]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c
Merge branch 'spi-5.3' into spi-5.4
[linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "hdp/hdp_4_0_offset.h"
38 #include "sdma0/sdma0_4_1_default.h"
39
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "vega10_sdma_pkt_open.h"
43
44 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
45 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
46
47 #include "amdgpu_ras.h"
48
49 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
50 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
51 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
53 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
54 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
55 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
56 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
58
59 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
60 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
61
62 #define WREG32_SDMA(instance, offset, value) \
63         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
64 #define RREG32_SDMA(instance, offset) \
65         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
66
67 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
68 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
69 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
70 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
71
72 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
73         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
74         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
75         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
76         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
78         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
80         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
81         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
82         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
83         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
84         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
85         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
86         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
87         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
88         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
89         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
90         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
91         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
92         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
95         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
97         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
98 };
99
100 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
101         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
102         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
106 };
107
108 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
109         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
110         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
113         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
114 };
115
116 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
122         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
123         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
125         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
126         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
127         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
128 };
129
130 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
131         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
132 };
133
134 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
135 {
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
162 };
163
164 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
165         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
166         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
167         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
168         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
169         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
174         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
183         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
184         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
191 };
192
193 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
194 {
195         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
196         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
197 };
198
199 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
200 {
201         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
202         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
203 };
204
205 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
206                 u32 instance, u32 offset)
207 {
208         return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
209                         (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
210 }
211
212 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
213 {
214         switch (adev->asic_type) {
215         case CHIP_VEGA10:
216                 if (!amdgpu_virt_support_skip_setting(adev)) {
217                         soc15_program_register_sequence(adev,
218                                                          golden_settings_sdma_4,
219                                                          ARRAY_SIZE(golden_settings_sdma_4));
220                         soc15_program_register_sequence(adev,
221                                                          golden_settings_sdma_vg10,
222                                                          ARRAY_SIZE(golden_settings_sdma_vg10));
223                 }
224                 break;
225         case CHIP_VEGA12:
226                 soc15_program_register_sequence(adev,
227                                                 golden_settings_sdma_4,
228                                                 ARRAY_SIZE(golden_settings_sdma_4));
229                 soc15_program_register_sequence(adev,
230                                                 golden_settings_sdma_vg12,
231                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
232                 break;
233         case CHIP_VEGA20:
234                 soc15_program_register_sequence(adev,
235                                                 golden_settings_sdma0_4_2_init,
236                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
237                 soc15_program_register_sequence(adev,
238                                                 golden_settings_sdma0_4_2,
239                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
240                 soc15_program_register_sequence(adev,
241                                                 golden_settings_sdma1_4_2,
242                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
243                 break;
244         case CHIP_RAVEN:
245                 soc15_program_register_sequence(adev,
246                                                 golden_settings_sdma_4_1,
247                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
248                 if (adev->rev_id >= 8)
249                         soc15_program_register_sequence(adev,
250                                                         golden_settings_sdma_rv2,
251                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
252                 else
253                         soc15_program_register_sequence(adev,
254                                                         golden_settings_sdma_rv1,
255                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
256                 break;
257         default:
258                 break;
259         }
260 }
261
262 /**
263  * sdma_v4_0_init_microcode - load ucode images from disk
264  *
265  * @adev: amdgpu_device pointer
266  *
267  * Use the firmware interface to load the ucode images into
268  * the driver (not loaded into hw).
269  * Returns 0 on success, error on failure.
270  */
271
272 // emulation only, won't work on real chip
273 // vega10 real chip need to use PSP to load firmware
274 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
275 {
276         const char *chip_name;
277         char fw_name[30];
278         int err = 0, i;
279         struct amdgpu_firmware_info *info = NULL;
280         const struct common_firmware_header *header = NULL;
281         const struct sdma_firmware_header_v1_0 *hdr;
282
283         DRM_DEBUG("\n");
284
285         switch (adev->asic_type) {
286         case CHIP_VEGA10:
287                 chip_name = "vega10";
288                 break;
289         case CHIP_VEGA12:
290                 chip_name = "vega12";
291                 break;
292         case CHIP_VEGA20:
293                 chip_name = "vega20";
294                 break;
295         case CHIP_RAVEN:
296                 if (adev->rev_id >= 8)
297                         chip_name = "raven2";
298                 else if (adev->pdev->device == 0x15d8)
299                         chip_name = "picasso";
300                 else
301                         chip_name = "raven";
302                 break;
303         default:
304                 BUG();
305         }
306
307         for (i = 0; i < adev->sdma.num_instances; i++) {
308                 if (i == 0)
309                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
310                 else
311                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
312                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
313                 if (err)
314                         goto out;
315                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
316                 if (err)
317                         goto out;
318                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
319                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
320                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
321                 if (adev->sdma.instance[i].feature_version >= 20)
322                         adev->sdma.instance[i].burst_nop = true;
323                 DRM_DEBUG("psp_load == '%s'\n",
324                                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
325
326                 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
327                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
328                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
329                         info->fw = adev->sdma.instance[i].fw;
330                         header = (const struct common_firmware_header *)info->fw->data;
331                         adev->firmware.fw_size +=
332                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
333                 }
334         }
335 out:
336         if (err) {
337                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
338                 for (i = 0; i < adev->sdma.num_instances; i++) {
339                         release_firmware(adev->sdma.instance[i].fw);
340                         adev->sdma.instance[i].fw = NULL;
341                 }
342         }
343         return err;
344 }
345
346 /**
347  * sdma_v4_0_ring_get_rptr - get the current read pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current rptr from the hardware (VEGA10+).
352  */
353 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
354 {
355         u64 *rptr;
356
357         /* XXX check if swapping is necessary on BE */
358         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
359
360         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
361         return ((*rptr) >> 2);
362 }
363
364 /**
365  * sdma_v4_0_ring_get_wptr - get the current write pointer
366  *
367  * @ring: amdgpu ring pointer
368  *
369  * Get the current wptr from the hardware (VEGA10+).
370  */
371 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
372 {
373         struct amdgpu_device *adev = ring->adev;
374         u64 wptr;
375
376         if (ring->use_doorbell) {
377                 /* XXX check if swapping is necessary on BE */
378                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
379                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
380         } else {
381                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
382                 wptr = wptr << 32;
383                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
384                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
385                                 ring->me, wptr);
386         }
387
388         return wptr >> 2;
389 }
390
391 /**
392  * sdma_v4_0_ring_set_wptr - commit the write pointer
393  *
394  * @ring: amdgpu ring pointer
395  *
396  * Write the wptr back to the hardware (VEGA10+).
397  */
398 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
399 {
400         struct amdgpu_device *adev = ring->adev;
401
402         DRM_DEBUG("Setting write pointer\n");
403         if (ring->use_doorbell) {
404                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
405
406                 DRM_DEBUG("Using doorbell -- "
407                                 "wptr_offs == 0x%08x "
408                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
409                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
410                                 ring->wptr_offs,
411                                 lower_32_bits(ring->wptr << 2),
412                                 upper_32_bits(ring->wptr << 2));
413                 /* XXX check if swapping is necessary on BE */
414                 WRITE_ONCE(*wb, (ring->wptr << 2));
415                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
416                                 ring->doorbell_index, ring->wptr << 2);
417                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
418         } else {
419                 DRM_DEBUG("Not using doorbell -- "
420                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
421                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
422                                 ring->me,
423                                 lower_32_bits(ring->wptr << 2),
424                                 ring->me,
425                                 upper_32_bits(ring->wptr << 2));
426                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
427                             lower_32_bits(ring->wptr << 2));
428                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
429                             upper_32_bits(ring->wptr << 2));
430         }
431 }
432
433 /**
434  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
435  *
436  * @ring: amdgpu ring pointer
437  *
438  * Get the current wptr from the hardware (VEGA10+).
