1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
114 * transaction start -> page lock(s) -> i_data_sem (rw)
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #define IS_EXT2_SB(sb) (0)
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
153 struct buffer_head *bh = sb_getblk(sb, block);
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
161 if (buffer_uptodate(bh))
164 return ERR_PTR(-EIO);
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
170 if (!ext4_has_feature_metadata_csum(sb))
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
185 return cpu_to_le32(csum);
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
191 if (!ext4_has_metadata_csum(sb))
194 return es->s_checksum == ext4_superblock_csum(sb, es);
197 void ext4_superblock_csum_set(struct super_block *sb)
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
201 if (!ext4_has_metadata_csum(sb))
204 es->s_checksum = ext4_superblock_csum(sb, es);
207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
223 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
231 __u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
239 __u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
247 __u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
255 __u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
263 void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
271 void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
279 void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
287 void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
295 void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
303 void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
311 void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
321 time64_t now = ktime_get_real_seconds();
323 now = clamp_val(now, 0, (1ull << 40) - 1);
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
333 #define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335 #define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
338 static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
359 err = EXT4_ERR_ENOMEM;
362 err = EXT4_ERR_EFSBADCRC;
366 err = EXT4_ERR_EFSCORRUPTED;
369 err = EXT4_ERR_ENOSPC;
372 err = EXT4_ERR_ENOKEY;
375 err = EXT4_ERR_EROFS;
378 err = EXT4_ERR_EFBIG;
381 err = EXT4_ERR_EEXIST;
384 err = EXT4_ERR_ERANGE;
387 err = EXT4_ERR_EOVERFLOW;
390 err = EXT4_ERR_EBUSY;
393 err = EXT4_ERR_ENOTDIR;
396 err = EXT4_ERR_ENOTEMPTY;
399 err = EXT4_ERR_ESHUTDOWN;
402 err = EXT4_ERR_EFAULT;
405 err = EXT4_ERR_UNKNOWN;
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
419 * Start the daily error reporting function if it hasn't been
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
427 static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
444 static int block_device_ejected(struct super_block *sb)
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
449 return bdi->dev == NULL;
452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
459 BUG_ON(txn->t_state == T_FINISHED);
461 ext4_process_freed_data(sb, txn->t_tid);
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
472 spin_unlock(&sbi->s_md_lock);
475 static bool system_going_down(void)
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
481 /* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
496 static void ext4_handle_error(struct super_block *sb)
498 if (test_opt(sb, WARN_ON_ERROR))
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
509 jbd2_journal_abort(journal, -EIO);
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 if (EXT4_SB(sb)->s_journal &&
526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
528 panic("EXT4-fs (device %s): panic forced after error\n",
533 #define ext4_error_ratelimit(sb) \
534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
537 void __ext4_error(struct super_block *sb, const char *function,
538 unsigned int line, int error, __u64 block,
539 const char *fmt, ...)
541 struct va_format vaf;
544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
547 trace_ext4_error(sb, function, line);
548 if (ext4_error_ratelimit(sb)) {
553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
554 sb->s_id, function, line, current->comm, &vaf);
557 save_error_info(sb, error, 0, block, function, line);
558 ext4_handle_error(sb);
561 void __ext4_error_inode(struct inode *inode, const char *function,
562 unsigned int line, ext4_fsblk_t block, int error,
563 const char *fmt, ...)
566 struct va_format vaf;
568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
571 trace_ext4_error(inode->i_sb, function, line);
572 if (ext4_error_ratelimit(inode->i_sb)) {
577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
578 "inode #%lu: block %llu: comm %s: %pV\n",
579 inode->i_sb->s_id, function, line, inode->i_ino,
580 block, current->comm, &vaf);
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
583 "inode #%lu: comm %s: %pV\n",
584 inode->i_sb->s_id, function, line, inode->i_ino,
585 current->comm, &vaf);
588 save_error_info(inode->i_sb, error, inode->i_ino, block,
590 ext4_handle_error(inode->i_sb);
593 void __ext4_error_file(struct file *file, const char *function,
594 unsigned int line, ext4_fsblk_t block,
595 const char *fmt, ...)
598 struct va_format vaf;
599 struct inode *inode = file_inode(file);
600 char pathname[80], *path;
602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
605 trace_ext4_error(inode->i_sb, function, line);
606 if (ext4_error_ratelimit(inode->i_sb)) {
607 path = file_path(file, pathname, sizeof(pathname));
615 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
616 "block %llu: comm %s: path %s: %pV\n",
617 inode->i_sb->s_id, function, line, inode->i_ino,
618 block, current->comm, path, &vaf);
621 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
622 "comm %s: path %s: %pV\n",
623 inode->i_sb->s_id, function, line, inode->i_ino,
624 current->comm, path, &vaf);
627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
629 ext4_handle_error(inode->i_sb);
632 const char *ext4_decode_error(struct super_block *sb, int errno,
639 errstr = "Corrupt filesystem";
642 errstr = "Filesystem failed CRC";
645 errstr = "IO failure";
648 errstr = "Out of memory";
651 if (!sb || (EXT4_SB(sb)->s_journal &&
652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
653 errstr = "Journal has aborted";
655 errstr = "Readonly filesystem";
658 /* If the caller passed in an extra buffer for unknown
659 * errors, textualise them now. Else we just return
662 /* Check for truncated error codes... */
663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
672 /* __ext4_std_error decodes expected errors from journaling functions
673 * automatically and invokes the appropriate error response. */
675 void __ext4_std_error(struct super_block *sb, const char *function,
676 unsigned int line, int errno)
681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
684 /* Special case: if the error is EROFS, and we're not already
685 * inside a transaction, then there's really no point in logging
687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
690 if (ext4_error_ratelimit(sb)) {
691 errstr = ext4_decode_error(sb, errno, nbuf);
692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
693 sb->s_id, function, line, errstr);
696 save_error_info(sb, -errno, 0, 0, function, line);
697 ext4_handle_error(sb);
701 * ext4_abort is a much stronger failure handler than ext4_error. The
702 * abort function may be used to deal with unrecoverable failures such
703 * as journal IO errors or ENOMEM at a critical moment in log management.
705 * We unconditionally force the filesystem into an ABORT|READONLY state,
706 * unless the error response on the fs has been set to panic in which
707 * case we take the easy way out and panic immediately.
710 void __ext4_abort(struct super_block *sb, const char *function,
711 unsigned int line, int error, const char *fmt, ...)
713 struct va_format vaf;
716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
719 save_error_info(sb, error, 0, 0, function, line);
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
724 sb->s_id, function, line, &vaf);
727 if (sb_rdonly(sb) == 0) {
728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
735 sb->s_flags |= SB_RDONLY;
736 if (EXT4_SB(sb)->s_journal)
737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
740 if (EXT4_SB(sb)->s_journal &&
741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
743 panic("EXT4-fs panic from previous error\n");
747 void __ext4_msg(struct super_block *sb,
748 const char *prefix, const char *fmt, ...)
750 struct va_format vaf;
753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
763 #define ext4_warning_ratelimit(sb) \
764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
767 void __ext4_warning(struct super_block *sb, const char *function,
768 unsigned int line, const char *fmt, ...)
770 struct va_format vaf;
773 if (!ext4_warning_ratelimit(sb))
779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
780 sb->s_id, function, line, &vaf);
784 void __ext4_warning_inode(const struct inode *inode, const char *function,
785 unsigned int line, const char *fmt, ...)
