2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
38 #include <asm/current.h>
39 #include <asm/system.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
70 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
71 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
73 /* This clocksource driver currently only works on ia64 */
75 static void __iomem *hpet_mctr;
77 static cycle_t read_hpet(struct clocksource *cs)
79 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
82 static struct clocksource clocksource_hpet = {
86 .mask = CLOCKSOURCE_MASK(64),
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
89 static struct clocksource *hpet_clocksource;
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock);
95 #define HPET_DEV_NAME (7)
98 struct hpets *hd_hpets;
99 struct hpet __iomem *hd_hpet;
100 struct hpet_timer __iomem *hd_timer;
101 unsigned long hd_ireqfreq;
102 unsigned long hd_irqdata;
103 wait_queue_head_t hd_waitqueue;
104 struct fasync_struct *hd_async_queue;
105 unsigned int hd_flags;
107 unsigned int hd_hdwirq;
108 char hd_name[HPET_DEV_NAME];
112 struct hpets *hp_next;
113 struct hpet __iomem *hp_hpet;
114 unsigned long hp_hpet_phys;
115 struct clocksource *hp_clocksource;
116 unsigned long long hp_tick_freq;
117 unsigned long hp_delta;
118 unsigned int hp_ntimer;
119 unsigned int hp_which;
120 struct hpet_dev hp_dev[1];
123 static struct hpets *hpets;
125 #define HPET_OPEN 0x0001
126 #define HPET_IE 0x0002 /* interrupt enabled */
127 #define HPET_PERIODIC 0x0004
128 #define HPET_SHARED_IRQ 0x0008
132 static inline unsigned long long readq(void __iomem *addr)
134 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
139 static inline void writeq(unsigned long long v, void __iomem *addr)
141 writel(v & 0xffffffff, addr);
142 writel(v >> 32, addr + 4);
146 static irqreturn_t hpet_interrupt(int irq, void *data)
148 struct hpet_dev *devp;
152 isr = 1 << (devp - devp->hd_hpets->hp_dev);
154 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
155 !(isr & readl(&devp->hd_hpet->hpet_isr)))
158 spin_lock(&hpet_lock);
162 * For non-periodic timers, increment the accumulator.
163 * This has the effect of treating non-periodic like periodic.
165 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
168 t = devp->hd_ireqfreq;
169 m = read_counter(&devp->hd_timer->hpet_compare);
170 write_counter(t + m, &devp->hd_timer->hpet_compare);
173 if (devp->hd_flags & HPET_SHARED_IRQ)
174 writel(isr, &devp->hd_hpet->hpet_isr);
175 spin_unlock(&hpet_lock);
177 wake_up_interruptible(&devp->hd_waitqueue);
179 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
184 static void hpet_timer_set_irq(struct hpet_dev *devp)
188 struct hpet_timer __iomem *timer;
190 spin_lock_irq(&hpet_lock);
191 if (devp->hd_hdwirq) {
192 spin_unlock_irq(&hpet_lock);
196 timer = devp->hd_timer;
198 /* we prefer level triggered mode */
199 v = readl(&timer->hpet_config);
200 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
201 v |= Tn_INT_TYPE_CNF_MASK;
202 writel(v, &timer->hpet_config);
204 spin_unlock_irq(&hpet_lock);
206 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
207 Tn_INT_ROUTE_CAP_SHIFT;
210 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
211 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
213 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
218 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
219 if (irq >= nr_irqs) {
224 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
229 /* FIXME: Setup interrupt source table */
232 if (irq < HPET_MAX_IRQ) {
233 spin_lock_irq(&hpet_lock);
234 v = readl(&timer->hpet_config);
235 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
236 writel(v, &timer->hpet_config);
237 devp->hd_hdwirq = gsi;
238 spin_unlock_irq(&hpet_lock);
243 static int hpet_open(struct inode *inode, struct file *file)
