, count, incr,
1014 last_shadow = shadow_addr + pt_idx * 8;
1022 if (vm->root.bo->shadow)
1023 amdgpu_vm_do_set_ptes(¶ms, last_shadow, last_pt,
1024 count, incr, AMDGPU_PTE_VALID);
1026 amdgpu_vm_do_set_ptes(¶ms, last_pde, last_pt,
1027 count, incr, AMDGPU_PTE_VALID);
1030 if (params.ib->length_dw == 0) {
1031 amdgpu_job_free(job);
1033 amdgpu_ring_pad_ib(ring, params.ib);
1034 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1035 AMDGPU_FENCE_OWNER_VM);
1037 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
1038 AMDGPU_FENCE_OWNER_VM);
1040 WARN_ON(params.ib->length_dw > ndw);
1041 r = amdgpu_job_submit(job, ring, &vm->entity,
1042 AMDGPU_FENCE_OWNER_VM, &fence);
1046 amdgpu_bo_fence(parent->bo, fence, true);
1047 dma_fence_put(vm->last_dir_update);
1048 vm->last_dir_update = dma_fence_get(fence);
1049 dma_fence_put(fence);
1052 * Recurse into the subdirectories. This recursion is harmless because
1053 * we only have a maximum of 5 layers.
1055 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1056 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1061 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1069 amdgpu_job_free(job);
1074 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1076 * @parent: parent PD
1078 * Mark all PD level as invalid after an error.
1080 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1085 * Recurse into the subdirectories. This recursion is harmless because
1086 * we only have a maximum of 5 layers.
1088 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1089 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1094 entry->addr = ~0ULL;
1095 amdgpu_vm_invalidate_level(entry);
1100 * amdgpu_vm_update_directories - make sure that all directories are valid
1102 * @adev: amdgpu_device pointer
1105 * Makes sure all directories are up to date.
1106 * Returns 0 for success, error for failure.
1108 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1109 struct amdgpu_vm *vm)
1113 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1115 amdgpu_vm_invalidate_level(&vm->root);
1121 * amdgpu_vm_find_pt - find the page table for an address
1123 * @p: see amdgpu_pte_update_params definition
1124 * @addr: virtual address in question
1126 * Find the page table BO for a virtual address, return NULL when none found.
1128 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
1131 struct amdgpu_vm_pt *entry = &p->vm->root;
1132 unsigned idx, level = p->adev->vm_manager.num_level;
1134 while (entry->entries) {
1135 idx = addr >> (p->adev->vm_manager.block_size * level--);
1136 idx %= amdgpu_bo_size(entry->bo) / 8;
1137 entry = &entry->entries[idx];
1147 * amdgpu_vm_update_ptes - make sure that page tables are valid
1149 * @params: see amdgpu_pte_update_params definition
1151 * @start: start of GPU address range
1152 * @end: end of GPU address range
1153 * @dst: destination address to map to, the next dst inside the function
1154 * @flags: mapping flags
1156 * Update the page tables in the range @start - @end.
1157 * Returns 0 for success, -EINVAL for failure.
1159 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1160 uint64_t start, uint64_t end,
1161 uint64_t dst, uint64_t flags)
1163 struct amdgpu_device *adev = params->adev;
1164 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1166 uint64_t addr, pe_start;
1167 struct amdgpu_bo *pt;
1170 /* walk over the address space and update the page tables */
1171 for (addr = start; addr < end; addr += nptes) {
1172 pt = amdgpu_vm_get_pt(params, addr);
1174 pr_err("PT not found, aborting update_ptes\n");
1178 if (params->shadow) {
1184 if ((addr & ~mask) == (end & ~mask))
1187 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1189 pe_start = amdgpu_bo_gpu_offset(pt);
1190 pe_start += (addr & mask) * 8;
1192 params->func(params, pe_start, dst, nptes,
1193 AMDGPU_GPU_PAGE_SIZE, flags);
1195 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1202 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1204 * @params: see amdgpu_pte_update_params definition
1206 * @start: first PTE to handle
1207 * @end: last PTE to handle
1208 * @dst: addr those PTEs should point to
1209 * @flags: hw mapping flags
1210 * Returns 0 for success, -EINVAL for failure.
