1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
78 #include <trace/events/kmem.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
85 #include <asm/tlbflush.h>
87 #include "pgalloc-track.h"
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
99 EXPORT_SYMBOL(mem_map);
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 EXPORT_SYMBOL(high_memory);
113 * Randomize the address space (stacks, mmaps, brk, etc.).
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
149 static int __init disable_randmaps(char *s)
151 randomize_va_space = 0;
154 __setup("norandmaps", disable_randmaps);
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
159 unsigned long highest_memmap_pfn __read_mostly;
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
164 static int __init init_zero_pfn(void)
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
169 early_initcall(init_zero_pfn);
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
173 trace_rss_stat(mm, member, count);
176 #if defined(SPLIT_RSS_COUNTING)
178 void sync_mm_rss(struct mm_struct *mm)
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
188 current->rss_stat.events = 0;
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
193 struct task_struct *task = current;
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
198 add_mm_counter(mm, member, val);
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH (64)
205 static void check_sync_rss_stat(struct task_struct *task)
207 if (unlikely(task != current))
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 sync_mm_rss(task->mm);
212 #else /* SPLIT_RSS_COUNTING */
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
217 static void check_sync_rss_stat(struct task_struct *task)
221 #endif /* SPLIT_RSS_COUNTING */
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
230 pgtable_t token = pmd_pgtable(*pmd);
232 pte_free_tlb(tlb, token, addr);
233 mm_dec_nr_ptes(tlb->mm);
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
245 pmd = pmd_offset(pud, addr);
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
250 free_pte_range(tlb, pmd, addr);
251 } while (pmd++, addr = next, addr != end);
261 if (end - 1 > ceiling - 1)
264 pmd = pmd_offset(pud, start);
266 pmd_free_tlb(tlb, pmd, start);
267 mm_dec_nr_pmds(tlb->mm);
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
279 pud = pud_offset(p4d, addr);
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 } while (pud++, addr = next, addr != end);
295 if (end - 1 > ceiling - 1)
298 pud = pud_offset(p4d, start);
300 pud_free_tlb(tlb, pud, start);
301 mm_dec_nr_puds(tlb->mm);
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
313 p4d = p4d_offset(pgd, addr);
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
325 ceiling &= PGDIR_MASK;
329 if (end - 1 > ceiling - 1)
332 p4d = p4d_offset(pgd, start);
334 p4d_free_tlb(tlb, p4d, start);
338 * This function frees user-level page tables of a process.
340 void free_pgd_range(struct mmu_gather *tlb,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
348 * The next few lines have given us lots of grief...
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
384 if (end - 1 > ceiling - 1)
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
392 tlb_change_page_size(tlb, PAGE_SIZE);
393 pgd = pgd_offset(tlb->mm, addr);
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 } while (pgd++, addr = next, addr != end);
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 unsigned long floor, unsigned long ceiling)
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
410 * Hide vma from rmap and truncate_pagecache before freeing
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
416 if (is_vm_hugetlb_page(vma)) {
417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
421 * Optimization: gather nearby vmas into one call down
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 && !is_vm_hugetlb_page(next)) {
427 unlink_anon_vmas(vma);
428 unlink_file_vma(vma);
430 free_pgd_range(tlb, addr, vma->vm_end,
431 floor, next ? next->vm_start : ceiling);
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
439 spinlock_t *ptl = pmd_lock(mm, pmd);
441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 pmd_populate(mm, pmd, *pte);
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
465 pgtable_t new = pte_alloc_one(mm);
469 pmd_install(mm, pmd, &new);
475 int __pte_alloc_kernel(pmd_t *pmd)
477 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 spin_lock(&init_mm.page_table_lock);
482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
483 smp_wmb(); /* See comment in pmd_install() */
484 pmd_populate_kernel(&init_mm, pmd, new);
487 spin_unlock(&init_mm.page_table_lock);
489 pte_free_kernel(&init_mm, new);
493 static inline void init_rss_vec(int *rss)
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 if (current->mm == mm)
504 for (i = 0; i < NR_MM_COUNTERS; i++)
506 add_mm_counter(mm, i, rss[i]);
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
514 * The calling function must still handle the error.
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
546 resume = jiffies + 60 * HZ;
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
555 dump_page(page, "bad pte");
556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
590 * And for normal mappings this is false.
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
612 unsigned long pfn = pte_pfn(pte);
614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 if (likely(!pte_special(pte)))
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
621 if (is_zero_pfn(pfn))
626 print_bad_pte(vma, addr, pte, NULL);
630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 if (pfn == vma->vm_pgoff + off)
642 if (!is_cow_mapping(vma->vm_flags))
647 if (is_zero_pfn(pfn))
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
657 * NOTE! We still have PageReserved() pages in the page tables.
658 * eg. VDSO mappings can cause them to exist.
661 return pfn_to_page(pfn);
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
668 unsigned long pfn = pmd_pfn(pmd);
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
685 if (!is_cow_mapping(vma->vm_flags))
692 if (is_huge_zero_pmd(pmd))
694 if (unlikely(pfn > highest_memmap_pfn))
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
702 return pfn_to_page(pfn);
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
728 page_add_anon_rmap(page, vma, address, false);
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
734 WARN_ON_ONCE(!PageAnon(page));
736 set_pte_at(vma->vm_mm, address, ptep, pte);
739 * No need to invalidate - it was non-present before. However
740 * secondary CPUs may have mappings that need invalidating.
742 update_mmu_cache(vma, address, ptep);
746 * Tries to restore an exclusive pte if the page lock can be acquired without
750 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753 swp_entry_t entry = pte_to_swp_entry(*src_pte);
754 struct page *page = pfn_swap_entry_to_page(entry);
756 if (trylock_page(page)) {
757 restore_exclusive_pte(vma, page, addr, src_pte);
766 * copy one vm_area from one task to the other. Assumes the page tables
767 * already present in the new task to be cleared in the whole range
768 * covered by this vma.
772 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
776 unsigned long vm_flags = dst_vma->vm_flags;
777 pte_t pte = *src_pte;
779 swp_entry_t entry = pte_to_swp_entry(pte);
781 if (likely(!non_swap_entry(entry))) {
782 if (swap_duplicate(entry) < 0)
785 /* make sure dst_mm is on swapoff's mmlist. */
786 if (unlikely(list_empty(&dst_mm->mmlist))) {
787 spin_lock(&mmlist_lock);
788 if (list_empty(&dst_mm->mmlist))
789 list_add(&dst_mm->mmlist,
791 spin_unlock(&mmlist_lock);
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
797 rss[mm_counter(page)]++;
799 if (is_writable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
802 * COW mappings require pages in both
803 * parent and child to be set to read.
805 entry = make_readable_migration_entry(
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
814 } else if (is_device_private_entry(entry)) {
815 page = pfn_swap_entry_to_page(entry);
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
827 rss[mm_counter(page)]++;
828 page_dup_rmap(page, false);
831 * We do not preserve soft-dirty information, because so
832 * far, checkpoint/restore is the only feature that
833 * requires that. And checkpoint/restore does not work
834 * when a device driver is involved (you cannot easily
835 * save and restore device driver state).
837 if (is_writable_device_private_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 entry = make_readable_device_private_entry(
841 pte = swp_entry_to_pte(entry);
842 if (pte_swp_uffd_wp(*src_pte))
843 pte = pte_swp_mkuffd_wp(pte);
844 set_pte_at(src_mm, addr, src_pte, pte);
846 } else if (is_device_exclusive_entry(entry)) {
848 * Make device exclusive entries present by restoring the
849 * original entry then copying as for a present pte. Device
850 * exclusive entries currently only support private writable
851 * (ie. COW) mappings.
853 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858 if (!userfaultfd_wp(dst_vma))
859 pte = pte_swp_clear_uffd_wp(pte);
860 set_pte_at(dst_mm, addr, dst_pte, pte);
865 * Copy a present and normal page if necessary.
867 * NOTE! The usual case is that this doesn't need to do
868 * anything, and can just return a positive value. That
869 * will let the caller know that it can just increase
870 * the page refcount and re-use the pte the traditional
873 * But _if_ we need to copy it because it needs to be
874 * pinned in the parent (and the child should get its own
875 * copy rather than just a reference to the same page),
876 * we'll do that here and return zero to let the caller
879 * And if we need a pre-allocated page but don't yet have
880 * one, return a negative error to let the preallocation
881 * code know so that it can do so outside the page table
885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887 struct page **prealloc, pte_t pte, struct page *page)
889 struct page *new_page;
892 * What we want to do is to check whether this page may
893 * have been pinned by the parent process. If so,
894 * instead of wrprotect the pte on both sides, we copy
895 * the page immediately so that we'll always guarantee
896 * the pinned page won't be randomly replaced in the
899 * The page pinning checks are just "has this mm ever
900 * seen pinning", along with the (inexact) check of
901 * the page count. That might give false positives for
902 * for pinning, but it will work correctly.
904 if (likely(!page_needs_cow_for_dma(src_vma, page)))
907 new_page = *prealloc;
912 * We have a prealloc page, all good! Take it
913 * over and copy the page & arm it.
916 copy_user_highpage(new_page, page, addr, src_vma);
917 __SetPageUptodate(new_page);
918 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
920 rss[mm_counter(new_page)]++;
922 /* All done, just insert the new page copy in the child */
923 pte = mk_pte(new_page, dst_vma->vm_page_prot);
924 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
925 if (userfaultfd_pte_wp(dst_vma, *src_pte))
926 /* Uffd-wp needs to be delivered to dest pte as well */
927 pte = pte_wrprotect(pte_mkuffd_wp(pte));
928 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
933 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
934 * is required to copy this pte.
937 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939 struct page **prealloc)
941 struct mm_struct *src_mm = src_vma->vm_mm;
942 unsigned long vm_flags = src_vma->vm_flags;
943 pte_t pte = *src_pte;
946 page = vm_normal_page(src_vma, addr, pte);
950 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 addr, rss, prealloc, pte, page);
956 page_dup_rmap(page, false);
957 rss[mm_counter(page)]++;
961 * If it's a COW mapping, write protect it both
962 * in the parent and the child
964 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965 ptep_set_wrprotect(src_mm, addr, src_pte);
966 pte = pte_wrprotect(pte);
970 * If it's a shared mapping, mark it clean in
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984 static inline struct page *
985 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
988 struct page *new_page;
990 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008 struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 struct mm_struct *src_mm = src_vma->vm_mm;
1010 pte_t *orig_src_pte, *orig_dst_pte;
1011 pte_t *src_pte, *dst_pte;
1012 spinlock_t *src_ptl, *dst_ptl;
1013 int progress, ret = 0;
1014 int rss[NR_MM_COUNTERS];
1015 swp_entry_t entry = (swp_entry_t){0};
1016 struct page *prealloc = NULL;
1022 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1027 src_pte = pte_offset_map(src_pmd, addr);
1028 src_ptl = pte_lockptr(src_mm, src_pmd);
1029 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1030 orig_src_pte = src_pte;
1031 orig_dst_pte = dst_pte;
1032 arch_enter_lazy_mmu_mode();
1036 * We are holding two locks at this point - either of them
1037 * could generate latencies in another task on another CPU.
1039 if (progress >= 32) {
1041 if (need_resched() ||
1042 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1045 if (pte_none(*src_pte)) {
1049 if (unlikely(!pte_present(*src_pte))) {
1050 ret = copy_nonpresent_pte(dst_mm, src_mm,
1055 entry = pte_to_swp_entry(*src_pte);
1057 } else if (ret == -EBUSY) {
1065 * Device exclusive entry restored, continue by copying
1066 * the now present pte.
1068 WARN_ON_ONCE(ret != -ENOENT);
1070 /* copy_present_pte() will clear `*prealloc' if consumed */
1071 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072 addr, rss, &prealloc);
1074 * If we need a pre-allocated page for this pte, drop the
1075 * locks, allocate, and try again.
1077 if (unlikely(ret == -EAGAIN))
1079 if (unlikely(prealloc)) {
1081 * pre-alloc page cannot be reused by next time so as
1082 * to strictly follow mempolicy (e.g., alloc_page_vma()
1083 * will allocate page according to address). This
1084 * could only happen if one pinned pte changed.
1090 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1092 arch_leave_lazy_mmu_mode();
1093 spin_unlock(src_ptl);
1094 pte_unmap(orig_src_pte);
1095 add_mm_rss_vec(dst_mm, rss);
1096 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100 VM_WARN_ON_ONCE(!entry.val);
1101 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1106 } else if (ret == -EBUSY) {
1108 } else if (ret == -EAGAIN) {
1109 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1116 /* We've captured and resolved the error. Reset, try again. */
1122 if (unlikely(prealloc))
1128 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132 struct mm_struct *dst_mm = dst_vma->vm_mm;
1133 struct mm_struct *src_mm = src_vma->vm_mm;
1134 pmd_t *src_pmd, *dst_pmd;
1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140 src_pmd = pmd_offset(src_pud, addr);
1142 next = pmd_addr_end(addr, end);
1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 || pmd_devmap(*src_pmd)) {
1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1147 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148 addr, dst_vma, src_vma);
1155 if (pmd_none_or_clear_bad(src_pmd))
1157 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1165 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169 struct mm_struct *dst_mm = dst_vma->vm_mm;
1170 struct mm_struct *src_mm = src_vma->vm_mm;
1171 pud_t *src_pud, *dst_pud;
1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177 src_pud = pud_offset(src_p4d, addr);
1179 next = pud_addr_end(addr, end);
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1184 err = copy_huge_pud(dst_mm, src_mm,
1185 dst_pud, src_pud, addr, src_vma);
1192 if (pud_none_or_clear_bad(src_pud))
1194 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1202 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206 struct mm_struct *dst_mm = dst_vma->vm_mm;
1207 p4d_t *src_p4d, *dst_p4d;
1210 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213 src_p4d = p4d_offset(src_pgd, addr);
1215 next = p4d_addr_end(addr, end);
1216 if (p4d_none_or_clear_bad(src_p4d))
1218 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1226 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1228 pgd_t *src_pgd, *dst_pgd;
1230 unsigned long addr = src_vma->vm_start;
1231 unsigned long end = src_vma->vm_end;
1232 struct mm_struct *dst_mm = dst_vma->vm_mm;
1233 struct mm_struct *src_mm = src_vma->vm_mm;
1234 struct mmu_notifier_range range;
1239 * Don't copy ptes where a page fault will fill them correctly.
