]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amdgpu: implement lru amdgpu_queue_mgr policy for compute v4
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59                      START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68         /* amdgpu device we do this update for */
69         struct amdgpu_device *adev;
70         /* optional amdgpu_vm we do this update for */
71         struct amdgpu_vm *vm;
72         /* address where to copy page table entries from */
73         uint64_t src;
74         /* indirect buffer to fill with commands */
75         struct amdgpu_ib *ib;
76         /* Function which actually does the update */
77         void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78                      uint64_t addr, unsigned count, uint32_t incr,
79                      uint64_t flags);
80         /* indicate update pt or its shadow */
81         bool shadow;
82 };
83
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86         struct amdgpu_device *adev;
87         struct dma_fence_cb cb;
88 };
89
90 /**
91  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92  *
93  * @adev: amdgpu_device pointer
94  *
95  * Calculate the number of entries in a page directory or page table.
96  */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98                                       unsigned level)
99 {
100         if (level == 0)
101                 /* For the root directory */
102                 return adev->vm_manager.max_pfn >>
103                         (adev->vm_manager.block_size *
104                          adev->vm_manager.num_level);
105         else if (level == adev->vm_manager.num_level)
106                 /* For the page tables on the leaves */
107                 return AMDGPU_VM_PTE_COUNT(adev);
108         else
109                 /* Everything in between */
110                 return 1 << adev->vm_manager.block_size;
111 }
112
113 /**
114  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115  *
116  * @adev: amdgpu_device pointer
117  *
118  * Calculate the size of the BO for a page directory or page table in bytes.
119  */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124
125 /**
126  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127  *
128  * @vm: vm providing the BOs
129  * @validated: head of validation list
130  * @entry: entry to add
131  *
132  * Add the page directory to the list of BOs to
133  * validate for command submission.
134  */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136                          struct list_head *validated,
137                          struct amdgpu_bo_list_entry *entry)
138 {
139         entry->robj = vm->root.bo;
140         entry->priority = 0;
141         entry->tv.bo = &entry->robj->tbo;
142         entry->tv.shared = true;
143         entry->user_pages = NULL;
144         list_add(&entry->tv.head, validated);
145 }
146
147 /**
148  * amdgpu_vm_validate_layer - validate a single page table level
149  *
150  * @parent: parent page table level
151  * @validate: callback to do the validation
152  * @param: parameter for the validation callback
153  *
154  * Validate the page table BOs on command submission if neccessary.
155  */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157                                     int (*validate)(void *, struct amdgpu_bo *),
158                                     void *param)
159 {
160         unsigned i;
161         int r;
162
163         if (!parent->entries)
164                 return 0;
165
166         for (i = 0; i <= parent->last_entry_used; ++i) {
167                 struct amdgpu_vm_pt *entry = &parent->entries[i];
168
169                 if (!entry->bo)
170                         continue;
171
172                 r = validate(param, entry->bo);
173                 if (r)
174                         return r;
175
176                 /*
177                  * Recurse into the sub directory. This is harmless because we
178                  * have only a maximum of 5 layers.
179                  */
180                 r = amdgpu_vm_validate_level(entry, validate, param);
181                 if (r)
182                         return r;
183         }
184
185         return r;
186 }
187
188 /**
189  * amdgpu_vm_validate_pt_bos - validate the page table BOs
190  *
191  * @adev: amdgpu device pointer
192  * @vm: vm providing the BOs
193  * @validate: callback to do the validation
194  * @param: parameter for the validation callback
195  *
196  * Validate the page table BOs on command submission if neccessary.
197  */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199                               int (*validate)(void *p, struct amdgpu_bo *bo),
200                               void *param)
201 {
202         uint64_t num_evictions;
203
204         /* We only need to validate the page tables
205          * if they aren't already valid.
206          */
207         num_evictions = atomic64_read(&adev->num_evictions);
208         if (num_evictions == vm->last_eviction_counter)
209                 return 0;
210
211         return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213
214 /**
215  * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216  *
217  * @adev: amdgpu device instance
218  * @vm: vm providing the BOs
219  *
220  * Move the PT BOs to the tail of the LRU.
221  */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224         unsigned i;
225
226         if (!parent->entries)
227                 return;
228
229         for (i = 0; i <= parent->last_entry_used; ++i) {
230                 struct amdgpu_vm_pt *entry = &parent->entries[i];
231
232                 if (!entry->bo)
233                         continue;
234
235                 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236                 amdgpu_vm_move_level_in_lru(entry);
237         }
238 }
239
240 /**
241  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242  *
243  * @adev: amdgpu device instance
244  * @vm: vm providing the BOs
245  *
246  * Move the PT BOs to the tail of the LRU.
247  */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249                                   struct amdgpu_vm *vm)
250 {
251         struct ttm_bo_global *glob = adev->mman.bdev.glob;
252
253         spin_lock(&glob->lru_lock);
254         amdgpu_vm_move_level_in_lru(&vm->root);
255         spin_unlock(&glob->lru_lock);
256 }
257
258  /**
259  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260  *
261  * @adev: amdgpu_device pointer
262  * @vm: requested vm
263  * @saddr: start of the address range
264  * @eaddr: end of the address range
265  *
266  * Make sure the page directories and page tables are allocated
267  */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269                                   struct amdgpu_vm *vm,
270                                   struct amdgpu_vm_pt *parent,
271                                   uint64_t saddr, uint64_t eaddr,
272                                   unsigned level)
273 {
274         unsigned shift = (adev->vm_manager.num_level - level) *
275                 adev->vm_manager.block_size;
276         unsigned pt_idx, from, to;
277         int r;
278
279         if (!parent->entries) {
280                 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281
282                 parent->entries = drm_calloc_large(num_entries,
283                                                    sizeof(struct amdgpu_vm_pt));
284                 if (!parent->entries)
285                         return -ENOMEM;
286                 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287         }
288
289         from = saddr >> shift;
290         to = eaddr >> shift;
291         if (from >= amdgpu_vm_num_entries(adev, level) ||
292             to >= amdgpu_vm_num_entries(adev, level))
293                 return -EINVAL;
294
295         if (to > parent->last_entry_used)
296                 parent->last_entry_used = to;
297
298         ++level;
299         saddr = saddr & ((1 << shift) - 1);
300         eaddr = eaddr & ((1 << shift) - 1);
301
302         /* walk over the address space and allocate the page tables */
303         for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304                 struct reservation_object *resv = vm->root.bo->tbo.resv;
305                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306                 struct amdgpu_bo *pt;
307
308                 if (!entry->bo) {
309                         r = amdgpu_bo_create(adev,
310                                              amdgpu_vm_bo_size(adev, level),
311                                              AMDGPU_GPU_PAGE_SIZE, true,
312                                              AMDGPU_GEM_DOMAIN_VRAM,
313                                              AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314                                              AMDGPU_GEM_CREATE_SHADOW |
315                                              AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316                                              AMDGPU_GEM_CREATE_VRAM_CLEARED,
317                                              NULL, resv, &pt);
318                         if (r)
319                                 return r;
320
321                         /* Keep a reference to the root directory to avoid
322                         * freeing them up in the wrong order.
323                         */
324                         pt->parent = amdgpu_bo_ref(vm->root.bo);
325
326                         entry->bo = pt;
327                         entry->addr = 0;
328                 }
329
330                 if (level < adev->vm_manager.num_level) {
331                         uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332                         uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333                                 ((1 << shift) - 1);
334                         r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335                                                    sub_eaddr, level);
336                         if (r)
337                                 return r;
338                 }
339         }
340
341         return 0;
342 }
343
344 /**
345  * amdgpu_vm_alloc_pts - Allocate page tables.
346  *
347  * @adev: amdgpu_device pointer
348  * @vm: VM to allocate page tables for
349  * @saddr: Start address which needs to be allocated
350  * @size: Size from start address we need.
351  *
352  * Make sure the page tables are allocated.
353  */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355                         struct amdgpu_vm *vm,
356                         uint64_t saddr, uint64_t size)
357 {
358         uint64_t last_pfn;
359         uint64_t eaddr;
360
361         /* validate the parameters */
362         if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363                 return -EINVAL;
364
365         eaddr = saddr + size - 1;
366         last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367         if (last_pfn >= adev->vm_manager.max_pfn) {
368                 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369                         last_pfn, adev->vm_manager.max_pfn);
370                 return -EINVAL;
371         }
372
373         saddr /= AMDGPU_GPU_PAGE_SIZE;
374         eaddr /= AMDGPU_GPU_PAGE_SIZE;
375
376         return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378
379 /**
380  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381  *
382  * @adev: amdgpu_device pointer
383  * @id: VMID structure
384  *
385  * Check if GPU reset occured since last use of the VMID.