1212 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1213 uint64_t start, uint64_t end,
1214 uint64_t dst, uint64_t flags)
1219 * The MC L1 TLB supports variable sized pages, based on a fragment
1220 * field in the PTE. When this field is set to a non-zero value, page
1221 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1222 * flags are considered valid for all PTEs within the fragment range
1223 * and corresponding mappings are assumed to be physically contiguous.
1225 * The L1 TLB can store a single PTE for the whole fragment,
1226 * significantly increasing the space available for translation
1227 * caching. This leads to large improvements in throughput when the
1228 * TLB is under pressure.
1230 * The L2 TLB distributes small and large fragments into two
1231 * asymmetric partitions. The large fragment cache is significantly
1232 * larger. Thus, we try to use large fragments wherever possible.
1233 * Userspace can support this by aligning virtual base address and
1234 * allocation size to the fragment size.
1237 /* SI and newer are optimized for 64KB */
1238 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1239 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1241 uint64_t frag_start = ALIGN(start, frag_align);
1242 uint64_t frag_end = end & ~(frag_align - 1);
1244 /* system pages are non continuously */
1245 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1246 (frag_start >= frag_end))
1247 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1249 /* handle the 4K area at the beginning */
1250 if (start != frag_start) {
1251 r = amdgpu_vm_update_ptes(params, start, frag_start,
1255 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1258 /* handle the area in the middle */
1259 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1260 flags | frag_flags);
1264 /* handle the 4K area at the end */
1265 if (frag_end != end) {
1266 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1267 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1273 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1275 * @adev: amdgpu_device pointer
1276 * @exclusive: fence we need to sync to
1277 * @src: address where to copy page table entries from
1278 * @pages_addr: DMA addresses to use for mapping
1280 * @start: start of mapped range
1281 * @last: last mapped entry
1282 * @flags: flags for the entries
1283 * @addr: addr to set the area to
1284 * @fence: optional resulting fence
1286 * Fill in the page table entries between @start and @last.
1287 * Returns 0 for success, -EINVAL for failure.
1289 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1290 struct dma_fence *exclusive,
1292 dma_addr_t *pages_addr,
1293 struct amdgpu_vm *vm,
1294 uint64_t start, uint64_t last,
1295 uint64_t flags, uint64_t addr,
1296 struct dma_fence **fence)
1298 struct amdgpu_ring *ring;
1299 void *owner = AMDGPU_FENCE_OWNER_VM;
1300 unsigned nptes, ncmds, ndw;
1301 struct amdgpu_job *job;
1302 struct amdgpu_pte_update_params params;
1303 struct dma_fence *f = NULL;
1306 memset(¶ms, 0, sizeof(params));
1311 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1313 /* sync to everything on unmapping */
1314 if (!(flags & AMDGPU_PTE_VALID))
1315 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1317 nptes = last - start + 1;
1320 * reserve space for one command every (1 << BLOCK_SIZE)
1321 * entries or 2k dwords (whatever is smaller)
1323 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1329 /* only copy commands needed */
1332 params.func = amdgpu_vm_do_copy_ptes;
1334 } else if (pages_addr) {
1335 /* copy commands needed */
1341 params.func = amdgpu_vm_do_copy_ptes;
1344 /* set page commands needed */
1347 /* two extra commands for begin/end of fragment */
1350 params.func = amdgpu_vm_do_set_ptes;
1353 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1357 params.ib = &job->ibs[0];
1359 if (!src && pages_addr) {
1363 /* Put the PTEs at the end of the IB. */
1364 i = ndw - nptes * 2;
1365 pte= (uint64_t *)&(job->ibs->ptr[i]);
1366 params.src = job->ibs->gpu_addr + i * 4;
1368 for (i = 0; i < nptes; ++i) {
1369 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1370 AMDGPU_GPU_PAGE_SIZE);
1376 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1380 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1385 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1389 params.shadow = true;
1390 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags);
1393 params.shadow = false;
1394 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags);
1398 amdgpu_ring_pad_ib(ring, params.ib);
1399 WARN_ON(params.ib->length_dw > ndw);
1400 r = amdgpu_job_submit(job, ring, &vm->entity,
1401 AMDGPU_FENCE_OWNER_VM, &f);
1405 amdgpu_bo_fence(vm->root.bo, f, true);
1406 dma_fence_put(*fence);
1411 amdgpu_job_free(job);
1416 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1418 * @adev: amdgpu_device pointer
1419 * @exclusive: fence we need to sync to
1420 * @gtt_flags: flags as they are used for GTT
1421 * @pages_addr: DMA addresses to use for mapping
1423 * @mapping: mapped range and flags to use for the update
1424 * @flags: HW flags for the mapping
1425 * @nodes: array of drm_mm_nodes with the MC addresses
1426 * @fence: optional resulting fence
1428 * Split the mapping into smaller chunks so that each update fits
1430 * Returns 0 for success, -EINVAL for failure.