245 struct hpet_dev *devp;
249 if (file->f_mode & FMODE_WRITE)
252 mutex_lock(&hpet_mutex);
253 spin_lock_irq(&hpet_lock);
255 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
256 for (i = 0; i < hpetp->hp_ntimer; i++)
257 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
260 devp = &hpetp->hp_dev[i];
265 spin_unlock_irq(&hpet_lock);
266 mutex_unlock(&hpet_mutex);
270 file->private_data = devp;
271 devp->hd_irqdata = 0;
272 devp->hd_flags |= HPET_OPEN;
273 spin_unlock_irq(&hpet_lock);
274 mutex_unlock(&hpet_mutex);
276 hpet_timer_set_irq(devp);
282 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
284 DECLARE_WAITQUEUE(wait, current);
287 struct hpet_dev *devp;
289 devp = file->private_data;
290 if (!devp->hd_ireqfreq)
293 if (count < sizeof(unsigned long))
296 add_wait_queue(&devp->hd_waitqueue, &wait);
299 set_current_state(TASK_INTERRUPTIBLE);
301 spin_lock_irq(&hpet_lock);
302 data = devp->hd_irqdata;
303 devp->hd_irqdata = 0;
304 spin_unlock_irq(&hpet_lock);
308 else if (file->f_flags & O_NONBLOCK) {
311 } else if (signal_pending(current)) {
312 retval = -ERESTARTSYS;
318 retval = put_user(data, (unsigned long __user *)buf);
320 retval = sizeof(unsigned long);
322 __set_current_state(TASK_RUNNING);
323 remove_wait_queue(&devp->hd_waitqueue, &wait);
328 static unsigned int hpet_poll(struct file *file, poll_table * wait)
331 struct hpet_dev *devp;
333 devp = file->private_data;
335 if (!devp->hd_ireqfreq)
338 poll_wait(file, &devp->hd_waitqueue, wait);
340 spin_lock_irq(&hpet_lock);
341 v = devp->hd_irqdata;
342 spin_unlock_irq(&hpet_lock);
345 return POLLIN | POLLRDNORM;
350 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
352 #ifdef CONFIG_HPET_MMAP
353 struct hpet_dev *devp;
356 if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
359 devp = file->private_data;
360 addr = devp->hd_hpets->hp_hpet_phys;
362 if (addr & (PAGE_SIZE - 1))
365 vma->vm_flags |= VM_IO;
366 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
368 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
369 PAGE_SIZE, vma->vm_page_prot)) {
370 printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
381 static int hpet_fasync(int fd, struct file *file, int on)
383 struct hpet_dev *devp;
385 devp = file->private_data;
387 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
393 static int hpet_release(struct inode *inode, struct file *file)
395 struct hpet_dev *devp;
396 struct hpet_timer __iomem *timer;
399 devp = file->private_data;
400 timer = devp->hd_timer;
402 spin_lock_irq(&hpet_lock);
404 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
405 &timer->hpet_config);
410 devp->hd_ireqfreq = 0;
412 if (devp->hd_flags & HPET_PERIODIC
413 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
416 v = readq(&timer->hpet_config);
417 v ^= Tn_TYPE_CNF_MASK;
418 writeq(v, &timer->hpet_config);
421 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
422 spin_unlock_irq(&hpet_lock);
427 file->private_data = NULL;
431 static int hpet_ioctl_ieon(struct hpet_dev *devp)
433 struct hpet_timer __iomem *timer;
434 struct hpet __iomem *hpet;
437 unsigned long g, v, t, m;
438 unsigned long flags, isr;
440 timer = devp->hd_timer;
441 hpet = devp->hd_hpet;
442 hpetp = devp->hd_hpets;
444 if (!devp->hd_ireqfreq)
447 spin_lock_irq(&hpet_lock);
449 if (devp->hd_flags & HPET_IE) {
450 spin_unlock_irq(&hpet_lock);
454 devp->hd_flags |= HPET_IE;
456 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
457 devp->hd_flags |= HPET_SHARED_IRQ;
458 spin_unlock_irq(&hpet_lock);
460 irq = devp->hd_hdwirq;
463 unsigned long irq_flags;
465 if (devp->hd_flags & HPET_SHARED_IRQ) {
467 * To prevent the interrupt handler from seeing an
468 * unwanted interrupt status bit, program the timer
469 * so that it will not fire in the near future ...