386  */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388                                     struct amdgpu_vm_id *id)
389 {
390         return id->current_gpu_reset_count !=
391                 atomic_read(&adev->gpu_reset_counter);
392 }
393
394 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
395 {
396         return !!vm->reserved_vmid[vmhub];
397 }
398
399 /* idr_mgr->lock must be held */
400 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
401                                                struct amdgpu_ring *ring,
402                                                struct amdgpu_sync *sync,
403                                                struct dma_fence *fence,
404                                                struct amdgpu_job *job)
405 {
406         struct amdgpu_device *adev = ring->adev;
407         unsigned vmhub = ring->funcs->vmhub;
408         uint64_t fence_context = adev->fence_context + ring->idx;
409         struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
410         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
411         struct dma_fence *updates = sync->last_vm_update;
412         int r = 0;
413         struct dma_fence *flushed, *tmp;
414         bool needs_flush = false;
415
416         flushed  = id->flushed_updates;
417         if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
418             (atomic64_read(&id->owner) != vm->client_id) ||
419             (job->vm_pd_addr != id->pd_gpu_addr) ||
420             (updates && (!flushed || updates->context != flushed->context ||
421                         dma_fence_is_later(updates, flushed))) ||
422             (!id->last_flush || (id->last_flush->context != fence_context &&
423                                  !dma_fence_is_signaled(id->last_flush)))) {
424                 needs_flush = true;
425                 /* to prevent one context starved by another context */
426                 id->pd_gpu_addr = 0;
427                 tmp = amdgpu_sync_peek_fence(&id->active, ring);
428                 if (tmp) {
429                         r = amdgpu_sync_fence(adev, sync, tmp);
430                         return r;
431                 }
432         }
433
434         /* Good we can use this VMID. Remember this submission as
435         * user of the VMID.
436         */
437         r = amdgpu_sync_fence(ring->adev, &id->active, fence);
438         if (r)
439                 goto out;
440
441         if (updates && (!flushed || updates->context != flushed->context ||
442                         dma_fence_is_later(updates, flushed))) {
443                 dma_fence_put(id->flushed_updates);
444                 id->flushed_updates = dma_fence_get(updates);
445         }
446         id->pd_gpu_addr = job->vm_pd_addr;
447         atomic64_set(&id->owner, vm->client_id);
448         job->vm_needs_flush = needs_flush;
449         if (needs_flush) {
450                 dma_fence_put(id->last_flush);
451                 id->last_flush = NULL;
452         }
453         job->vm_id = id - id_mgr->ids;
454         trace_amdgpu_vm_grab_id(vm, ring, job);
455 out:
456         return r;
457 }
458
459 /**
460  * amdgpu_vm_grab_id - allocate the next free VMID
461  *
462  * @vm: vm to allocate id for
463  * @ring: ring we want to submit job to
464  * @sync: sync object where we add dependencies
465  * @fence: fence protecting ID from reuse
466  *
467  * Allocate an id for the vm, adding fences to the sync obj as necessary.
468  */
469 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
470                       struct amdgpu_sync *sync, struct dma_fence *fence,
471                       struct amdgpu_job *job)
472 {
473         struct amdgpu_device *adev = ring->adev;
474         unsigned vmhub = ring->funcs->vmhub;
475         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
476         uint64_t fence_context = adev->fence_context + ring->idx;
477         struct dma_fence *updates = sync->last_vm_update;
478         struct amdgpu_vm_id *id, *idle;
479         struct dma_fence **fences;
480         unsigned i;
481         int r = 0;
482
483         mutex_lock(&id_mgr->lock);
484         if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
485                 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
486                 mutex_unlock(&id_mgr->lock);
487                 return r;
488         }
489         fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
490         if (!fences) {
491                 mutex_unlock(&id_mgr->lock);
492                 return -ENOMEM;
493         }
494         /* Check if we have an idle VMID */
495         i = 0;
496         list_for_each_entry(idle, &id_mgr->ids_lru, list) {
497                 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
498                 if (!fences[i])
499                         break;
500                 ++i;
501         }
502
503         /* If we can't find a idle VMID to use, wait till one becomes available */
504         if (&idle->list == &id_mgr->ids_lru) {
505                 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
506                 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
507                 struct dma_fence_array *array;
508                 unsigned j;
509
510                 for (j = 0; j < i; ++j)
511                         dma_fence_get(fences[j]);
512
513                 array = dma_fence_array_create(i, fences, fence_context,
514                                            seqno, true);
515                 if (!array) {
516                         for (j = 0; j < i; ++j)
517                                 dma_fence_put(fences[j]);
518                         kfree(fences);
519                         r = -ENOMEM;
520                         goto error;
521                 }
522
523
524                 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
525                 dma_fence_put(&array->base);
526                 if (r)
527                         goto error;
528
529                 mutex_unlock(&id_mgr->lock);
530                 return 0;
531
532         }
533         kfree(fences);
534
535         job->vm_needs_flush = false;
536         /* Check if we can use a VMID already assigned to this VM */
537         list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
538                 struct dma_fence *flushed;
539                 bool needs_flush = false;
540
541                 /* Check all the prerequisites to using this VMID */
542                 if (amdgpu_vm_had_gpu_reset(adev, id))
543                         continue;
544
545                 if (atomic64_read(&id->owner) != vm->client_id)
546                         continue;
547
548                 if (job->vm_pd_addr != id->pd_gpu_addr)
549                         continue;
550
551                 if (!id->last_flush ||
552                     (id->last_flush->context != fence_context &&
553                      !dma_fence_is_signaled(id->last_flush)))
554                         needs_flush = true;
555
556                 flushed  = id->flushed_updates;
557                 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
558                         needs_flush = true;
559
560                 /* Concurrent flushes are only possible starting with Vega10 */
561                 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
562                         continue;
563
564                 /* Good we can use this VMID. Remember this submission as
565                  * user of the VMID.
566                  */
567                 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
568                 if (r)
569                         goto error;
570
571                 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
572                         dma_fence_put(id->flushed_updates);
573                         id->flushed_updates = dma_fence_get(updates);
574                 }
575
576                 if (needs_flush)
577                         goto needs_flush;
578                 else
579                         goto no_flush_needed;
580
581         };
582
583         /* Still no ID to use? Then use the idle one found earlier */
584         id = idle;
585
586         /* Remember this submission as user of the VMID */
587         r = amdgpu_sync_fence(ring->adev, &id->active, fence);
588         if (r)
589                 goto error;
590
591         id->pd_gpu_addr = job->vm_pd_addr;
592         dma_fence_put(id->flushed_updates);
593         id->flushed_updates = dma_fence_get(updates);
594         atomic64_set(&id->owner, vm->client_id);
595
596 needs_flush:
597         job->vm_needs_flush = true;
598         dma_fence_put(id->last_flush);
599         id->last_flush = NULL;
600
601 no_flush_needed:
602         list_move_tail(&id->list, &id_mgr->ids_lru);
603
604         job->vm_id = id - id_mgr->ids;
605         trace_amdgpu_vm_grab_id(vm, ring, job);
606
607 error:
608         mutex_unlock(&id_mgr->lock);
609         return r;
610 }
611
612 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
613                                           struct amdgpu_vm *vm,
614                                           unsigned vmhub)
615 {
616         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
617
618         mutex_lock(&id_mgr->lock);
619         if (vm->reserved_vmid[vmhub]) {
620                 list_add(&vm->reserved_vmid[vmhub]->list,
621                         &id_mgr->ids_lru);
622                 vm->reserved_vmid[vmhub] = NULL;
623                 atomic_dec(&id_mgr->reserved_vmid_num);
624         }
625         mutex_unlock(&id_mgr->lock);
626 }
627
628 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
629                                          struct amdgpu_vm *vm,
630                                          unsigned vmhub)
631 {
632         struct amdgpu_vm_id_manager *id_mgr;
633         struct amdgpu_vm_id *idle;
634         int r = 0;
635
636         id_mgr = &adev->vm_manager.id_mgr[vmhub];
637         mutex_lock(&id_mgr->lock);
638         if (vm->reserved_vmid[vmhub])
639                 goto unlock;
640         if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
641             AMDGPU_VM_MAX_RESERVED_VMID) {
642                 DRM_ERROR("Over limitation of reserved vmid\n");
643                 atomic_dec(&id_mgr->reserved_vmid_num);
644                 r = -EINVAL;
645                 goto unlock;
646         }
647         /* Select the first entry VMID */
648         idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
649         list_del_init(&idle->list);
650         vm->reserved_vmid[vmhub] = idle;
651         mutex_unlock(&id_mgr->lock);
652
653         return 0;
654 unlock:
655         mutex_unlock(&id_mgr->lock);
656         return r;
657 }
658
659 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
660                                   struct amdgpu_job *job)
661 {
662         struct amdgpu_device *adev = ring->adev;
663         unsigned vmhub = ring->funcs->vmhub;
664         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
665         struct amdgpu_vm_id *id;
666         bool gds_switch_needed;
667         bool vm_flush_needed = job->vm_needs_flush ||
668                 amdgpu_ring_has_compute_vm_bug(ring);
669
670         if (job->vm_id == 0)
671                 return false;
672         id = &id_mgr->ids[job->vm_id];
673         gds_switch_needed = ring->funcs->emit_gds_switch && (
674                 id->gds_base != job->gds_base ||
675                 id->gds_size != job->gds_size ||
676                 id->gws_base != job->gws_base ||
677                 id->gws_size != job->gws_size ||
678                 id->oa_base != job->oa_base ||
679                 id->oa_size != job->oa_size);
680
681         if (amdgpu_vm_had_gpu_reset(adev, id))
682                 return true;
683
684         return vm_flush_needed || gds_switch_needed;
685 }
686
687 /**
688  * amdgpu_vm_flush - hardware flush the vm
689  *
690  * @ring: ring to use for flush
691  * @vm_id: vmid number to use
692  * @pd_addr: address of the page directory
693  *
694  * Emit a VM flush when it is necessary.