1240 * Fork becomes much lighter when there are big shared or private
1241 * readonly mappings. The tradeoff is that copy_page_range is more
1242 * efficient than faulting.
1244 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248 if (is_vm_hugetlb_page(src_vma))
1249 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1256 ret = track_pfn_copy(src_vma);
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1267 is_cow = is_cow_mapping(src_vma->vm_flags);
1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271 0, src_vma, src_mm, addr, end);
1272 mmu_notifier_invalidate_range_start(&range);
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300 mmu_notifier_invalidate_range_end(&range);
1306 * Parameter block passed down to zap_pte_range in exceptional cases.
1308 struct zap_details {
1309 struct address_space *zap_mapping; /* Check page->mapping if set */
1310 struct folio *single_folio; /* Locked folio to be unmapped */
1314 * We set details->zap_mapping when we want to unmap shared but keep private
1315 * pages. Return true if skip zapping this page, false otherwise.
1318 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1320 if (!details || !page)
1323 return details->zap_mapping &&
1324 (details->zap_mapping != page_rmapping(page));
1327 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1328 struct vm_area_struct *vma, pmd_t *pmd,
1329 unsigned long addr, unsigned long end,
1330 struct zap_details *details)
1332 struct mm_struct *mm = tlb->mm;
1333 int force_flush = 0;
1334 int rss[NR_MM_COUNTERS];
1340 tlb_change_page_size(tlb, PAGE_SIZE);
1343 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1345 flush_tlb_batched_pending(mm);
1346 arch_enter_lazy_mmu_mode();
1349 if (pte_none(ptent))
1355 if (pte_present(ptent)) {
1358 page = vm_normal_page(vma, addr, ptent);
1359 if (unlikely(zap_skip_check_mapping(details, page)))
1361 ptent = ptep_get_and_clear_full(mm, addr, pte,
1363 tlb_remove_tlb_entry(tlb, pte, addr);
1364 if (unlikely(!page))
1367 if (!PageAnon(page)) {
1368 if (pte_dirty(ptent)) {
1370 set_page_dirty(page);
1372 if (pte_young(ptent) &&
1373 likely(!(vma->vm_flags & VM_SEQ_READ)))
1374 mark_page_accessed(page);
1376 rss[mm_counter(page)]--;
1377 page_remove_rmap(page, vma, false);
1378 if (unlikely(page_mapcount(page) < 0))
1379 print_bad_pte(vma, addr, ptent, page);
1380 if (unlikely(__tlb_remove_page(tlb, page))) {
1388 entry = pte_to_swp_entry(ptent);
1389 if (is_device_private_entry(entry) ||
1390 is_device_exclusive_entry(entry)) {
1391 struct page *page = pfn_swap_entry_to_page(entry);
1393 if (unlikely(zap_skip_check_mapping(details, page)))
1395 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1396 rss[mm_counter(page)]--;
1397 if (is_device_private_entry(entry))
1398 page_remove_rmap(page, vma, false);
1403 /* If details->check_mapping, we leave swap entries. */
1404 if (unlikely(details))
1407 if (!non_swap_entry(entry))
1409 else if (is_migration_entry(entry)) {
1412 page = pfn_swap_entry_to_page(entry);
1413 rss[mm_counter(page)]--;
1415 if (unlikely(!free_swap_and_cache(entry)))
1416 print_bad_pte(vma, addr, ptent, NULL);
1417 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1418 } while (pte++, addr += PAGE_SIZE, addr != end);
1420 add_mm_rss_vec(mm, rss);
1421 arch_leave_lazy_mmu_mode();
1423 /* Do the actual TLB flush before dropping ptl */
1425 tlb_flush_mmu_tlbonly(tlb);
1426 pte_unmap_unlock(start_pte, ptl);
1429 * If we forced a TLB flush (either due to running out of
1430 * batch buffers or because we needed to flush dirty TLB
1431 * entries before releasing the ptl), free the batched
1432 * memory too. Restart if we didn't do everything.
1447 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1448 struct vm_area_struct *vma, pud_t *pud,
1449 unsigned long addr, unsigned long end,
1450 struct zap_details *details)
1455 pmd = pmd_offset(pud, addr);
1457 next = pmd_addr_end(addr, end);
1458 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1459 if (next - addr != HPAGE_PMD_SIZE)
1460 __split_huge_pmd(vma, pmd, addr, false, NULL);
1461 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1464 } else if (details && details->single_folio &&
1465 folio_test_pmd_mappable(details->single_folio) &&
1466 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1467 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1469 * Take and drop THP pmd lock so that we cannot return
1470 * prematurely, while zap_huge_pmd() has cleared *pmd,
1471 * but not yet decremented compound_mapcount().
1477 * Here there can be other concurrent MADV_DONTNEED or
1478 * trans huge page faults running, and if the pmd is
1479 * none or trans huge it can change under us. This is
1480 * because MADV_DONTNEED holds the mmap_lock in read
1483 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1485 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1488 } while (pmd++, addr = next, addr != end);
1493 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1494 struct vm_area_struct *vma, p4d_t *p4d,
1495 unsigned long addr, unsigned long end,
1496 struct zap_details *details)
1501 pud = pud_offset(p4d, addr);
1503 next = pud_addr_end(addr, end);
1504 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1505 if (next - addr != HPAGE_PUD_SIZE) {
1506 mmap_assert_locked(tlb->mm);
1507 split_huge_pud(vma, pud, addr);
1508 } else if (zap_huge_pud(tlb, vma, pud, addr))
1512 if (pud_none_or_clear_bad(pud))
1514 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1517 } while (pud++, addr = next, addr != end);
1522 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1523 struct vm_area_struct *vma, pgd_t *pgd,
1524 unsigned long addr, unsigned long end,
1525 struct zap_details *details)
1530 p4d = p4d_offset(pgd, addr);
1532 next = p4d_addr_end(addr, end);
1533 if (p4d_none_or_clear_bad(p4d))
1535 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1536 } while (p4d++, addr = next, addr != end);
1541 void unmap_page_range(struct mmu_gather *tlb,
1542 struct vm_area_struct *vma,
1543 unsigned long addr, unsigned long end,
1544 struct zap_details *details)
1549 BUG_ON(addr >= end);
1550 tlb_start_vma(tlb, vma);
1551 pgd = pgd_offset(vma->vm_mm, addr);
1553 next = pgd_addr_end(addr, end);
1554 if (pgd_none_or_clear_bad(pgd))
1556 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1557 } while (pgd++, addr = next, addr != end);
1558 tlb_end_vma(tlb, vma);
1562 static void unmap_single_vma(struct mmu_gather *tlb,
1563 struct vm_area_struct *vma, unsigned long start_addr,
1564 unsigned long end_addr,
1565 struct zap_details *details)
1567 unsigned long start = max(vma->vm_start, start_addr);
1570 if (start >= vma->vm_end)
1572 end = min(vma->vm_end, end_addr);
1573 if (end <= vma->vm_start)
1577 uprobe_munmap(vma, start, end);
1579 if (unlikely(vma->vm_flags & VM_PFNMAP))
1580 untrack_pfn(vma, 0, 0);
1583 if (unlikely(is_vm_hugetlb_page(vma))) {
1585 * It is undesirable to test vma->vm_file as it
1586 * should be non-null for valid hugetlb area.
1587 * However, vm_file will be NULL in the error
1588 * cleanup path of mmap_region. When
1589 * hugetlbfs ->mmap method fails,
1590 * mmap_region() nullifies vma->vm_file
1591 * before calling this function to clean up.
1592 * Since no pte has actually been setup, it is
1593 * safe to do nothing in this case.
1596 i_mmap_lock_write(vma->vm_file->f_mapping);
1597 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1598 i_mmap_unlock_write(vma->vm_file->f_mapping);
1601 unmap_page_range(tlb, vma, start, end, details);
1606 * unmap_vmas - unmap a range of memory covered by a list of vma's
1607 * @tlb: address of the caller's struct mmu_gather
1608 * @vma: the starting vma
1609 * @start_addr: virtual address at which to start unmapping
1610 * @end_addr: virtual address at which to end unmapping
1612 * Unmap all pages in the vma list.
1614 * Only addresses between `start' and `end' will be unmapped.
1616 * The VMA list must be sorted in ascending virtual address order.
1618 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1619 * range after unmap_vmas() returns. So the only responsibility here is to
1620 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1621 * drops the lock and schedules.
1623 void unmap_vmas(struct mmu_gather *tlb,
1624 struct vm_area_struct *vma, unsigned long start_addr,
1625 unsigned long end_addr)
1627 struct mmu_notifier_range range;
1629 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1630 start_addr, end_addr);
1631 mmu_notifier_invalidate_range_start(&range);
1632 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1633 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1634 mmu_notifier_invalidate_range_end(&range);
1638 * zap_page_range - remove user pages in a given range
1639 * @vma: vm_area_struct holding the applicable pages
1640 * @start: starting address of pages to zap
1641 * @size: number of bytes to zap
1643 * Caller must protect the VMA list
1645 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1648 struct mmu_notifier_range range;
1649 struct mmu_gather tlb;
1652 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1653 start, start + size);
1654 tlb_gather_mmu(&tlb, vma->vm_mm);
1655 update_hiwater_rss(vma->vm_mm);
1656 mmu_notifier_invalidate_range_start(&range);
1657 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1658 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1659 mmu_notifier_invalidate_range_end(&range);
1660 tlb_finish_mmu(&tlb);
1664 * zap_page_range_single - remove user pages in a given range
1665 * @vma: vm_area_struct holding the applicable pages
1666 * @address: starting address of pages to zap
1667 * @size: number of bytes to zap
1668 * @details: details of shared cache invalidation
1670 * The range must fit into one VMA.
1672 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1673 unsigned long size, struct zap_details *details)
1675 struct mmu_notifier_range range;
1676 struct mmu_gather tlb;
1679 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1680 address, address + size);
1681 tlb_gather_mmu(&tlb, vma->vm_mm);
1682 update_hiwater_rss(vma->vm_mm);
1683 mmu_notifier_invalidate_range_start(&range);
1684 unmap_single_vma(&tlb, vma, address, range.end, details);
1685 mmu_notifier_invalidate_range_end(&range);
1686 tlb_finish_mmu(&tlb);
1690 * zap_vma_ptes - remove ptes mapping the vma
1691 * @vma: vm_area_struct holding ptes to be zapped
1692 * @address: starting address of pages to zap
1693 * @size: number of bytes to zap
1695 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1697 * The entire address range must be fully contained within the vma.
1700 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1703 if (address < vma->vm_start || address + size > vma->vm_end ||
1704 !(vma->vm_flags & VM_PFNMAP))
1707 zap_page_range_single(vma, address, size, NULL);
1709 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1711 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1718 pgd = pgd_offset(mm, addr);
1719 p4d = p4d_alloc(mm, pgd, addr);
1722 pud = pud_alloc(mm, p4d, addr);
1725 pmd = pmd_alloc(mm, pud, addr);
1729 VM_BUG_ON(pmd_trans_huge(*pmd));
1733 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1736 pmd_t *pmd = walk_to_pmd(mm, addr);
1740 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1743 static int validate_page_before_insert(struct page *page)
1745 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1747 flush_dcache_page(page);
1751 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1752 unsigned long addr, struct page *page, pgprot_t prot)
1754 if (!pte_none(*pte))
1756 /* Ok, finally just insert the thing.. */
1758 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1759 page_add_file_rmap(page, vma, false);
1760 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1765 * This is the old fallback for page remapping.
1767 * For historical reasons, it only allows reserved pages. Only
1768 * old drivers should use this, and they needed to mark their
1769 * pages reserved for the old functions anyway.
1771 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1772 struct page *page, pgprot_t prot)
1778 retval = validate_page_before_insert(page);
1782 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1785 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1786 pte_unmap_unlock(pte, ptl);
1792 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1793 unsigned long addr, struct page *page, pgprot_t prot)
1797 if (!page_count(page))
1799 err = validate_page_before_insert(page);
1802 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1805 /* insert_pages() amortizes the cost of spinlock operations
1806 * when inserting pages in a loop. Arch *must* define pte_index.
1808 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1809 struct page **pages, unsigned long *num, pgprot_t prot)
1812 pte_t *start_pte, *pte;
1813 spinlock_t *pte_lock;
1814 struct mm_struct *const mm = vma->vm_mm;
1815 unsigned long curr_page_idx = 0;
1816 unsigned long remaining_pages_total = *num;
1817 unsigned long pages_to_write_in_pmd;
1821 pmd = walk_to_pmd(mm, addr);
1825 pages_to_write_in_pmd = min_t(unsigned long,
1826 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1828 /* Allocate the PTE if necessary; takes PMD lock once only. */
1830 if (pte_alloc(mm, pmd))
1833 while (pages_to_write_in_pmd) {
1835 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1837 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1838 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1839 int err = insert_page_in_batch_locked(vma, pte,
1840 addr, pages[curr_page_idx], prot);
1841 if (unlikely(err)) {
1842 pte_unmap_unlock(start_pte, pte_lock);
1844 remaining_pages_total -= pte_idx;
1850 pte_unmap_unlock(start_pte, pte_lock);
1851 pages_to_write_in_pmd -= batch_size;
1852 remaining_pages_total -= batch_size;
1854 if (remaining_pages_total)
1858 *num = remaining_pages_total;
1861 #endif /* ifdef pte_index */
1864 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1865 * @vma: user vma to map to
1866 * @addr: target start user address of these pages
1867 * @pages: source kernel pages
1868 * @num: in: number of pages to map. out: number of pages that were *not*
1869 * mapped. (0 means all pages were successfully mapped).