471 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
472 &timer->hpet_config);
473 write_counter(read_counter(&hpet->hpet_mc),
474 &timer->hpet_compare);
475 /* ... and clear any left-over status. */
476 isr = 1 << (devp - devp->hd_hpets->hp_dev);
477 writel(isr, &hpet->hpet_isr);
480 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
481 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
482 ? IRQF_SHARED : IRQF_DISABLED;
483 if (request_irq(irq, hpet_interrupt, irq_flags,
484 devp->hd_name, (void *)devp)) {
485 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
491 spin_lock_irq(&hpet_lock);
492 devp->hd_flags ^= HPET_IE;
493 spin_unlock_irq(&hpet_lock);
498 t = devp->hd_ireqfreq;
499 v = readq(&timer->hpet_config);
501 /* 64-bit comparators are not yet supported through the ioctls,
502 * so force this into 32-bit mode if it supports both modes
504 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
506 if (devp->hd_flags & HPET_PERIODIC) {
507 g |= Tn_TYPE_CNF_MASK;
508 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
509 writeq(v, &timer->hpet_config);
510 local_irq_save(flags);
513 * NOTE: First we modify the hidden accumulator
514 * register supported by periodic-capable comparators.
515 * We never want to modify the (single) counter; that
516 * would affect all the comparators. The value written
517 * is the counter value when the first interrupt is due.
519 m = read_counter(&hpet->hpet_mc);
520 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
522 * Then we modify the comparator, indicating the period
523 * for subsequent interrupt.
525 write_counter(t, &timer->hpet_compare);
527 local_irq_save(flags);
528 m = read_counter(&hpet->hpet_mc);
529 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
532 if (devp->hd_flags & HPET_SHARED_IRQ) {
533 isr = 1 << (devp - devp->hd_hpets->hp_dev);
534 writel(isr, &hpet->hpet_isr);
536 writeq(g, &timer->hpet_config);
537 local_irq_restore(flags);
542 /* converts Hz to number of timer ticks */
543 static inline unsigned long hpet_time_div(struct hpets *hpets,
546 unsigned long long m;
548 m = hpets->hp_tick_freq + (dis >> 1);
550 return (unsigned long)m;
554 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
555 struct hpet_info *info)
557 struct hpet_timer __iomem *timer;
558 struct hpet __iomem *hpet;
569 timer = devp->hd_timer;
570 hpet = devp->hd_hpet;
571 hpetp = devp->hd_hpets;
574 return hpet_ioctl_ieon(devp);
583 if ((devp->hd_flags & HPET_IE) == 0)
585 v = readq(&timer->hpet_config);
586 v &= ~Tn_INT_ENB_CNF_MASK;
587 writeq(v, &timer->hpet_config);
589 free_irq(devp->hd_irq, devp);
592 devp->hd_flags ^= HPET_IE;
596 memset(info, 0, sizeof(*info));
597 if (devp->hd_ireqfreq)
599 hpet_time_div(hpetp, devp->hd_ireqfreq);
601 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
602 info->hi_hpet = hpetp->hp_which;
603 info->hi_timer = devp - hpetp->hp_dev;
607 v = readq(&timer->hpet_config);
608 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
612 devp->hd_flags |= HPET_PERIODIC;
615 v = readq(&timer->hpet_config);
616 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
620 if (devp->hd_flags & HPET_PERIODIC &&
621 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
622 v = readq(&timer->hpet_config);
623 v ^= Tn_TYPE_CNF_MASK;
624 writeq(v, &timer->hpet_config);
626 devp->hd_flags &= ~HPET_PERIODIC;
629 if ((arg > hpet_max_freq) &&
630 !capable(CAP_SYS_RESOURCE)) {
640 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
647 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
649 struct hpet_info info;
652 mutex_lock(&hpet_mutex);
653 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
654 mutex_unlock(&hpet_mutex);
656 if ((cmd == HPET_INFO) && !err &&
657 (copy_to_user((void __user *)arg, &info, sizeof(info))))
664 struct compat_hpet_info {
665 compat_ulong_t hi_ireqfreq; /* Hz */
666 compat_ulong_t hi_flags; /* information */
667 unsigned short hi_hpet;
668 unsigned short hi_timer;
672 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
674 struct hpet_info info;
677 mutex_lock(&hpet_mutex);
678 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
679 mutex_unlock(&hpet_mutex);
681 if ((cmd == HPET_INFO) && !err) {
682 struct compat_hpet_info __user *u = compat_ptr(arg);
683 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
684 put_user(info.hi_flags, &u->hi_flags) ||
685 put_user(info.hi_hpet, &u->hi_hpet) ||