695  */
696 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
697 {
698         struct amdgpu_device *adev = ring->adev;
699         unsigned vmhub = ring->funcs->vmhub;
700         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
701         struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
702         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
703                 id->gds_base != job->gds_base ||
704                 id->gds_size != job->gds_size ||
705                 id->gws_base != job->gws_base ||
706                 id->gws_size != job->gws_size ||
707                 id->oa_base != job->oa_base ||
708                 id->oa_size != job->oa_size);
709         bool vm_flush_needed = job->vm_needs_flush;
710         unsigned patch_offset = 0;
711         int r;
712
713         if (amdgpu_vm_had_gpu_reset(adev, id)) {
714                 gds_switch_needed = true;
715                 vm_flush_needed = true;
716         }
717
718         if (!vm_flush_needed && !gds_switch_needed)
719                 return 0;
720
721         if (ring->funcs->init_cond_exec)
722                 patch_offset = amdgpu_ring_init_cond_exec(ring);
723
724         if (ring->funcs->emit_vm_flush && vm_flush_needed) {
725                 struct dma_fence *fence;
726
727                 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
728                 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
729
730                 r = amdgpu_fence_emit(ring, &fence);
731                 if (r)
732                         return r;
733
734                 mutex_lock(&id_mgr->lock);
735                 dma_fence_put(id->last_flush);
736                 id->last_flush = fence;
737                 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
738                 mutex_unlock(&id_mgr->lock);
739         }
740
741         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
742                 id->gds_base = job->gds_base;
743                 id->gds_size = job->gds_size;
744                 id->gws_base = job->gws_base;
745                 id->gws_size = job->gws_size;
746                 id->oa_base = job->oa_base;
747                 id->oa_size = job->oa_size;
748                 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
749                                             job->gds_size, job->gws_base,
750                                             job->gws_size, job->oa_base,
751                                             job->oa_size);
752         }
753
754         if (ring->funcs->patch_cond_exec)
755                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
756
757         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
758         if (ring->funcs->emit_switch_buffer) {
759                 amdgpu_ring_emit_switch_buffer(ring);
760                 amdgpu_ring_emit_switch_buffer(ring);
761         }
762         return 0;
763 }
764
765 /**
766  * amdgpu_vm_reset_id - reset VMID to zero
767  *
768  * @adev: amdgpu device structure
769  * @vm_id: vmid number to use
770  *
771  * Reset saved GDW, GWS and OA to force switch on next flush.
772  */
773 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
774                         unsigned vmid)
775 {
776         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
777         struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
778
779         atomic64_set(&id->owner, 0);
780         id->gds_base = 0;
781         id->gds_size = 0;
782         id->gws_base = 0;
783         id->gws_size = 0;
784         id->oa_base = 0;
785         id->oa_size = 0;
786 }
787
788 /**
789  * amdgpu_vm_reset_all_id - reset VMID to zero
790  *
791  * @adev: amdgpu device structure
792  *
793  * Reset VMID to force flush on next use
794  */
795 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
796 {
797         unsigned i, j;
798
799         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
800                 struct amdgpu_vm_id_manager *id_mgr =
801                         &adev->vm_manager.id_mgr[i];
802
803                 for (j = 1; j < id_mgr->num_ids; ++j)
804                         amdgpu_vm_reset_id(adev, i, j);
805         }
806 }
807
808 /**
809  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
810  *
811  * @vm: requested vm
812  * @bo: requested buffer object
813  *
814  * Find @bo inside the requested vm.
815  * Search inside the @bos vm list for the requested vm
816  * Returns the found bo_va or NULL if none is found
817  *
818  * Object has to be reserved!
819  */
820 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
821                                        struct amdgpu_bo *bo)
822 {
823         struct amdgpu_bo_va *bo_va;
824
825         list_for_each_entry(bo_va, &bo->va, bo_list) {
826                 if (bo_va->vm == vm) {
827                         return bo_va;
828                 }
829         }
830         return NULL;
831 }
832
833 /**
834  * amdgpu_vm_do_set_ptes - helper to call the right asic function
835  *
836  * @params: see amdgpu_pte_update_params definition
837  * @pe: addr of the page entry
838  * @addr: dst addr to write into pe
839  * @count: number of page entries to update
840  * @incr: increase next addr by incr bytes
841  * @flags: hw access flags
842  *
843  * Traces the parameters and calls the right asic functions
844  * to setup the page table using the DMA.
845  */
846 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
847                                   uint64_t pe, uint64_t addr,
848                                   unsigned count, uint32_t incr,
849                                   uint64_t flags)
850 {
851         trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
852
853         if (count < 3) {
854                 amdgpu_vm_write_pte(params->adev, params->ib, pe,
855                                     addr | flags, count, incr);
856
857         } else {
858                 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
859                                       count, incr, flags);
860         }
861 }
862
863 /**
864  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
865  *
866  * @params: see amdgpu_pte_update_params definition
867  * @pe: addr of the page entry
868  * @addr: dst addr to write into pe
869  * @count: number of page entries to update
870  * @incr: increase next addr by incr bytes
871  * @flags: hw access flags
872  *
873  * Traces the parameters and calls the DMA function to copy the PTEs.
874  */
875 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
876                                    uint64_t pe, uint64_t addr,
877                                    unsigned count, uint32_t incr,
878                                    uint64_t flags)
879 {
880         uint64_t src = (params->src + (addr >> 12) * 8);
881
882
883         trace_amdgpu_vm_copy_ptes(pe, src, count);
884
885         amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
886 }
887
888 /**
889  * amdgpu_vm_map_gart - Resolve gart mapping of addr
890  *
891  * @pages_addr: optional DMA address to use for lookup
892  * @addr: the unmapped addr
893  *
894  * Look up the physical address of the page that the pte resolves
895  * to and return the pointer for the page table entry.
896  */
897 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
898 {
899         uint64_t result;
900
901         /* page table offset */
902         result = pages_addr[addr >> PAGE_SHIFT];
903
904         /* in case cpu page size != gpu page size*/
905         result |= addr & (~PAGE_MASK);
906
907         result &= 0xFFFFFFFFFFFFF000ULL;
908
909         return result;
910 }
911
912 /*
913  * amdgpu_vm_update_level - update a single level in the hierarchy
914  *
915  * @adev: amdgpu_device pointer
916  * @vm: requested vm
917  * @parent: parent directory
918  *
919  * Makes sure all entries in @parent are up to date.
920  * Returns 0 for success, error for failure.