439  */
440 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
441 {
442         struct amdgpu_device *adev = ring->adev;
443         u64 wptr;
444
445         if (ring->use_doorbell) {
446                 /* XXX check if swapping is necessary on BE */
447                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
448         } else {
449                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
450                 wptr = wptr << 32;
451                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
452         }
453
454         return wptr >> 2;
455 }
456
457 /**
458  * sdma_v4_0_ring_set_wptr - commit the write pointer
459  *
460  * @ring: amdgpu ring pointer
461  *
462  * Write the wptr back to the hardware (VEGA10+).
463  */
464 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
465 {
466         struct amdgpu_device *adev = ring->adev;
467
468         if (ring->use_doorbell) {
469                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
470
471                 /* XXX check if swapping is necessary on BE */
472                 WRITE_ONCE(*wb, (ring->wptr << 2));
473                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
474         } else {
475                 uint64_t wptr = ring->wptr << 2;
476
477                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
478                             lower_32_bits(wptr));
479                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
480                             upper_32_bits(wptr));
481         }
482 }
483
484 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
485 {
486         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
487         int i;
488
489         for (i = 0; i < count; i++)
490                 if (sdma && sdma->burst_nop && (i == 0))
491                         amdgpu_ring_write(ring, ring->funcs->nop |
492                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
493                 else
494                         amdgpu_ring_write(ring, ring->funcs->nop);
495 }
496
497 /**
498  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
499  *
500  * @ring: amdgpu ring pointer
501  * @ib: IB object to schedule
502  *
503  * Schedule an IB in the DMA ring (VEGA10).
504  */
505 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
506                                    struct amdgpu_job *job,
507                                    struct amdgpu_ib *ib,
508                                    uint32_t flags)
509 {
510         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
511
512         /* IB packet must end on a 8 DW boundary */
513         sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
514
515         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
516                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
517         /* base must be 32 byte aligned */
518         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
519         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
520         amdgpu_ring_write(ring, ib->length_dw);
521         amdgpu_ring_write(ring, 0);
522         amdgpu_ring_write(ring, 0);
523
524 }
525
526 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
527                                    int mem_space, int hdp,
528                                    uint32_t addr0, uint32_t addr1,
529                                    uint32_t ref, uint32_t mask,
530                                    uint32_t inv)
531 {
532         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
533                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
534                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
535                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
536         if (mem_space) {
537                 /* memory */
538                 amdgpu_ring_write(ring, addr0);
539                 amdgpu_ring_write(ring, addr1);
540         } else {
541                 /* registers */
542                 amdgpu_ring_write(ring, addr0 << 2);
543                 amdgpu_ring_write(ring, addr1 << 2);
544         }
545         amdgpu_ring_write(ring, ref); /* reference */
546         amdgpu_ring_write(ring, mask); /* mask */
547         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
548                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
549 }
550
551 /**
552  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
553  *
554  * @ring: amdgpu ring pointer
555  *
556  * Emit an hdp flush packet on the requested DMA ring.
557  */
558 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
559 {
560         struct amdgpu_device *adev = ring->adev;
561         u32 ref_and_mask = 0;
562         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
563
564         if (ring->me == 0)
565                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
566         else
567                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
568
569         sdma_v4_0_wait_reg_mem(ring, 0, 1,
570                                adev->nbio_funcs->get_hdp_flush_done_offset(adev),
571                                adev->nbio_funcs->get_hdp_flush_req_offset(adev),
572                                ref_and_mask, ref_and_mask, 10);
573 }
574
575 /**
576  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
577  *
578  * @ring: amdgpu ring pointer
579  * @fence: amdgpu fence object
580  *
581  * Add a DMA fence packet to the ring to write
582  * the fence seq number and DMA trap packet to generate
583  * an interrupt if needed (VEGA10).
584  */
585 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
586                                       unsigned flags)
587 {
588         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
589         /* write the fence */
590         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
591         /* zero in first two bits */
592         BUG_ON(addr & 0x3);
593         amdgpu_ring_write(ring, lower_32_bits(addr));
594         amdgpu_ring_write(ring, upper_32_bits(addr));
595         amdgpu_ring_write(ring, lower_32_bits(seq));
596
597         /* optionally write high bits as well */
598         if (write64bit) {
599                 addr += 4;
600                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
601                 /* zero in first two bits */
602                 BUG_ON(addr & 0x3);
603                 amdgpu_ring_write(ring, lower_32_bits(addr));
604                 amdgpu_ring_write(ring, upper_32_bits(addr));
605                 amdgpu_ring_write(ring, upper_32_bits(seq));
606         }
607
608         /* generate an interrupt */
609         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
610         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
611 }
612
613
614 /**
615  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
616  *
617  * @adev: amdgpu_device pointer
618  *
619  * Stop the gfx async dma ring buffers (VEGA10).
620  */
621 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
622 {
623         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
624         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
625         u32 rb_cntl, ib_cntl;
626         int i;
627
628         if ((adev->mman.buffer_funcs_ring == sdma0) ||
629             (adev->mman.buffer_funcs_ring == sdma1))
630                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
631
632         for (i = 0; i < adev->sdma.num_instances; i++) {
633                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
634                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
635                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
636                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
637                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
638                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
639         }
640
641         sdma0->sched.ready = false;
642         sdma1->sched.ready = false;
643 }
644
645 /**
646  * sdma_v4_0_rlc_stop - stop the compute async dma engines
647  *
648  * @adev: amdgpu_device pointer
649  *
650  * Stop the compute async dma queues (VEGA10).
651  */
652 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
653 {
654         /* XXX todo */
655 }
656
657 /**
658  * sdma_v4_0_page_stop - stop the page async dma engines
659  *
660  * @adev: amdgpu_device pointer
661  *
662  * Stop the page async dma ring buffers (VEGA10).
663  */
664 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
665 {
666         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
667         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
668         u32 rb_cntl, ib_cntl;
669         int i;
670
671         if ((adev->mman.buffer_funcs_ring == sdma0) ||
672             (adev->mman.buffer_funcs_ring == sdma1))
673                 amdgpu_ttm_set_buffer_funcs_status(adev, false);
674
675         for (i = 0; i < adev->sdma.num_instances; i++) {
676                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
677                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
678                                         RB_ENABLE, 0);
679                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
680                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
681                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
682                                         IB_ENABLE, 0);
683                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
684         }
685
686         sdma0->sched.ready = false;
687         sdma1->sched.ready = false;
688 }
689
690 /**
691  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
692  *
693  * @adev: amdgpu_device pointer
694  * @enable: enable/disable the DMA MEs context switch.