787 struct va_format vaf;
790 if (!ext4_warning_ratelimit(inode->i_sb))
796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
798 function, line, inode->i_ino, current->comm, &vaf);
802 void __ext4_grp_locked_error(const char *function, unsigned int line,
803 struct super_block *sb, ext4_group_t grp,
804 unsigned long ino, ext4_fsblk_t block,
805 const char *fmt, ...)
809 struct va_format vaf;
812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
815 trace_ext4_error(sb, function, line);
816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
818 if (ext4_error_ratelimit(sb)) {
822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
823 sb->s_id, function, line, grp);
825 printk(KERN_CONT "inode %lu: ", ino);
827 printk(KERN_CONT "block %llu:",
828 (unsigned long long) block);
829 printk(KERN_CONT "%pV\n", &vaf);
833 if (test_opt(sb, WARN_ON_ERROR))
836 if (test_opt(sb, ERRORS_CONT)) {
837 ext4_commit_super(sb, 0);
841 ext4_unlock_group(sb, grp);
842 ext4_commit_super(sb, 1);
843 ext4_handle_error(sb);
845 * We only get here in the ERRORS_RO case; relocking the group
846 * may be dangerous, but nothing bad will happen since the
847 * filesystem will have already been marked read/only and the
848 * journal has been aborted. We return 1 as a hint to callers
849 * who might what to use the return value from
850 * ext4_grp_locked_error() to distinguish between the
851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
852 * aggressively from the ext4 function in question, with a
853 * more appropriate error code.
855 ext4_lock_group(sb, grp);
859 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
863 struct ext4_sb_info *sbi = EXT4_SB(sb);
864 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
872 percpu_counter_sub(&sbi->s_freeclusters_counter,
876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
882 count = ext4_free_inodes_count(sb, gdp);
883 percpu_counter_sub(&sbi->s_freeinodes_counter,
889 void ext4_update_dynamic_rev(struct super_block *sb)
891 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
897 "updating to rev %d because of new feature flag, "
898 "running e2fsck is recommended",
901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
904 /* leave es->s_feature_*compat flags alone */
905 /* es->s_uuid will be set by e2fsck if empty */
908 * The rest of the superblock fields should be zero, and if not it
909 * means they are likely already in use, so leave them alone. We
910 * can leave it up to e2fsck to clean up any inconsistencies there.
915 * Open the external journal device
917 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
919 struct block_device *bdev;
921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
927 ext4_msg(sb, KERN_ERR,
928 "failed to open journal device unknown-block(%u,%u) %ld",
929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
934 * Release the journal device
936 static void ext4_blkdev_put(struct block_device *bdev)
938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
941 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
943 struct block_device *bdev;
944 bdev = sbi->journal_bdev;
946 ext4_blkdev_put(bdev);
947 sbi->journal_bdev = NULL;
951 static inline struct inode *orphan_list_entry(struct list_head *l)
953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
956 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
961 le32_to_cpu(sbi->s_es->s_last_orphan));
963 printk(KERN_ERR "sb_info orphan list:\n");
964 list_for_each(l, &sbi->s_orphan) {
965 struct inode *inode = orphan_list_entry(l);
967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
968 inode->i_sb->s_id, inode->i_ino, inode,
969 inode->i_mode, inode->i_nlink,
975 static int ext4_quota_off(struct super_block *sb, int type);
977 static inline void ext4_quota_off_umount(struct super_block *sb)
981 /* Use our quota_off function to clear inode flags etc. */
982 for (type = 0; type < EXT4_MAXQUOTAS; type++)
983 ext4_quota_off(sb, type);
987 * This is a helper function which is used in the mount/remount
988 * codepaths (which holds s_umount) to fetch the quota file name.
990 static inline char *get_qf_name(struct super_block *sb,
991 struct ext4_sb_info *sbi,
994 return rcu_dereference_protected(sbi->s_qf_names[type],
995 lockdep_is_held(&sb->s_umount));
998 static inline void ext4_quota_off_umount(struct super_block *sb)
1003 static void ext4_put_super(struct super_block *sb)
1005 struct ext4_sb_info *sbi = EXT4_SB(sb);
1006 struct ext4_super_block *es = sbi->s_es;
1007 struct buffer_head **group_desc;
1008 struct flex_groups **flex_groups;
1012 ext4_unregister_li_request(sb);
1013 ext4_quota_off_umount(sb);
1015 destroy_workqueue(sbi->rsv_conversion_wq);
1018 * Unregister sysfs before destroying jbd2 journal.
1019 * Since we could still access attr_journal_task attribute via sysfs
1020 * path which could have sbi->s_journal->j_task as NULL
1022 ext4_unregister_sysfs(sb);
1024 if (sbi->s_journal) {
1025 aborted = is_journal_aborted(sbi->s_journal);
1026 err = jbd2_journal_destroy(sbi->s_journal);
1027 sbi->s_journal = NULL;
1028 if ((err < 0) && !aborted) {
1029 ext4_abort(sb, -err, "Couldn't clean up the journal");
1033 ext4_es_unregister_shrinker(sbi);
1034 del_timer_sync(&sbi->s_err_report);
1035 ext4_release_system_zone(sb);
1036 ext4_mb_release(sb);
1037 ext4_ext_release(sb);
1039 if (!sb_rdonly(sb) && !aborted) {
1040 ext4_clear_feature_journal_needs_recovery(sb);
1041 es->s_state = cpu_to_le16(sbi->s_mount_state);
1044 ext4_commit_super(sb, 1);
1047 group_desc = rcu_dereference(sbi->s_group_desc);
1048 for (i = 0; i < sbi->s_gdb_count; i++)
1049 brelse(group_desc[i]);
1051 flex_groups = rcu_dereference(sbi->s_flex_groups);
1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1054 kvfree(flex_groups[i]);
1055 kvfree(flex_groups);
1058 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1059 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1060 percpu_counter_destroy(&sbi->s_dirs_counter);
1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1062 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1064 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1065 kfree(get_qf_name(sb, sbi, i));
1068 /* Debugging code just in case the in-memory inode orphan list
1069 * isn't empty. The on-disk one can be non-empty if we've
1070 * detected an error and taken the fs readonly, but the
1071 * in-memory list had better be clean by this point. */
1072 if (!list_empty(&sbi->s_orphan))
1073 dump_orphan_list(sb, sbi);
1074 J_ASSERT(list_empty(&sbi->s_orphan));
1076 sync_blockdev(sb->s_bdev);
1077 invalidate_bdev(sb->s_bdev);
1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1080 * Invalidate the journal device's buffers. We don't want them
1081 * floating about in memory - the physical journal device may
1082 * hotswapped, and it breaks the `ro-after' testing code.
1084 sync_blockdev(sbi->journal_bdev);
1085 invalidate_bdev(sbi->journal_bdev);
1086 ext4_blkdev_remove(sbi);
1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1090 sbi->s_ea_inode_cache = NULL;
1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1093 sbi->s_ea_block_cache = NULL;
1096 kthread_stop(sbi->s_mmp_tsk);
1098 sb->s_fs_info = NULL;
1100 * Now that we are completely done shutting down the
1101 * superblock, we need to actually destroy the kobject.