1432 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1433 struct dma_fence *exclusive,
1435 dma_addr_t *pages_addr,
1436 struct amdgpu_vm *vm,
1437 struct amdgpu_bo_va_mapping *mapping,
1439 struct drm_mm_node *nodes,
1440 struct dma_fence **fence)
1442 uint64_t pfn, src = 0, start = mapping->start;
1445 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1446 * but in case of something, we filter the flags in first place
1448 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1449 flags &= ~AMDGPU_PTE_READABLE;
1450 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1451 flags &= ~AMDGPU_PTE_WRITEABLE;
1453 flags &= ~AMDGPU_PTE_EXECUTABLE;
1454 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1456 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1457 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1459 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1460 (adev->asic_type >= CHIP_VEGA10)) {
1461 flags |= AMDGPU_PTE_PRT;
1462 flags &= ~AMDGPU_PTE_VALID;
1465 trace_amdgpu_vm_bo_update(mapping);
1467 pfn = mapping->offset >> PAGE_SHIFT;
1469 while (pfn >= nodes->size) {
1476 uint64_t max_entries;
1477 uint64_t addr, last;
1480 addr = nodes->start << PAGE_SHIFT;
1481 max_entries = (nodes->size - pfn) *
1482 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1485 max_entries = S64_MAX;
1489 if (flags == gtt_flags)
1490 src = adev->gart.table_addr +
1491 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1493 max_entries = min(max_entries, 16ull * 1024ull);
1495 } else if (flags & AMDGPU_PTE_VALID) {
1496 addr += adev->vm_manager.vram_base_offset;
1498 addr += pfn << PAGE_SHIFT;
1500 last = min((uint64_t)mapping->last, start + max_entries - 1);
1501 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1502 src, pages_addr, vm,
1503 start, last, flags, addr,
1508 pfn += last - start + 1;
1509 if (nodes && nodes->size == pfn) {
1515 } while (unlikely(start != mapping->last + 1));
1521 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1523 * @adev: amdgpu_device pointer
1524 * @bo_va: requested BO and VM object
1525 * @clear: if true clear the entries
1527 * Fill in the page table entries for @bo_va.
1528 * Returns 0 for success, -EINVAL for failure.