695  *
696  * Halt or unhalt the async dma engines context switch (VEGA10).
697  */
698 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
699 {
700         u32 f32_cntl, phase_quantum = 0;
701         int i;
702
703         if (amdgpu_sdma_phase_quantum) {
704                 unsigned value = amdgpu_sdma_phase_quantum;
705                 unsigned unit = 0;
706
707                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
708                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
709                         value = (value + 1) >> 1;
710                         unit++;
711                 }
712                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
713                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
714                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
715                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
716                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
717                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
718                         WARN_ONCE(1,
719                         "clamping sdma_phase_quantum to %uK clock cycles\n",
720                                   value << unit);
721                 }
722                 phase_quantum =
723                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
724                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
725         }
726
727         for (i = 0; i < adev->sdma.num_instances; i++) {
728                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
729                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
730                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
731                 if (enable && amdgpu_sdma_phase_quantum) {
732                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
733                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
734                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
735                 }
736                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
737         }
738
739 }
740
741 /**
742  * sdma_v4_0_enable - stop the async dma engines
743  *
744  * @adev: amdgpu_device pointer
745  * @enable: enable/disable the DMA MEs.
746  *
747  * Halt or unhalt the async dma engines (VEGA10).
748  */
749 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
750 {
751         u32 f32_cntl;
752         int i;
753
754         if (enable == false) {
755                 sdma_v4_0_gfx_stop(adev);
756                 sdma_v4_0_rlc_stop(adev);
757                 if (adev->sdma.has_page_queue)
758                         sdma_v4_0_page_stop(adev);
759         }
760
761         for (i = 0; i < adev->sdma.num_instances; i++) {
762                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
763                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
764                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
765         }
766 }
767
768 /**
769  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
770  */
771 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
772 {
773         /* Set ring buffer size in dwords */
774         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
775
776         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
777 #ifdef __BIG_ENDIAN
778         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
779         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
780                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
781 #endif
782         return rb_cntl;
783 }
784
785 /**
786  * sdma_v4_0_gfx_resume - setup and start the async dma engines
787  *
788  * @adev: amdgpu_device pointer
789  * @i: instance to resume
790  *
791  * Set up the gfx DMA ring buffers and enable them (VEGA10).
792  * Returns 0 for success, error for failure.
793  */
794 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
795 {
796         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
797         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
798         u32 wb_offset;
799         u32 doorbell;
800         u32 doorbell_offset;
801         u64 wptr_gpu_addr;
802
803         wb_offset = (ring->rptr_offs * 4);
804
805         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
806         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
807         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
808
809         /* Initialize the ring buffer's read and write pointers */
810         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
811         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
812         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
813         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
814
815         /* set the wb address whether it's enabled or not */
816         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
817                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
818         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
819                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
820
821         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
822                                 RPTR_WRITEBACK_ENABLE, 1);
823
824         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
825         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
826
827         ring->wptr = 0;
828
829         /* before programing wptr to a less value, need set minor_ptr_update first */
830         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
831
832         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
833         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
834
835         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
836                                  ring->use_doorbell);
837         doorbell_offset = REG_SET_FIELD(doorbell_offset,
838                                         SDMA0_GFX_DOORBELL_OFFSET,
839                                         OFFSET, ring->doorbell_index);
840         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
841         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
842
843         sdma_v4_0_ring_set_wptr(ring);
844
845         /* set minor_ptr_update to 0 after wptr programed */
846         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
847
848         /* setup the wptr shadow polling */
849         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
850         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
851                     lower_32_bits(wptr_gpu_addr));
852         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
853                     upper_32_bits(wptr_gpu_addr));
854         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
855         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
856                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
857                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
858         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
859
860         /* enable DMA RB */
861         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
862         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
863
864         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
865         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
866 #ifdef __BIG_ENDIAN
867         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
868 #endif
869         /* enable DMA IBs */
870         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
871
872         ring->sched.ready = true;
873 }
874
875 /**
876  * sdma_v4_0_page_resume - setup and start the async dma engines
877  *
878  * @adev: amdgpu_device pointer
879  * @i: instance to resume
880  *
881  * Set up the page DMA ring buffers and enable them (VEGA10).
882  * Returns 0 for success, error for failure.
883  */
884 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
885 {
886         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
887         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
888         u32 wb_offset;
889         u32 doorbell;
890         u32 doorbell_offset;
891         u64 wptr_gpu_addr;
892
893         wb_offset = (ring->rptr_offs * 4);
894
895         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
896         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
897         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
898
899         /* Initialize the ring buffer's read and write pointers */
900         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
901         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
902         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
903         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
904
905         /* set the wb address whether it's enabled or not */
906         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
907                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
908         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
909                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
910
911         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
912                                 RPTR_WRITEBACK_ENABLE, 1);
913
914         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
915         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
916
917         ring->wptr = 0;
918
919         /* before programing wptr to a less value, need set minor_ptr_update first */
920         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
921
922         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
923         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
924
925         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
926                                  ring->use_doorbell);
927         doorbell_offset = REG_SET_FIELD(doorbell_offset,
928                                         SDMA0_PAGE_DOORBELL_OFFSET,
929                                         OFFSET, ring->doorbell_index);
930         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
931         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
932
933         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
934         sdma_v4_0_page_ring_set_wptr(ring);
935
936         /* set minor_ptr_update to 0 after wptr programed */
937         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
938
939         /* setup the wptr shadow polling */
940         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
941         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
942                     lower_32_bits(wptr_gpu_addr));
943         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
944                     upper_32_bits(wptr_gpu_addr));
945         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
946         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
947                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
948                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
949         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
950
951         /* enable DMA RB */
952         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
953         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
954
955         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
956         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
957 #ifdef __BIG_ENDIAN
958         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
959 #endif
960         /* enable DMA IBs */
961         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
962
963         ring->sched.ready = true;
964 }
965
966 static void
967 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
968 {
969         uint32_t def, data;
970
971         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
972                 /* enable idle interrupt */
973                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
974                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
975
976                 if (data != def)
977                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
978         } else {
979                 /* disable idle interrupt */
980                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
981                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
982                 if (data != def)
983                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
984         }
985 }
986
987 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
988 {
989         uint32_t def, data;
990
991         /* Enable HW based PG. */
992         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
993         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
994         if (data != def)
995                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
996
997         /* enable interrupt */
998         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
999         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1000         if (data != def)
1001                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1002
1003         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1004         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1005         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1006         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1007         /* Configure switch time for hysteresis purpose. Use default right now */
1008         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1009         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1010         if(data != def)
1011                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1012 }
1013
1014 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1015 {
1016         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1017                 return;
1018
1019         switch (adev->asic_type) {
1020         case CHIP_RAVEN:
1021                 sdma_v4_1_init_power_gating(adev);
1022                 sdma_v4_1_update_power_gating(adev, true);
1023                 break;
1024         default:
1025                 break;
1026         }
1027 }
1028
1029 /**
1030  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1031  *
1032  * @adev: amdgpu_device pointer
1033  *
1034  * Set up the compute DMA queues and enable them (VEGA10).
1035  * Returns 0 for success, error for failure.