1871 * Preferred over vm_insert_page() when inserting multiple pages.
1873 * In case of error, we may have mapped a subset of the provided
1874 * pages. It is the caller's responsibility to account for this case.
1876 * The same restrictions apply as in vm_insert_page().
1878 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879 struct page **pages, unsigned long *num)
1882 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1884 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1886 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1887 BUG_ON(mmap_read_trylock(vma->vm_mm));
1888 BUG_ON(vma->vm_flags & VM_PFNMAP);
1889 vma->vm_flags |= VM_MIXEDMAP;
1891 /* Defer page refcount checking till we're about to map that page. */
1892 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1894 unsigned long idx = 0, pgcount = *num;
1897 for (; idx < pgcount; ++idx) {
1898 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1902 *num = pgcount - idx;
1904 #endif /* ifdef pte_index */
1906 EXPORT_SYMBOL(vm_insert_pages);
1909 * vm_insert_page - insert single page into user vma
1910 * @vma: user vma to map to
1911 * @addr: target user address of this page
1912 * @page: source kernel page
1914 * This allows drivers to insert individual pages they've allocated
1917 * The page has to be a nice clean _individual_ kernel allocation.
1918 * If you allocate a compound page, you need to have marked it as
1919 * such (__GFP_COMP), or manually just split the page up yourself
1920 * (see split_page()).
1922 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1923 * took an arbitrary page protection parameter. This doesn't allow
1924 * that. Your vma protection will have to be set up correctly, which
1925 * means that if you want a shared writable mapping, you'd better
1926 * ask for a shared writable mapping!
1928 * The page does not need to be reserved.
1930 * Usually this function is called from f_op->mmap() handler
1931 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1932 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1933 * function from other places, for example from page-fault handler.
1935 * Return: %0 on success, negative error code otherwise.
1937 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1940 if (addr < vma->vm_start || addr >= vma->vm_end)
1942 if (!page_count(page))
1944 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1945 BUG_ON(mmap_read_trylock(vma->vm_mm));
1946 BUG_ON(vma->vm_flags & VM_PFNMAP);
1947 vma->vm_flags |= VM_MIXEDMAP;
1949 return insert_page(vma, addr, page, vma->vm_page_prot);
1951 EXPORT_SYMBOL(vm_insert_page);
1954 * __vm_map_pages - maps range of kernel pages into user vma
1955 * @vma: user vma to map to
1956 * @pages: pointer to array of source kernel pages
1957 * @num: number of pages in page array
1958 * @offset: user's requested vm_pgoff
1960 * This allows drivers to map range of kernel pages into a user vma.
1962 * Return: 0 on success and error code otherwise.
1964 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1965 unsigned long num, unsigned long offset)
1967 unsigned long count = vma_pages(vma);
1968 unsigned long uaddr = vma->vm_start;
1971 /* Fail if the user requested offset is beyond the end of the object */
1975 /* Fail if the user requested size exceeds available object size */
1976 if (count > num - offset)
1979 for (i = 0; i < count; i++) {
1980 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1990 * vm_map_pages - maps range of kernel pages starts with non zero offset
1991 * @vma: user vma to map to
1992 * @pages: pointer to array of source kernel pages
1993 * @num: number of pages in page array
1995 * Maps an object consisting of @num pages, catering for the user's
1996 * requested vm_pgoff
1998 * If we fail to insert any page into the vma, the function will return
1999 * immediately leaving any previously inserted pages present. Callers
2000 * from the mmap handler may immediately return the error as their caller
2001 * will destroy the vma, removing any successfully inserted pages. Other
2002 * callers should make their own arrangements for calling unmap_region().
2004 * Context: Process context. Called by mmap handlers.
2005 * Return: 0 on success and error code otherwise.
2007 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2010 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2012 EXPORT_SYMBOL(vm_map_pages);
2015 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2016 * @vma: user vma to map to
2017 * @pages: pointer to array of source kernel pages
2018 * @num: number of pages in page array
2020 * Similar to vm_map_pages(), except that it explicitly sets the offset
2021 * to 0. This function is intended for the drivers that did not consider
2024 * Context: Process context. Called by mmap handlers.
2025 * Return: 0 on success and error code otherwise.
2027 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2030 return __vm_map_pages(vma, pages, num, 0);
2032 EXPORT_SYMBOL(vm_map_pages_zero);
2034 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2035 pfn_t pfn, pgprot_t prot, bool mkwrite)
2037 struct mm_struct *mm = vma->vm_mm;
2041 pte = get_locked_pte(mm, addr, &ptl);
2043 return VM_FAULT_OOM;
2044 if (!pte_none(*pte)) {
2047 * For read faults on private mappings the PFN passed
2048 * in may not match the PFN we have mapped if the
2049 * mapped PFN is a writeable COW page. In the mkwrite
2050 * case we are creating a writable PTE for a shared
2051 * mapping and we expect the PFNs to match. If they
2052 * don't match, we are likely racing with block
2053 * allocation and mapping invalidation so just skip the
2056 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2057 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2060 entry = pte_mkyoung(*pte);
2061 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2062 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2063 update_mmu_cache(vma, addr, pte);
2068 /* Ok, finally just insert the thing.. */
2069 if (pfn_t_devmap(pfn))
2070 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2072 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2075 entry = pte_mkyoung(entry);
2076 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2079 set_pte_at(mm, addr, pte, entry);
2080 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2083 pte_unmap_unlock(pte, ptl);
2084 return VM_FAULT_NOPAGE;
2088 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2089 * @vma: user vma to map to
2090 * @addr: target user address of this page
2091 * @pfn: source kernel pfn
2092 * @pgprot: pgprot flags for the inserted page
2094 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2095 * to override pgprot on a per-page basis.
2097 * This only makes sense for IO mappings, and it makes no sense for
2098 * COW mappings. In general, using multiple vmas is preferable;
2099 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2102 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2103 * a value of @pgprot different from that of @vma->vm_page_prot.
2105 * Context: Process context. May allocate using %GFP_KERNEL.
2106 * Return: vm_fault_t value.
2108 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2109 unsigned long pfn, pgprot_t pgprot)
2112 * Technically, architectures with pte_special can avoid all these
2113 * restrictions (same for remap_pfn_range). However we would like
2114 * consistency in testing and feature parity among all, so we should
2115 * try to keep these invariants in place for everybody.
2117 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2118 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2119 (VM_PFNMAP|VM_MIXEDMAP));
2120 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2121 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2123 if (addr < vma->vm_start || addr >= vma->vm_end)
2124 return VM_FAULT_SIGBUS;
2126 if (!pfn_modify_allowed(pfn, pgprot))
2127 return VM_FAULT_SIGBUS;
2129 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2131 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2134 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2137 * vmf_insert_pfn - insert single pfn into user vma
2138 * @vma: user vma to map to
2139 * @addr: target user address of this page
2140 * @pfn: source kernel pfn
2142 * Similar to vm_insert_page, this allows drivers to insert individual pages
2143 * they've allocated into a user vma. Same comments apply.
2145 * This function should only be called from a vm_ops->fault handler, and
2146 * in that case the handler should return the result of this function.
2148 * vma cannot be a COW mapping.
2150 * As this is called only for pages that do not currently exist, we
2151 * do not need to flush old virtual caches or the TLB.
2153 * Context: Process context. May allocate using %GFP_KERNEL.
2154 * Return: vm_fault_t value.
2156 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2159 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2161 EXPORT_SYMBOL(vmf_insert_pfn);
2163 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2165 /* these checks mirror the abort conditions in vm_normal_page */
2166 if (vma->vm_flags & VM_MIXEDMAP)
2168 if (pfn_t_devmap(pfn))
2170 if (pfn_t_special(pfn))
2172 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2177 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2178 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2183 BUG_ON(!vm_mixed_ok(vma, pfn));
2185 if (addr < vma->vm_start || addr >= vma->vm_end)
2186 return VM_FAULT_SIGBUS;
2188 track_pfn_insert(vma, &pgprot, pfn);
2190 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2191 return VM_FAULT_SIGBUS;
2194 * If we don't have pte special, then we have to use the pfn_valid()
2195 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2196 * refcount the page if pfn_valid is true (hence insert_page rather
2197 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2198 * without pte special, it would there be refcounted as a normal page.
2200 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2201 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2205 * At this point we are committed to insert_page()
2206 * regardless of whether the caller specified flags that
2207 * result in pfn_t_has_page() == false.
2209 page = pfn_to_page(pfn_t_to_pfn(pfn));
2210 err = insert_page(vma, addr, page, pgprot);
2212 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2216 return VM_FAULT_OOM;
2217 if (err < 0 && err != -EBUSY)
2218 return VM_FAULT_SIGBUS;
2220 return VM_FAULT_NOPAGE;
2224 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2225 * @vma: user vma to map to
2226 * @addr: target user address of this page
2227 * @pfn: source kernel pfn
2228 * @pgprot: pgprot flags for the inserted page
2230 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2231 * to override pgprot on a per-page basis.
2233 * Typically this function should be used by drivers to set caching- and
2234 * encryption bits different than those of @vma->vm_page_prot, because
2235 * the caching- or encryption mode may not be known at mmap() time.
2236 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2237 * to set caching and encryption bits for those vmas (except for COW pages).
2238 * This is ensured by core vm only modifying these page table entries using
2239 * functions that don't touch caching- or encryption bits, using pte_modify()
2240 * if needed. (See for example mprotect()).
2241 * Also when new page-table entries are created, this is only done using the
2242 * fault() callback, and never using the value of vma->vm_page_prot,
2243 * except for page-table entries that point to anonymous pages as the result
2246 * Context: Process context. May allocate using %GFP_KERNEL.
2247 * Return: vm_fault_t value.
2249 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2250 pfn_t pfn, pgprot_t pgprot)
2252 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2254 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2256 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2259 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2261 EXPORT_SYMBOL(vmf_insert_mixed);
2264 * If the insertion of PTE failed because someone else already added a
2265 * different entry in the mean time, we treat that as success as we assume
2266 * the same entry was actually inserted.
2268 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2269 unsigned long addr, pfn_t pfn)
2271 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2273 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2276 * maps a range of physical memory into the requested pages. the old
2277 * mappings are removed. any references to nonexistent pages results
2278 * in null mappings (currently treated as "copy-on-access")
2280 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2281 unsigned long addr, unsigned long end,
2282 unsigned long pfn, pgprot_t prot)
2284 pte_t *pte, *mapped_pte;
2288 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2291 arch_enter_lazy_mmu_mode();
2293 BUG_ON(!pte_none(*pte));
2294 if (!pfn_modify_allowed(pfn, prot)) {
2298 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2300 } while (pte++, addr += PAGE_SIZE, addr != end);
2301 arch_leave_lazy_mmu_mode();
2302 pte_unmap_unlock(mapped_pte, ptl);
2306 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2307 unsigned long addr, unsigned long end,
2308 unsigned long pfn, pgprot_t prot)
2314 pfn -= addr >> PAGE_SHIFT;
2315 pmd = pmd_alloc(mm, pud, addr);
2318 VM_BUG_ON(pmd_trans_huge(*pmd));
2320 next = pmd_addr_end(addr, end);
2321 err = remap_pte_range(mm, pmd, addr, next,
2322 pfn + (addr >> PAGE_SHIFT), prot);
2325 } while (pmd++, addr = next, addr != end);
2329 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2330 unsigned long addr, unsigned long end,
2331 unsigned long pfn, pgprot_t prot)
2337 pfn -= addr >> PAGE_SHIFT;
2338 pud = pud_alloc(mm, p4d, addr);
2342 next = pud_addr_end(addr, end);
2343 err = remap_pmd_range(mm, pud, addr, next,
2344 pfn + (addr >> PAGE_SHIFT), prot);
2347 } while (pud++, addr = next, addr != end);
2351 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2352 unsigned long addr, unsigned long end,
2353 unsigned long pfn, pgprot_t prot)
2359 pfn -= addr >> PAGE_SHIFT;
2360 p4d = p4d_alloc(mm, pgd, addr);
2364 next = p4d_addr_end(addr, end);
2365 err = remap_pud_range(mm, p4d, addr, next,
2366 pfn + (addr >> PAGE_SHIFT), prot);
2369 } while (p4d++, addr = next, addr != end);
2374 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2375 * must have pre-validated the caching bits of the pgprot_t.
2377 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2378 unsigned long pfn, unsigned long size, pgprot_t prot)
2382 unsigned long end = addr + PAGE_ALIGN(size);
2383 struct mm_struct *mm = vma->vm_mm;
2386 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2390 * Physically remapped pages are special. Tell the
2391 * rest of the world about it:
2392 * VM_IO tells people not to look at these pages
2393 * (accesses can have side effects).
2394 * VM_PFNMAP tells the core MM that the base pages are just
2395 * raw PFN mappings, and do not have a "struct page" associated
2398 * Disable vma merging and expanding with mremap().
2400 * Omit vma from core dump, even when VM_IO turned off.
2402 * There's a horrible special case to handle copy-on-write
2403 * behaviour that some programs depend on. We mark the "original"
2404 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2405 * See vm_normal_page() for details.