1103 kobject_put(&sbi->s_kobj);
1104 wait_for_completion(&sbi->s_kobj_unregister);
1105 if (sbi->s_chksum_driver)
1106 crypto_free_shash(sbi->s_chksum_driver);
1107 kfree(sbi->s_blockgroup_lock);
1108 fs_put_dax(sbi->s_daxdev);
1109 #ifdef CONFIG_UNICODE
1110 utf8_unload(sbi->s_encoding);
1115 static struct kmem_cache *ext4_inode_cachep;
1118 * Called inside transaction, so use GFP_NOFS
1120 static struct inode *ext4_alloc_inode(struct super_block *sb)
1122 struct ext4_inode_info *ei;
1124 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1128 inode_set_iversion(&ei->vfs_inode, 1);
1129 spin_lock_init(&ei->i_raw_lock);
1130 INIT_LIST_HEAD(&ei->i_prealloc_list);
1131 spin_lock_init(&ei->i_prealloc_lock);
1132 ext4_es_init_tree(&ei->i_es_tree);
1133 rwlock_init(&ei->i_es_lock);
1134 INIT_LIST_HEAD(&ei->i_es_list);
1135 ei->i_es_all_nr = 0;
1136 ei->i_es_shk_nr = 0;
1137 ei->i_es_shrink_lblk = 0;
1138 ei->i_reserved_data_blocks = 0;
1139 spin_lock_init(&(ei->i_block_reservation_lock));
1140 ext4_init_pending_tree(&ei->i_pending_tree);
1142 ei->i_reserved_quota = 0;
1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1147 spin_lock_init(&ei->i_completed_io_lock);
1149 ei->i_datasync_tid = 0;
1150 atomic_set(&ei->i_unwritten, 0);
1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1152 return &ei->vfs_inode;
1155 static int ext4_drop_inode(struct inode *inode)
1157 int drop = generic_drop_inode(inode);
1160 drop = fscrypt_drop_inode(inode);
1162 trace_ext4_drop_inode(inode, drop);
1166 static void ext4_free_in_core_inode(struct inode *inode)
1168 fscrypt_free_inode(inode);
1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1172 static void ext4_destroy_inode(struct inode *inode)
1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1175 ext4_msg(inode->i_sb, KERN_ERR,
1176 "Inode %lu (%p): orphan list check failed!",
1177 inode->i_ino, EXT4_I(inode));
1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1179 EXT4_I(inode), sizeof(struct ext4_inode_info),
1185 static void init_once(void *foo)
1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1189 INIT_LIST_HEAD(&ei->i_orphan);
1190 init_rwsem(&ei->xattr_sem);
1191 init_rwsem(&ei->i_data_sem);
1192 init_rwsem(&ei->i_mmap_sem);
1193 inode_init_once(&ei->vfs_inode);
1196 static int __init init_inodecache(void)
1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1199 sizeof(struct ext4_inode_info), 0,
1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1202 offsetof(struct ext4_inode_info, i_data),
1203 sizeof_field(struct ext4_inode_info, i_data),
1205 if (ext4_inode_cachep == NULL)
1210 static void destroy_inodecache(void)
1213 * Make sure all delayed rcu free inodes are flushed before we
1217 kmem_cache_destroy(ext4_inode_cachep);
1220 void ext4_clear_inode(struct inode *inode)
1222 invalidate_inode_buffers(inode);
1224 ext4_discard_preallocations(inode);
1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1227 if (EXT4_I(inode)->jinode) {
1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1229 EXT4_I(inode)->jinode);
1230 jbd2_free_inode(EXT4_I(inode)->jinode);
1231 EXT4_I(inode)->jinode = NULL;
1233 fscrypt_put_encryption_info(inode);
1234 fsverity_cleanup_inode(inode);
1237 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1238 u64 ino, u32 generation)
1240 struct inode *inode;
1243 * Currently we don't know the generation for parent directory, so
1244 * a generation of 0 means "accept any"
1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1248 return ERR_CAST(inode);
1249 if (generation && inode->i_generation != generation) {
1251 return ERR_PTR(-ESTALE);
1257 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1258 int fh_len, int fh_type)
1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1261 ext4_nfs_get_inode);
1264 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1265 int fh_len, int fh_type)
1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1268 ext4_nfs_get_inode);
1271 static int ext4_nfs_commit_metadata(struct inode *inode)
1273 struct writeback_control wbc = {
1274 .sync_mode = WB_SYNC_ALL
1277 trace_ext4_nfs_commit_metadata(inode);
1278 return ext4_write_inode(inode, &wbc);
1282 * Try to release metadata pages (indirect blocks, directories) which are
1283 * mapped via the block device. Since these pages could have journal heads
1284 * which would prevent try_to_free_buffers() from freeing them, we must use
1285 * jbd2 layer's try_to_free_buffers() function to release them.
1287 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1290 journal_t *journal = EXT4_SB(sb)->s_journal;
1292 WARN_ON(PageChecked(page));
1293 if (!page_has_buffers(page))
1296 return jbd2_journal_try_to_free_buffers(journal, page,
1297 wait & ~__GFP_DIRECT_RECLAIM);
1298 return try_to_free_buffers(page);
1301 #ifdef CONFIG_FS_ENCRYPTION
1302 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1308 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1311 handle_t *handle = fs_data;
1312 int res, res2, credits, retries = 0;
1315 * Encrypting the root directory is not allowed because e2fsck expects
1316 * lost+found to exist and be unencrypted, and encrypting the root
1317 * directory would imply encrypting the lost+found directory as well as
1318 * the filename "lost+found" itself.
1320 if (inode->i_ino == EXT4_ROOT_INO)
1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1326 res = ext4_convert_inline_data(inode);
1331 * If a journal handle was specified, then the encryption context is
1332 * being set on a new inode via inheritance and is part of a larger
1333 * transaction to create the inode. Otherwise the encryption context is
1334 * being set on an existing inode in its own transaction. Only in the
1335 * latter case should the "retry on ENOSPC" logic be used.