1036  */
1037 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1038 {
1039         sdma_v4_0_init_pg(adev);
1040
1041         return 0;
1042 }
1043
1044 /**
1045  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1046  *
1047  * @adev: amdgpu_device pointer
1048  *
1049  * Loads the sDMA0/1 ucode.
1050  * Returns 0 for success, -EINVAL if the ucode is not available.
1051  */
1052 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1053 {
1054         const struct sdma_firmware_header_v1_0 *hdr;
1055         const __le32 *fw_data;
1056         u32 fw_size;
1057         int i, j;
1058
1059         /* halt the MEs */
1060         sdma_v4_0_enable(adev, false);
1061
1062         for (i = 0; i < adev->sdma.num_instances; i++) {
1063                 if (!adev->sdma.instance[i].fw)
1064                         return -EINVAL;
1065
1066                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1067                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1068                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1069
1070                 fw_data = (const __le32 *)
1071                         (adev->sdma.instance[i].fw->data +
1072                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1073
1074                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1075
1076                 for (j = 0; j < fw_size; j++)
1077                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1078                                     le32_to_cpup(fw_data++));
1079
1080                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1081                             adev->sdma.instance[i].fw_version);
1082         }
1083
1084         return 0;
1085 }
1086
1087 /**
1088  * sdma_v4_0_start - setup and start the async dma engines
1089  *
1090  * @adev: amdgpu_device pointer
1091  *
1092  * Set up the DMA engines and enable them (VEGA10).
1093  * Returns 0 for success, error for failure.
1094  */
1095 static int sdma_v4_0_start(struct amdgpu_device *adev)
1096 {
1097         struct amdgpu_ring *ring;
1098         int i, r = 0;
1099
1100         if (amdgpu_sriov_vf(adev)) {
1101                 sdma_v4_0_ctx_switch_enable(adev, false);
1102                 sdma_v4_0_enable(adev, false);
1103         } else {
1104
1105                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1106                         r = sdma_v4_0_load_microcode(adev);
1107                         if (r)
1108                                 return r;
1109                 }
1110
1111                 /* unhalt the MEs */
1112                 sdma_v4_0_enable(adev, true);
1113                 /* enable sdma ring preemption */
1114                 sdma_v4_0_ctx_switch_enable(adev, true);
1115         }
1116
1117         /* start the gfx rings and rlc compute queues */
1118         for (i = 0; i < adev->sdma.num_instances; i++) {
1119                 uint32_t temp;
1120
1121                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1122                 sdma_v4_0_gfx_resume(adev, i);
1123                 if (adev->sdma.has_page_queue)
1124                         sdma_v4_0_page_resume(adev, i);
1125
1126                 /* set utc l1 enable flag always to 1 */
1127                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1128                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1129                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1130
1131                 if (!amdgpu_sriov_vf(adev)) {
1132                         /* unhalt engine */
1133                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1134                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1135                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1136                 }
1137         }
1138
1139         if (amdgpu_sriov_vf(adev)) {
1140                 sdma_v4_0_ctx_switch_enable(adev, true);
1141                 sdma_v4_0_enable(adev, true);
1142         } else {
1143                 r = sdma_v4_0_rlc_resume(adev);
1144                 if (r)
1145                         return r;
1146         }
1147
1148         for (i = 0; i < adev->sdma.num_instances; i++) {
1149                 ring = &adev->sdma.instance[i].ring;
1150
1151                 r = amdgpu_ring_test_helper(ring);
1152                 if (r)
1153                         return r;
1154
1155                 if (adev->sdma.has_page_queue) {
1156                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1157
1158                         r = amdgpu_ring_test_helper(page);
1159                         if (r)
1160                                 return r;
1161
1162                         if (adev->mman.buffer_funcs_ring == page)
1163                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1164                 }
1165
1166                 if (adev->mman.buffer_funcs_ring == ring)
1167                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1168         }
1169
1170         return r;
1171 }
1172
1173 /**
1174  * sdma_v4_0_ring_test_ring - simple async dma engine test
1175  *
1176  * @ring: amdgpu_ring structure holding ring information
1177  *
1178  * Test the DMA engine by writing using it to write an
1179  * value to memory. (VEGA10).
1180  * Returns 0 for success, error for failure.
1181  */
1182 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1183 {
1184         struct amdgpu_device *adev = ring->adev;
1185         unsigned i;
1186         unsigned index;
1187         int r;
1188         u32 tmp;
1189         u64 gpu_addr;
1190
1191         r = amdgpu_device_wb_get(adev, &index);
1192         if (r)
1193                 return r;
1194
1195         gpu_addr = adev->wb.gpu_addr + (index * 4);
1196         tmp = 0xCAFEDEAD;
1197         adev->wb.wb[index] = cpu_to_le32(tmp);
1198
1199         r = amdgpu_ring_alloc(ring, 5);
1200         if (r)
1201                 goto error_free_wb;
1202
1203         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1204                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1205         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1206         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1207         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1208         amdgpu_ring_write(ring, 0xDEADBEEF);
1209         amdgpu_ring_commit(ring);
1210
1211         for (i = 0; i < adev->usec_timeout; i++) {
1212                 tmp = le32_to_cpu(adev->wb.wb[index]);
1213                 if (tmp == 0xDEADBEEF)
1214                         break;
1215                 udelay(1);
1216         }
1217
1218         if (i >= adev->usec_timeout)
1219                 r = -ETIMEDOUT;
1220
1221 error_free_wb:
1222         amdgpu_device_wb_free(adev, index);
1223         return r;
1224 }
1225
1226 /**
1227  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1228  *
1229  * @ring: amdgpu_ring structure holding ring information
1230  *
1231  * Test a simple IB in the DMA ring (VEGA10).
1232  * Returns 0 on success, error on failure.
1233  */
1234 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1235 {
1236         struct amdgpu_device *adev = ring->adev;
1237         struct amdgpu_ib ib;
1238         struct dma_fence *f = NULL;
1239         unsigned index;
1240         long r;
1241         u32 tmp = 0;
1242         u64 gpu_addr;
1243
1244         r = amdgpu_device_wb_get(adev, &index);
1245         if (r)
1246                 return r;
1247
1248         gpu_addr = adev->wb.gpu_addr + (index * 4);
1249         tmp = 0xCAFEDEAD;
1250         adev->wb.wb[index] = cpu_to_le32(tmp);
1251         memset(&ib, 0, sizeof(ib));
1252         r = amdgpu_ib_get(adev, NULL, 256, &ib);
1253         if (r)
1254                 goto err0;
1255
1256         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1257                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1258         ib.ptr[1] = lower_32_bits(gpu_addr);
1259         ib.ptr[2] = upper_32_bits(gpu_addr);
1260         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1261         ib.ptr[4] = 0xDEADBEEF;
1262         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1263         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1264         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1265         ib.length_dw = 8;
1266
1267         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1268         if (r)
1269                 goto err1;
1270
1271         r = dma_fence_wait_timeout(f, false, timeout);
1272         if (r == 0) {
1273                 r = -ETIMEDOUT;
1274                 goto err1;
1275         } else if (r < 0) {
1276                 goto err1;
1277         }
1278         tmp = le32_to_cpu(adev->wb.wb[index]);
1279         if (tmp == 0xDEADBEEF)
1280                 r = 0;
1281         else
1282                 r = -EINVAL;
1283
1284 err1:
1285         amdgpu_ib_free(adev, &ib, NULL);
1286         dma_fence_put(f);
1287 err0:
1288         amdgpu_device_wb_free(adev, index);
1289         return r;
1290 }
1291
1292
1293 /**
1294  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1295  *
1296  * @ib: indirect buffer to fill with commands
1297  * @pe: addr of the page entry
1298  * @src: src addr to copy from
1299  * @count: number of page entries to update
1300  *
1301  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1302  */
1303 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1304                                   uint64_t pe, uint64_t src,
1305                                   unsigned count)
1306 {
1307         unsigned bytes = count * 8;
1308
1309         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1310                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1311         ib->ptr[ib->length_dw++] = bytes - 1;
1312         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1313         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1314         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1315         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1316         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1317
1318 }
1319
1320 /**
1321  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1322  *
1323  * @ib: indirect buffer to fill with commands
1324  * @pe: addr of the page entry
1325  * @addr: dst addr to write into pe
1326  * @count: number of page entries to update
1327  * @incr: increase next addr by incr bytes
1328  * @flags: access flags
1329  *
1330  * Update PTEs by writing them manually using sDMA (VEGA10).