1530 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1531 struct amdgpu_bo_va *bo_va,
1534 struct amdgpu_vm *vm = bo_va->vm;
1535 struct amdgpu_bo_va_mapping *mapping;
1536 dma_addr_t *pages_addr = NULL;
1537 uint64_t gtt_flags, flags;
1538 struct ttm_mem_reg *mem;
1539 struct drm_mm_node *nodes;
1540 struct dma_fence *exclusive;
1543 if (clear || !bo_va->bo) {
1548 struct ttm_dma_tt *ttm;
1550 mem = &bo_va->bo->tbo.mem;
1551 nodes = mem->mm_node;
1552 if (mem->mem_type == TTM_PL_TT) {
1553 ttm = container_of(bo_va->bo->tbo.ttm, struct
1555 pages_addr = ttm->dma_address;
1557 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1561 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1562 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1563 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1570 spin_lock(&vm->status_lock);
1571 if (!list_empty(&bo_va->vm_status))
1572 list_splice_init(&bo_va->valids, &bo_va->invalids);
1573 spin_unlock(&vm->status_lock);
1575 list_for_each_entry(mapping, &bo_va->invalids, list) {
1576 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1577 gtt_flags, pages_addr, vm,
1578 mapping, flags, nodes,
1579 &bo_va->last_pt_update);
1584 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1585 list_for_each_entry(mapping, &bo_va->valids, list)
1586 trace_amdgpu_vm_bo_mapping(mapping);
1588 list_for_each_entry(mapping, &bo_va->invalids, list)
1589 trace_amdgpu_vm_bo_mapping(mapping);
1592 spin_lock(&vm->status_lock);
1593 list_splice_init(&bo_va->invalids, &bo_va->valids);
1594 list_del_init(&bo_va->vm_status);
1596 list_add(&bo_va->vm_status, &vm->cleared);
1597 spin_unlock(&vm->status_lock);
1603 * amdgpu_vm_update_prt_state - update the global PRT state
1605 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1607 unsigned long flags;
1610 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1611 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1612 adev->gart.gart_funcs->set_prt(adev, enable);
1613 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1617 * amdgpu_vm_prt_get - add a PRT user
1619 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1621 if (!adev->gart.gart_funcs->set_prt)
1624 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1625 amdgpu_vm_update_prt_state(adev);
1629 * amdgpu_vm_prt_put - drop a PRT user
1631 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1633 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1634 amdgpu_vm_update_prt_state(adev);
1638 * amdgpu_vm_prt_cb - callback for updating the PRT status
1640 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1642 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1644 amdgpu_vm_prt_put(cb->adev);
1649 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1651 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1652 struct dma_fence *fence)
1654 struct amdgpu_prt_cb *cb;
1656 if (!adev->gart.gart_funcs->set_prt)
1659 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1661 /* Last resort when we are OOM */
1663 dma_fence_wait(fence, false);
1665 amdgpu_vm_prt_put(adev);
1668 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1670 amdgpu_vm_prt_cb(fence, &cb->cb);
1675 * amdgpu_vm_free_mapping - free a mapping
1677 * @adev: amdgpu_device pointer
1679 * @mapping: mapping to be freed
1680 * @fence: fence of the unmap operation
1682 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1684 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1685 struct amdgpu_vm *vm,
1686 struct amdgpu_bo_va_mapping *mapping,
1687 struct dma_fence *fence)
1689 if (mapping->flags & AMDGPU_PTE_PRT)
1690 amdgpu_vm_add_prt_cb(adev, fence);
1695 * amdgpu_vm_prt_fini - finish all prt mappings
1697 * @adev: amdgpu_device pointer
1700 * Register a cleanup callback to disable PRT support after VM dies.
1702 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1704 struct reservation_object *resv = vm->root.bo->tbo.resv;
1705 struct dma_fence *excl, **shared;
1706 unsigned i, shared_count;
1709 r = reservation_object_get_fences_rcu(resv, &excl,
1710 &shared_count, &shared);
1712 /* Not enough memory to grab the fence list, as last resort
1713 * block for all the fences to complete.
1715 reservation_object_wait_timeout_rcu(resv, true, false,
1716 MAX_SCHEDULE_TIMEOUT);
1720 /* Add a callback for each fence in the reservation object */
1721 amdgpu_vm_prt_get(adev);
1722 amdgpu_vm_add_prt_cb(adev, excl);
1724 for (i = 0; i < shared_count; ++i) {
1725 amdgpu_vm_prt_get(adev);
1726 amdgpu_vm_add_prt_cb(adev, shared[i]);
1733 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1735 * @adev: amdgpu_device pointer
1737 * @fence: optional resulting fence (unchanged if no work needed to be done
1738 * or if an error occurred)
1740 * Make sure all freed BOs are cleared in the PT.
1741 * Returns 0 for success.
1743 * PTs have to be reserved and mutex must be locked!