1339 res = ext4_xattr_set_handle(handle, inode,
1340 EXT4_XATTR_INDEX_ENCRYPTION,
1341 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1344 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1345 ext4_clear_inode_state(inode,
1346 EXT4_STATE_MAY_INLINE_DATA);
1348 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1349 * S_DAX may be disabled
1351 ext4_set_inode_flags(inode);
1356 res = dquot_initialize(inode);
1360 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1365 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1367 return PTR_ERR(handle);
1369 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1370 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1373 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1375 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1376 * S_DAX may be disabled
1378 ext4_set_inode_flags(inode);
1379 res = ext4_mark_inode_dirty(handle, inode);
1381 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1383 res2 = ext4_journal_stop(handle);
1385 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1392 static bool ext4_dummy_context(struct inode *inode)
1394 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1397 static bool ext4_has_stable_inodes(struct super_block *sb)
1399 return ext4_has_feature_stable_inodes(sb);
1402 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1403 int *ino_bits_ret, int *lblk_bits_ret)
1405 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1406 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1409 static const struct fscrypt_operations ext4_cryptops = {
1410 .key_prefix = "ext4:",
1411 .get_context = ext4_get_context,
1412 .set_context = ext4_set_context,
1413 .dummy_context = ext4_dummy_context,
1414 .empty_dir = ext4_empty_dir,
1415 .max_namelen = EXT4_NAME_LEN,
1416 .has_stable_inodes = ext4_has_stable_inodes,
1417 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1422 static const char * const quotatypes[] = INITQFNAMES;
1423 #define QTYPE2NAME(t) (quotatypes[t])
1425 static int ext4_write_dquot(struct dquot *dquot);
1426 static int ext4_acquire_dquot(struct dquot *dquot);
1427 static int ext4_release_dquot(struct dquot *dquot);
1428 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1429 static int ext4_write_info(struct super_block *sb, int type);
1430 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1431 const struct path *path);
1432 static int ext4_quota_on_mount(struct super_block *sb, int type);
1433 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1434 size_t len, loff_t off);
1435 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1436 const char *data, size_t len, loff_t off);
1437 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1438 unsigned int flags);
1439 static int ext4_enable_quotas(struct super_block *sb);
1441 static struct dquot **ext4_get_dquots(struct inode *inode)
1443 return EXT4_I(inode)->i_dquot;
1446 static const struct dquot_operations ext4_quota_operations = {
1447 .get_reserved_space = ext4_get_reserved_space,
1448 .write_dquot = ext4_write_dquot,
1449 .acquire_dquot = ext4_acquire_dquot,
1450 .release_dquot = ext4_release_dquot,
1451 .mark_dirty = ext4_mark_dquot_dirty,
1452 .write_info = ext4_write_info,
1453 .alloc_dquot = dquot_alloc,
1454 .destroy_dquot = dquot_destroy,
1455 .get_projid = ext4_get_projid,
1456 .get_inode_usage = ext4_get_inode_usage,
1457 .get_next_id = dquot_get_next_id,
1460 static const struct quotactl_ops ext4_qctl_operations = {
1461 .quota_on = ext4_quota_on,
1462 .quota_off = ext4_quota_off,
1463 .quota_sync = dquot_quota_sync,
1464 .get_state = dquot_get_state,
1465 .set_info = dquot_set_dqinfo,
1466 .get_dqblk = dquot_get_dqblk,
1467 .set_dqblk = dquot_set_dqblk,
1468 .get_nextdqblk = dquot_get_next_dqblk,
1472 static const struct super_operations ext4_sops = {
1473 .alloc_inode = ext4_alloc_inode,
1474 .free_inode = ext4_free_in_core_inode,
1475 .destroy_inode = ext4_destroy_inode,
1476 .write_inode = ext4_write_inode,
1477 .dirty_inode = ext4_dirty_inode,
1478 .drop_inode = ext4_drop_inode,
1479 .evict_inode = ext4_evict_inode,
1480 .put_super = ext4_put_super,
1481 .sync_fs = ext4_sync_fs,
1482 .freeze_fs = ext4_freeze,
1483 .unfreeze_fs = ext4_unfreeze,
1484 .statfs = ext4_statfs,
1485 .remount_fs = ext4_remount,
1486 .show_options = ext4_show_options,
1488 .quota_read = ext4_quota_read,
1489 .quota_write = ext4_quota_write,
1490 .get_dquots = ext4_get_dquots,
1492 .bdev_try_to_free_page = bdev_try_to_free_page,
1495 static const struct export_operations ext4_export_ops = {
1496 .fh_to_dentry = ext4_fh_to_dentry,
1497 .fh_to_parent = ext4_fh_to_parent,
1498 .get_parent = ext4_get_parent,
1499 .commit_metadata = ext4_nfs_commit_metadata,
1503 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1504 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1505 Opt_nouid32, Opt_debug, Opt_removed,
1506 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1507 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1508 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1509 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1510 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1511 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1512 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1513 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1514 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1515 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1516 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1517 Opt_nowarn_on_error, Opt_mblk_io_submit,
1518 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1519 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1520 Opt_inode_readahead_blks, Opt_journal_ioprio,
1521 Opt_dioread_nolock, Opt_dioread_lock,
1522 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1523 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1526 static const match_table_t tokens = {
1527 {Opt_bsd_df, "bsddf"},
1528 {Opt_minix_df, "minixdf"},
1529 {Opt_grpid, "grpid"},
1530 {Opt_grpid, "bsdgroups"},
1531 {Opt_nogrpid, "nogrpid"},
1532 {Opt_nogrpid, "sysvgroups"},
1533 {Opt_resgid, "resgid=%u"},
1534 {Opt_resuid, "resuid=%u"},
1536 {Opt_err_cont, "errors=continue"},
1537 {Opt_err_panic, "errors=panic"},
1538 {Opt_err_ro, "errors=remount-ro"},
1539 {Opt_nouid32, "nouid32"},
1540 {Opt_debug, "debug"},
1541 {Opt_removed, "oldalloc"},
1542 {Opt_removed, "orlov"},
1543 {Opt_user_xattr, "user_xattr"},
1544 {Opt_nouser_xattr, "nouser_xattr"},
1546 {Opt_noacl, "noacl"},
1547 {Opt_noload, "norecovery"},
1548 {Opt_noload, "noload"},
1549 {Opt_removed, "nobh"},
1550 {Opt_removed, "bh"},
1551 {Opt_commit, "commit=%u"},
1552 {Opt_min_batch_time, "min_batch_time=%u"},
1553 {Opt_max_batch_time, "max_batch_time=%u"},
1554 {Opt_journal_dev, "journal_dev=%u"},
1555 {Opt_journal_path, "journal_path=%s"},
1556 {Opt_journal_checksum, "journal_checksum"},
1557 {Opt_nojournal_checksum, "nojournal_checksum"},
1558 {Opt_journal_async_commit, "journal_async_commit"},
1559 {Opt_abort, "abort"},
1560 {Opt_data_journal, "data=journal"},
1561 {Opt_data_ordered, "data=ordered"},
1562 {Opt_data_writeback, "data=writeback"},
1563 {Opt_data_err_abort, "data_err=abort"},
1564 {Opt_data_err_ignore, "data_err=ignore"},
1565 {Opt_offusrjquota, "usrjquota="},
1566 {Opt_usrjquota, "usrjquota=%s"},
1567 {Opt_offgrpjquota, "grpjquota="},
1568 {Opt_grpjquota, "grpjquota=%s"},
1569 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1570 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1571 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1572 {Opt_grpquota, "grpquota"},
1573 {Opt_noquota, "noquota"},
1574 {Opt_quota, "quota"},
1575 {Opt_usrquota, "usrquota"},
1576 {Opt_prjquota, "prjquota"},
1577 {Opt_barrier, "barrier=%u"},
1578 {Opt_barrier, "barrier"},
1579 {Opt_nobarrier, "nobarrier"},
1580 {Opt_i_version, "i_version"},
1582 {Opt_stripe, "stripe=%u"},
1583 {Opt_delalloc, "delalloc"},
1584 {Opt_warn_on_error, "warn_on_error"},
1585 {Opt_nowarn_on_error, "nowarn_on_error"},
1586 {Opt_lazytime, "lazytime"},
1587 {Opt_nolazytime, "nolazytime"},
1588 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1589 {Opt_nodelalloc, "nodelalloc"},
1590 {Opt_removed, "mblk_io_submit"},
1591 {Opt_removed, "nomblk_io_submit"},
1592 {Opt_block_validity, "block_validity"},
1593 {Opt_noblock_validity, "noblock_validity"},
1594 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1595 {Opt_journal_ioprio, "journal_ioprio=%u"},
1596 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1597 {Opt_auto_da_alloc, "auto_da_alloc"},
1598 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1599 {Opt_dioread_nolock, "dioread_nolock"},
1600 {Opt_dioread_lock, "nodioread_nolock"},
1601 {Opt_dioread_lock, "dioread_lock"},
1602 {Opt_discard, "discard"},
1603 {Opt_nodiscard, "nodiscard"},
1604 {Opt_init_itable, "init_itable=%u"},
1605 {Opt_init_itable, "init_itable"},
1606 {Opt_noinit_itable, "noinit_itable"},
1607 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1608 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1609 {Opt_nombcache, "nombcache"},
1610 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1611 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1612 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1613 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1614 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1615 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1619 static ext4_fsblk_t get_sb_block(void **data)
1621 ext4_fsblk_t sb_block;
1622 char *options = (char *) *data;
1624 if (!options || strncmp(options, "sb=", 3) != 0)