1331  */
1332 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1333                                    uint64_t value, unsigned count,
1334                                    uint32_t incr)
1335 {
1336         unsigned ndw = count * 2;
1337
1338         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1339                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1340         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1341         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1342         ib->ptr[ib->length_dw++] = ndw - 1;
1343         for (; ndw > 0; ndw -= 2) {
1344                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1345                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1346                 value += incr;
1347         }
1348 }
1349
1350 /**
1351  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1352  *
1353  * @ib: indirect buffer to fill with commands
1354  * @pe: addr of the page entry
1355  * @addr: dst addr to write into pe
1356  * @count: number of page entries to update
1357  * @incr: increase next addr by incr bytes
1358  * @flags: access flags
1359  *
1360  * Update the page tables using sDMA (VEGA10).
1361  */
1362 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1363                                      uint64_t pe,
1364                                      uint64_t addr, unsigned count,
1365                                      uint32_t incr, uint64_t flags)
1366 {
1367         /* for physically contiguous pages (vram) */
1368         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1369         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1370         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1371         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1372         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1373         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1374         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1375         ib->ptr[ib->length_dw++] = incr; /* increment size */
1376         ib->ptr[ib->length_dw++] = 0;
1377         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1378 }
1379
1380 /**
1381  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1382  *
1383  * @ib: indirect buffer to fill with padding
1384  *
1385  */
1386 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1387 {
1388         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1389         u32 pad_count;
1390         int i;
1391
1392         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1393         for (i = 0; i < pad_count; i++)
1394                 if (sdma && sdma->burst_nop && (i == 0))
1395                         ib->ptr[ib->length_dw++] =
1396                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1397                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1398                 else
1399                         ib->ptr[ib->length_dw++] =
1400                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1401 }
1402
1403
1404 /**
1405  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1406  *
1407  * @ring: amdgpu_ring pointer
1408  *
1409  * Make sure all previous operations are completed (CIK).
1410  */
1411 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1412 {
1413         uint32_t seq = ring->fence_drv.sync_seq;
1414         uint64_t addr = ring->fence_drv.gpu_addr;
1415
1416         /* wait for idle */
1417         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1418                                addr & 0xfffffffc,
1419                                upper_32_bits(addr) & 0xffffffff,
1420                                seq, 0xffffffff, 4);
1421 }
1422
1423
1424 /**
1425  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1426  *
1427  * @ring: amdgpu_ring pointer
1428  * @vm: amdgpu_vm pointer
1429  *
1430  * Update the page table base and flush the VM TLB
1431  * using sDMA (VEGA10).
1432  */
1433 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1434                                          unsigned vmid, uint64_t pd_addr)
1435 {
1436         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1437 }
1438
1439 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1440                                      uint32_t reg, uint32_t val)
1441 {
1442         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1443                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1444         amdgpu_ring_write(ring, reg);
1445         amdgpu_ring_write(ring, val);
1446 }
1447
1448 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1449                                          uint32_t val, uint32_t mask)
1450 {
1451         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1452 }
1453
1454 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1455 {
1456         uint fw_version = adev->sdma.instance[0].fw_version;
1457
1458         switch (adev->asic_type) {
1459         case CHIP_VEGA10:
1460                 return fw_version >= 430;
1461         case CHIP_VEGA12:
1462                 /*return fw_version >= 31;*/
1463                 return false;
1464         case CHIP_VEGA20:
1465                 return fw_version >= 123;
1466         default:
1467                 return false;
1468         }
1469 }
1470
1471 static int sdma_v4_0_early_init(void *handle)
1472 {
1473         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1474         int r;
1475
1476         if (adev->asic_type == CHIP_RAVEN)
1477                 adev->sdma.num_instances = 1;
1478         else
1479                 adev->sdma.num_instances = 2;
1480
1481         r = sdma_v4_0_init_microcode(adev);
1482         if (r) {
1483                 DRM_ERROR("Failed to load sdma firmware!\n");
1484                 return r;
1485         }
1486
1487         /* TODO: Page queue breaks driver reload under SRIOV */
1488         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1489                 adev->sdma.has_page_queue = false;
1490         else if (sdma_v4_0_fw_support_paging_queue(adev))
1491                 adev->sdma.has_page_queue = true;
1492
1493         sdma_v4_0_set_ring_funcs(adev);
1494         sdma_v4_0_set_buffer_funcs(adev);
1495         sdma_v4_0_set_vm_pte_funcs(adev);
1496         sdma_v4_0_set_irq_funcs(adev);
1497
1498         return 0;
1499 }
1500
1501 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1502                 struct amdgpu_iv_entry *entry);
1503
1504 static int sdma_v4_0_late_init(void *handle)
1505 {
1506         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1507         struct ras_common_if **ras_if = &adev->sdma.ras_if;
1508         struct ras_ih_if ih_info = {
1509                 .cb = sdma_v4_0_process_ras_data_cb,
1510         };
1511         struct ras_fs_if fs_info = {
1512                 .sysfs_name = "sdma_err_count",
1513                 .debugfs_name = "sdma_err_inject",
1514         };
1515         struct ras_common_if ras_block = {
1516                 .block = AMDGPU_RAS_BLOCK__SDMA,
1517                 .type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1518                 .sub_block_index = 0,
1519                 .name = "sdma",
1520         };
1521         int r;
1522
1523         if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1524                 amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1525                 return 0;
1526         }
1527
1528         /* handle resume path. */
1529         if (*ras_if) {
1530                 /* resend ras TA enable cmd during resume.
1531                  * prepare to handle failure.