921  */
922 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
923                                   struct amdgpu_vm *vm,
924                                   struct amdgpu_vm_pt *parent,
925                                   unsigned level)
926 {
927         struct amdgpu_bo *shadow;
928         struct amdgpu_ring *ring;
929         uint64_t pd_addr, shadow_addr;
930         uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
931         uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
932         unsigned count = 0, pt_idx, ndw;
933         struct amdgpu_job *job;
934         struct amdgpu_pte_update_params params;
935         struct dma_fence *fence = NULL;
936
937         int r;
938
939         if (!parent->entries)
940                 return 0;
941         ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
942
943         /* padding, etc. */
944         ndw = 64;
945
946         /* assume the worst case */
947         ndw += parent->last_entry_used * 6;
948
949         pd_addr = amdgpu_bo_gpu_offset(parent->bo);
950
951         shadow = parent->bo->shadow;
952         if (shadow) {
953                 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
954                 if (r)
955                         return r;
956                 shadow_addr = amdgpu_bo_gpu_offset(shadow);
957                 ndw *= 2;
958         } else {
959                 shadow_addr = 0;
960         }
961
962         r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
963         if (r)
964                 return r;
965
966         memset(&params, 0, sizeof(params));
967         params.adev = adev;
968         params.ib = &job->ibs[0];
969
970         /* walk over the address space and update the directory */
971         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
972                 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
973                 uint64_t pde, pt;
974
975                 if (bo == NULL)
976                         continue;
977
978                 if (bo->shadow) {
979                         struct amdgpu_bo *pt_shadow = bo->shadow;
980
981                         r = amdgpu_ttm_bind(&pt_shadow->tbo,
982                                             &pt_shadow->tbo.mem);
983                         if (r)
984                                 return r;
985                 }
986
987                 pt = amdgpu_bo_gpu_offset(bo);
988                 pt = amdgpu_gart_get_vm_pde(adev, pt);
989                 if (parent->entries[pt_idx].addr == pt)
990                         continue;
991
992                 parent->entries[pt_idx].addr = pt;
993
994                 pde = pd_addr + pt_idx * 8;
995                 if (((last_pde + 8 * count) != pde) ||
996                     ((last_pt + incr * count) != pt) ||
997                     (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
998
999                         if (count) {
1000                                 if (shadow)
1001                                         amdgpu_vm_do_set_ptes(&params,
1002                                                               last_shadow,
1003                                                               last_pt, count,
1004                                                               incr,
1005                                                               AMDGPU_PTE_VALID);
1006
1007                                 amdgpu_vm_do_set_ptes(&params, last_pde,
1008                                                       last_pt, count, incr,
1009                                                       AMDGPU_PTE_VALID);
1010                         }
1011
1012                         count = 1;
1013                         last_pde = pde;
1014                         last_shadow = shadow_addr + pt_idx * 8;
1015                         last_pt = pt;
1016                 } else {
1017                         ++count;
1018                 }
1019         }
1020
1021         if (count) {
1022                 if (vm->root.bo->shadow)
1023                         amdgpu_vm_do_set_ptes(&params, last_shadow, last_pt,
1024                                               count, incr, AMDGPU_PTE_VALID);
1025
1026                 amdgpu_vm_do_set_ptes(&params, last_pde, last_pt,
1027                                       count, incr, AMDGPU_PTE_VALID);
1028         }
1029
1030         if (params.ib->length_dw == 0) {
1031                 amdgpu_job_free(job);
1032         } else {
1033                 amdgpu_ring_pad_ib(ring, params.ib);
1034                 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1035                                  AMDGPU_FENCE_OWNER_VM);
1036                 if (shadow)
1037                         amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
1038                                          AMDGPU_FENCE_OWNER_VM);
1039
1040                 WARN_ON(params.ib->length_dw > ndw);
1041                 r = amdgpu_job_submit(job, ring, &vm->entity,
1042                                 AMDGPU_FENCE_OWNER_VM, &fence);
1043                 if (r)
1044                         goto error_free;
1045
1046                 amdgpu_bo_fence(parent->bo, fence, true);
1047                 dma_fence_put(vm->last_dir_update);
1048                 vm->last_dir_update = dma_fence_get(fence);
1049                 dma_fence_put(fence);
1050         }
1051         /*
1052          * Recurse into the subdirectories. This recursion is harmless because
1053          * we only have a maximum of 5 layers.
1054          */
1055         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1056                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1057
1058                 if (!entry->bo)
1059                         continue;
1060
1061                 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1062                 if (r)
1063                         return r;
1064         }
1065
1066         return 0;
1067
1068 error_free:
1069         amdgpu_job_free(job);
1070         return r;
1071 }
1072
1073 /*
1074  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1075  *
1076  * @parent: parent PD
1077  *
1078  * Mark all PD level as invalid after an error.
1079  */
1080 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1081 {
1082         unsigned pt_idx;
1083
1084         /*
1085          * Recurse into the subdirectories. This recursion is harmless because
1086          * we only have a maximum of 5 layers.
1087          */
1088         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1089                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1090
1091                 if (!entry->bo)
1092                         continue;
1093
1094                 entry->addr = ~0ULL;
1095                 amdgpu_vm_invalidate_level(entry);
1096         }
1097 }
1098
1099 /*
1100  * amdgpu_vm_update_directories - make sure that all directories are valid
1101  *
1102  * @adev: amdgpu_device pointer
1103  * @vm: requested vm
1104  *
1105  * Makes sure all directories are up to date.
1106  * Returns 0 for success, error for failure.
1107  */
1108 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1109                                  struct amdgpu_vm *vm)
1110 {
1111         int r;
1112
1113         r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1114         if (r)
1115                 amdgpu_vm_invalidate_level(&vm->root);
1116
1117         return r;
1118 }
1119
1120 /**
1121  * amdgpu_vm_find_pt - find the page table for an address
1122  *
1123  * @p: see amdgpu_pte_update_params definition
1124  * @addr: virtual address in question
1125  *
1126  * Find the page table BO for a virtual address, return NULL when none found.
1127  */
1128 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
1129                                           uint64_t addr)
1130 {
1131         struct amdgpu_vm_pt *entry = &p->vm->root;
1132         unsigned idx, level = p->adev->vm_manager.num_level;
1133
1134         while (entry->entries) {
1135                 idx = addr >> (p->adev->vm_manager.block_size * level--);
1136                 idx %= amdgpu_bo_size(entry->bo) / 8;
1137                 entry = &entry->entries[idx];
1138         }
1139
1140         if (level)
1141                 return NULL;
1142
1143         return entry->bo;
1144 }
1145
1146 /**
1147  * amdgpu_vm_update_ptes - make sure that page tables are valid
1148  *
1149  * @params: see amdgpu_pte_update_params definition
1150  * @vm: requested vm
1151  * @start: start of GPU address range
1152  * @end: end of GPU address range
1153  * @dst: destination address to map to, the next dst inside the function
1154  * @flags: mapping flags
1155  *
1156  * Update the page tables in the range @start - @end.
1157  * Returns 0 for success, -EINVAL for failure.
1158  */
1159 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1160                                   uint64_t start, uint64_t end,
1161                                   uint64_t dst, uint64_t flags)
1162 {
1163         struct amdgpu_device *adev = params->adev;
1164         const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1165
1166         uint64_t addr, pe_start;
1167         struct amdgpu_bo *pt;
1168         unsigned nptes;
1169
1170         /* walk over the address space and update the page tables */
1171         for (addr = start; addr < end; addr += nptes) {
1172                 pt = amdgpu_vm_get_pt(params, addr);
1173                 if (!pt) {
1174                         pr_err("PT not found, aborting update_ptes\n");
1175                         return -EINVAL;
1176                 }
1177
1178                 if (params->shadow) {
1179                         if (!pt->shadow)
1180                                 return 0;
1181                         pt = pt->shadow;
1182                 }
1183
1184                 if ((addr & ~mask) == (end & ~mask))
1185                         nptes = end - addr;
1186                 else
1187                         nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1188
1189                 pe_start = amdgpu_bo_gpu_offset(pt);
1190                 pe_start += (addr & mask) * 8;
1191
1192                 params->func(params, pe_start, dst, nptes,
1193                              AMDGPU_GPU_PAGE_SIZE, flags);
1194
1195                 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1196         }
1197
1198         return 0;
1199 }
1200
1201 /*
1202  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1203  *
1204  * @params: see amdgpu_pte_update_params definition
1205  * @vm: requested vm
1206  * @start: first PTE to handle
1207  * @end: last PTE to handle
1208  * @dst: addr those PTEs should point to
1209  * @flags: hw mapping flags
1210  * Returns 0 for success, -EINVAL for failure.
1211  */
1212 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params  *params,
1213                                 uint64_t start, uint64_t end,
1214                                 uint64_t dst, uint64_t flags)
1215 {
1216         int r;
1217
1218         /**
1219          * The MC L1 TLB supports variable sized pages, based on a fragment
1220          * field in the PTE. When this field is set to a non-zero value, page
1221          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1222          * flags are considered valid for all PTEs within the fragment range
1223          * and corresponding mappings are assumed to be physically contiguous.
1224          *
1225          * The L1 TLB can store a single PTE for the whole fragment,
1226          * significantly increasing the space available for translation
1227          * caching. This leads to large improvements in throughput when the
1228          * TLB is under pressure.
1229          *
1230          * The L2 TLB distributes small and large fragments into two
1231          * asymmetric partitions. The large fragment cache is significantly
1232          * larger. Thus, we try to use large fragments wherever possible.
1233          * Userspace can support this by aligning virtual base address and
1234          * allocation size to the fragment size.
1235          */
1236
1237         /* SI and newer are optimized for 64KB */
1238         uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1239         uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1240
1241         uint64_t frag_start = ALIGN(start, frag_align);
1242         uint64_t frag_end = end & ~(frag_align - 1);
1243
1244         /* system pages are non continuously */
1245         if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1246             (frag_start >= frag_end))
1247                 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1248
1249         /* handle the 4K area at the beginning */
1250         if (start != frag_start) {
1251                 r = amdgpu_vm_update_ptes(params, start, frag_start,
1252                                           dst, flags);
1253                 if (r)
1254                         return r;
1255                 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1256         }
1257
1258         /* handle the area in the middle */
1259         r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1260                                   flags | frag_flags);
1261         if (r)
1262                 return r;
1263
1264         /* handle the 4K area at the end */
1265         if (frag_end != end) {
1266                 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1267                 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1268         }
1269         return r;
1270 }
1271
1272 /**
1273  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1274  *
1275  * @adev: amdgpu_device pointer
1276  * @exclusive: fence we need to sync to
1277  * @src: address where to copy page table entries from
1278  * @pages_addr: DMA addresses to use for mapping
1279  * @vm: requested vm
1280  * @start: start of mapped range
1281  * @last: last mapped entry
1282  * @flags: flags for the entries
1283  * @addr: addr to set the area to
1284  * @fence: optional resulting fence
1285  *
1286  * Fill in the page table entries between @start and @last.
1287  * Returns 0 for success, -EINVAL for failure.