1625 return 1; /* Default location */
1628 /* TODO: use simple_strtoll with >32bit ext4 */
1629 sb_block = simple_strtoul(options, &options, 0);
1630 if (*options && *options != ',') {
1631 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1635 if (*options == ',')
1637 *data = (void *) options;
1642 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1643 static const char deprecated_msg[] =
1644 "Mount option \"%s\" will be removed by %s\n"
1648 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1650 struct ext4_sb_info *sbi = EXT4_SB(sb);
1651 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1654 if (sb_any_quota_loaded(sb) && !old_qname) {
1655 ext4_msg(sb, KERN_ERR,
1656 "Cannot change journaled "
1657 "quota options when quota turned on");
1660 if (ext4_has_feature_quota(sb)) {
1661 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1662 "ignored when QUOTA feature is enabled");
1665 qname = match_strdup(args);
1667 ext4_msg(sb, KERN_ERR,
1668 "Not enough memory for storing quotafile name");
1672 if (strcmp(old_qname, qname) == 0)
1675 ext4_msg(sb, KERN_ERR,
1676 "%s quota file already specified",
1680 if (strchr(qname, '/')) {
1681 ext4_msg(sb, KERN_ERR,
1682 "quotafile must be on filesystem root");
1685 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1693 static int clear_qf_name(struct super_block *sb, int qtype)
1696 struct ext4_sb_info *sbi = EXT4_SB(sb);
1697 char *old_qname = get_qf_name(sb, sbi, qtype);
1699 if (sb_any_quota_loaded(sb) && old_qname) {
1700 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1701 " when quota turned on");
1704 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1711 #define MOPT_SET 0x0001
1712 #define MOPT_CLEAR 0x0002
1713 #define MOPT_NOSUPPORT 0x0004
1714 #define MOPT_EXPLICIT 0x0008
1715 #define MOPT_CLEAR_ERR 0x0010
1716 #define MOPT_GTE0 0x0020
1719 #define MOPT_QFMT 0x0040
1721 #define MOPT_Q MOPT_NOSUPPORT
1722 #define MOPT_QFMT MOPT_NOSUPPORT
1724 #define MOPT_DATAJ 0x0080
1725 #define MOPT_NO_EXT2 0x0100
1726 #define MOPT_NO_EXT3 0x0200
1727 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1728 #define MOPT_STRING 0x0400
1730 static const struct mount_opts {
1734 } ext4_mount_opts[] = {
1735 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1736 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1737 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1738 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1739 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1740 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1741 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1742 MOPT_EXT4_ONLY | MOPT_SET},
1743 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1744 MOPT_EXT4_ONLY | MOPT_CLEAR},
1745 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1746 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1747 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1748 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1749 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1750 MOPT_EXT4_ONLY | MOPT_CLEAR},
1751 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1752 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1753 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1754 MOPT_EXT4_ONLY | MOPT_CLEAR},
1755 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1756 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1757 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1758 EXT4_MOUNT_JOURNAL_CHECKSUM),
1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1760 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1761 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1762 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1763 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1764 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1766 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1768 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1769 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1770 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1771 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1772 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1773 {Opt_commit, 0, MOPT_GTE0},
1774 {Opt_max_batch_time, 0, MOPT_GTE0},
1775 {Opt_min_batch_time, 0, MOPT_GTE0},
1776 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1777 {Opt_init_itable, 0, MOPT_GTE0},
1778 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1779 {Opt_stripe, 0, MOPT_GTE0},
1780 {Opt_resuid, 0, MOPT_GTE0},
1781 {Opt_resgid, 0, MOPT_GTE0},
1782 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1783 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1784 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1785 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1786 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1787 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1788 MOPT_NO_EXT2 | MOPT_DATAJ},
1789 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1790 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1791 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1792 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1793 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1795 {Opt_acl, 0, MOPT_NOSUPPORT},
1796 {Opt_noacl, 0, MOPT_NOSUPPORT},
1798 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1799 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1800 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1801 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1802 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1804 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1806 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1808 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1809 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1810 MOPT_CLEAR | MOPT_Q},
1811 {Opt_usrjquota, 0, MOPT_Q},
1812 {Opt_grpjquota, 0, MOPT_Q},
1813 {Opt_offusrjquota, 0, MOPT_Q},
1814 {Opt_offgrpjquota, 0, MOPT_Q},
1815 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1816 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1817 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1818 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1819 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1820 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1824 #ifdef CONFIG_UNICODE
1825 static const struct ext4_sb_encodings {
1829 } ext4_sb_encoding_map[] = {
1830 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1833 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1834 const struct ext4_sb_encodings **encoding,
1837 __u16 magic = le16_to_cpu(es->s_encoding);
1840 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1841 if (magic == ext4_sb_encoding_map[i].magic)
1844 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1847 *encoding = &ext4_sb_encoding_map[i];
1848 *flags = le16_to_cpu(es->s_encoding_flags);
1854 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1855 substring_t *args, unsigned long *journal_devnum,
1856 unsigned int *journal_ioprio, int is_remount)
1858 struct ext4_sb_info *sbi = EXT4_SB(sb);
1859 const struct mount_opts *m;
1865 if (token == Opt_usrjquota)
1866 return set_qf_name(sb, USRQUOTA, &args[0]);
1867 else if (token == Opt_grpjquota)
1868 return set_qf_name(sb, GRPQUOTA, &args[0]);
1869 else if (token == Opt_offusrjquota)
1870 return clear_qf_name(sb, USRQUOTA);
1871 else if (token == Opt_offgrpjquota)
1872 return clear_qf_name(sb, GRPQUOTA);
1876 case Opt_nouser_xattr:
1877 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1880 return 1; /* handled by get_sb_block() */
1882 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1885 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1888 sb->s_flags |= SB_I_VERSION;
1891 sb->s_flags |= SB_LAZYTIME;
1893 case Opt_nolazytime:
1894 sb->s_flags &= ~SB_LAZYTIME;
1898 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1899 if (token == m->token)
1902 if (m->token == Opt_err) {
1903 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1904 "or missing value", opt);
1908 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1909 ext4_msg(sb, KERN_ERR,
1910 "Mount option \"%s\" incompatible with ext2", opt);
1913 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1914 ext4_msg(sb, KERN_ERR,
1915 "Mount option \"%s\" incompatible with ext3", opt);
1919 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1921 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1923 if (m->flags & MOPT_EXPLICIT) {
1924 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1925 set_opt2(sb, EXPLICIT_DELALLOC);
1926 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1927 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1931 if (m->flags & MOPT_CLEAR_ERR)
1932 clear_opt(sb, ERRORS_MASK);
1933 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1934 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1935 "options when quota turned on");
1939 if (m->flags & MOPT_NOSUPPORT) {
1940 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1941 } else if (token == Opt_commit) {
1943 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1944 else if (arg > INT_MAX / HZ) {
1945 ext4_msg(sb, KERN_ERR,
1946 "Invalid commit interval %d, "
1947 "must be smaller than %d",
1951 sbi->s_commit_interval = HZ * arg;
1952 } else if (token == Opt_debug_want_extra_isize) {
1955 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1956 ext4_msg(sb, KERN_ERR,
1957 "Invalid want_extra_isize %d", arg);
1960 sbi->s_want_extra_isize = arg;
1961 } else if (token == Opt_max_batch_time) {