1532                  */
1533                 ih_info.head = **ras_if;
1534                 r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1535                 if (r) {
1536                         if (r == -EAGAIN) {
1537                                 /* request a gpu reset. will run again. */
1538                                 amdgpu_ras_request_reset_on_boot(adev,
1539                                                 AMDGPU_RAS_BLOCK__SDMA);
1540                                 return 0;
1541                         }
1542                         /* fail to enable ras, cleanup all. */
1543                         goto irq;
1544                 }
1545                 /* enable successfully. continue. */
1546                 goto resume;
1547         }
1548
1549         *ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1550         if (!*ras_if)
1551                 return -ENOMEM;
1552
1553         **ras_if = ras_block;
1554
1555         r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1556         if (r) {
1557                 if (r == -EAGAIN) {
1558                         amdgpu_ras_request_reset_on_boot(adev,
1559                                         AMDGPU_RAS_BLOCK__SDMA);
1560                         r = 0;
1561                 }
1562                 goto feature;
1563         }
1564
1565         ih_info.head = **ras_if;
1566         fs_info.head = **ras_if;
1567
1568         r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1569         if (r)
1570                 goto interrupt;
1571
1572         amdgpu_ras_debugfs_create(adev, &fs_info);
1573
1574         r = amdgpu_ras_sysfs_create(adev, &fs_info);
1575         if (r)
1576                 goto sysfs;
1577 resume:
1578         r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1579         if (r)
1580                 goto irq;
1581
1582         r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1583         if (r) {
1584                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1585                 goto irq;
1586         }
1587
1588         return 0;
1589 irq:
1590         amdgpu_ras_sysfs_remove(adev, *ras_if);
1591 sysfs:
1592         amdgpu_ras_debugfs_remove(adev, *ras_if);
1593         amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1594 interrupt:
1595         amdgpu_ras_feature_enable(adev, *ras_if, 0);
1596 feature:
1597         kfree(*ras_if);
1598         *ras_if = NULL;
1599         return r;
1600 }
1601
1602 static int sdma_v4_0_sw_init(void *handle)
1603 {
1604         struct amdgpu_ring *ring;
1605         int r, i;
1606         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1607
1608         /* SDMA trap event */
1609         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1610                               &adev->sdma.trap_irq);
1611         if (r)
1612                 return r;
1613
1614         /* SDMA trap event */
1615         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1616                               &adev->sdma.trap_irq);
1617         if (r)
1618                 return r;
1619
1620         /* SDMA SRAM ECC event */
1621         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1622                         &adev->sdma.ecc_irq);
1623         if (r)
1624                 return r;
1625
1626         /* SDMA SRAM ECC event */
1627         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_SRAM_ECC,
1628                         &adev->sdma.ecc_irq);
1629         if (r)
1630                 return r;
1631
1632         for (i = 0; i < adev->sdma.num_instances; i++) {
1633                 ring = &adev->sdma.instance[i].ring;
1634                 ring->ring_obj = NULL;
1635                 ring->use_doorbell = true;
1636
1637                 DRM_INFO("use_doorbell being set to: [%s]\n",
1638                                 ring->use_doorbell?"true":"false");
1639
1640                 /* doorbell size is 2 dwords, get DWORD offset */
1641                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1642
1643                 sprintf(ring->name, "sdma%d", i);
1644                 r = amdgpu_ring_init(adev, ring, 1024,
1645                                      &adev->sdma.trap_irq,
1646                                      (i == 0) ?
1647                                      AMDGPU_SDMA_IRQ_INSTANCE0 :
1648                                      AMDGPU_SDMA_IRQ_INSTANCE1);
1649                 if (r)
1650                         return r;
1651
1652                 if (adev->sdma.has_page_queue) {
1653                         ring = &adev->sdma.instance[i].page;
1654                         ring->ring_obj = NULL;
1655                         ring->use_doorbell = true;
1656
1657                         /* paging queue use same doorbell index/routing as gfx queue
1658                          * with 0x400 (4096 dwords) offset on second doorbell page
1659                          */
1660                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1661                         ring->doorbell_index += 0x400;
1662
1663                         sprintf(ring->name, "page%d", i);
1664                         r = amdgpu_ring_init(adev, ring, 1024,
1665                                              &adev->sdma.trap_irq,
1666                                              (i == 0) ?
1667                                              AMDGPU_SDMA_IRQ_INSTANCE0 :
1668                                              AMDGPU_SDMA_IRQ_INSTANCE1);
1669                         if (r)
1670                                 return r;
1671                 }
1672         }
1673
1674         return r;
1675 }
1676
1677 static int sdma_v4_0_sw_fini(void *handle)
1678 {
1679         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1680         int i;
1681
1682         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1683                         adev->sdma.ras_if) {
1684                 struct ras_common_if *ras_if = adev->sdma.ras_if;
1685                 struct ras_ih_if ih_info = {
1686                         .head = *ras_if,
1687                 };
1688
1689                 /*remove fs first*/
1690                 amdgpu_ras_debugfs_remove(adev, ras_if);
1691                 amdgpu_ras_sysfs_remove(adev, ras_if);
1692                 /*remove the IH*/
1693                 amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1694                 amdgpu_ras_feature_enable(adev, ras_if, 0);
1695                 kfree(ras_if);
1696         }
1697
1698         for (i = 0; i < adev->sdma.num_instances; i++) {
1699                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1700                 if (adev->sdma.has_page_queue)
1701                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1702         }
1703
1704         for (i = 0; i < adev->sdma.num_instances; i++) {
1705                 release_firmware(adev->sdma.instance[i].fw);
1706                 adev->sdma.instance[i].fw = NULL;
1707         }
1708
1709         return 0;
1710 }
1711
1712 static int sdma_v4_0_hw_init(void *handle)
1713 {
1714         int r;
1715         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1716
1717         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1718                         adev->powerplay.pp_funcs->set_powergating_by_smu)
1719                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1720
1721         sdma_v4_0_init_golden_registers(adev);
1722
1723         r = sdma_v4_0_start(adev);
1724
1725         return r;
1726 }
1727
1728 static int sdma_v4_0_hw_fini(void *handle)
1729 {
1730         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1731
1732         if (amdgpu_sriov_vf(adev))
1733                 return 0;
1734
1735         amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1736         amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1737
1738         sdma_v4_0_ctx_switch_enable(adev, false);
1739         sdma_v4_0_enable(adev, false);
1740
1741         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1742                         && adev->powerplay.pp_funcs->set_powergating_by_smu)
1743                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1744
1745         return 0;
1746 }
1747
1748 static int sdma_v4_0_suspend(void *handle)
1749 {
1750         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1751
1752         return sdma_v4_0_hw_fini(adev);
1753 }
1754
1755 static int sdma_v4_0_resume(void *handle)
1756 {
1757         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1758
1759         return sdma_v4_0_hw_init(adev);
1760 }
1761
1762 static bool sdma_v4_0_is_idle(void *handle)
1763 {
1764         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1765         u32 i;
1766
1767         for (i = 0; i < adev->sdma.num_instances; i++) {
1768                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1769
1770                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1771                         return false;
1772         }
1773
1774         return true;
1775 }
1776
1777 static int sdma_v4_0_wait_for_idle(void *handle)
1778 {
1779         unsigned i;
1780         u32 sdma0, sdma1;
1781         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1782
1783         for (i = 0; i < adev->usec_timeout; i++) {
1784                 sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1785                 sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1786
1787                 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1788                         return 0;
1789                 udelay(1);
1790         }
1791         return -ETIMEDOUT;
1792 }
1793
1794 static int sdma_v4_0_soft_reset(void *handle)
1795 {
1796         /* todo */
1797
1798         return 0;
1799 }
1800
1801 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1802                                         struct amdgpu_irq_src *source,
1803                                         unsigned type,
1804                                         enum amdgpu_interrupt_state state)
1805 {
1806         u32 sdma_cntl;
1807
1808         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1809         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1810                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1811         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1812
1813         return 0;
1814 }
1815
1816 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1817                                       struct amdgpu_irq_src *source,
1818                                       struct amdgpu_iv_entry *entry)
1819 {
1820         uint32_t instance;
1821
1822         DRM_DEBUG("IH: SDMA trap\n");
1823         switch (entry->client_id) {
1824         case SOC15_IH_CLIENTID_SDMA0:
1825                 instance = 0;
1826                 break;
1827         case SOC15_IH_CLIENTID_SDMA1:
1828                 instance = 1;
1829                 break;
1830         default:
1831                 return 0;
1832         }
1833
1834         switch (entry->ring_id) {