686 put_user(info.hi_timer, &u->hi_timer))
694 static const struct file_operations hpet_fops = {
695 .owner = THIS_MODULE,
699 .unlocked_ioctl = hpet_ioctl,
701 .compat_ioctl = hpet_compat_ioctl,
704 .release = hpet_release,
705 .fasync = hpet_fasync,
709 static int hpet_is_known(struct hpet_data *hdp)
713 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
714 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
720 static ctl_table hpet_table[] = {
722 .procname = "max-user-freq",
723 .data = &hpet_max_freq,
724 .maxlen = sizeof(int),
726 .proc_handler = proc_dointvec,
731 static ctl_table hpet_root[] = {
741 static ctl_table dev_root[] = {
751 static struct ctl_table_header *sysctl_header;
754 * Adjustment for when arming the timer with
755 * initial conditions. That is, main counter
756 * ticks expired before interrupts are enabled.
758 #define TICK_CALIBRATE (1000UL)
760 static unsigned long __hpet_calibrate(struct hpets *hpetp)
762 struct hpet_timer __iomem *timer = NULL;
763 unsigned long t, m, count, i, flags, start;
764 struct hpet_dev *devp;
766 struct hpet __iomem *hpet;
768 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
769 if ((devp->hd_flags & HPET_OPEN) == 0) {
770 timer = devp->hd_timer;
777 hpet = hpetp->hp_hpet;
778 t = read_counter(&timer->hpet_compare);
781 count = hpet_time_div(hpetp, TICK_CALIBRATE);
783 local_irq_save(flags);
785 start = read_counter(&hpet->hpet_mc);
788 m = read_counter(&hpet->hpet_mc);
789 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
790 } while (i++, (m - start) < count);
792 local_irq_restore(flags);
794 return (m - start) / i;
797 static unsigned long hpet_calibrate(struct hpets *hpetp)
799 unsigned long ret = -1;
803 * Try to calibrate until return value becomes stable small value.
804 * If SMI interruption occurs in calibration loop, the return value
805 * will be big. This avoids its impact.
808 tmp = __hpet_calibrate(hpetp);
817 int hpet_alloc(struct hpet_data *hdp)
820 struct hpet_dev *devp;
824 struct hpet __iomem *hpet;
825 static struct hpets *last;
826 unsigned long period;
827 unsigned long long temp;
831 * hpet_alloc can be called by platform dependent code.
832 * If platform dependent code has allocated the hpet that
833 * ACPI has also reported, then we catch it here.
835 if (hpet_is_known(hdp)) {
836 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
841 siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
842 sizeof(struct hpet_dev));
844 hpetp = kzalloc(siz, GFP_KERNEL);
849 hpetp->hp_which = hpet_nhpet++;
850 hpetp->hp_hpet = hdp->hd_address;
851 hpetp->hp_hpet_phys = hdp->hd_phys_address;
853 hpetp->hp_ntimer = hdp->hd_nirqs;
855 for (i = 0; i < hdp->hd_nirqs; i++)
856 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
858 hpet = hpetp->hp_hpet;
860 cap = readq(&hpet->hpet_cap);
862 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
864 if (hpetp->hp_ntimer != ntimer) {
865 printk(KERN_WARNING "hpet: number irqs doesn't agree"
866 " with number of timers\n");
872 last->hp_next = hpetp;
878 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
879 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
880 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
881 temp += period >> 1; /* round */
882 do_div(temp, period);
883 hpetp->hp_tick_freq = temp; /* ticks per second */
885 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
886 hpetp->hp_which, hdp->hd_phys_address,
887 hpetp->hp_ntimer > 1 ? "s" : "");
888 for (i = 0; i < hpetp->hp_ntimer; i++)
889 printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
892 temp = hpetp->hp_tick_freq;
893 remainder = do_div(temp, 1000000);
895 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
896 hpetp->hp_which, hpetp->hp_ntimer,
897 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
898 (unsigned) temp, remainder);
900 mcfg = readq(&hpet->hpet_config);
901 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
902 write_counter(0L, &hpet->hpet_mc);
903 mcfg |= HPET_ENABLE_CNF_MASK;
904 writeq(mcfg, &hpet->hpet_config);
907 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
908 struct hpet_timer __iomem *timer;
910 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
912 devp->hd_hpets = hpetp;
913 devp->hd_hpet = hpet;
914 devp->hd_timer = timer;
917 * If the timer was reserved by platform code,
918 * then make timer unavailable for opens.