1288  */
1289 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1290                                        struct dma_fence *exclusive,
1291                                        uint64_t src,
1292                                        dma_addr_t *pages_addr,
1293                                        struct amdgpu_vm *vm,
1294                                        uint64_t start, uint64_t last,
1295                                        uint64_t flags, uint64_t addr,
1296                                        struct dma_fence **fence)
1297 {
1298         struct amdgpu_ring *ring;
1299         void *owner = AMDGPU_FENCE_OWNER_VM;
1300         unsigned nptes, ncmds, ndw;
1301         struct amdgpu_job *job;
1302         struct amdgpu_pte_update_params params;
1303         struct dma_fence *f = NULL;
1304         int r;
1305
1306         memset(&params, 0, sizeof(params));
1307         params.adev = adev;
1308         params.vm = vm;
1309         params.src = src;
1310
1311         ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1312
1313         /* sync to everything on unmapping */
1314         if (!(flags & AMDGPU_PTE_VALID))
1315                 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1316
1317         nptes = last - start + 1;
1318
1319         /*
1320          * reserve space for one command every (1 << BLOCK_SIZE)
1321          *  entries or 2k dwords (whatever is smaller)
1322          */
1323         ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1324
1325         /* padding, etc. */
1326         ndw = 64;
1327
1328         if (src) {
1329                 /* only copy commands needed */
1330                 ndw += ncmds * 7;
1331
1332                 params.func = amdgpu_vm_do_copy_ptes;
1333
1334         } else if (pages_addr) {
1335                 /* copy commands needed */
1336                 ndw += ncmds * 7;
1337
1338                 /* and also PTEs */
1339                 ndw += nptes * 2;
1340
1341                 params.func = amdgpu_vm_do_copy_ptes;
1342
1343         } else {
1344                 /* set page commands needed */
1345                 ndw += ncmds * 10;
1346
1347                 /* two extra commands for begin/end of fragment */
1348                 ndw += 2 * 10;
1349
1350                 params.func = amdgpu_vm_do_set_ptes;
1351         }
1352
1353         r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1354         if (r)
1355                 return r;
1356
1357         params.ib = &job->ibs[0];
1358
1359         if (!src && pages_addr) {
1360                 uint64_t *pte;
1361                 unsigned i;
1362
1363                 /* Put the PTEs at the end of the IB. */
1364                 i = ndw - nptes * 2;
1365                 pte= (uint64_t *)&(job->ibs->ptr[i]);
1366                 params.src = job->ibs->gpu_addr + i * 4;
1367
1368                 for (i = 0; i < nptes; ++i) {
1369                         pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1370                                                     AMDGPU_GPU_PAGE_SIZE);
1371                         pte[i] |= flags;
1372                 }
1373                 addr = 0;
1374         }
1375
1376         r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1377         if (r)
1378                 goto error_free;
1379
1380         r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1381                              owner);
1382         if (r)
1383                 goto error_free;
1384
1385         r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1386         if (r)
1387                 goto error_free;
1388
1389         params.shadow = true;
1390         r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1391         if (r)
1392                 goto error_free;
1393         params.shadow = false;
1394         r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1395         if (r)
1396                 goto error_free;
1397
1398         amdgpu_ring_pad_ib(ring, params.ib);
1399         WARN_ON(params.ib->length_dw > ndw);
1400         r = amdgpu_job_submit(job, ring, &vm->entity,
1401                               AMDGPU_FENCE_OWNER_VM, &f);
1402         if (r)
1403                 goto error_free;
1404
1405         amdgpu_bo_fence(vm->root.bo, f, true);
1406         dma_fence_put(*fence);
1407         *fence = f;
1408         return 0;
1409
1410 error_free:
1411         amdgpu_job_free(job);
1412         return r;
1413 }
1414
1415 /**
1416  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1417  *
1418  * @adev: amdgpu_device pointer
1419  * @exclusive: fence we need to sync to
1420  * @gtt_flags: flags as they are used for GTT
1421  * @pages_addr: DMA addresses to use for mapping
1422  * @vm: requested vm
1423  * @mapping: mapped range and flags to use for the update
1424  * @flags: HW flags for the mapping
1425  * @nodes: array of drm_mm_nodes with the MC addresses
1426  * @fence: optional resulting fence
1427  *
1428  * Split the mapping into smaller chunks so that each update fits
1429  * into a SDMA IB.
1430  * Returns 0 for success, -EINVAL for failure.
1431  */
1432 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1433                                       struct dma_fence *exclusive,
1434                                       uint64_t gtt_flags,
1435                                       dma_addr_t *pages_addr,
1436                                       struct amdgpu_vm *vm,
1437                                       struct amdgpu_bo_va_mapping *mapping,
1438                                       uint64_t flags,
1439                                       struct drm_mm_node *nodes,
1440                                       struct dma_fence **fence)
1441 {
1442         uint64_t pfn, src = 0, start = mapping->start;
1443         int r;
1444
1445         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1446          * but in case of something, we filter the flags in first place
1447          */
1448         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1449                 flags &= ~AMDGPU_PTE_READABLE;
1450         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1451                 flags &= ~AMDGPU_PTE_WRITEABLE;
1452
1453         flags &= ~AMDGPU_PTE_EXECUTABLE;
1454         flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1455
1456         flags &= ~AMDGPU_PTE_MTYPE_MASK;
1457         flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1458
1459         if ((mapping->flags & AMDGPU_PTE_PRT) &&
1460             (adev->asic_type >= CHIP_VEGA10)) {
1461                 flags |= AMDGPU_PTE_PRT;
1462                 flags &= ~AMDGPU_PTE_VALID;
1463         }
1464
1465         trace_amdgpu_vm_bo_update(mapping);
1466
1467         pfn = mapping->offset >> PAGE_SHIFT;
1468         if (nodes) {
1469                 while (pfn >= nodes->size) {
1470                         pfn -= nodes->size;
1471                         ++nodes;
1472                 }
1473         }
1474
1475         do {
1476                 uint64_t max_entries;
1477                 uint64_t addr, last;
1478
1479                 if (nodes) {
1480                         addr = nodes->start << PAGE_SHIFT;
1481                         max_entries = (nodes->size - pfn) *
1482                                 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1483                 } else {
1484                         addr = 0;
1485                         max_entries = S64_MAX;
1486                 }
1487
1488                 if (pages_addr) {
1489                         if (flags == gtt_flags)
1490                                 src = adev->gart.table_addr +
1491                                         (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1492                         else
1493                                 max_entries = min(max_entries, 16ull * 1024ull);
1494                         addr = 0;
1495                 } else if (flags & AMDGPU_PTE_VALID) {
1496                         addr += adev->vm_manager.vram_base_offset;
1497                 }
1498                 addr += pfn << PAGE_SHIFT;
1499
1500                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1501                 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1502                                                 src, pages_addr, vm,
1503                                                 start, last, flags, addr,
1504                                                 fence);
1505                 if (r)
1506                         return r;
1507
1508                 pfn += last - start + 1;
1509                 if (nodes && nodes->size == pfn) {
1510                         pfn = 0;
1511                         ++nodes;
1512                 }
1513                 start = last + 1;
1514
1515         } while (unlikely(start != mapping->last + 1));
1516
1517         return 0;
1518 }
1519
1520 /**
1521  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1522  *
1523  * @adev: amdgpu_device pointer
1524  * @bo_va: requested BO and VM object
1525  * @clear: if true clear the entries
1526  *
1527  * Fill in the page table entries for @bo_va.
1528  * Returns 0 for success, -EINVAL for failure.