1745 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1746 struct amdgpu_vm *vm,
1747 struct dma_fence **fence)
1749 struct amdgpu_bo_va_mapping *mapping;
1750 struct dma_fence *f = NULL;
1753 while (!list_empty(&vm->freed)) {
1754 mapping = list_first_entry(&vm->freed,
1755 struct amdgpu_bo_va_mapping, list);
1756 list_del(&mapping->list);
1758 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1759 mapping->start, mapping->last,
1761 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1769 dma_fence_put(*fence);
1780 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1782 * @adev: amdgpu_device pointer
1785 * Make sure all invalidated BOs are cleared in the PT.
1786 * Returns 0 for success.
1788 * PTs have to be reserved and mutex must be locked!
1790 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1791 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1793 struct amdgpu_bo_va *bo_va = NULL;
1796 spin_lock(&vm->status_lock);
1797 while (!list_empty(&vm->invalidated)) {
1798 bo_va = list_first_entry(&vm->invalidated,
1799 struct amdgpu_bo_va, vm_status);
1800 spin_unlock(&vm->status_lock);
1802 r = amdgpu_vm_bo_update(adev, bo_va, true);
1806 spin_lock(&vm->status_lock);
1808 spin_unlock(&vm->status_lock);
1811 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1817 * amdgpu_vm_bo_add - add a bo to a specific vm
1819 * @adev: amdgpu_device pointer
1821 * @bo: amdgpu buffer object
1823 * Add @bo into the requested vm.
1824 * Add @bo to the list of bos associated with the vm
1825 * Returns newly added bo_va or NULL for failure
1827 * Object has to be reserved!
1829 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1830 struct amdgpu_vm *vm,
1831 struct amdgpu_bo *bo)
1833 struct amdgpu_bo_va *bo_va;
1835 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1836 if (bo_va == NULL) {
1841 bo_va->ref_count = 1;
1842 INIT_LIST_HEAD(&bo_va->bo_list);
1843 INIT_LIST_HEAD(&bo_va->valids);
1844 INIT_LIST_HEAD(&bo_va->invalids);
1845 INIT_LIST_HEAD(&bo_va->vm_status);
1848 list_add_tail(&bo_va->bo_list, &bo->va);
1854 * amdgpu_vm_bo_map - map bo inside a vm
1856 * @adev: amdgpu_device pointer
1857 * @bo_va: bo_va to store the address
1858 * @saddr: where to map the BO
1859 * @offset: requested offset in the BO
1860 * @flags: attributes of pages (read/write/valid/etc.)
1862 * Add a mapping of the BO at the specefied addr into the VM.
1863 * Returns 0 for success, error for failure.
1865 * Object has to be reserved and unreserved outside!
1867 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1868 struct amdgpu_bo_va *bo_va,
1869 uint64_t saddr, uint64_t offset,
1870 uint64_t size, uint64_t flags)
1872 struct amdgpu_bo_va_mapping *mapping, *tmp;
1873 struct amdgpu_vm *vm = bo_va->vm;
1876 /* validate the parameters */
1877 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1878 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1881 /* make sure object fit at this offset */
1882 eaddr = saddr + size - 1;
1883 if (saddr >= eaddr ||
1884 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1887 saddr /= AMDGPU_GPU_PAGE_SIZE;
1888 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1890 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1892 /* bo and tmp overlap, invalid addr */
1893 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1894 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1895 tmp->start, tmp->last + 1);
1899 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1903 INIT_LIST_HEAD(&mapping->list);
1904 mapping->start = saddr;
1905 mapping->last = eaddr;
1906 mapping->offset = offset;
1907 mapping->flags = flags;
1909 list_add(&mapping->list, &bo_va->invalids);
1910 amdgpu_vm_it_insert(mapping, &vm->va);
1912 if (flags & AMDGPU_PTE_PRT)
1913 amdgpu_vm_prt_get(adev);
1919 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1921 * @adev: amdgpu_device pointer
1922 * @bo_va: bo_va to store the address
1923 * @saddr: where to map the BO
1924 * @offset: requested offset in the BO
1925 * @flags: attributes of pages (read/write/valid/etc.)
1927 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1928 * mappings as we do so.
1929 * Returns 0 for success, error for failure.
1931 * Object has to be reserved and unreserved outside!