1962 sbi->s_max_batch_time = arg;
1963 } else if (token == Opt_min_batch_time) {
1964 sbi->s_min_batch_time = arg;
1965 } else if (token == Opt_inode_readahead_blks) {
1966 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1967 ext4_msg(sb, KERN_ERR,
1968 "EXT4-fs: inode_readahead_blks must be "
1969 "0 or a power of 2 smaller than 2^31");
1972 sbi->s_inode_readahead_blks = arg;
1973 } else if (token == Opt_init_itable) {
1974 set_opt(sb, INIT_INODE_TABLE);
1976 arg = EXT4_DEF_LI_WAIT_MULT;
1977 sbi->s_li_wait_mult = arg;
1978 } else if (token == Opt_max_dir_size_kb) {
1979 sbi->s_max_dir_size_kb = arg;
1980 } else if (token == Opt_stripe) {
1981 sbi->s_stripe = arg;
1982 } else if (token == Opt_resuid) {
1983 uid = make_kuid(current_user_ns(), arg);
1984 if (!uid_valid(uid)) {
1985 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1988 sbi->s_resuid = uid;
1989 } else if (token == Opt_resgid) {
1990 gid = make_kgid(current_user_ns(), arg);
1991 if (!gid_valid(gid)) {
1992 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1995 sbi->s_resgid = gid;
1996 } else if (token == Opt_journal_dev) {
1998 ext4_msg(sb, KERN_ERR,
1999 "Cannot specify journal on remount");
2002 *journal_devnum = arg;
2003 } else if (token == Opt_journal_path) {
2005 struct inode *journal_inode;
2010 ext4_msg(sb, KERN_ERR,
2011 "Cannot specify journal on remount");
2014 journal_path = match_strdup(&args[0]);
2015 if (!journal_path) {
2016 ext4_msg(sb, KERN_ERR, "error: could not dup "
2017 "journal device string");
2021 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2023 ext4_msg(sb, KERN_ERR, "error: could not find "
2024 "journal device path: error %d", error);
2025 kfree(journal_path);
2029 journal_inode = d_inode(path.dentry);
2030 if (!S_ISBLK(journal_inode->i_mode)) {
2031 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2032 "is not a block device", journal_path);
2034 kfree(journal_path);
2038 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2040 kfree(journal_path);
2041 } else if (token == Opt_journal_ioprio) {
2043 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2048 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2049 } else if (token == Opt_test_dummy_encryption) {
2050 #ifdef CONFIG_FS_ENCRYPTION
2051 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2052 ext4_msg(sb, KERN_WARNING,
2053 "Test dummy encryption mode enabled");
2055 ext4_msg(sb, KERN_WARNING,
2056 "Test dummy encryption mount option ignored");
2058 } else if (m->flags & MOPT_DATAJ) {
2060 if (!sbi->s_journal)
2061 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2062 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2063 ext4_msg(sb, KERN_ERR,
2064 "Cannot change data mode on remount");
2068 clear_opt(sb, DATA_FLAGS);
2069 sbi->s_mount_opt |= m->mount_opt;
2072 } else if (m->flags & MOPT_QFMT) {
2073 if (sb_any_quota_loaded(sb) &&
2074 sbi->s_jquota_fmt != m->mount_opt) {
2075 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2076 "quota options when quota turned on");
2079 if (ext4_has_feature_quota(sb)) {
2080 ext4_msg(sb, KERN_INFO,
2081 "Quota format mount options ignored "
2082 "when QUOTA feature is enabled");
2085 sbi->s_jquota_fmt = m->mount_opt;
2087 } else if (token == Opt_dax) {
2088 #ifdef CONFIG_FS_DAX
2089 ext4_msg(sb, KERN_WARNING,
2090 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2091 sbi->s_mount_opt |= m->mount_opt;
2093 ext4_msg(sb, KERN_INFO, "dax option not supported");
2096 } else if (token == Opt_data_err_abort) {
2097 sbi->s_mount_opt |= m->mount_opt;
2098 } else if (token == Opt_data_err_ignore) {
2099 sbi->s_mount_opt &= ~m->mount_opt;
2103 if (m->flags & MOPT_CLEAR)
2105 else if (unlikely(!(m->flags & MOPT_SET))) {
2106 ext4_msg(sb, KERN_WARNING,
2107 "buggy handling of option %s", opt);
2112 sbi->s_mount_opt |= m->mount_opt;
2114 sbi->s_mount_opt &= ~m->mount_opt;
2119 static int parse_options(char *options, struct super_block *sb,
2120 unsigned long *journal_devnum,
2121 unsigned int *journal_ioprio,
2124 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2125 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2126 substring_t args[MAX_OPT_ARGS];
2132 while ((p = strsep(&options, ",")) != NULL) {
2136 * Initialize args struct so we know whether arg was
2137 * found; some options take optional arguments.
2139 args[0].to = args[0].from = NULL;
2140 token = match_token(p, tokens, args);
2141 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2142 journal_ioprio, is_remount) < 0)
2147 * We do the test below only for project quotas. 'usrquota' and
2148 * 'grpquota' mount options are allowed even without quota feature
2149 * to support legacy quotas in quota files.
2151 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2152 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2153 "Cannot enable project quota enforcement.");
2156 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2157 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2158 if (usr_qf_name || grp_qf_name) {
2159 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2160 clear_opt(sb, USRQUOTA);
2162 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2163 clear_opt(sb, GRPQUOTA);
2165 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2166 ext4_msg(sb, KERN_ERR, "old and new quota "
2171 if (!sbi->s_jquota_fmt) {
2172 ext4_msg(sb, KERN_ERR, "journaled quota format "
2178 if (test_opt(sb, DIOREAD_NOLOCK)) {
2180 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2181 if (blocksize < PAGE_SIZE)
2182 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2183 "experimental mount option 'dioread_nolock' "
2184 "for blocksize < PAGE_SIZE");
2189 static inline void ext4_show_quota_options(struct seq_file *seq,
2190 struct super_block *sb)
2192 #if defined(CONFIG_QUOTA)
2193 struct ext4_sb_info *sbi = EXT4_SB(sb);
2194 char *usr_qf_name, *grp_qf_name;
2196 if (sbi->s_jquota_fmt) {
2199 switch (sbi->s_jquota_fmt) {
2210 seq_printf(seq, ",jqfmt=%s", fmtname);
2214 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2215 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2217 seq_show_option(seq, "usrjquota", usr_qf_name);
2219 seq_show_option(seq, "grpjquota", grp_qf_name);
2224 static const char *token2str(int token)
2226 const struct match_token *t;
2228 for (t = tokens; t->token != Opt_err; t++)
2229 if (t->token == token && !strchr(t->pattern, '='))
2236 * - it's set to a non-default value OR
2237 * - if the per-sb default is different from the global default
2239 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2242 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 struct ext4_super_block *es = sbi->s_es;
2244 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2245 const struct mount_opts *m;
2246 char sep = nodefs ? '\n' : ',';
2248 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2249 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2251 if (sbi->s_sb_block != 1)
2252 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2254 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2255 int want_set = m->flags & MOPT_SET;
2256 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2257 (m->flags & MOPT_CLEAR_ERR))
2259 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2260 continue; /* skip if same as the default */
2262 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2263 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2264 continue; /* select Opt_noFoo vs Opt_Foo */
2265 SEQ_OPTS_PRINT("%s", token2str(m->token));
2268 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2269 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2270 SEQ_OPTS_PRINT("resuid=%u",
2271 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2272 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2273 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2274 SEQ_OPTS_PRINT("resgid=%u",
2275 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2276 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2277 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2278 SEQ_OPTS_PUTS("errors=remount-ro");
2279 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2280 SEQ_OPTS_PUTS("errors=continue");
2281 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2282 SEQ_OPTS_PUTS("errors=panic");
2283 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2284 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2285 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2286 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2287 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2288 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2289 if (sb->s_flags & SB_I_VERSION)
2290 SEQ_OPTS_PUTS("i_version");
2291 if (nodefs || sbi->s_stripe)
2292 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2293 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2294 (sbi->s_mount_opt ^ def_mount_opt)) {
2295 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2296 SEQ_OPTS_PUTS("data=journal");
2297 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2298 SEQ_OPTS_PUTS("data=ordered");
2299 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2300 SEQ_OPTS_PUTS("data=writeback");
2303 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2304 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2305 sbi->s_inode_readahead_blks);
2307 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2308 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2309 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2310 if (nodefs || sbi->s_max_dir_size_kb)
2311 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2312 if (test_opt(sb, DATA_ERR_ABORT))