1835         case 0:
1836                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1837                 break;
1838         case 1:
1839                 if (adev->asic_type == CHIP_VEGA20)
1840                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1841                 break;
1842         case 2:
1843                 /* XXX compute */
1844                 break;
1845         case 3:
1846                 if (adev->asic_type != CHIP_VEGA20)
1847                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1848                 break;
1849         }
1850         return 0;
1851 }
1852
1853 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1854                 struct amdgpu_iv_entry *entry)
1855 {
1856         uint32_t instance, err_source;
1857
1858         switch (entry->client_id) {
1859         case SOC15_IH_CLIENTID_SDMA0:
1860                 instance = 0;
1861                 break;
1862         case SOC15_IH_CLIENTID_SDMA1:
1863                 instance = 1;
1864                 break;
1865         default:
1866                 return 0;
1867         }
1868
1869         switch (entry->src_id) {
1870         case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
1871                 err_source = 0;
1872                 break;
1873         case SDMA0_4_0__SRCID__SDMA_ECC:
1874                 err_source = 1;
1875                 break;
1876         default:
1877                 return 0;
1878         }
1879
1880         kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1881
1882         amdgpu_ras_reset_gpu(adev, 0);
1883
1884         return AMDGPU_RAS_UE;
1885 }
1886
1887 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
1888                                       struct amdgpu_irq_src *source,
1889                                       struct amdgpu_iv_entry *entry)
1890 {
1891         struct ras_common_if *ras_if = adev->sdma.ras_if;
1892         struct ras_dispatch_if ih_data = {
1893                 .entry = entry,
1894         };
1895
1896         if (!ras_if)
1897                 return 0;
1898
1899         ih_data.head = *ras_if;
1900
1901         amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1902         return 0;
1903 }
1904
1905 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1906                                               struct amdgpu_irq_src *source,
1907                                               struct amdgpu_iv_entry *entry)
1908 {
1909         int instance;
1910
1911         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1912
1913         switch (entry->client_id) {
1914         case SOC15_IH_CLIENTID_SDMA0:
1915                 instance = 0;
1916                 break;
1917         case SOC15_IH_CLIENTID_SDMA1:
1918                 instance = 1;
1919                 break;
1920         default:
1921                 return 0;
1922         }
1923
1924         switch (entry->ring_id) {
1925         case 0:
1926                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1927                 break;
1928         }
1929         return 0;
1930 }
1931
1932 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
1933                                         struct amdgpu_irq_src *source,
1934                                         unsigned type,
1935                                         enum amdgpu_interrupt_state state)
1936 {
1937         u32 sdma_edc_config;
1938
1939         u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1940                 sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_EDC_CONFIG) :
1941                 sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_EDC_CONFIG);
1942
1943         sdma_edc_config = RREG32(reg_offset);
1944         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
1945                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1946         WREG32(reg_offset, sdma_edc_config);
1947
1948         return 0;
1949 }
1950
1951 static void sdma_v4_0_update_medium_grain_clock_gating(
1952                 struct amdgpu_device *adev,
1953                 bool enable)
1954 {
1955         uint32_t data, def;
1956
1957         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1958                 /* enable sdma0 clock gating */
1959                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1960                 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1961                           SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1962                           SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1963                           SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1964                           SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1965                           SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1966                           SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1967                           SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1968                 if (def != data)
1969                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1970
1971                 if (adev->sdma.num_instances > 1) {
1972                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1973                         data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1974                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1975                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1976                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1977                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1978                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1979                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1980                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1981                         if (def != data)
1982                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1983                 }
1984         } else {
1985                 /* disable sdma0 clock gating */
1986                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1987                 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1988                          SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1989                          SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1990                          SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1991                          SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1992                          SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1993                          SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1994                          SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1995
1996                 if (def != data)
1997                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1998
1999                 if (adev->sdma.num_instances > 1) {
2000                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
2001                         data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2002                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2003                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2004                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2005                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2006                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2007                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2008                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2009                         if (def != data)
2010                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2011                 }
2012         }
2013 }
2014
2015
2016 static void sdma_v4_0_update_medium_grain_light_sleep(
2017                 struct amdgpu_device *adev,
2018                 bool enable)
2019 {
2020         uint32_t data, def;
2021
2022         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2023                 /* 1-not override: enable sdma0 mem light sleep */
2024                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2025                 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2026                 if (def != data)
2027                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2028
2029                 /* 1-not override: enable sdma1 mem light sleep */
2030                 if (adev->sdma.num_instances > 1) {
2031                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2032                         data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2033                         if (def != data)
2034                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2035                 }
2036         } else {
2037                 /* 0-override:disable sdma0 mem light sleep */
2038                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2039                 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2040                 if (def != data)
2041                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2042
2043                 /* 0-override:disable sdma1 mem light sleep */
2044                 if (adev->sdma.num_instances > 1) {
2045                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2046                         data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2047                         if (def != data)
2048                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2049                 }
2050         }
2051 }
2052
2053 static int sdma_v4_0_set_clockgating_state(void *handle,
2054                                           enum amd_clockgating_state state)
2055 {
2056         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2057
2058         if (amdgpu_sriov_vf(adev))
2059                 return 0;
2060
2061         switch (adev->asic_type) {
2062         case CHIP_VEGA10:
2063         case CHIP_VEGA12:
2064         case CHIP_VEGA20:
2065         case CHIP_RAVEN:
2066                 sdma_v4_0_update_medium_grain_clock_gating(adev,
2067                                 state == AMD_CG_STATE_GATE ? true : false);
2068                 sdma_v4_0_update_medium_grain_light_sleep(adev,
2069                                 state == AMD_CG_STATE_GATE ? true : false);
2070                 break;
2071         default:
2072                 break;
2073         }
2074         return 0;
2075 }
2076
2077 static int sdma_v4_0_set_powergating_state(void *handle,
2078                                           enum amd_powergating_state state)
2079 {
2080         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2081
2082         switch (adev->asic_type) {
2083         case CHIP_RAVEN:
2084                 sdma_v4_1_update_power_gating(adev,
2085                                 state == AMD_PG_STATE_GATE ? true : false);
2086                 break;
2087         default:
2088                 break;
2089         }
2090
2091         return 0;