1933 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1934 struct amdgpu_bo_va *bo_va,
1935 uint64_t saddr, uint64_t offset,
1936 uint64_t size, uint64_t flags)
1938 struct amdgpu_bo_va_mapping *mapping;
1939 struct amdgpu_vm *vm = bo_va->vm;
1943 /* validate the parameters */
1944 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1945 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1948 /* make sure object fit at this offset */
1949 eaddr = saddr + size - 1;
1950 if (saddr >= eaddr ||
1951 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1954 /* Allocate all the needed memory */
1955 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1959 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1965 saddr /= AMDGPU_GPU_PAGE_SIZE;
1966 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1968 mapping->start = saddr;
1969 mapping->last = eaddr;
1970 mapping->offset = offset;
1971 mapping->flags = flags;
1973 list_add(&mapping->list, &bo_va->invalids);
1974 amdgpu_vm_it_insert(mapping, &vm->va);
1976 if (flags & AMDGPU_PTE_PRT)
1977 amdgpu_vm_prt_get(adev);
1983 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1985 * @adev: amdgpu_device pointer
1986 * @bo_va: bo_va to remove the address from
1987 * @saddr: where to the BO is mapped
1989 * Remove a mapping of the BO at the specefied addr from the VM.
1990 * Returns 0 for success, error for failure.
1992 * Object has to be reserved and unreserved outside!
1994 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1995 struct amdgpu_bo_va *bo_va,
1998 struct amdgpu_bo_va_mapping *mapping;
1999 struct amdgpu_vm *vm = bo_va->vm;
2002 saddr /= AMDGPU_GPU_PAGE_SIZE;
2004 list_for_each_entry(mapping, &bo_va->valids, list) {
2005 if (mapping->start == saddr)
2009 if (&mapping->list == &bo_va->valids) {
2012 list_for_each_entry(mapping, &bo_va->invalids, list) {
2013 if (mapping->start == saddr)
2017 if (&mapping->list == &bo_va->invalids)
2021 list_del(&mapping->list);
2022 amdgpu_vm_it_remove(mapping, &vm->va);
2023 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2026 list_add(&mapping->list, &vm->freed);
2028 amdgpu_vm_free_mapping(adev, vm, mapping,
2029 bo_va->last_pt_update);
2035 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2037 * @adev: amdgpu_device pointer
2038 * @vm: VM structure to use
2039 * @saddr: start of the range
2040 * @size: size of the range
2042 * Remove all mappings in a range, split them as appropriate.
2043 * Returns 0 for success, error for failure.
2045 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2046 struct amdgpu_vm *vm,
2047 uint64_t saddr, uint64_t size)
2049 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2053 eaddr = saddr + size - 1;
2054 saddr /= AMDGPU_GPU_PAGE_SIZE;
2055 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2057 /* Allocate all the needed memory */
2058 before = kzalloc(sizeof(*before), GFP_KERNEL);
2061 INIT_LIST_HEAD(&before->list);
2063 after = kzalloc(sizeof(*after), GFP_KERNEL);
2068 INIT_LIST_HEAD(&after->list);
2070 /* Now gather all removed mappings */
2071 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2073 /* Remember mapping split at the start */
2074 if (tmp->start < saddr) {
2075 before->start = tmp->start;
2076 before->last = saddr - 1;
2077 before->offset = tmp->offset;
2078 before->flags = tmp->flags;
2079 list_add(&before->list, &tmp->list);
2082 /* Remember mapping split at the end */
2083 if (tmp->last > eaddr) {
2084 after->start = eaddr + 1;
2085 after->last = tmp->last;
2086 after->offset = tmp->offset;
2087 after->offset += after->start - tmp->start;
2088 after->flags = tmp->flags;
2089 list_add(&after->list, &tmp->list);
2092 list_del(&tmp->list);
2093 list_add(&tmp->list, &removed);
2095 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2098 /* And free them up */
2099 list_for_each_entry_safe(tmp, next, &removed, list) {
2100 amdgpu_vm_it_remove(tmp, &vm->va);
2101 list_del(&tmp->list);
2103 if (tmp->start < saddr)
2105 if (tmp->last > eaddr)
2108 list_add(&tmp->list, &vm->freed);
2109 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2112 /* Insert partial mapping before the range */
2113 if (!list_empty(&before->list)) {
2114 amdgpu_vm_it_insert(before, &vm->va);
2115 if (before->flags & AMDGPU_PTE_PRT)
2116 amdgpu_vm_prt_get(adev);
2121 /* Insert partial mapping after the range */
2122 if (!list_empty(&after->list)) {
2123 amdgpu_vm_it_insert(after, &vm->va);
2124 if (after->flags & AMDGPU_PTE_PRT)
2125 amdgpu_vm_prt_get(adev);
2134 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2136 * @adev: amdgpu_device pointer
2137 * @bo_va: requested bo_va
2139 * Remove @bo_va->bo from the requested vm.