2313 SEQ_OPTS_PUTS("data_err=abort");
2314 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2315 SEQ_OPTS_PUTS("test_dummy_encryption");
2317 ext4_show_quota_options(seq, sb);
2321 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2323 return _ext4_show_options(seq, root->d_sb, 0);
2326 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2328 struct super_block *sb = seq->private;
2331 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2332 rc = _ext4_show_options(seq, sb, 1);
2333 seq_puts(seq, "\n");
2337 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2340 struct ext4_sb_info *sbi = EXT4_SB(sb);
2343 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2344 ext4_msg(sb, KERN_ERR, "revision level too high, "
2345 "forcing read-only mode");
2350 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2351 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2352 "running e2fsck is recommended");
2353 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2354 ext4_msg(sb, KERN_WARNING,
2355 "warning: mounting fs with errors, "
2356 "running e2fsck is recommended");
2357 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2358 le16_to_cpu(es->s_mnt_count) >=
2359 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2360 ext4_msg(sb, KERN_WARNING,
2361 "warning: maximal mount count reached, "
2362 "running e2fsck is recommended");
2363 else if (le32_to_cpu(es->s_checkinterval) &&
2364 (ext4_get_tstamp(es, s_lastcheck) +
2365 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2366 ext4_msg(sb, KERN_WARNING,
2367 "warning: checktime reached, "
2368 "running e2fsck is recommended");
2369 if (!sbi->s_journal)
2370 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2371 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2372 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2373 le16_add_cpu(&es->s_mnt_count, 1);
2374 ext4_update_tstamp(es, s_mtime);
2376 ext4_set_feature_journal_needs_recovery(sb);
2378 err = ext4_commit_super(sb, 1);
2380 if (test_opt(sb, DEBUG))
2381 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2382 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2384 sbi->s_groups_count,
2385 EXT4_BLOCKS_PER_GROUP(sb),
2386 EXT4_INODES_PER_GROUP(sb),
2387 sbi->s_mount_opt, sbi->s_mount_opt2);
2389 cleancache_init_fs(sb);
2393 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2395 struct ext4_sb_info *sbi = EXT4_SB(sb);
2396 struct flex_groups **old_groups, **new_groups;
2399 if (!sbi->s_log_groups_per_flex)
2402 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2403 if (size <= sbi->s_flex_groups_allocated)
2406 new_groups = kvzalloc(roundup_pow_of_two(size *
2407 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2409 ext4_msg(sb, KERN_ERR,
2410 "not enough memory for %d flex group pointers", size);
2413 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2414 new_groups[i] = kvzalloc(roundup_pow_of_two(
2415 sizeof(struct flex_groups)),
2417 if (!new_groups[i]) {
2418 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2419 kvfree(new_groups[j]);
2421 ext4_msg(sb, KERN_ERR,
2422 "not enough memory for %d flex groups", size);
2427 old_groups = rcu_dereference(sbi->s_flex_groups);
2429 memcpy(new_groups, old_groups,
2430 (sbi->s_flex_groups_allocated *
2431 sizeof(struct flex_groups *)));
2433 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2434 sbi->s_flex_groups_allocated = size;
2436 ext4_kvfree_array_rcu(old_groups);
2440 static int ext4_fill_flex_info(struct super_block *sb)
2442 struct ext4_sb_info *sbi = EXT4_SB(sb);
2443 struct ext4_group_desc *gdp = NULL;
2444 struct flex_groups *fg;
2445 ext4_group_t flex_group;
2448 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2449 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2450 sbi->s_log_groups_per_flex = 0;
2454 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2458 for (i = 0; i < sbi->s_groups_count; i++) {
2459 gdp = ext4_get_group_desc(sb, i, NULL);
2461 flex_group = ext4_flex_group(sbi, i);
2462 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2463 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2464 atomic64_add(ext4_free_group_clusters(sb, gdp),
2465 &fg->free_clusters);
2466 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2474 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2475 struct ext4_group_desc *gdp)
2477 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2479 __le32 le_group = cpu_to_le32(block_group);
2480 struct ext4_sb_info *sbi = EXT4_SB(sb);
2482 if (ext4_has_metadata_csum(sbi->s_sb)) {
2483 /* Use new metadata_csum algorithm */
2485 __u16 dummy_csum = 0;
2487 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2489 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2490 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2491 sizeof(dummy_csum));
2492 offset += sizeof(dummy_csum);
2493 if (offset < sbi->s_desc_size)
2494 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2495 sbi->s_desc_size - offset);
2497 crc = csum32 & 0xFFFF;
2501 /* old crc16 code */
2502 if (!ext4_has_feature_gdt_csum(sb))
2505 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2506 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2507 crc = crc16(crc, (__u8 *)gdp, offset);
2508 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2509 /* for checksum of struct ext4_group_desc do the rest...*/
2510 if (ext4_has_feature_64bit(sb) &&
2511 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2512 crc = crc16(crc, (__u8 *)gdp + offset,
2513 le16_to_cpu(sbi->s_es->s_desc_size) -
2517 return cpu_to_le16(crc);
2520 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2521 struct ext4_group_desc *gdp)
2523 if (ext4_has_group_desc_csum(sb) &&
2524 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2530 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2531 struct ext4_group_desc *gdp)
2533 if (!ext4_has_group_desc_csum(sb))
2535 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2538 /* Called at mount-time, super-block is locked */
2539 static int ext4_check_descriptors(struct super_block *sb,
2540 ext4_fsblk_t sb_block,
2541 ext4_group_t *first_not_zeroed)
2543 struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2545 ext4_fsblk_t last_block;
2546 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2547 ext4_fsblk_t block_bitmap;
2548 ext4_fsblk_t inode_bitmap;
2549 ext4_fsblk_t inode_table;
2550 int flexbg_flag = 0;
2551 ext4_group_t i, grp = sbi->s_groups_count;
2553 if (ext4_has_feature_flex_bg(sb))
2556 ext4_debug("Checking group descriptors");
2558 for (i = 0; i < sbi->s_groups_count; i++) {
2559 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2561 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2562 last_block = ext4_blocks_count(sbi->s_es) - 1;
2564 last_block = first_block +
2565 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2567 if ((grp == sbi->s_groups_count) &&
2568 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2571 block_bitmap = ext4_block_bitmap(sb, gdp);
2572 if (block_bitmap == sb_block) {
2573 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2574 "Block bitmap for group %u overlaps "
2579 if (block_bitmap >= sb_block + 1 &&
2580 block_bitmap <= last_bg_block) {
2581 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2582 "Block bitmap for group %u overlaps "
2583 "block group descriptors", i);
2587 if (block_bitmap < first_block || block_bitmap > last_block) {
2588 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2589 "Block bitmap for group %u not in group "
2590 "(block %llu)!", i, block_bitmap);
2593 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2594 if (inode_bitmap == sb_block) {
2595 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2596 "Inode bitmap for group %u overlaps "
2601 if (inode_bitmap >= sb_block + 1 &&
2602 inode_bitmap <= last_bg_block) {
2603 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2604 "Inode bitmap for group %u overlaps "
2605 "block group descriptors", i);
2609 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2610 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2611 "Inode bitmap for group %u not in group "
2612 "(block %llu)!", i, inode_bitmap);
2615 inode_table = ext4_inode_table(sb, gdp);
2616 if (inode_table == sb_block) {
2617 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2618 "Inode table for group %u overlaps "
2623 if (inode_table >= sb_block + 1 &&
2624 inode_table <= last_bg_block) {
2625 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2626 "Inode table for group %u overlaps "
2627 "block group descriptors", i);
2631 if (inode_table < first_block ||
2632 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2633 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2634 "Inode table for group %u not in group "
2635 "(block %llu)!", i, inode_table);
2638 ext4_lock_group(sb, i);
2639 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2640 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2641 "Checksum for group %u failed (%u!=%u)",
2642 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2643 gdp)), le16_to_cpu(gdp->bg_checksum));
2644 if (!sb_rdonly(sb)) {
2645 ext4_unlock_group(sb, i);
2649 ext4_unlock_group(sb, i);
2651 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2653 if (NULL != first_not_zeroed)
2654 *first_not_zeroed = grp;
2658 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2659 * the superblock) which were deleted from all directories, but held open by
2660 * a process at the time of a crash. We walk the list and try to delete these
2661 * inodes at recovery time (only with a read-write filesystem).