920 if (hdp->hd_state & (1 << i)) {
921 devp->hd_flags = HPET_OPEN;
925 init_waitqueue_head(&devp->hd_waitqueue);
928 hpetp->hp_delta = hpet_calibrate(hpetp);
930 /* This clocksource driver currently only works on ia64 */
932 if (!hpet_clocksource) {
933 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
934 CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
935 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
936 hpetp->hp_clocksource = &clocksource_hpet;
937 hpet_clocksource = &clocksource_hpet;
944 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
946 struct hpet_data *hdp;
948 struct acpi_resource_address64 addr;
952 status = acpi_resource_to_address64(res, &addr);
954 if (ACPI_SUCCESS(status)) {
955 hdp->hd_phys_address = addr.minimum;
956 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
958 if (hpet_is_known(hdp)) {
959 iounmap(hdp->hd_address);
960 return AE_ALREADY_EXISTS;
962 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
963 struct acpi_resource_fixed_memory32 *fixmem32;
965 fixmem32 = &res->data.fixed_memory32;
969 hdp->hd_phys_address = fixmem32->address;
970 hdp->hd_address = ioremap(fixmem32->address,
973 if (hpet_is_known(hdp)) {
974 iounmap(hdp->hd_address);
975 return AE_ALREADY_EXISTS;
977 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
978 struct acpi_resource_extended_irq *irqp;
981 irqp = &res->data.extended_irq;
983 for (i = 0; i < irqp->interrupt_count; i++) {
984 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
985 irqp->triggering, irqp->polarity);
989 hdp->hd_irq[hdp->hd_nirqs] = irq;
997 static int hpet_acpi_add(struct acpi_device *device)
1000 struct hpet_data data;
1002 memset(&data, 0, sizeof(data));
1005 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1006 hpet_resources, &data);
1008 if (ACPI_FAILURE(result))
1011 if (!data.hd_address || !data.hd_nirqs) {
1012 if (data.hd_address)
1013 iounmap(data.hd_address);
1014 printk("%s: no address or irqs in _CRS\n", __func__);
1018 return hpet_alloc(&data);
1021 static int hpet_acpi_remove(struct acpi_device *device, int type)
1023 /* XXX need to unregister clocksource, dealloc mem, etc */
1027 static const struct acpi_device_id hpet_device_ids[] = {
1031 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1033 static struct acpi_driver hpet_acpi_driver = {
1035 .ids = hpet_device_ids,
1037 .add = hpet_acpi_add,
1038 .remove = hpet_acpi_remove,
1042 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1044 static int __init hpet_init(void)
1048 result = misc_register(&hpet_misc);
1052 sysctl_header = register_sysctl_table(dev_root);
1054 result = acpi_bus_register_driver(&hpet_acpi_driver);
1057 unregister_sysctl_table(sysctl_header);
1058 misc_deregister(&hpet_misc);
1065 static void __exit hpet_exit(void)
1067 acpi_bus_unregister_driver(&hpet_acpi_driver);
1070 unregister_sysctl_table(sysctl_header);
1071 misc_deregister(&hpet_misc);
1076 module_init(hpet_init);
1077 module_exit(hpet_exit);
1079 MODULE_LICENSE("GPL");