2141 * Object have to be reserved!
2143 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2144 struct amdgpu_bo_va *bo_va)
2146 struct amdgpu_bo_va_mapping *mapping, *next;
2147 struct amdgpu_vm *vm = bo_va->vm;
2149 list_del(&bo_va->bo_list);
2151 spin_lock(&vm->status_lock);
2152 list_del(&bo_va->vm_status);
2153 spin_unlock(&vm->status_lock);
2155 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2156 list_del(&mapping->list);
2157 amdgpu_vm_it_remove(mapping, &vm->va);
2158 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2159 list_add(&mapping->list, &vm->freed);
2161 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2162 list_del(&mapping->list);
2163 amdgpu_vm_it_remove(mapping, &vm->va);
2164 amdgpu_vm_free_mapping(adev, vm, mapping,
2165 bo_va->last_pt_update);
2168 dma_fence_put(bo_va->last_pt_update);
2173 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2175 * @adev: amdgpu_device pointer
2177 * @bo: amdgpu buffer object
2179 * Mark @bo as invalid.
2181 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2182 struct amdgpu_bo *bo)
2184 struct amdgpu_bo_va *bo_va;
2186 list_for_each_entry(bo_va, &bo->va, bo_list) {
2187 spin_lock(&bo_va->vm->status_lock);
2188 if (list_empty(&bo_va->vm_status))
2189 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2190 spin_unlock(&bo_va->vm->status_lock);
2194 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2196 /* Total bits covered by PD + PTs */
2197 unsigned bits = ilog2(vm_size) + 18;
2199 /* Make sure the PD is 4K in size up to 8GB address space.
2200 Above that split equal between PD and PTs */
2204 return ((bits + 3) / 2);
2208 * amdgpu_vm_adjust_size - adjust vm size and block size
2210 * @adev: amdgpu_device pointer
2211 * @vm_size: the default vm size if it's set auto
2213 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2215 /* adjust vm size firstly */
2216 if (amdgpu_vm_size == -1)
2217 adev->vm_manager.vm_size = vm_size;
2219 adev->vm_manager.vm_size = amdgpu_vm_size;
2221 /* block size depends on vm size */
2222 if (amdgpu_vm_block_size == -1)
2223 adev->vm_manager.block_size =
2224 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2226 adev->vm_manager.block_size = amdgpu_vm_block_size;
2228 DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2229 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2233 * amdgpu_vm_init - initialize a vm instance
2235 * @adev: amdgpu_device pointer
2240 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2242 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2243 AMDGPU_VM_PTE_COUNT(adev) * 8);
2244 unsigned ring_instance;
2245 struct amdgpu_ring *ring;
2246 struct amd_sched_rq *rq;
2250 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2251 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2252 vm->reserved_vmid[i] = NULL;
2253 spin_lock_init(&vm->status_lock);
2254 INIT_LIST_HEAD(&vm->invalidated);
2255 INIT_LIST_HEAD(&vm->cleared);
2256 INIT_LIST_HEAD(&vm->freed);
2258 /* create scheduler entity for page table updates */
2260 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2261 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2262 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2263 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2264 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2265 rq, amdgpu_sched_jobs);
2269 vm->last_dir_update = NULL;
2271 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2272 AMDGPU_GEM_DOMAIN_VRAM,
2273 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2274 AMDGPU_GEM_CREATE_SHADOW |
2275 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2276 AMDGPU_GEM_CREATE_VRAM_CLEARED,
2277 NULL, NULL, &vm->root.bo);
2279 goto error_free_sched_entity;
2281 r = amdgpu_bo_reserve(vm->root.bo, false);
2283 goto error_free_root;
2285 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2286 amdgpu_bo_unreserve(vm->root.bo);
2291 amdgpu_bo_unref(&vm->root.bo->shadow);
2292 amdgpu_bo_unref(&vm->root.bo);
2295 error_free_sched_entity:
2296 amd_sched_entity_fini(&ring->sched, &vm->entity);
2302 * amdgpu_vm_free_levels - free PD/PT levels
2304 * @level: PD/PT starting level to free
2306 * Free the page directory or page table level and all sub levels.