1529  */
1530 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1531                         struct amdgpu_bo_va *bo_va,
1532                         bool clear)
1533 {
1534         struct amdgpu_vm *vm = bo_va->vm;
1535         struct amdgpu_bo_va_mapping *mapping;
1536         dma_addr_t *pages_addr = NULL;
1537         uint64_t gtt_flags, flags;
1538         struct ttm_mem_reg *mem;
1539         struct drm_mm_node *nodes;
1540         struct dma_fence *exclusive;
1541         int r;
1542
1543         if (clear || !bo_va->bo) {
1544                 mem = NULL;
1545                 nodes = NULL;
1546                 exclusive = NULL;
1547         } else {
1548                 struct ttm_dma_tt *ttm;
1549
1550                 mem = &bo_va->bo->tbo.mem;
1551                 nodes = mem->mm_node;
1552                 if (mem->mem_type == TTM_PL_TT) {
1553                         ttm = container_of(bo_va->bo->tbo.ttm, struct
1554                                            ttm_dma_tt, ttm);
1555                         pages_addr = ttm->dma_address;
1556                 }
1557                 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1558         }
1559
1560         if (bo_va->bo) {
1561                 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1562                 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1563                         adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1564                         flags : 0;
1565         } else {
1566                 flags = 0x0;
1567                 gtt_flags = ~0x0;
1568         }
1569
1570         spin_lock(&vm->status_lock);
1571         if (!list_empty(&bo_va->vm_status))
1572                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1573         spin_unlock(&vm->status_lock);
1574
1575         list_for_each_entry(mapping, &bo_va->invalids, list) {
1576                 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1577                                                gtt_flags, pages_addr, vm,
1578                                                mapping, flags, nodes,
1579                                                &bo_va->last_pt_update);
1580                 if (r)
1581                         return r;
1582         }
1583
1584         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1585                 list_for_each_entry(mapping, &bo_va->valids, list)
1586                         trace_amdgpu_vm_bo_mapping(mapping);
1587
1588                 list_for_each_entry(mapping, &bo_va->invalids, list)
1589                         trace_amdgpu_vm_bo_mapping(mapping);
1590         }
1591
1592         spin_lock(&vm->status_lock);
1593         list_splice_init(&bo_va->invalids, &bo_va->valids);
1594         list_del_init(&bo_va->vm_status);
1595         if (clear)
1596                 list_add(&bo_va->vm_status, &vm->cleared);
1597         spin_unlock(&vm->status_lock);
1598
1599         return 0;
1600 }
1601
1602 /**
1603  * amdgpu_vm_update_prt_state - update the global PRT state
1604  */
1605 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1606 {
1607         unsigned long flags;
1608         bool enable;
1609
1610         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1611         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1612         adev->gart.gart_funcs->set_prt(adev, enable);
1613         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1614 }
1615
1616 /**
1617  * amdgpu_vm_prt_get - add a PRT user
1618  */
1619 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1620 {
1621         if (!adev->gart.gart_funcs->set_prt)
1622                 return;
1623
1624         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1625                 amdgpu_vm_update_prt_state(adev);
1626 }
1627
1628 /**
1629  * amdgpu_vm_prt_put - drop a PRT user
1630  */
1631 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1632 {
1633         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1634                 amdgpu_vm_update_prt_state(adev);
1635 }
1636
1637 /**
1638  * amdgpu_vm_prt_cb - callback for updating the PRT status
1639  */
1640 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1641 {
1642         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1643
1644         amdgpu_vm_prt_put(cb->adev);
1645         kfree(cb);
1646 }
1647
1648 /**
1649  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1650  */
1651 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1652                                  struct dma_fence *fence)
1653 {
1654         struct amdgpu_prt_cb *cb;
1655
1656         if (!adev->gart.gart_funcs->set_prt)
1657                 return;
1658
1659         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1660         if (!cb) {
1661                 /* Last resort when we are OOM */
1662                 if (fence)
1663                         dma_fence_wait(fence, false);
1664
1665                 amdgpu_vm_prt_put(adev);
1666         } else {
1667                 cb->adev = adev;
1668                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1669                                                      amdgpu_vm_prt_cb))
1670                         amdgpu_vm_prt_cb(fence, &cb->cb);
1671         }
1672 }
1673
1674 /**
1675  * amdgpu_vm_free_mapping - free a mapping
1676  *
1677  * @adev: amdgpu_device pointer
1678  * @vm: requested vm
1679  * @mapping: mapping to be freed
1680  * @fence: fence of the unmap operation
1681  *
1682  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1683  */
1684 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1685                                    struct amdgpu_vm *vm,
1686                                    struct amdgpu_bo_va_mapping *mapping,
1687                                    struct dma_fence *fence)
1688 {
1689         if (mapping->flags & AMDGPU_PTE_PRT)
1690                 amdgpu_vm_add_prt_cb(adev, fence);
1691         kfree(mapping);
1692 }
1693
1694 /**
1695  * amdgpu_vm_prt_fini - finish all prt mappings
1696  *
1697  * @adev: amdgpu_device pointer
1698  * @vm: requested vm
1699  *
1700  * Register a cleanup callback to disable PRT support after VM dies.
1701  */
1702 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1703 {
1704         struct reservation_object *resv = vm->root.bo->tbo.resv;
1705         struct dma_fence *excl, **shared;
1706         unsigned i, shared_count;
1707         int r;
1708
1709         r = reservation_object_get_fences_rcu(resv, &excl,
1710                                               &shared_count, &shared);
1711         if (r) {
1712                 /* Not enough memory to grab the fence list, as last resort
1713                  * block for all the fences to complete.
1714                  */
1715                 reservation_object_wait_timeout_rcu(resv, true, false,
1716                                                     MAX_SCHEDULE_TIMEOUT);
1717                 return;
1718         }
1719
1720         /* Add a callback for each fence in the reservation object */
1721         amdgpu_vm_prt_get(adev);
1722         amdgpu_vm_add_prt_cb(adev, excl);
1723
1724         for (i = 0; i < shared_count; ++i) {
1725                 amdgpu_vm_prt_get(adev);
1726                 amdgpu_vm_add_prt_cb(adev, shared[i]);
1727         }
1728
1729         kfree(shared);
1730 }
1731
1732 /**
1733  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1734  *
1735  * @adev: amdgpu_device pointer
1736  * @vm: requested vm
1737  * @fence: optional resulting fence (unchanged if no work needed to be done
1738  * or if an error occurred)
1739  *
1740  * Make sure all freed BOs are cleared in the PT.
1741  * Returns 0 for success.
1742  *
1743  * PTs have to be reserved and mutex must be locked!
1744  */
1745 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1746                           struct amdgpu_vm *vm,
1747                           struct dma_fence **fence)
1748 {
1749         struct amdgpu_bo_va_mapping *mapping;
1750         struct dma_fence *f = NULL;
1751         int r;
1752
1753         while (!list_empty(&vm->freed)) {
1754                 mapping = list_first_entry(&vm->freed,
1755                         struct amdgpu_bo_va_mapping, list);
1756                 list_del(&mapping->list);
1757
1758                 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1759                                                 mapping->start, mapping->last,
1760                                                 0, 0, &f);
1761                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1762                 if (r) {
1763                         dma_fence_put(f);
1764                         return r;
1765                 }
1766         }
1767
1768         if (fence && f) {
1769                 dma_fence_put(*fence);
1770                 *fence = f;
1771         } else {
1772                 dma_fence_put(f);
1773         }
1774
1775         return 0;
1776
1777 }
1778
1779 /**
1780  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1781  *
1782  * @adev: amdgpu_device pointer
1783  * @vm: requested vm
1784  *
1785  * Make sure all invalidated BOs are cleared in the PT.
1786  * Returns 0 for success.
1787  *
1788  * PTs have to be reserved and mutex must be locked!
1789  */
1790 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1791                              struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1792 {
1793         struct amdgpu_bo_va *bo_va = NULL;
1794         int r = 0;
1795
1796         spin_lock(&vm->status_lock);
1797         while (!list_empty(&vm->invalidated)) {
1798                 bo_va = list_first_entry(&vm->invalidated,
1799                         struct amdgpu_bo_va, vm_status);
1800                 spin_unlock(&vm->status_lock);
1801
1802                 r = amdgpu_vm_bo_update(adev, bo_va, true);
1803                 if (r)
1804                         return r;
1805
1806                 spin_lock(&vm->status_lock);
1807         }
1808         spin_unlock(&vm->status_lock);
1809
1810         if (bo_va)
1811                 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1812
1813         return r;
1814 }
1815
1816 /**
1817  * amdgpu_vm_bo_add - add a bo to a specific vm
1818  *
1819  * @adev: amdgpu_device pointer
1820  * @vm: requested vm
1821  * @bo: amdgpu buffer object
1822  *
1823  * Add @bo into the requested vm.
1824  * Add @bo to the list of bos associated with the vm
1825  * Returns newly added bo_va or NULL for failure
1826  *
1827  * Object has to be reserved!
1828  */
1829 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1830                                       struct amdgpu_vm *vm,
1831                                       struct amdgpu_bo *bo)
1832 {
1833         struct amdgpu_bo_va *bo_va;
1834
1835         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1836         if (bo_va == NULL) {
1837                 return NULL;
1838         }
1839         bo_va->vm = vm;
1840         bo_va->bo = bo;
1841         bo_va->ref_count = 1;
1842         INIT_LIST_HEAD(&bo_va->bo_list);
1843         INIT_LIST_HEAD(&bo_va->valids);
1844         INIT_LIST_HEAD(&bo_va->invalids);
1845         INIT_LIST_HEAD(&bo_va->vm_status);
1846
1847         if (bo)
1848                 list_add_tail(&bo_va->bo_list, &bo->va);
1849
1850         return bo_va;
1851 }
1852
1853 /**
1854  * amdgpu_vm_bo_map - map bo inside a vm
1855  *
1856  * @adev: amdgpu_device pointer
1857  * @bo_va: bo_va to store the address
1858  * @saddr: where to map the BO
1859  * @offset: requested offset in the BO
1860  * @flags: attributes of pages (read/write/valid/etc.)
1861  *
1862  * Add a mapping of the BO at the specefied addr into the VM.
1863  * Returns 0 for success, error for failure.
1864  *
1865  * Object has to be reserved and unreserved outside!