2407 if (is_cow_mapping(vma->vm_flags)) {
2408 if (addr != vma->vm_start || end != vma->vm_end)
2410 vma->vm_pgoff = pfn;
2413 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2415 BUG_ON(addr >= end);
2416 pfn -= addr >> PAGE_SHIFT;
2417 pgd = pgd_offset(mm, addr);
2418 flush_cache_range(vma, addr, end);
2420 next = pgd_addr_end(addr, end);
2421 err = remap_p4d_range(mm, pgd, addr, next,
2422 pfn + (addr >> PAGE_SHIFT), prot);
2425 } while (pgd++, addr = next, addr != end);
2431 * remap_pfn_range - remap kernel memory to userspace
2432 * @vma: user vma to map to
2433 * @addr: target page aligned user address to start at
2434 * @pfn: page frame number of kernel physical memory address
2435 * @size: size of mapping area
2436 * @prot: page protection flags for this mapping
2438 * Note: this is only safe if the mm semaphore is held when called.
2440 * Return: %0 on success, negative error code otherwise.
2442 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2443 unsigned long pfn, unsigned long size, pgprot_t prot)
2447 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2451 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2453 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2456 EXPORT_SYMBOL(remap_pfn_range);
2459 * vm_iomap_memory - remap memory to userspace
2460 * @vma: user vma to map to
2461 * @start: start of the physical memory to be mapped
2462 * @len: size of area
2464 * This is a simplified io_remap_pfn_range() for common driver use. The
2465 * driver just needs to give us the physical memory range to be mapped,
2466 * we'll figure out the rest from the vma information.
2468 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2469 * whatever write-combining details or similar.
2471 * Return: %0 on success, negative error code otherwise.
2473 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2475 unsigned long vm_len, pfn, pages;
2477 /* Check that the physical memory area passed in looks valid */
2478 if (start + len < start)
2481 * You *really* shouldn't map things that aren't page-aligned,
2482 * but we've historically allowed it because IO memory might
2483 * just have smaller alignment.
2485 len += start & ~PAGE_MASK;
2486 pfn = start >> PAGE_SHIFT;
2487 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2488 if (pfn + pages < pfn)
2491 /* We start the mapping 'vm_pgoff' pages into the area */
2492 if (vma->vm_pgoff > pages)
2494 pfn += vma->vm_pgoff;
2495 pages -= vma->vm_pgoff;
2497 /* Can we fit all of the mapping? */
2498 vm_len = vma->vm_end - vma->vm_start;
2499 if (vm_len >> PAGE_SHIFT > pages)
2502 /* Ok, let it rip */
2503 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2505 EXPORT_SYMBOL(vm_iomap_memory);
2507 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2508 unsigned long addr, unsigned long end,
2509 pte_fn_t fn, void *data, bool create,
2510 pgtbl_mod_mask *mask)
2512 pte_t *pte, *mapped_pte;
2517 mapped_pte = pte = (mm == &init_mm) ?
2518 pte_alloc_kernel_track(pmd, addr, mask) :
2519 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2523 mapped_pte = pte = (mm == &init_mm) ?
2524 pte_offset_kernel(pmd, addr) :
2525 pte_offset_map_lock(mm, pmd, addr, &ptl);
2528 BUG_ON(pmd_huge(*pmd));
2530 arch_enter_lazy_mmu_mode();
2534 if (create || !pte_none(*pte)) {
2535 err = fn(pte++, addr, data);
2539 } while (addr += PAGE_SIZE, addr != end);
2541 *mask |= PGTBL_PTE_MODIFIED;
2543 arch_leave_lazy_mmu_mode();
2546 pte_unmap_unlock(mapped_pte, ptl);
2550 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2551 unsigned long addr, unsigned long end,
2552 pte_fn_t fn, void *data, bool create,
2553 pgtbl_mod_mask *mask)
2559 BUG_ON(pud_huge(*pud));
2562 pmd = pmd_alloc_track(mm, pud, addr, mask);
2566 pmd = pmd_offset(pud, addr);
2569 next = pmd_addr_end(addr, end);
2570 if (pmd_none(*pmd) && !create)
2572 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2574 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2579 err = apply_to_pte_range(mm, pmd, addr, next,
2580 fn, data, create, mask);
2583 } while (pmd++, addr = next, addr != end);
2588 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2589 unsigned long addr, unsigned long end,
2590 pte_fn_t fn, void *data, bool create,
2591 pgtbl_mod_mask *mask)
2598 pud = pud_alloc_track(mm, p4d, addr, mask);
2602 pud = pud_offset(p4d, addr);
2605 next = pud_addr_end(addr, end);
2606 if (pud_none(*pud) && !create)
2608 if (WARN_ON_ONCE(pud_leaf(*pud)))
2610 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2615 err = apply_to_pmd_range(mm, pud, addr, next,
2616 fn, data, create, mask);
2619 } while (pud++, addr = next, addr != end);
2624 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2625 unsigned long addr, unsigned long end,
2626 pte_fn_t fn, void *data, bool create,
2627 pgtbl_mod_mask *mask)
2634 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2638 p4d = p4d_offset(pgd, addr);
2641 next = p4d_addr_end(addr, end);
2642 if (p4d_none(*p4d) && !create)
2644 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2646 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2651 err = apply_to_pud_range(mm, p4d, addr, next,
2652 fn, data, create, mask);
2655 } while (p4d++, addr = next, addr != end);
2660 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2661 unsigned long size, pte_fn_t fn,
2662 void *data, bool create)
2665 unsigned long start = addr, next;
2666 unsigned long end = addr + size;
2667 pgtbl_mod_mask mask = 0;
2670 if (WARN_ON(addr >= end))
2673 pgd = pgd_offset(mm, addr);
2675 next = pgd_addr_end(addr, end);
2676 if (pgd_none(*pgd) && !create)
2678 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2680 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2685 err = apply_to_p4d_range(mm, pgd, addr, next,
2686 fn, data, create, &mask);
2689 } while (pgd++, addr = next, addr != end);
2691 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2692 arch_sync_kernel_mappings(start, start + size);
2698 * Scan a region of virtual memory, filling in page tables as necessary
2699 * and calling a provided function on each leaf page table.
2701 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2702 unsigned long size, pte_fn_t fn, void *data)
2704 return __apply_to_page_range(mm, addr, size, fn, data, true);
2706 EXPORT_SYMBOL_GPL(apply_to_page_range);
2709 * Scan a region of virtual memory, calling a provided function on
2710 * each leaf page table where it exists.
2712 * Unlike apply_to_page_range, this does _not_ fill in page tables
2713 * where they are absent.
2715 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2716 unsigned long size, pte_fn_t fn, void *data)
2718 return __apply_to_page_range(mm, addr, size, fn, data, false);
2720 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2723 * handle_pte_fault chooses page fault handler according to an entry which was
2724 * read non-atomically. Before making any commitment, on those architectures
2725 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2726 * parts, do_swap_page must check under lock before unmapping the pte and
2727 * proceeding (but do_wp_page is only called after already making such a check;
2728 * and do_anonymous_page can safely check later on).
2730 static inline int pte_unmap_same(struct vm_fault *vmf)
2733 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2734 if (sizeof(pte_t) > sizeof(unsigned long)) {
2735 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2737 same = pte_same(*vmf->pte, vmf->orig_pte);
2741 pte_unmap(vmf->pte);
2746 static inline bool cow_user_page(struct page *dst, struct page *src,
2747 struct vm_fault *vmf)
2752 bool locked = false;
2753 struct vm_area_struct *vma = vmf->vma;
2754 struct mm_struct *mm = vma->vm_mm;
2755 unsigned long addr = vmf->address;
2758 copy_user_highpage(dst, src, addr, vma);
2763 * If the source page was a PFN mapping, we don't have
2764 * a "struct page" for it. We do a best-effort copy by
2765 * just copying from the original user address. If that
2766 * fails, we just zero-fill it. Live with it.
2768 kaddr = kmap_atomic(dst);
2769 uaddr = (void __user *)(addr & PAGE_MASK);
2772 * On architectures with software "accessed" bits, we would
2773 * take a double page fault, so mark it accessed here.
2775 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2778 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2780 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2782 * Other thread has already handled the fault
2783 * and update local tlb only
2785 update_mmu_tlb(vma, addr, vmf->pte);
2790 entry = pte_mkyoung(vmf->orig_pte);
2791 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2792 update_mmu_cache(vma, addr, vmf->pte);
2796 * This really shouldn't fail, because the page is there
2797 * in the page tables. But it might just be unreadable,
2798 * in which case we just give up and fill the result with
2801 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2805 /* Re-validate under PTL if the page is still mapped */
2806 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2808 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2809 /* The PTE changed under us, update local tlb */
2810 update_mmu_tlb(vma, addr, vmf->pte);
2816 * The same page can be mapped back since last copy attempt.
2817 * Try to copy again under PTL.
2819 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2821 * Give a warn in case there can be some obscure
2834 pte_unmap_unlock(vmf->pte, vmf->ptl);
2835 kunmap_atomic(kaddr);
2836 flush_dcache_page(dst);
2841 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2843 struct file *vm_file = vma->vm_file;
2846 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2849 * Special mappings (e.g. VDSO) do not have any file so fake
2850 * a default GFP_KERNEL for them.
2856 * Notify the address space that the page is about to become writable so that
2857 * it can prohibit this or wait for the page to get into an appropriate state.
2859 * We do this without the lock held, so that it can sleep if it needs to.
2861 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2864 struct page *page = vmf->page;
2865 unsigned int old_flags = vmf->flags;
2867 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2869 if (vmf->vma->vm_file &&
2870 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2871 return VM_FAULT_SIGBUS;
2873 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2874 /* Restore original flags so that caller is not surprised */
2875 vmf->flags = old_flags;
2876 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2878 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2880 if (!page->mapping) {
2882 return 0; /* retry */
2884 ret |= VM_FAULT_LOCKED;
2886 VM_BUG_ON_PAGE(!PageLocked(page), page);
2891 * Handle dirtying of a page in shared file mapping on a write fault.
2893 * The function expects the page to be locked and unlocks it.
2895 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2897 struct vm_area_struct *vma = vmf->vma;
2898 struct address_space *mapping;
2899 struct page *page = vmf->page;
2901 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2903 dirtied = set_page_dirty(page);
2904 VM_BUG_ON_PAGE(PageAnon(page), page);
2906 * Take a local copy of the address_space - page.mapping may be zeroed
2907 * by truncate after unlock_page(). The address_space itself remains
2908 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2909 * release semantics to prevent the compiler from undoing this copying.
2911 mapping = page_rmapping(page);
2915 file_update_time(vma->vm_file);
2918 * Throttle page dirtying rate down to writeback speed.
2920 * mapping may be NULL here because some device drivers do not
2921 * set page.mapping but still dirty their pages
2923 * Drop the mmap_lock before waiting on IO, if we can. The file
2924 * is pinning the mapping, as per above.
2926 if ((dirtied || page_mkwrite) && mapping) {
2929 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2930 balance_dirty_pages_ratelimited(mapping);
2933 return VM_FAULT_RETRY;
2941 * Handle write page faults for pages that can be reused in the current vma
2943 * This can happen either due to the mapping being with the VM_SHARED flag,
2944 * or due to us being the last reference standing to the page. In either
2945 * case, all we need to do here is to mark the page as writable and update
2946 * any related book-keeping.
2948 static inline void wp_page_reuse(struct vm_fault *vmf)
2949 __releases(vmf->ptl)
2951 struct vm_area_struct *vma = vmf->vma;
2952 struct page *page = vmf->page;
2955 * Clear the pages cpupid information as the existing
2956 * information potentially belongs to a now completely
2957 * unrelated process.
2960 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2962 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2963 entry = pte_mkyoung(vmf->orig_pte);
2964 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2965 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2966 update_mmu_cache(vma, vmf->address, vmf->pte);
2967 pte_unmap_unlock(vmf->pte, vmf->ptl);
2968 count_vm_event(PGREUSE);
2972 * Handle the case of a page which we actually need to copy to a new page.
2974 * Called with mmap_lock locked and the old page referenced, but
2975 * without the ptl held.
2977 * High level logic flow:
2979 * - Allocate a page, copy the content of the old page to the new one.
2980 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2981 * - Take the PTL. If the pte changed, bail out and release the allocated page
2982 * - If the pte is still the way we remember it, update the page table and all
2983 * relevant references. This includes dropping the reference the page-table
2984 * held to the old page, as well as updating the rmap.
2985 * - In any case, unlock the PTL and drop the reference we took to the old page.
2987 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2989 struct vm_area_struct *vma = vmf->vma;
2990 struct mm_struct *mm = vma->vm_mm;
2991 struct page *old_page = vmf->page;
2992 struct page *new_page = NULL;
2994 int page_copied = 0;
2995 struct mmu_notifier_range range;
2997 if (unlikely(anon_vma_prepare(vma)))
3000 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3001 new_page = alloc_zeroed_user_highpage_movable(vma,
3006 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3011 if (!cow_user_page(new_page, old_page, vmf)) {
3013 * COW failed, if the fault was solved by other,
3014 * it's fine. If not, userspace would re-fault on
3015 * the same address and we will handle the fault
3016 * from the second attempt.
3025 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3027 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3029 __SetPageUptodate(new_page);
3031 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3032 vmf->address & PAGE_MASK,
3033 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3034 mmu_notifier_invalidate_range_start(&range);
3037 * Re-check the pte - we dropped the lock
3039 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3040 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3042 if (!PageAnon(old_page)) {
3043 dec_mm_counter_fast(mm,
3044 mm_counter_file(old_page));
3045 inc_mm_counter_fast(mm, MM_ANONPAGES);
3048 inc_mm_counter_fast(mm, MM_ANONPAGES);
3050 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3051 entry = mk_pte(new_page, vma->vm_page_prot);
3052 entry = pte_sw_mkyoung(entry);
3053 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3056 * Clear the pte entry and flush it first, before updating the
3057 * pte with the new entry, to keep TLBs on different CPUs in
3058 * sync. This code used to set the new PTE then flush TLBs, but
3059 * that left a window where the new PTE could be loaded into
3060 * some TLBs while the old PTE remains in others.