2308 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2313 amdgpu_bo_unref(&level->bo->shadow);
2314 amdgpu_bo_unref(&level->bo);
2318 for (i = 0; i <= level->last_entry_used; i++)
2319 amdgpu_vm_free_levels(&level->entries[i]);
2321 drm_free_large(level->entries);
2325 * amdgpu_vm_fini - tear down a vm instance
2327 * @adev: amdgpu_device pointer
2331 * Unbind the VM and remove all bos from the vm bo list
2333 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2335 struct amdgpu_bo_va_mapping *mapping, *tmp;
2336 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2339 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2341 if (!RB_EMPTY_ROOT(&vm->va)) {
2342 dev_err(adev->dev, "still active bo inside vm\n");
2344 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2345 list_del(&mapping->list);
2346 amdgpu_vm_it_remove(mapping, &vm->va);
2349 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2350 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2351 amdgpu_vm_prt_fini(adev, vm);
2352 prt_fini_needed = false;
2355 list_del(&mapping->list);
2356 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2359 amdgpu_vm_free_levels(&vm->root);
2360 dma_fence_put(vm->last_dir_update);
2361 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2362 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2366 * amdgpu_vm_manager_init - init the VM manager
2368 * @adev: amdgpu_device pointer
2370 * Initialize the VM manager structures
2372 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2376 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2377 struct amdgpu_vm_id_manager *id_mgr =
2378 &adev->vm_manager.id_mgr[i];
2380 mutex_init(&id_mgr->lock);
2381 INIT_LIST_HEAD(&id_mgr->ids_lru);
2382 atomic_set(&id_mgr->reserved_vmid_num, 0);
2384 /* skip over VMID 0, since it is the system VM */
2385 for (j = 1; j < id_mgr->num_ids; ++j) {
2386 amdgpu_vm_reset_id(adev, i, j);
2387 amdgpu_sync_create(&id_mgr->ids[i].active);
2388 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2392 adev->vm_manager.fence_context =
2393 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2394 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2395 adev->vm_manager.seqno[i] = 0;
2397 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2398 atomic64_set(&adev->vm_manager.client_counter, 0);
2399 spin_lock_init(&adev->vm_manager.prt_lock);
2400 atomic_set(&adev->vm_manager.num_prt_users, 0);
2404 * amdgpu_vm_manager_fini - cleanup VM manager
2406 * @adev: amdgpu_device pointer
2408 * Cleanup the VM manager and free resources.
2410 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2414 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2415 struct amdgpu_vm_id_manager *id_mgr =
2416 &adev->vm_manager.id_mgr[i];
2418 mutex_destroy(&id_mgr->lock);
2419 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2420 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2422 amdgpu_sync_free(&id->active);
2423 dma_fence_put(id->flushed_updates);
2424 dma_fence_put(id->last_flush);
2429 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2431 union drm_amdgpu_vm *args = data;
2432 struct amdgpu_device *adev = dev->dev_private;
2433 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2436 switch (args->in.op) {
2437 case AMDGPU_VM_OP_RESERVE_VMID:
2438 /* current, we only have requirement to reserve vmid from gfxhub */
2439 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2444 case AMDGPU_VM_OP_UNRESERVE_VMID:
2445 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);