1866  */
1867 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1868                      struct amdgpu_bo_va *bo_va,
1869                      uint64_t saddr, uint64_t offset,
1870                      uint64_t size, uint64_t flags)
1871 {
1872         struct amdgpu_bo_va_mapping *mapping, *tmp;
1873         struct amdgpu_vm *vm = bo_va->vm;
1874         uint64_t eaddr;
1875
1876         /* validate the parameters */
1877         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1878             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1879                 return -EINVAL;
1880
1881         /* make sure object fit at this offset */
1882         eaddr = saddr + size - 1;
1883         if (saddr >= eaddr ||
1884             (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1885                 return -EINVAL;
1886
1887         saddr /= AMDGPU_GPU_PAGE_SIZE;
1888         eaddr /= AMDGPU_GPU_PAGE_SIZE;
1889
1890         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1891         if (tmp) {
1892                 /* bo and tmp overlap, invalid addr */
1893                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1894                         "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1895                         tmp->start, tmp->last + 1);
1896                 return -EINVAL;
1897         }
1898
1899         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1900         if (!mapping)
1901                 return -ENOMEM;
1902
1903         INIT_LIST_HEAD(&mapping->list);
1904         mapping->start = saddr;
1905         mapping->last = eaddr;
1906         mapping->offset = offset;
1907         mapping->flags = flags;
1908
1909         list_add(&mapping->list, &bo_va->invalids);
1910         amdgpu_vm_it_insert(mapping, &vm->va);
1911
1912         if (flags & AMDGPU_PTE_PRT)
1913                 amdgpu_vm_prt_get(adev);
1914
1915         return 0;
1916 }
1917
1918 /**
1919  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1920  *
1921  * @adev: amdgpu_device pointer
1922  * @bo_va: bo_va to store the address
1923  * @saddr: where to map the BO
1924  * @offset: requested offset in the BO
1925  * @flags: attributes of pages (read/write/valid/etc.)
1926  *
1927  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1928  * mappings as we do so.
1929  * Returns 0 for success, error for failure.
1930  *
1931  * Object has to be reserved and unreserved outside!
1932  */
1933 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1934                              struct amdgpu_bo_va *bo_va,
1935                              uint64_t saddr, uint64_t offset,
1936                              uint64_t size, uint64_t flags)
1937 {
1938         struct amdgpu_bo_va_mapping *mapping;
1939         struct amdgpu_vm *vm = bo_va->vm;
1940         uint64_t eaddr;
1941         int r;
1942
1943         /* validate the parameters */
1944         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1945             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1946                 return -EINVAL;
1947
1948         /* make sure object fit at this offset */
1949         eaddr = saddr + size - 1;
1950         if (saddr >= eaddr ||
1951             (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1952                 return -EINVAL;
1953
1954         /* Allocate all the needed memory */
1955         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1956         if (!mapping)
1957                 return -ENOMEM;
1958
1959         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1960         if (r) {
1961                 kfree(mapping);
1962                 return r;
1963         }
1964
1965         saddr /= AMDGPU_GPU_PAGE_SIZE;
1966         eaddr /= AMDGPU_GPU_PAGE_SIZE;
1967
1968         mapping->start = saddr;
1969         mapping->last = eaddr;
1970         mapping->offset = offset;
1971         mapping->flags = flags;
1972
1973         list_add(&mapping->list, &bo_va->invalids);
1974         amdgpu_vm_it_insert(mapping, &vm->va);
1975
1976         if (flags & AMDGPU_PTE_PRT)
1977                 amdgpu_vm_prt_get(adev);
1978
1979         return 0;
1980 }
1981
1982 /**
1983  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1984  *
1985  * @adev: amdgpu_device pointer
1986  * @bo_va: bo_va to remove the address from
1987  * @saddr: where to the BO is mapped
1988  *
1989  * Remove a mapping of the BO at the specefied addr from the VM.
1990  * Returns 0 for success, error for failure.
1991  *
1992  * Object has to be reserved and unreserved outside!
1993  */
1994 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1995                        struct amdgpu_bo_va *bo_va,
1996                        uint64_t saddr)
1997 {
1998         struct amdgpu_bo_va_mapping *mapping;
1999         struct amdgpu_vm *vm = bo_va->vm;
2000         bool valid = true;
2001
2002         saddr /= AMDGPU_GPU_PAGE_SIZE;
2003
2004         list_for_each_entry(mapping, &bo_va->valids, list) {
2005                 if (mapping->start == saddr)
2006                         break;
2007         }
2008
2009         if (&mapping->list == &bo_va->valids) {
2010                 valid = false;
2011
2012                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2013                         if (mapping->start == saddr)
2014                                 break;
2015                 }
2016
2017                 if (&mapping->list == &bo_va->invalids)
2018                         return -ENOENT;
2019         }
2020
2021         list_del(&mapping->list);
2022         amdgpu_vm_it_remove(mapping, &vm->va);
2023         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2024
2025         if (valid)
2026                 list_add(&mapping->list, &vm->freed);
2027         else
2028                 amdgpu_vm_free_mapping(adev, vm, mapping,
2029                                        bo_va->last_pt_update);
2030
2031         return 0;
2032 }
2033
2034 /**
2035  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2036  *
2037  * @adev: amdgpu_device pointer
2038  * @vm: VM structure to use
2039  * @saddr: start of the range
2040  * @size: size of the range
2041  *
2042  * Remove all mappings in a range, split them as appropriate.
2043  * Returns 0 for success, error for failure.
2044  */
2045 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2046                                 struct amdgpu_vm *vm,
2047                                 uint64_t saddr, uint64_t size)
2048 {
2049         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2050         LIST_HEAD(removed);
2051         uint64_t eaddr;
2052
2053         eaddr = saddr + size - 1;
2054         saddr /= AMDGPU_GPU_PAGE_SIZE;
2055         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2056
2057         /* Allocate all the needed memory */
2058         before = kzalloc(sizeof(*before), GFP_KERNEL);
2059         if (!before)
2060                 return -ENOMEM;
2061         INIT_LIST_HEAD(&before->list);
2062
2063         after = kzalloc(sizeof(*after), GFP_KERNEL);
2064         if (!after) {
2065                 kfree(before);
2066                 return -ENOMEM;
2067         }
2068         INIT_LIST_HEAD(&after->list);
2069
2070         /* Now gather all removed mappings */
2071         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2072         while (tmp) {
2073                 /* Remember mapping split at the start */
2074                 if (tmp->start < saddr) {
2075                         before->start = tmp->start;
2076                         before->last = saddr - 1;
2077                         before->offset = tmp->offset;
2078                         before->flags = tmp->flags;
2079                         list_add(&before->list, &tmp->list);
2080                 }
2081
2082                 /* Remember mapping split at the end */
2083                 if (tmp->last > eaddr) {
2084                         after->start = eaddr + 1;
2085                         after->last = tmp->last;
2086                         after->offset = tmp->offset;
2087                         after->offset += after->start - tmp->start;
2088                         after->flags = tmp->flags;
2089                         list_add(&after->list, &tmp->list);
2090                 }
2091
2092                 list_del(&tmp->list);
2093                 list_add(&tmp->list, &removed);
2094
2095                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2096         }
2097
2098         /* And free them up */
2099         list_for_each_entry_safe(tmp, next, &removed, list) {
2100                 amdgpu_vm_it_remove(tmp, &vm->va);
2101                 list_del(&tmp->list);
2102
2103                 if (tmp->start < saddr)
2104                     tmp->start = saddr;
2105                 if (tmp->last > eaddr)
2106                     tmp->last = eaddr;
2107
2108                 list_add(&tmp->list, &vm->freed);
2109                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2110         }
2111
2112         /* Insert partial mapping before the range */
2113         if (!list_empty(&before->list)) {
2114                 amdgpu_vm_it_insert(before, &vm->va);
2115                 if (before->flags & AMDGPU_PTE_PRT)
2116                         amdgpu_vm_prt_get(adev);
2117         } else {
2118                 kfree(before);
2119         }
2120
2121         /* Insert partial mapping after the range */
2122         if (!list_empty(&after->list)) {
2123                 amdgpu_vm_it_insert(after, &vm->va);
2124                 if (after->flags & AMDGPU_PTE_PRT)
2125                         amdgpu_vm_prt_get(adev);
2126         } else {
2127                 kfree(after);
2128         }
2129
2130         return 0;
2131 }
2132
2133 /**
2134  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2135  *
2136  * @adev: amdgpu_device pointer
2137  * @bo_va: requested bo_va
2138  *
2139  * Remove @bo_va->bo from the requested vm.
2140  *
2141  * Object have to be reserved!
2142  */
2143 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2144                       struct amdgpu_bo_va *bo_va)
2145 {
2146         struct amdgpu_bo_va_mapping *mapping, *next;
2147         struct amdgpu_vm *vm = bo_va->vm;
2148
2149         list_del(&bo_va->bo_list);
2150
2151         spin_lock(&vm->status_lock);
2152         list_del(&bo_va->vm_status);
2153         spin_unlock(&vm->status_lock);
2154
2155         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2156                 list_del(&mapping->list);
2157                 amdgpu_vm_it_remove(mapping, &vm->va);
2158                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2159                 list_add(&mapping->list, &vm->freed);
2160         }
2161         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2162                 list_del(&mapping->list);
2163                 amdgpu_vm_it_remove(mapping, &vm->va);
2164                 amdgpu_vm_free_mapping(adev, vm, mapping,
2165                                        bo_va->last_pt_update);
2166         }
2167
2168         dma_fence_put(bo_va->last_pt_update);
2169         kfree(bo_va);
2170 }
2171
2172 /**
2173  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2174  *
2175  * @adev: amdgpu_device pointer
2176  * @vm: requested vm
2177  * @bo: amdgpu buffer object
2178  *
2179  * Mark @bo as invalid.