3062 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3063 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3064 lru_cache_add_inactive_or_unevictable(new_page, vma);
3066 * We call the notify macro here because, when using secondary
3067 * mmu page tables (such as kvm shadow page tables), we want the
3068 * new page to be mapped directly into the secondary page table.
3070 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3071 update_mmu_cache(vma, vmf->address, vmf->pte);
3074 * Only after switching the pte to the new page may
3075 * we remove the mapcount here. Otherwise another
3076 * process may come and find the rmap count decremented
3077 * before the pte is switched to the new page, and
3078 * "reuse" the old page writing into it while our pte
3079 * here still points into it and can be read by other
3082 * The critical issue is to order this
3083 * page_remove_rmap with the ptp_clear_flush above.
3084 * Those stores are ordered by (if nothing else,)
3085 * the barrier present in the atomic_add_negative
3086 * in page_remove_rmap.
3088 * Then the TLB flush in ptep_clear_flush ensures that
3089 * no process can access the old page before the
3090 * decremented mapcount is visible. And the old page
3091 * cannot be reused until after the decremented
3092 * mapcount is visible. So transitively, TLBs to
3093 * old page will be flushed before it can be reused.
3095 page_remove_rmap(old_page, vma, false);
3098 /* Free the old page.. */
3099 new_page = old_page;
3102 update_mmu_tlb(vma, vmf->address, vmf->pte);
3108 pte_unmap_unlock(vmf->pte, vmf->ptl);
3110 * No need to double call mmu_notifier->invalidate_range() callback as
3111 * the above ptep_clear_flush_notify() did already call it.
3113 mmu_notifier_invalidate_range_only_end(&range);
3116 free_swap_cache(old_page);
3119 return page_copied ? VM_FAULT_WRITE : 0;
3125 return VM_FAULT_OOM;
3129 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3130 * writeable once the page is prepared
3132 * @vmf: structure describing the fault
3134 * This function handles all that is needed to finish a write page fault in a
3135 * shared mapping due to PTE being read-only once the mapped page is prepared.
3136 * It handles locking of PTE and modifying it.
3138 * The function expects the page to be locked or other protection against
3139 * concurrent faults / writeback (such as DAX radix tree locks).
3141 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3142 * we acquired PTE lock.
3144 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3146 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3147 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3150 * We might have raced with another page fault while we released the
3151 * pte_offset_map_lock.
3153 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3154 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3155 pte_unmap_unlock(vmf->pte, vmf->ptl);
3156 return VM_FAULT_NOPAGE;
3163 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3166 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3168 struct vm_area_struct *vma = vmf->vma;
3170 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3173 pte_unmap_unlock(vmf->pte, vmf->ptl);
3174 vmf->flags |= FAULT_FLAG_MKWRITE;
3175 ret = vma->vm_ops->pfn_mkwrite(vmf);
3176 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3178 return finish_mkwrite_fault(vmf);
3181 return VM_FAULT_WRITE;
3184 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3185 __releases(vmf->ptl)
3187 struct vm_area_struct *vma = vmf->vma;
3188 vm_fault_t ret = VM_FAULT_WRITE;
3190 get_page(vmf->page);
3192 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3195 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 tmp = do_page_mkwrite(vmf);
3197 if (unlikely(!tmp || (tmp &
3198 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3199 put_page(vmf->page);
3202 tmp = finish_mkwrite_fault(vmf);
3203 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3204 unlock_page(vmf->page);
3205 put_page(vmf->page);
3210 lock_page(vmf->page);
3212 ret |= fault_dirty_shared_page(vmf);
3213 put_page(vmf->page);
3219 * This routine handles present pages, when users try to write
3220 * to a shared page. It is done by copying the page to a new address
3221 * and decrementing the shared-page counter for the old page.
3223 * Note that this routine assumes that the protection checks have been
3224 * done by the caller (the low-level page fault routine in most cases).
3225 * Thus we can safely just mark it writable once we've done any necessary
3228 * We also mark the page dirty at this point even though the page will
3229 * change only once the write actually happens. This avoids a few races,
3230 * and potentially makes it more efficient.
3232 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3233 * but allow concurrent faults), with pte both mapped and locked.
3234 * We return with mmap_lock still held, but pte unmapped and unlocked.
3236 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3237 __releases(vmf->ptl)
3239 struct vm_area_struct *vma = vmf->vma;
3241 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3242 pte_unmap_unlock(vmf->pte, vmf->ptl);
3243 return handle_userfault(vmf, VM_UFFD_WP);
3247 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3248 * is flushed in this case before copying.
3250 if (unlikely(userfaultfd_wp(vmf->vma) &&
3251 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3252 flush_tlb_page(vmf->vma, vmf->address);
3254 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3257 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3260 * We should not cow pages in a shared writeable mapping.
3261 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3263 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3264 (VM_WRITE|VM_SHARED))
3265 return wp_pfn_shared(vmf);
3267 pte_unmap_unlock(vmf->pte, vmf->ptl);
3268 return wp_page_copy(vmf);
3272 * Take out anonymous pages first, anonymous shared vmas are
3273 * not dirty accountable.
3275 if (PageAnon(vmf->page)) {
3276 struct page *page = vmf->page;
3278 /* PageKsm() doesn't necessarily raise the page refcount */
3279 if (PageKsm(page) || page_count(page) != 1)
3281 if (!trylock_page(page))
3283 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3288 * Ok, we've got the only map reference, and the only
3289 * page count reference, and the page is locked,
3290 * it's dark out, and we're wearing sunglasses. Hit it.
3294 return VM_FAULT_WRITE;
3295 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3296 (VM_WRITE|VM_SHARED))) {
3297 return wp_page_shared(vmf);
3301 * Ok, we need to copy. Oh, well..
3303 get_page(vmf->page);
3305 pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 return wp_page_copy(vmf);
3309 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3310 unsigned long start_addr, unsigned long end_addr,
3311 struct zap_details *details)
3313 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3316 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3317 pgoff_t first_index,
3319 struct zap_details *details)
3321 struct vm_area_struct *vma;
3322 pgoff_t vba, vea, zba, zea;
3324 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3325 vba = vma->vm_pgoff;
3326 vea = vba + vma_pages(vma) - 1;
3334 unmap_mapping_range_vma(vma,
3335 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3336 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3342 * unmap_mapping_folio() - Unmap single folio from processes.
3343 * @folio: The locked folio to be unmapped.
3345 * Unmap this folio from any userspace process which still has it mmaped.
3346 * Typically, for efficiency, the range of nearby pages has already been
3347 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3348 * truncation or invalidation holds the lock on a folio, it may find that
3349 * the page has been remapped again: and then uses unmap_mapping_folio()
3350 * to unmap it finally.
3352 void unmap_mapping_folio(struct folio *folio)
3354 struct address_space *mapping = folio->mapping;
3355 struct zap_details details = { };
3356 pgoff_t first_index;
3359 VM_BUG_ON(!folio_test_locked(folio));
3361 first_index = folio->index;
3362 last_index = folio->index + folio_nr_pages(folio) - 1;
3364 details.zap_mapping = mapping;
3365 details.single_folio = folio;
3367 i_mmap_lock_write(mapping);
3368 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3369 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3370 last_index, &details);
3371 i_mmap_unlock_write(mapping);
3375 * unmap_mapping_pages() - Unmap pages from processes.
3376 * @mapping: The address space containing pages to be unmapped.
3377 * @start: Index of first page to be unmapped.
3378 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3379 * @even_cows: Whether to unmap even private COWed pages.
3381 * Unmap the pages in this address space from any userspace process which
3382 * has them mmaped. Generally, you want to remove COWed pages as well when
3383 * a file is being truncated, but not when invalidating pages from the page
3386 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3387 pgoff_t nr, bool even_cows)
3389 struct zap_details details = { };
3390 pgoff_t first_index = start;
3391 pgoff_t last_index = start + nr - 1;
3393 details.zap_mapping = even_cows ? NULL : mapping;
3394 if (last_index < first_index)
3395 last_index = ULONG_MAX;
3397 i_mmap_lock_write(mapping);
3398 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3399 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3400 last_index, &details);
3401 i_mmap_unlock_write(mapping);
3403 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3406 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3407 * address_space corresponding to the specified byte range in the underlying
3410 * @mapping: the address space containing mmaps to be unmapped.
3411 * @holebegin: byte in first page to unmap, relative to the start of
3412 * the underlying file. This will be rounded down to a PAGE_SIZE
3413 * boundary. Note that this is different from truncate_pagecache(), which
3414 * must keep the partial page. In contrast, we must get rid of
3416 * @holelen: size of prospective hole in bytes. This will be rounded
3417 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3419 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3420 * but 0 when invalidating pagecache, don't throw away private data.
3422 void unmap_mapping_range(struct address_space *mapping,
3423 loff_t const holebegin, loff_t const holelen, int even_cows)
3425 pgoff_t hba = holebegin >> PAGE_SHIFT;
3426 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3428 /* Check for overflow. */
3429 if (sizeof(holelen) > sizeof(hlen)) {
3431 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3432 if (holeend & ~(long long)ULONG_MAX)
3433 hlen = ULONG_MAX - hba + 1;
3436 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3438 EXPORT_SYMBOL(unmap_mapping_range);
3441 * Restore a potential device exclusive pte to a working pte entry
3443 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3445 struct page *page = vmf->page;
3446 struct vm_area_struct *vma = vmf->vma;
3447 struct mmu_notifier_range range;
3449 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3450 return VM_FAULT_RETRY;
3451 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3452 vma->vm_mm, vmf->address & PAGE_MASK,
3453 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3454 mmu_notifier_invalidate_range_start(&range);
3456 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3458 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3459 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 mmu_notifier_invalidate_range_end(&range);
3469 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3470 * but allow concurrent faults), and pte mapped but not yet locked.
3471 * We return with pte unmapped and unlocked.
3473 * We return with the mmap_lock locked or unlocked in the same cases
3474 * as does filemap_fault().
3476 vm_fault_t do_swap_page(struct vm_fault *vmf)
3478 struct vm_area_struct *vma = vmf->vma;
3479 struct page *page = NULL, *swapcache;
3480 struct swap_info_struct *si = NULL;
3486 void *shadow = NULL;
3488 if (!pte_unmap_same(vmf))
3491 entry = pte_to_swp_entry(vmf->orig_pte);
3492 if (unlikely(non_swap_entry(entry))) {
3493 if (is_migration_entry(entry)) {
3494 migration_entry_wait(vma->vm_mm, vmf->pmd,
3496 } else if (is_device_exclusive_entry(entry)) {
3497 vmf->page = pfn_swap_entry_to_page(entry);
3498 ret = remove_device_exclusive_entry(vmf);
3499 } else if (is_device_private_entry(entry)) {
3500 vmf->page = pfn_swap_entry_to_page(entry);
3501 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3502 } else if (is_hwpoison_entry(entry)) {
3503 ret = VM_FAULT_HWPOISON;
3505 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3506 ret = VM_FAULT_SIGBUS;
3511 /* Prevent swapoff from happening to us. */
3512 si = get_swap_device(entry);
3516 page = lookup_swap_cache(entry, vma, vmf->address);
3520 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3521 __swap_count(entry) == 1) {
3522 /* skip swapcache */
3523 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3526 __SetPageLocked(page);
3527 __SetPageSwapBacked(page);
3529 if (mem_cgroup_swapin_charge_page(page,
3530 vma->vm_mm, GFP_KERNEL, entry)) {
3534 mem_cgroup_swapin_uncharge_swap(entry);
3536 shadow = get_shadow_from_swap_cache(entry);
3538 workingset_refault(page_folio(page),
3541 lru_cache_add(page);
3543 /* To provide entry to swap_readpage() */
3544 set_page_private(page, entry.val);
3545 swap_readpage(page, true);
3546 set_page_private(page, 0);
3549 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3556 * Back out if somebody else faulted in this pte
3557 * while we released the pte lock.
3559 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3560 vmf->address, &vmf->ptl);
3561 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3566 /* Had to read the page from swap area: Major fault */
3567 ret = VM_FAULT_MAJOR;
3568 count_vm_event(PGMAJFAULT);
3569 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3570 } else if (PageHWPoison(page)) {
3572 * hwpoisoned dirty swapcache pages are kept for killing
3573 * owner processes (which may be unknown at hwpoison time)
3575 ret = VM_FAULT_HWPOISON;
3579 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3582 ret |= VM_FAULT_RETRY;
3587 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3588 * release the swapcache from under us. The page pin, and pte_same
3589 * test below, are not enough to exclude that. Even if it is still
3590 * swapcache, we need to check that the page's swap has not changed.
3592 if (unlikely((!PageSwapCache(page) ||
3593 page_private(page) != entry.val)) && swapcache)
3596 page = ksm_might_need_to_copy(page, vma, vmf->address);
3597 if (unlikely(!page)) {
3603 cgroup_throttle_swaprate(page, GFP_KERNEL);
3606 * Back out if somebody else already faulted in this pte.
3608 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3610 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3613 if (unlikely(!PageUptodate(page))) {
3614 ret = VM_FAULT_SIGBUS;
3619 * The page isn't present yet, go ahead with the fault.
3621 * Be careful about the sequence of operations here.
3622 * To get its accounting right, reuse_swap_page() must be called
3623 * while the page is counted on swap but not yet in mapcount i.e.
3624 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3625 * must be called after the swap_free(), or it will never succeed.