2092 }
2093
2094 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2095 {
2096         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2097         int data;
2098
2099         if (amdgpu_sriov_vf(adev))
2100                 *flags = 0;
2101
2102         /* AMD_CG_SUPPORT_SDMA_MGCG */
2103         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2104         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2105                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2106
2107         /* AMD_CG_SUPPORT_SDMA_LS */
2108         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2109         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2110                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2111 }
2112
2113 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2114         .name = "sdma_v4_0",
2115         .early_init = sdma_v4_0_early_init,
2116         .late_init = sdma_v4_0_late_init,
2117         .sw_init = sdma_v4_0_sw_init,
2118         .sw_fini = sdma_v4_0_sw_fini,
2119         .hw_init = sdma_v4_0_hw_init,
2120         .hw_fini = sdma_v4_0_hw_fini,
2121         .suspend = sdma_v4_0_suspend,
2122         .resume = sdma_v4_0_resume,
2123         .is_idle = sdma_v4_0_is_idle,
2124         .wait_for_idle = sdma_v4_0_wait_for_idle,
2125         .soft_reset = sdma_v4_0_soft_reset,
2126         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2127         .set_powergating_state = sdma_v4_0_set_powergating_state,
2128         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2129 };
2130
2131 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2132         .type = AMDGPU_RING_TYPE_SDMA,
2133         .align_mask = 0xf,
2134         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2135         .support_64bit_ptrs = true,
2136         .vmhub = AMDGPU_MMHUB,
2137         .get_rptr = sdma_v4_0_ring_get_rptr,
2138         .get_wptr = sdma_v4_0_ring_get_wptr,
2139         .set_wptr = sdma_v4_0_ring_set_wptr,
2140         .emit_frame_size =
2141                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2142                 3 + /* hdp invalidate */
2143                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2144                 /* sdma_v4_0_ring_emit_vm_flush */
2145                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2146                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2147                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2148         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2149         .emit_ib = sdma_v4_0_ring_emit_ib,
2150         .emit_fence = sdma_v4_0_ring_emit_fence,
2151         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2152         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2153         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2154         .test_ring = sdma_v4_0_ring_test_ring,
2155         .test_ib = sdma_v4_0_ring_test_ib,
2156         .insert_nop = sdma_v4_0_ring_insert_nop,
2157         .pad_ib = sdma_v4_0_ring_pad_ib,
2158         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2159         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2160         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2161 };
2162
2163 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2164         .type = AMDGPU_RING_TYPE_SDMA,
2165         .align_mask = 0xf,
2166         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2167         .support_64bit_ptrs = true,
2168         .vmhub = AMDGPU_MMHUB,
2169         .get_rptr = sdma_v4_0_ring_get_rptr,
2170         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2171         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2172         .emit_frame_size =
2173                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2174                 3 + /* hdp invalidate */
2175                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2176                 /* sdma_v4_0_ring_emit_vm_flush */
2177                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2178                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2179                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2180         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2181         .emit_ib = sdma_v4_0_ring_emit_ib,
2182         .emit_fence = sdma_v4_0_ring_emit_fence,
2183         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2184         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2185         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2186         .test_ring = sdma_v4_0_ring_test_ring,
2187         .test_ib = sdma_v4_0_ring_test_ib,
2188         .insert_nop = sdma_v4_0_ring_insert_nop,
2189         .pad_ib = sdma_v4_0_ring_pad_ib,
2190         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2191         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2192         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2193 };
2194
2195 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2196 {
2197         int i;
2198
2199         for (i = 0; i < adev->sdma.num_instances; i++) {
2200                 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2201                 adev->sdma.instance[i].ring.me = i;
2202                 if (adev->sdma.has_page_queue) {
2203                         adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2204                         adev->sdma.instance[i].page.me = i;
2205                 }
2206         }
2207 }
2208
2209 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2210         .set = sdma_v4_0_set_trap_irq_state,
2211         .process = sdma_v4_0_process_trap_irq,
2212 };
2213
2214 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2215         .process = sdma_v4_0_process_illegal_inst_irq,
2216 };
2217
2218 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2219         .set = sdma_v4_0_set_ecc_irq_state,
2220         .process = sdma_v4_0_process_ecc_irq,
2221 };
2222
2223
2224
2225 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2226 {
2227         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2228         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2229         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2230         adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2231         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2232 }
2233
2234 /**
2235  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2236  *
2237  * @ring: amdgpu_ring structure holding ring information
2238  * @src_offset: src GPU address
2239  * @dst_offset: dst GPU address
2240  * @byte_count: number of bytes to xfer
2241  *
2242  * Copy GPU buffers using the DMA engine (VEGA10/12).
2243  * Used by the amdgpu ttm implementation to move pages if
2244  * registered as the asic copy callback.
2245  */
2246 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2247                                        uint64_t src_offset,
2248                                        uint64_t dst_offset,
2249                                        uint32_t byte_count)
2250 {
2251         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2252                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2253         ib->ptr[ib->length_dw++] = byte_count - 1;
2254         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2255         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2256         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2257         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2258         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2259 }
2260
2261 /**
2262  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2263  *
2264  * @ring: amdgpu_ring structure holding ring information
2265  * @src_data: value to write to buffer
2266  * @dst_offset: dst GPU address
2267  * @byte_count: number of bytes to xfer
2268  *
2269  * Fill GPU buffers using the DMA engine (VEGA10/12).
2270  */
2271 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2272                                        uint32_t src_data,
2273                                        uint64_t dst_offset,
2274                                        uint32_t byte_count)
2275 {
2276         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2277         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2278         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2279         ib->ptr[ib->length_dw++] = src_data;
2280         ib->ptr[ib->length_dw++] = byte_count - 1;
2281 }
2282
2283 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2284         .copy_max_bytes = 0x400000,
2285         .copy_num_dw = 7,
2286         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2287
2288         .fill_max_bytes = 0x400000,
2289         .fill_num_dw = 5,
2290         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2291 };
2292
2293 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2294 {
2295         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2296         if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2297                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2298         else
2299                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2300 }
2301
2302 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2303         .copy_pte_num_dw = 7,
2304         .copy_pte = sdma_v4_0_vm_copy_pte,
2305
2306         .write_pte = sdma_v4_0_vm_write_pte,
2307         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2308 };
2309
2310 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2311 {
2312         struct drm_gpu_scheduler *sched;
2313         unsigned i;
2314
2315         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2316         if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2317                 for (i = 1; i < adev->sdma.num_instances; i++) {
2318                         sched = &adev->sdma.instance[i].page.sched;
2319                         adev->vm_manager.vm_pte_rqs[i - 1] =
2320                                 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2321                 }
2322                 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2323                 adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2324         } else {
2325                 for (i = 0; i < adev->sdma.num_instances; i++) {
2326                         sched = &adev->sdma.instance[i].ring.sched;
2327                         adev->vm_manager.vm_pte_rqs[i] =
2328                                 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2329                 }
2330                 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2331         }
2332 }
2333
2334 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2335         .type = AMD_IP_BLOCK_TYPE_SDMA,
2336         .major = 4,
2337         .minor = 0,
2338         .rev = 0,
2339         .funcs = &sdma_v4_0_ip_funcs,
2340 };
This page took 0.166767 seconds and 4 git commands to generate.