2180  */
2181 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2182                              struct amdgpu_bo *bo)
2183 {
2184         struct amdgpu_bo_va *bo_va;
2185
2186         list_for_each_entry(bo_va, &bo->va, bo_list) {
2187                 spin_lock(&bo_va->vm->status_lock);
2188                 if (list_empty(&bo_va->vm_status))
2189                         list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2190                 spin_unlock(&bo_va->vm->status_lock);
2191         }
2192 }
2193
2194 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2195 {
2196         /* Total bits covered by PD + PTs */
2197         unsigned bits = ilog2(vm_size) + 18;
2198
2199         /* Make sure the PD is 4K in size up to 8GB address space.
2200            Above that split equal between PD and PTs */
2201         if (vm_size <= 8)
2202                 return (bits - 9);
2203         else
2204                 return ((bits + 3) / 2);
2205 }
2206
2207 /**
2208  * amdgpu_vm_adjust_size - adjust vm size and block size
2209  *
2210  * @adev: amdgpu_device pointer
2211  * @vm_size: the default vm size if it's set auto
2212  */
2213 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2214 {
2215         /* adjust vm size firstly */
2216         if (amdgpu_vm_size == -1)
2217                 adev->vm_manager.vm_size = vm_size;
2218         else
2219                 adev->vm_manager.vm_size = amdgpu_vm_size;
2220
2221         /* block size depends on vm size */
2222         if (amdgpu_vm_block_size == -1)
2223                 adev->vm_manager.block_size =
2224                         amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2225         else
2226                 adev->vm_manager.block_size = amdgpu_vm_block_size;
2227
2228         DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2229                 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2230 }
2231
2232 /**
2233  * amdgpu_vm_init - initialize a vm instance
2234  *
2235  * @adev: amdgpu_device pointer
2236  * @vm: requested vm
2237  *
2238  * Init @vm fields.
2239  */
2240 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2241 {
2242         const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2243                 AMDGPU_VM_PTE_COUNT(adev) * 8);
2244         unsigned ring_instance;
2245         struct amdgpu_ring *ring;
2246         struct amd_sched_rq *rq;
2247         int r, i;
2248
2249         vm->va = RB_ROOT;
2250         vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2251         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2252                 vm->reserved_vmid[i] = NULL;
2253         spin_lock_init(&vm->status_lock);
2254         INIT_LIST_HEAD(&vm->invalidated);
2255         INIT_LIST_HEAD(&vm->cleared);
2256         INIT_LIST_HEAD(&vm->freed);
2257
2258         /* create scheduler entity for page table updates */
2259
2260         ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2261         ring_instance %= adev->vm_manager.vm_pte_num_rings;
2262         ring = adev->vm_manager.vm_pte_rings[ring_instance];
2263         rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2264         r = amd_sched_entity_init(&ring->sched, &vm->entity,
2265                                   rq, amdgpu_sched_jobs);
2266         if (r)
2267                 return r;
2268
2269         vm->last_dir_update = NULL;
2270
2271         r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2272                              AMDGPU_GEM_DOMAIN_VRAM,
2273                              AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2274                              AMDGPU_GEM_CREATE_SHADOW |
2275                              AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2276                              AMDGPU_GEM_CREATE_VRAM_CLEARED,
2277                              NULL, NULL, &vm->root.bo);
2278         if (r)
2279                 goto error_free_sched_entity;
2280
2281         r = amdgpu_bo_reserve(vm->root.bo, false);
2282         if (r)
2283                 goto error_free_root;
2284
2285         vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2286         amdgpu_bo_unreserve(vm->root.bo);
2287
2288         return 0;
2289
2290 error_free_root:
2291         amdgpu_bo_unref(&vm->root.bo->shadow);
2292         amdgpu_bo_unref(&vm->root.bo);
2293         vm->root.bo = NULL;
2294
2295 error_free_sched_entity:
2296         amd_sched_entity_fini(&ring->sched, &vm->entity);
2297
2298         return r;
2299 }
2300
2301 /**
2302  * amdgpu_vm_free_levels - free PD/PT levels
2303  *
2304  * @level: PD/PT starting level to free
2305  *
2306  * Free the page directory or page table level and all sub levels.
2307  */
2308 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2309 {
2310         unsigned i;
2311
2312         if (level->bo) {
2313                 amdgpu_bo_unref(&level->bo->shadow);
2314                 amdgpu_bo_unref(&level->bo);
2315         }
2316
2317         if (level->entries)
2318                 for (i = 0; i <= level->last_entry_used; i++)
2319                         amdgpu_vm_free_levels(&level->entries[i]);
2320
2321         drm_free_large(level->entries);
2322 }
2323
2324 /**
2325  * amdgpu_vm_fini - tear down a vm instance
2326  *
2327  * @adev: amdgpu_device pointer
2328  * @vm: requested vm
2329  *
2330  * Tear down @vm.
2331  * Unbind the VM and remove all bos from the vm bo list
2332  */
2333 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2334 {
2335         struct amdgpu_bo_va_mapping *mapping, *tmp;
2336         bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2337         int i;
2338
2339         amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2340
2341         if (!RB_EMPTY_ROOT(&vm->va)) {
2342                 dev_err(adev->dev, "still active bo inside vm\n");
2343         }
2344         rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2345                 list_del(&mapping->list);
2346                 amdgpu_vm_it_remove(mapping, &vm->va);
2347                 kfree(mapping);
2348         }
2349         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2350                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2351                         amdgpu_vm_prt_fini(adev, vm);
2352                         prt_fini_needed = false;
2353                 }
2354
2355                 list_del(&mapping->list);
2356                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2357         }
2358
2359         amdgpu_vm_free_levels(&vm->root);
2360         dma_fence_put(vm->last_dir_update);
2361         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2362                 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2363 }
2364
2365 /**
2366  * amdgpu_vm_manager_init - init the VM manager
2367  *
2368  * @adev: amdgpu_device pointer
2369  *
2370  * Initialize the VM manager structures
2371  */
2372 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2373 {
2374         unsigned i, j;
2375
2376         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2377                 struct amdgpu_vm_id_manager *id_mgr =
2378                         &adev->vm_manager.id_mgr[i];
2379
2380                 mutex_init(&id_mgr->lock);
2381                 INIT_LIST_HEAD(&id_mgr->ids_lru);
2382                 atomic_set(&id_mgr->reserved_vmid_num, 0);
2383
2384                 /* skip over VMID 0, since it is the system VM */
2385                 for (j = 1; j < id_mgr->num_ids; ++j) {
2386                         amdgpu_vm_reset_id(adev, i, j);
2387                         amdgpu_sync_create(&id_mgr->ids[i].active);
2388                         list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2389                 }
2390         }
2391
2392         adev->vm_manager.fence_context =
2393                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2394         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2395                 adev->vm_manager.seqno[i] = 0;
2396
2397         atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2398         atomic64_set(&adev->vm_manager.client_counter, 0);
2399         spin_lock_init(&adev->vm_manager.prt_lock);
2400         atomic_set(&adev->vm_manager.num_prt_users, 0);
2401 }
2402
2403 /**
2404  * amdgpu_vm_manager_fini - cleanup VM manager
2405  *
2406  * @adev: amdgpu_device pointer
2407  *
2408  * Cleanup the VM manager and free resources.
2409  */
2410 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2411 {
2412         unsigned i, j;
2413
2414         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2415                 struct amdgpu_vm_id_manager *id_mgr =
2416                         &adev->vm_manager.id_mgr[i];
2417
2418                 mutex_destroy(&id_mgr->lock);
2419                 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2420                         struct amdgpu_vm_id *id = &id_mgr->ids[j];
2421
2422                         amdgpu_sync_free(&id->active);
2423                         dma_fence_put(id->flushed_updates);
2424                         dma_fence_put(id->last_flush);
2425                 }
2426         }
2427 }
2428
2429 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2430 {
2431         union drm_amdgpu_vm *args = data;
2432         struct amdgpu_device *adev = dev->dev_private;
2433         struct amdgpu_fpriv *fpriv = filp->driver_priv;
2434         int r;
2435
2436         switch (args->in.op) {
2437         case AMDGPU_VM_OP_RESERVE_VMID:
2438                 /* current, we only have requirement to reserve vmid from gfxhub */
2439                 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2440                                                   AMDGPU_GFXHUB);
2441                 if (r)
2442                         return r;
2443                 break;
2444         case AMDGPU_VM_OP_UNRESERVE_VMID:
2445                 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2446                 break;
2447         default:
2448                 return -EINVAL;
2449         }
2450
2451         return 0;
2452 }
This page took 0.173957 seconds and 4 git commands to generate.