3628 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3629 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3630 pte = mk_pte(page, vma->vm_page_prot);
3631 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3632 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3633 vmf->flags &= ~FAULT_FLAG_WRITE;
3634 ret |= VM_FAULT_WRITE;
3635 exclusive = RMAP_EXCLUSIVE;
3637 flush_icache_page(vma, page);
3638 if (pte_swp_soft_dirty(vmf->orig_pte))
3639 pte = pte_mksoft_dirty(pte);
3640 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3641 pte = pte_mkuffd_wp(pte);
3642 pte = pte_wrprotect(pte);
3644 vmf->orig_pte = pte;
3646 /* ksm created a completely new copy */
3647 if (unlikely(page != swapcache && swapcache)) {
3648 page_add_new_anon_rmap(page, vma, vmf->address, false);
3649 lru_cache_add_inactive_or_unevictable(page, vma);
3651 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3654 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3655 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3658 if (mem_cgroup_swap_full(page) ||
3659 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3660 try_to_free_swap(page);
3662 if (page != swapcache && swapcache) {
3664 * Hold the lock to avoid the swap entry to be reused
3665 * until we take the PT lock for the pte_same() check
3666 * (to avoid false positives from pte_same). For
3667 * further safety release the lock after the swap_free
3668 * so that the swap count won't change under a
3669 * parallel locked swapcache.
3671 unlock_page(swapcache);
3672 put_page(swapcache);
3675 if (vmf->flags & FAULT_FLAG_WRITE) {
3676 ret |= do_wp_page(vmf);
3677 if (ret & VM_FAULT_ERROR)
3678 ret &= VM_FAULT_ERROR;
3682 /* No need to invalidate - it was non-present before */
3683 update_mmu_cache(vma, vmf->address, vmf->pte);
3685 pte_unmap_unlock(vmf->pte, vmf->ptl);
3688 put_swap_device(si);
3691 pte_unmap_unlock(vmf->pte, vmf->ptl);
3696 if (page != swapcache && swapcache) {
3697 unlock_page(swapcache);
3698 put_page(swapcache);
3701 put_swap_device(si);
3706 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3707 * but allow concurrent faults), and pte mapped but not yet locked.
3708 * We return with mmap_lock still held, but pte unmapped and unlocked.
3710 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3712 struct vm_area_struct *vma = vmf->vma;
3717 /* File mapping without ->vm_ops ? */
3718 if (vma->vm_flags & VM_SHARED)
3719 return VM_FAULT_SIGBUS;
3722 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3723 * pte_offset_map() on pmds where a huge pmd might be created
3724 * from a different thread.
3726 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3727 * parallel threads are excluded by other means.
3729 * Here we only have mmap_read_lock(mm).
3731 if (pte_alloc(vma->vm_mm, vmf->pmd))
3732 return VM_FAULT_OOM;
3734 /* See comment in handle_pte_fault() */
3735 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3738 /* Use the zero-page for reads */
3739 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3740 !mm_forbids_zeropage(vma->vm_mm)) {
3741 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3742 vma->vm_page_prot));
3743 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3744 vmf->address, &vmf->ptl);
3745 if (!pte_none(*vmf->pte)) {
3746 update_mmu_tlb(vma, vmf->address, vmf->pte);
3749 ret = check_stable_address_space(vma->vm_mm);
3752 /* Deliver the page fault to userland, check inside PT lock */
3753 if (userfaultfd_missing(vma)) {
3754 pte_unmap_unlock(vmf->pte, vmf->ptl);
3755 return handle_userfault(vmf, VM_UFFD_MISSING);
3760 /* Allocate our own private page. */
3761 if (unlikely(anon_vma_prepare(vma)))
3763 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3767 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3769 cgroup_throttle_swaprate(page, GFP_KERNEL);
3772 * The memory barrier inside __SetPageUptodate makes sure that
3773 * preceding stores to the page contents become visible before
3774 * the set_pte_at() write.
3776 __SetPageUptodate(page);
3778 entry = mk_pte(page, vma->vm_page_prot);
3779 entry = pte_sw_mkyoung(entry);
3780 if (vma->vm_flags & VM_WRITE)
3781 entry = pte_mkwrite(pte_mkdirty(entry));
3783 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3785 if (!pte_none(*vmf->pte)) {
3786 update_mmu_cache(vma, vmf->address, vmf->pte);
3790 ret = check_stable_address_space(vma->vm_mm);
3794 /* Deliver the page fault to userland, check inside PT lock */
3795 if (userfaultfd_missing(vma)) {
3796 pte_unmap_unlock(vmf->pte, vmf->ptl);
3798 return handle_userfault(vmf, VM_UFFD_MISSING);
3801 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3802 page_add_new_anon_rmap(page, vma, vmf->address, false);
3803 lru_cache_add_inactive_or_unevictable(page, vma);
3805 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3807 /* No need to invalidate - it was non-present before */
3808 update_mmu_cache(vma, vmf->address, vmf->pte);
3810 pte_unmap_unlock(vmf->pte, vmf->ptl);
3818 return VM_FAULT_OOM;
3822 * The mmap_lock must have been held on entry, and may have been
3823 * released depending on flags and vma->vm_ops->fault() return value.
3824 * See filemap_fault() and __lock_page_retry().
3826 static vm_fault_t __do_fault(struct vm_fault *vmf)
3828 struct vm_area_struct *vma = vmf->vma;
3832 * Preallocate pte before we take page_lock because this might lead to
3833 * deadlocks for memcg reclaim which waits for pages under writeback:
3835 * SetPageWriteback(A)
3841 * wait_on_page_writeback(A)
3842 * SetPageWriteback(B)
3844 * # flush A, B to clear the writeback
3846 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3847 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3848 if (!vmf->prealloc_pte)
3849 return VM_FAULT_OOM;
3852 ret = vma->vm_ops->fault(vmf);
3853 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3854 VM_FAULT_DONE_COW)))
3857 if (unlikely(PageHWPoison(vmf->page))) {
3858 if (ret & VM_FAULT_LOCKED)
3859 unlock_page(vmf->page);
3860 put_page(vmf->page);
3862 return VM_FAULT_HWPOISON;
3865 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3866 lock_page(vmf->page);
3868 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3874 static void deposit_prealloc_pte(struct vm_fault *vmf)
3876 struct vm_area_struct *vma = vmf->vma;
3878 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3880 * We are going to consume the prealloc table,
3881 * count that as nr_ptes.
3883 mm_inc_nr_ptes(vma->vm_mm);
3884 vmf->prealloc_pte = NULL;
3887 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3889 struct vm_area_struct *vma = vmf->vma;
3890 bool write = vmf->flags & FAULT_FLAG_WRITE;
3891 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3894 vm_fault_t ret = VM_FAULT_FALLBACK;
3896 if (!transhuge_vma_suitable(vma, haddr))
3899 page = compound_head(page);
3900 if (compound_order(page) != HPAGE_PMD_ORDER)
3904 * Just backoff if any subpage of a THP is corrupted otherwise
3905 * the corrupted page may mapped by PMD silently to escape the
3906 * check. This kind of THP just can be PTE mapped. Access to
3907 * the corrupted subpage should trigger SIGBUS as expected.
3909 if (unlikely(PageHasHWPoisoned(page)))
3913 * Archs like ppc64 need additional space to store information
3914 * related to pte entry. Use the preallocated table for that.
3916 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3917 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3918 if (!vmf->prealloc_pte)
3919 return VM_FAULT_OOM;
3922 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3923 if (unlikely(!pmd_none(*vmf->pmd)))
3926 for (i = 0; i < HPAGE_PMD_NR; i++)
3927 flush_icache_page(vma, page + i);
3929 entry = mk_huge_pmd(page, vma->vm_page_prot);
3931 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3933 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3934 page_add_file_rmap(page, vma, true);
3937 * deposit and withdraw with pmd lock held
3939 if (arch_needs_pgtable_deposit())
3940 deposit_prealloc_pte(vmf);
3942 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3944 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3946 /* fault is handled */
3948 count_vm_event(THP_FILE_MAPPED);
3950 spin_unlock(vmf->ptl);
3954 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3956 return VM_FAULT_FALLBACK;
3960 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3962 struct vm_area_struct *vma = vmf->vma;
3963 bool write = vmf->flags & FAULT_FLAG_WRITE;
3964 bool prefault = vmf->address != addr;
3967 flush_icache_page(vma, page);
3968 entry = mk_pte(page, vma->vm_page_prot);
3970 if (prefault && arch_wants_old_prefaulted_pte())
3971 entry = pte_mkold(entry);
3973 entry = pte_sw_mkyoung(entry);
3976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3977 /* copy-on-write page */
3978 if (write && !(vma->vm_flags & VM_SHARED)) {
3979 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3980 page_add_new_anon_rmap(page, vma, addr, false);
3981 lru_cache_add_inactive_or_unevictable(page, vma);
3983 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3984 page_add_file_rmap(page, vma, false);
3986 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3990 * finish_fault - finish page fault once we have prepared the page to fault
3992 * @vmf: structure describing the fault
3994 * This function handles all that is needed to finish a page fault once the
3995 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3996 * given page, adds reverse page mapping, handles memcg charges and LRU
3999 * The function expects the page to be locked and on success it consumes a
4000 * reference of a page being mapped (for the PTE which maps it).
4002 * Return: %0 on success, %VM_FAULT_ code in case of error.
4004 vm_fault_t finish_fault(struct vm_fault *vmf)
4006 struct vm_area_struct *vma = vmf->vma;
4010 /* Did we COW the page? */
4011 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4012 page = vmf->cow_page;
4017 * check even for read faults because we might have lost our CoWed
4020 if (!(vma->vm_flags & VM_SHARED)) {
4021 ret = check_stable_address_space(vma->vm_mm);
4026 if (pmd_none(*vmf->pmd)) {
4027 if (PageTransCompound(page)) {
4028 ret = do_set_pmd(vmf, page);
4029 if (ret != VM_FAULT_FALLBACK)
4033 if (vmf->prealloc_pte)
4034 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4035 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4036 return VM_FAULT_OOM;
4039 /* See comment in handle_pte_fault() */
4040 if (pmd_devmap_trans_unstable(vmf->pmd))
4043 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4044 vmf->address, &vmf->ptl);
4046 /* Re-check under ptl */
4047 if (likely(pte_none(*vmf->pte)))
4048 do_set_pte(vmf, page, vmf->address);
4050 ret = VM_FAULT_NOPAGE;
4052 update_mmu_tlb(vma, vmf->address, vmf->pte);
4053 pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 static unsigned long fault_around_bytes __read_mostly =
4058 rounddown_pow_of_two(65536);
4060 #ifdef CONFIG_DEBUG_FS
4061 static int fault_around_bytes_get(void *data, u64 *val)
4063 *val = fault_around_bytes;
4068 * fault_around_bytes must be rounded down to the nearest page order as it's
4069 * what do_fault_around() expects to see.
4071 static int fault_around_bytes_set(void *data, u64 val)
4073 if (val / PAGE_SIZE > PTRS_PER_PTE)
4075 if (val > PAGE_SIZE)
4076 fault_around_bytes = rounddown_pow_of_two(val);
4078 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4081 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4082 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4084 static int __init fault_around_debugfs(void)
4086 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4087 &fault_around_bytes_fops);
4090 late_initcall(fault_around_debugfs);
4094 * do_fault_around() tries to map few pages around the fault address. The hope
4095 * is that the pages will be needed soon and this will lower the number of
4098 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4099 * not ready to be mapped: not up-to-date, locked, etc.
4101 * This function is called with the page table lock taken. In the split ptlock
4102 * case the page table lock only protects only those entries which belong to
4103 * the page table corresponding to the fault address.
4105 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4108 * fault_around_bytes defines how many bytes we'll try to map.
4109 * do_fault_around() expects it to be set to a power of two less than or equal
4112 * The virtual address of the area that we map is naturally aligned to
4113 * fault_around_bytes rounded down to the machine page size
4114 * (and therefore to page order). This way it's easier to guarantee
4115 * that we don't cross page table boundaries.
4117 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4119 unsigned long address = vmf->address, nr_pages, mask;
4120 pgoff_t start_pgoff = vmf->pgoff;
4124 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4125 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4127 address = max(address & mask, vmf->vma->vm_start);
4128 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4132 * end_pgoff is either the end of the page table, the end of
4133 * the vma or nr_pages from start_pgoff, depending what is nearest.
4135 end_pgoff = start_pgoff -
4136 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4138 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4139 start_pgoff + nr_pages - 1);
4141 if (pmd_none(*vmf->pmd)) {
4142 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4143 if (!vmf->prealloc_pte)
4144 return VM_FAULT_OOM;
4147 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4150 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4152 struct vm_area_struct *vma = vmf->vma;
4156 * Let's call ->map_pages() first and use ->fault() as fallback
4157 * if page by the offset is not ready to be mapped (cold cache or
4160 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4161 if (likely(!userfaultfd_minor(vmf->vma))) {
4162 ret = do_fault_around(vmf);
4168 ret = __do_fault(vmf);
4169 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4172 ret |= finish_fault(vmf);
4173 unlock_page(vmf->page);
4174 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4175 put_page(vmf->page);
4179 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4181 struct vm_area_struct *vma = vmf->vma;
4184 if (unlikely(anon_vma_prepare(vma)))
4185 return VM_FAULT_OOM;
4187 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4189 return VM_FAULT_OOM;
4191 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4193 put_page(vmf->cow_page);
4194 return VM_FAULT_OOM;
4196 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4198 ret = __do_fault(vmf);
4199 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4201 if (ret & VM_FAULT_DONE_COW)
4204 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4205 __SetPageUptodate(vmf->cow_page);
4207 ret |= finish_fault(vmf);
4208 unlock_page(vmf->page);
4209 put_page(vmf->page);
4210 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4214 put_page(vmf->cow_page);
4218 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4220 struct vm_area_struct *vma = vmf->vma;
4221 vm_fault_t ret, tmp;
4223 ret = __do_fault(vmf);
4224 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4228 * Check if the backing address space wants to know that the page is
4229 * about to become writable
4231 if (vma->vm_ops->page_mkwrite) {
4232 unlock_page(vmf->page);
4233 tmp = do_page_mkwrite(vmf);
4234 if (unlikely(!tmp ||
4235 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4236 put_page(vmf->page);
4241 ret |= finish_fault(vmf);
4242 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4244 unlock_page(vmf->page);
4245 put_page(vmf->page);
4249 ret |= fault_dirty_shared_page(vmf);
4254 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4255 * but allow concurrent faults).
4256 * The mmap_lock may have been released depending on flags and our
4257 * return value. See filemap_fault() and __folio_lock_or_retry().
4258 * If mmap_lock is released, vma may become invalid (for example
4259 * by other thread calling munmap()).
4261 static vm_fault_t do_fault(struct vm_fault *vmf)
4263 struct vm_area_struct *vma = vmf->vma;
4264 struct mm_struct *vm_mm = vma->vm_mm;
4268 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4270 if (!vma->vm_ops->fault) {
4272 * If we find a migration pmd entry or a none pmd entry, which
4273 * should never happen, return SIGBUS
4275 if (unlikely(!pmd_present(*vmf->pmd)))
4276 ret = VM_FAULT_SIGBUS;
4278 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4283 * Make sure this is not a temporary clearing of pte
4284 * by holding ptl and checking again. A R/M/W update
4285 * of pte involves: take ptl, clearing the pte so that
4286 * we don't have concurrent modification by hardware
4287 * followed by an update.
4289 if (unlikely(pte_none(*vmf->pte)))
4290 ret = VM_FAULT_SIGBUS;
4292 ret = VM_FAULT_NOPAGE;
4294 pte_unmap_unlock(vmf->pte, vmf->ptl);
4296 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4297 ret = do_read_fault(vmf);
4298 else if (!(vma->vm_flags & VM_SHARED))
4299 ret = do_cow_fault(vmf);
4301 ret = do_shared_fault(vmf);
4303 /* preallocated pagetable is unused: free it */
4304 if (vmf->prealloc_pte) {
4305 pte_free(vm_mm, vmf->prealloc_pte);
4306 vmf->prealloc_pte = NULL;
4311 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4312 unsigned long addr, int page_nid, int *flags)
4316 count_vm_numa_event(NUMA_HINT_FAULTS);
4317 if (page_nid == numa_node_id()) {
4318 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4319 *flags |= TNF_FAULT_LOCAL;
4322 return mpol_misplaced(page, vma, addr);
4325 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4327 struct vm_area_struct *vma = vmf->vma;
4328 struct page *page = NULL;
4329 int page_nid = NUMA_NO_NODE;
4333 bool was_writable = pte_savedwrite(vmf->orig_pte);
4337 * The "pte" at this point cannot be used safely without
4338 * validation through pte_unmap_same(). It's of NUMA type but
4339 * the pfn may be screwed if the read is non atomic.
4341 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4342 spin_lock(vmf->ptl);
4343 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4344 pte_unmap_unlock(vmf->pte, vmf->ptl);
4348 /* Get the normal PTE */
4349 old_pte = ptep_get(vmf->pte);
4350 pte = pte_modify(old_pte, vma->vm_page_prot);
4352 page = vm_normal_page(vma, vmf->address, pte);
4356 /* TODO: handle PTE-mapped THP */
4357 if (PageCompound(page))
4361 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4362 * much anyway since they can be in shared cache state. This misses
4363 * the case where a mapping is writable but the process never writes
4364 * to it but pte_write gets cleared during protection updates and
4365 * pte_dirty has unpredictable behaviour between PTE scan updates,
4366 * background writeback, dirty balancing and application behaviour.
4369 flags |= TNF_NO_GROUP;
4372 * Flag if the page is shared between multiple address spaces. This
4373 * is later used when determining whether to group tasks together
4375 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4376 flags |= TNF_SHARED;
4378 last_cpupid = page_cpupid_last(page);
4379 page_nid = page_to_nid(page);
4380 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4382 if (target_nid == NUMA_NO_NODE) {
4386 pte_unmap_unlock(vmf->pte, vmf->ptl);
4388 /* Migrate to the requested node */
4389 if (migrate_misplaced_page(page, vma, target_nid)) {
4390 page_nid = target_nid;
4391 flags |= TNF_MIGRATED;
4393 flags |= TNF_MIGRATE_FAIL;
4394 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4395 spin_lock(vmf->ptl);
4396 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4397 pte_unmap_unlock(vmf->pte, vmf->ptl);
4404 if (page_nid != NUMA_NO_NODE)
4405 task_numa_fault(last_cpupid, page_nid, 1, flags);
4409 * Make it present again, depending on how arch implements
4410 * non-accessible ptes, some can allow access by kernel mode.
4412 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4413 pte = pte_modify(old_pte, vma->vm_page_prot);
4414 pte = pte_mkyoung(pte);
4416 pte = pte_mkwrite(pte);
4417 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4418 update_mmu_cache(vma, vmf->address, vmf->pte);
4419 pte_unmap_unlock(vmf->pte, vmf->ptl);
4423 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4425 if (vma_is_anonymous(vmf->vma))
4426 return do_huge_pmd_anonymous_page(vmf);
4427 if (vmf->vma->vm_ops->huge_fault)
4428 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4429 return VM_FAULT_FALLBACK;
4432 /* `inline' is required to avoid gcc 4.1.2 build error */
4433 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4435 if (vma_is_anonymous(vmf->vma)) {
4436 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4437 return handle_userfault(vmf, VM_UFFD_WP);
4438 return do_huge_pmd_wp_page(vmf);
4440 if (vmf->vma->vm_ops->huge_fault) {
4441 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4443 if (!(ret & VM_FAULT_FALLBACK))
4447 /* COW or write-notify handled on pte level: split pmd. */
4448 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4450 return VM_FAULT_FALLBACK;
4453 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4456 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4457 /* No support for anonymous transparent PUD pages yet */
4458 if (vma_is_anonymous(vmf->vma))
4460 if (vmf->vma->vm_ops->huge_fault) {
4461 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4463 if (!(ret & VM_FAULT_FALLBACK))
4467 /* COW or write-notify not handled on PUD level: split pud.*/
4468 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4469 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4470 return VM_FAULT_FALLBACK;
4473 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4476 /* No support for anonymous transparent PUD pages yet */
4477 if (vma_is_anonymous(vmf->vma))
4478 return VM_FAULT_FALLBACK;
4479 if (vmf->vma->vm_ops->huge_fault)
4480 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4482 return VM_FAULT_FALLBACK;
4486 * These routines also need to handle stuff like marking pages dirty
4487 * and/or accessed for architectures that don't do it in hardware (most
4488 * RISC architectures). The early dirtying is also good on the i386.
4490 * There is also a hook called "update_mmu_cache()" that architectures
4491 * with external mmu caches can use to update those (ie the Sparc or
4492 * PowerPC hashed page tables that act as extended TLBs).
4494 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4495 * concurrent faults).
4497 * The mmap_lock may have been released depending on flags and our return value.
4498 * See filemap_fault() and __folio_lock_or_retry().
4500 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4504 if (unlikely(pmd_none(*vmf->pmd))) {
4506 * Leave __pte_alloc() until later: because vm_ops->fault may
4507 * want to allocate huge page, and if we expose page table
4508 * for an instant, it will be difficult to retract from
4509 * concurrent faults and from rmap lookups.
4514 * If a huge pmd materialized under us just retry later. Use
4515 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4516 * of pmd_trans_huge() to ensure the pmd didn't become
4517 * pmd_trans_huge under us and then back to pmd_none, as a
4518 * result of MADV_DONTNEED running immediately after a huge pmd
4519 * fault in a different thread of this mm, in turn leading to a
4520 * misleading pmd_trans_huge() retval. All we have to ensure is
4521 * that it is a regular pmd that we can walk with
4522 * pte_offset_map() and we can do that through an atomic read
4523 * in C, which is what pmd_trans_unstable() provides.
4525 if (pmd_devmap_trans_unstable(vmf->pmd))
4528 * A regular pmd is established and it can't morph into a huge
4529 * pmd from under us anymore at this point because we hold the
4530 * mmap_lock read mode and khugepaged takes it in write mode.
4531 * So now it's safe to run pte_offset_map().
4533 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4534 vmf->orig_pte = *vmf->pte;
4537 * some architectures can have larger ptes than wordsize,
4538 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4539 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4540 * accesses. The code below just needs a consistent view
4541 * for the ifs and we later double check anyway with the
4542 * ptl lock held. So here a barrier will do.
4545 if (pte_none(vmf->orig_pte)) {
4546 pte_unmap(vmf->pte);
4552 if (vma_is_anonymous(vmf->vma))
4553 return do_anonymous_page(vmf);
4555 return do_fault(vmf);
4558 if (!pte_present(vmf->orig_pte))
4559 return do_swap_page(vmf);
4561 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4562 return do_numa_page(vmf);
4564 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4565 spin_lock(vmf->ptl);
4566 entry = vmf->orig_pte;
4567 if (unlikely(!pte_same(*vmf->pte, entry))) {
4568 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4571 if (vmf->flags & FAULT_FLAG_WRITE) {
4572 if (!pte_write(entry))
4573 return do_wp_page(vmf);
4574 entry = pte_mkdirty(entry);
4576 entry = pte_mkyoung(entry);
4577 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4578 vmf->flags & FAULT_FLAG_WRITE)) {
4579 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4581 /* Skip spurious TLB flush for retried page fault */
4582 if (vmf->flags & FAULT_FLAG_TRIED)
4585 * This is needed only for protection faults but the arch code
4586 * is not yet telling us if this is a protection fault or not.
4587 * This still avoids useless tlb flushes for .text page faults
4590 if (vmf->flags & FAULT_FLAG_WRITE)
4591 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4594 pte_unmap_unlock(vmf->pte, vmf->ptl);
4599 * By the time we get here, we already hold the mm semaphore
4601 * The mmap_lock may have been released depending on flags and our
4602 * return value. See filemap_fault() and __folio_lock_or_retry().
4604 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4605 unsigned long address, unsigned int flags)
4607 struct vm_fault vmf = {
4609 .address = address & PAGE_MASK,
4611 .pgoff = linear_page_index(vma, address),
4612 .gfp_mask = __get_fault_gfp_mask(vma),
4614 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4615 struct mm_struct *mm = vma->vm_mm;
4620 pgd = pgd_offset(mm, address);
4621 p4d = p4d_alloc(mm, pgd, address);
4623 return VM_FAULT_OOM;
4625 vmf.pud = pud_alloc(mm, p4d, address);
4627 return VM_FAULT_OOM;
4629 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4630 ret = create_huge_pud(&vmf);
4631 if (!(ret & VM_FAULT_FALLBACK))
4634 pud_t orig_pud = *vmf.pud;
4637 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4639 /* NUMA case for anonymous PUDs would go here */
4641 if (dirty && !pud_write(orig_pud)) {
4642 ret = wp_huge_pud(&vmf, orig_pud);
4643 if (!(ret & VM_FAULT_FALLBACK))
4646 huge_pud_set_accessed(&vmf, orig_pud);
4652 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4654 return VM_FAULT_OOM;
4656 /* Huge pud page fault raced with pmd_alloc? */
4657 if (pud_trans_unstable(vmf.pud))
4660 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4661 ret = create_huge_pmd(&vmf);
4662 if (!(ret & VM_FAULT_FALLBACK))
4665 vmf.orig_pmd = *vmf.pmd;
4668 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4669 VM_BUG_ON(thp_migration_supported() &&
4670 !is_pmd_migration_entry(vmf.orig_pmd));
4671 if (is_pmd_migration_entry(vmf.orig_pmd))
4672 pmd_migration_entry_wait(mm, vmf.pmd);
4675 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4676 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4677 return do_huge_pmd_numa_page(&vmf);
4679 if (dirty && !pmd_write(vmf.orig_pmd)) {
4680 ret = wp_huge_pmd(&vmf);
4681 if (!(ret & VM_FAULT_FALLBACK))
4684 huge_pmd_set_accessed(&vmf);
4690 return handle_pte_fault(&vmf);
4694 * mm_account_fault - Do page fault accounting
4696 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4697 * of perf event counters, but we'll still do the per-task accounting to
4698 * the task who triggered this page fault.
4699 * @address: the faulted address.
4700 * @flags: the fault flags.
4701 * @ret: the fault retcode.
4703 * This will take care of most of the page fault accounting. Meanwhile, it
4704 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4705 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4706 * still be in per-arch page fault handlers at the entry of page fault.
4708 static inline void mm_account_fault(struct pt_regs *regs,
4709 unsigned long address, unsigned int flags,
4715 * We don't do accounting for some specific faults:
4717 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4718 * includes arch_vma_access_permitted() failing before reaching here.
4719 * So this is not a "this many hardware page faults" counter. We
4720 * should use the hw profiling for that.
4722 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4723 * once they're completed.
4725 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4729 * We define the fault as a major fault when the final successful fault
4730 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4731 * handle it immediately previously).
4733 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4741 * If the fault is done for GUP, regs will be NULL. We only do the
4742 * accounting for the per thread fault counters who triggered the
4743 * fault, and we skip the perf event updates.
4749 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4751 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4755 * By the time we get here, we already hold the mm semaphore
4757 * The mmap_lock may have been released depending on flags and our
4758 * return value. See filemap_fault() and __folio_lock_or_retry().
4760 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4761 unsigned int flags, struct pt_regs *regs)
4765 __set_current_state(TASK_RUNNING);
4767 count_vm_event(PGFAULT);
4768 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4770 /* do counter updates before entering really critical section. */
4771 check_sync_rss_stat(current);
4773 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4774 flags & FAULT_FLAG_INSTRUCTION,
4775 flags & FAULT_FLAG_REMOTE))
4776 return VM_FAULT_SIGSEGV;
4779 * Enable the memcg OOM handling for faults triggered in user
4780 * space. Kernel faults are handled more gracefully.
4782 if (flags & FAULT_FLAG_USER)
4783 mem_cgroup_enter_user_fault();
4785 if (unlikely(is_vm_hugetlb_page(vma)))
4786 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4788 ret = __handle_mm_fault(vma, address, flags);
4790 if (flags & FAULT_FLAG_USER) {
4791 mem_cgroup_exit_user_fault();
4793 * The task may have entered a memcg OOM situation but
4794 * if the allocation error was handled gracefully (no
4795 * VM_FAULT_OOM), there is no need to kill anything.
4796 * Just clean up the OOM state peacefully.
4798 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4799 mem_cgroup_oom_synchronize(false);
4802 mm_account_fault(regs, address, flags, ret);
4806 EXPORT_SYMBOL_GPL(handle_mm_fault);
4808 #ifndef __PAGETABLE_P4D_FOLDED
4810 * Allocate p4d page table.
4811 * We've already handled the fast-path in-line.
4813 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4815 p4d_t *new = p4d_alloc_one(mm, address);
4819 spin_lock(&mm->page_table_lock);
4820 if (pgd_present(*pgd)) { /* Another has populated it */
4823 smp_wmb(); /* See comment in pmd_install() */
4824 pgd_populate(mm, pgd, new);
4826 spin_unlock(&mm->page_table_lock);
4829 #endif /* __PAGETABLE_P4D_FOLDED */
4831 #ifndef __PAGETABLE_PUD_FOLDED
4833 * Allocate page upper directory.
4834 * We've already handled the fast-path in-line.
4836 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4838 pud_t *new = pud_alloc_one(mm, address);
4842 spin_lock(&mm->page_table_lock);
4843 if (!p4d_present(*p4d)) {
4845 smp_wmb(); /* See comment in pmd_install() */
4846 p4d_populate(mm, p4d, new);
4847 } else /* Another has populated it */
4849 spin_unlock(&mm->page_table_lock);
4852 #endif /* __PAGETABLE_PUD_FOLDED */
4854 #ifndef __PAGETABLE_PMD_FOLDED
4856 * Allocate page middle directory.
4857 * We've already handled the fast-path in-line.
4859 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4862 pmd_t *new = pmd_alloc_one(mm, address);
4866 ptl = pud_lock(mm, pud);
4867 if (!pud_present(*pud)) {
4869 smp_wmb(); /* See comment in pmd_install() */
4870 pud_populate(mm, pud, new);
4871 } else { /* Another has populated it */
4877 #endif /* __PAGETABLE_PMD_FOLDED */
4879 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4880 struct mmu_notifier_range *range, pte_t **ptepp,
4881 pmd_t **pmdpp, spinlock_t **ptlp)
4889 pgd = pgd_offset(mm, address);
4890 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4893 p4d = p4d_offset(pgd, address);
4894 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4897 pud = pud_offset(p4d, address);
4898 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4901 pmd = pmd_offset(pud, address);
4902 VM_BUG_ON(pmd_trans_huge(*pmd));
4904 if (pmd_huge(*pmd)) {
4909 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4910 NULL, mm, address & PMD_MASK,
4911 (address & PMD_MASK) + PMD_SIZE);
4912 mmu_notifier_invalidate_range_start(range);
4914 *ptlp = pmd_lock(mm, pmd);
4915 if (pmd_huge(*pmd)) {
4921 mmu_notifier_invalidate_range_end(range);
4924 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4928 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4929 address & PAGE_MASK,
4930 (address & PAGE_MASK) + PAGE_SIZE);
4931 mmu_notifier_invalidate_range_start(range);
4933 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4934 if (!pte_present(*ptep))
4939 pte_unmap_unlock(ptep, *ptlp);
4941 mmu_notifier_invalidate_range_end(range);
4947 * follow_pte - look up PTE at a user virtual address
4948 * @mm: the mm_struct of the target address space
4949 * @address: user virtual address
4950 * @ptepp: location to store found PTE
4951 * @ptlp: location to store the lock for the PTE
4953 * On a successful return, the pointer to the PTE is stored in @ptepp;
4954 * the corresponding lock is taken and its location is stored in @ptlp.
4955 * The contents of the PTE are only stable until @ptlp is released;
4956 * any further use, if any, must be protected against invalidation
4957 * with MMU notifiers.
4959 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4960 * should be taken for read.
4962 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4963 * it is not a good general-purpose API.
4965 * Return: zero on success, -ve otherwise.
4967 int follow_pte(struct mm_struct *mm, unsigned long address,
4968 pte_t **ptepp, spinlock_t **ptlp)
4970 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4972 EXPORT_SYMBOL_GPL(follow_pte);
4975 * follow_pfn - look up PFN at a user virtual address
4976 * @vma: memory mapping
4977 * @address: user virtual address
4978 * @pfn: location to store found PFN
4980 * Only IO mappings and raw PFN mappings are allowed.
4982 * This function does not allow the caller to read the permissions
4983 * of the PTE. Do not use it.
4985 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4987 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4994 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4997 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5000 *pfn = pte_pfn(*ptep);
5001 pte_unmap_unlock(ptep, ptl);
5004 EXPORT_SYMBOL(follow_pfn);
5006 #ifdef CONFIG_HAVE_IOREMAP_PROT
5007 int follow_phys(struct vm_area_struct *vma,
5008 unsigned long address, unsigned int flags,
5009 unsigned long *prot, resource_size_t *phys)
5015 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5018 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5022 if ((flags & FOLL_WRITE) && !pte_write(pte))
5025 *prot = pgprot_val(pte_pgprot(pte));
5026 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5030 pte_unmap_unlock(ptep, ptl);
5036 * generic_access_phys - generic implementation for iomem mmap access
5037 * @vma: the vma to access
5038 * @addr: userspace address, not relative offset within @vma
5039 * @buf: buffer to read/write
5040 * @len: length of transfer
5041 * @write: set to FOLL_WRITE when writing, otherwise reading
5043 * This is a generic implementation for &vm_operations_struct.access for an
5044 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5047 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5048 void *buf, int len, int write)
5050 resource_size_t phys_addr;
5051 unsigned long prot = 0;
5052 void __iomem *maddr;
5055 int offset = offset_in_page(addr);
5058 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5062 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5065 pte_unmap_unlock(ptep, ptl);
5067 prot = pgprot_val(pte_pgprot(pte));
5068 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5070 if ((write & FOLL_WRITE) && !pte_write(pte))
5073 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5077 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5080 if (!pte_same(pte, *ptep)) {
5081 pte_unmap_unlock(ptep, ptl);
5088 memcpy_toio(maddr + offset, buf, len);
5090 memcpy_fromio(buf, maddr + offset, len);
5092 pte_unmap_unlock(ptep, ptl);
5098 EXPORT_SYMBOL_GPL(generic_access_phys);
5102 * Access another process' address space as given in mm.
5104 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5105 int len, unsigned int gup_flags)
5107 struct vm_area_struct *vma;
5108 void *old_buf = buf;
5109 int write = gup_flags & FOLL_WRITE;
5111 if (mmap_read_lock_killable(mm))
5114 /* ignore errors, just check how much was successfully transferred */
5116 int bytes, ret, offset;
5118 struct page *page = NULL;
5120 ret = get_user_pages_remote(mm, addr, 1,
5121 gup_flags, &page, &vma, NULL);
5123 #ifndef CONFIG_HAVE_IOREMAP_PROT
5127 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5128 * we can access using slightly different code.
5130 vma = vma_lookup(mm, addr);
5133 if (vma->vm_ops && vma->vm_ops->access)
5134 ret = vma->vm_ops->access(vma, addr, buf,
5142 offset = addr & (PAGE_SIZE-1);
5143 if (bytes > PAGE_SIZE-offset)
5144 bytes = PAGE_SIZE-offset;
5148 copy_to_user_page(vma, page, addr,
5149 maddr + offset, buf, bytes);
5150 set_page_dirty_lock(page);
5152 copy_from_user_page(vma, page, addr,
5153 buf, maddr + offset, bytes);
5162 mmap_read_unlock(mm);
5164 return buf - old_buf;
5168 * access_remote_vm - access another process' address space
5169 * @mm: the mm_struct of the target address space
5170 * @addr: start address to access
5171 * @buf: source or destination buffer
5172 * @len: number of bytes to transfer
5173 * @gup_flags: flags modifying lookup behaviour
5175 * The caller must hold a reference on @mm.
5177 * Return: number of bytes copied from source to destination.
5179 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5180 void *buf, int len, unsigned int gup_flags)
5182 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5186 * Access another process' address space.
5187 * Source/target buffer must be kernel space,
5188 * Do not walk the page table directly, use get_user_pages
5190 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5191 void *buf, int len, unsigned int gup_flags)
5193 struct mm_struct *mm;
5196 mm = get_task_mm(tsk);
5200 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5206 EXPORT_SYMBOL_GPL(access_process_vm);
5209 * Print the name of a VMA.
5211 void print_vma_addr(char *prefix, unsigned long ip)
5213 struct mm_struct *mm = current->mm;
5214 struct vm_area_struct *vma;
5217 * we might be running from an atomic context so we cannot sleep
5219 if (!mmap_read_trylock(mm))
5222 vma = find_vma(mm, ip);
5223 if (vma && vma->vm_file) {
5224 struct file *f = vma->vm_file;
5225 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5229 p = file_path(f, buf, PAGE_SIZE);
5232 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5234 vma->vm_end - vma->vm_start);
5235 free_page((unsigned long)buf);
5238 mmap_read_unlock(mm);
5241 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5242 void __might_fault(const char *file, int line)
5245 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5246 * holding the mmap_lock, this is safe because kernel memory doesn't
5247 * get paged out, therefore we'll never actually fault, and the
5248 * below annotations will generate false positives.
5250 if (uaccess_kernel())
5252 if (pagefault_disabled())
5254 __might_sleep(file, line);
5255 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5257 might_lock_read(¤t->mm->mmap_lock);
5260 EXPORT_SYMBOL(__might_fault);
5263 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5265 * Process all subpages of the specified huge page with the specified
5266 * operation. The target subpage will be processed last to keep its
5269 static inline void process_huge_page(
5270 unsigned long addr_hint, unsigned int pages_per_huge_page,
5271 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5275 unsigned long addr = addr_hint &
5276 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5278 /* Process target subpage last to keep its cache lines hot */
5280 n = (addr_hint - addr) / PAGE_SIZE;
5281 if (2 * n <= pages_per_huge_page) {
5282 /* If target subpage in first half of huge page */
5285 /* Process subpages at the end of huge page */
5286 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5288 process_subpage(addr + i * PAGE_SIZE, i, arg);
5291 /* If target subpage in second half of huge page */
5292 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5293 l = pages_per_huge_page - n;
5294 /* Process subpages at the begin of huge page */
5295 for (i = 0; i < base; i++) {
5297 process_subpage(addr + i * PAGE_SIZE, i, arg);
5301 * Process remaining subpages in left-right-left-right pattern
5302 * towards the target subpage
5304 for (i = 0; i < l; i++) {
5305 int left_idx = base + i;
5306 int right_idx = base + 2 * l - 1 - i;
5309 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5311 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5315 static void clear_gigantic_page(struct page *page,
5317 unsigned int pages_per_huge_page)
5320 struct page *p = page;
5323 for (i = 0; i < pages_per_huge_page;
5324 i++, p = mem_map_next(p, page, i)) {
5326 clear_user_highpage(p, addr + i * PAGE_SIZE);
5330 static void clear_subpage(unsigned long addr, int idx, void *arg)
5332 struct page *page = arg;
5334 clear_user_highpage(page + idx, addr);
5337 void clear_huge_page(struct page *page,
5338 unsigned long addr_hint, unsigned int pages_per_huge_page)
5340 unsigned long addr = addr_hint &
5341 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5343 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5344 clear_gigantic_page(page, addr, pages_per_huge_page);
5348 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5351 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5353 struct vm_area_struct *vma,
5354 unsigned int pages_per_huge_page)
5357 struct page *dst_base = dst;
5358 struct page *src_base = src;
5360 for (i = 0; i < pages_per_huge_page; ) {
5362 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5365 dst = mem_map_next(dst, dst_base, i);
5366 src = mem_map_next(src, src_base, i);
5370 struct copy_subpage_arg {
5373 struct vm_area_struct *vma;
5376 static void copy_subpage(unsigned long addr, int idx, void *arg)
5378 struct copy_subpage_arg *copy_arg = arg;
5380 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5381 addr, copy_arg->vma);
5384 void copy_user_huge_page(struct page *dst, struct page *src,
5385 unsigned long addr_hint, struct vm_area_struct *vma,
5386 unsigned int pages_per_huge_page)
5388 unsigned long addr = addr_hint &
5389 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5390 struct copy_subpage_arg arg = {
5396 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5397 copy_user_gigantic_page(dst, src, addr, vma,
5398 pages_per_huge_page);
5402 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5405 long copy_huge_page_from_user(struct page *dst_page,
5406 const void __user *usr_src,
5407 unsigned int pages_per_huge_page,
5408 bool allow_pagefault)
5411 unsigned long i, rc = 0;
5412 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5413 struct page *subpage = dst_page;
5415 for (i = 0; i < pages_per_huge_page;
5416 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5417 if (allow_pagefault)
5418 page_kaddr = kmap(subpage);
5420 page_kaddr = kmap_atomic(subpage);
5421 rc = copy_from_user(page_kaddr,
5422 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5423 if (allow_pagefault)
5426 kunmap_atomic(page_kaddr);
5428 ret_val -= (PAGE_SIZE - rc);
5436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5438 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5440 static struct kmem_cache *page_ptl_cachep;
5442 void __init ptlock_cache_init(void)
5444 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5448 bool ptlock_alloc(struct page *page)
5452 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5459 void ptlock_free(struct page *page)
5461 kmem_cache_free(page_ptl_cachep, page->ptl);