2663 * In order to keep the orphan inode chain consistent during traversal (in
2664 * case of crash during recovery), we link each inode into the superblock
2665 * orphan list_head and handle it the same way as an inode deletion during
2666 * normal operation (which journals the operations for us).
2668 * We only do an iget() and an iput() on each inode, which is very safe if we
2669 * accidentally point at an in-use or already deleted inode. The worst that
2670 * can happen in this case is that we get a "bit already cleared" message from
2671 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2672 * e2fsck was run on this filesystem, and it must have already done the orphan
2673 * inode cleanup for us, so we can safely abort without any further action.
2675 static void ext4_orphan_cleanup(struct super_block *sb,
2676 struct ext4_super_block *es)
2678 unsigned int s_flags = sb->s_flags;
2679 int ret, nr_orphans = 0, nr_truncates = 0;
2681 int quota_update = 0;
2684 if (!es->s_last_orphan) {
2685 jbd_debug(4, "no orphan inodes to clean up\n");
2689 if (bdev_read_only(sb->s_bdev)) {
2690 ext4_msg(sb, KERN_ERR, "write access "
2691 "unavailable, skipping orphan cleanup");
2695 /* Check if feature set would not allow a r/w mount */
2696 if (!ext4_feature_set_ok(sb, 0)) {
2697 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2698 "unknown ROCOMPAT features");
2702 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2703 /* don't clear list on RO mount w/ errors */
2704 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2705 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2706 "clearing orphan list.\n");
2707 es->s_last_orphan = 0;
2709 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2713 if (s_flags & SB_RDONLY) {
2714 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2715 sb->s_flags &= ~SB_RDONLY;
2718 /* Needed for iput() to work correctly and not trash data */
2719 sb->s_flags |= SB_ACTIVE;
2722 * Turn on quotas which were not enabled for read-only mounts if
2723 * filesystem has quota feature, so that they are updated correctly.
2725 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2726 int ret = ext4_enable_quotas(sb);
2731 ext4_msg(sb, KERN_ERR,
2732 "Cannot turn on quotas: error %d", ret);
2735 /* Turn on journaled quotas used for old sytle */
2736 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2737 if (EXT4_SB(sb)->s_qf_names[i]) {
2738 int ret = ext4_quota_on_mount(sb, i);
2743 ext4_msg(sb, KERN_ERR,
2744 "Cannot turn on journaled "
2745 "quota: type %d: error %d", i, ret);
2750 while (es->s_last_orphan) {
2751 struct inode *inode;
2754 * We may have encountered an error during cleanup; if
2755 * so, skip the rest.
2757 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2758 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2759 es->s_last_orphan = 0;
2763 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2764 if (IS_ERR(inode)) {
2765 es->s_last_orphan = 0;
2769 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2770 dquot_initialize(inode);
2771 if (inode->i_nlink) {
2772 if (test_opt(sb, DEBUG))
2773 ext4_msg(sb, KERN_DEBUG,
2774 "%s: truncating inode %lu to %lld bytes",
2775 __func__, inode->i_ino, inode->i_size);
2776 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2777 inode->i_ino, inode->i_size);
2779 truncate_inode_pages(inode->i_mapping, inode->i_size);
2780 ret = ext4_truncate(inode);
2782 ext4_std_error(inode->i_sb, ret);
2783 inode_unlock(inode);
2786 if (test_opt(sb, DEBUG))
2787 ext4_msg(sb, KERN_DEBUG,
2788 "%s: deleting unreferenced inode %lu",
2789 __func__, inode->i_ino);
2790 jbd_debug(2, "deleting unreferenced inode %lu\n",
2794 iput(inode); /* The delete magic happens here! */
2797 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2800 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2801 PLURAL(nr_orphans));
2803 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2804 PLURAL(nr_truncates));
2806 /* Turn off quotas if they were enabled for orphan cleanup */
2808 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2809 if (sb_dqopt(sb)->files[i])
2810 dquot_quota_off(sb, i);
2814 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2818 * Maximal extent format file size.
2819 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2820 * extent format containers, within a sector_t, and within i_blocks
2821 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2822 * so that won't be a limiting factor.
2824 * However there is other limiting factor. We do store extents in the form
2825 * of starting block and length, hence the resulting length of the extent
2826 * covering maximum file size must fit into on-disk format containers as
2827 * well. Given that length is always by 1 unit bigger than max unit (because
2828 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2830 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2832 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2835 loff_t upper_limit = MAX_LFS_FILESIZE;
2837 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2839 if (!has_huge_files) {
2840 upper_limit = (1LL << 32) - 1;
2842 /* total blocks in file system block size */
2843 upper_limit >>= (blkbits - 9);
2844 upper_limit <<= blkbits;
2848 * 32-bit extent-start container, ee_block. We lower the maxbytes
2849 * by one fs block, so ee_len can cover the extent of maximum file
2852 res = (1LL << 32) - 1;
2855 /* Sanity check against vm- & vfs- imposed limits */
2856 if (res > upper_limit)
2863 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2864 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2865 * We need to be 1 filesystem block less than the 2^48 sector limit.
2867 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2869 loff_t res = EXT4_NDIR_BLOCKS;
2872 /* This is calculated to be the largest file size for a dense, block
2873 * mapped file such that the file's total number of 512-byte sectors,
2874 * including data and all indirect blocks, does not exceed (2^48 - 1).
2876 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2877 * number of 512-byte sectors of the file.
2880 if (!has_huge_files) {
2882 * !has_huge_files or implies that the inode i_block field
2883 * represents total file blocks in 2^32 512-byte sectors ==
2884 * size of vfs inode i_blocks * 8
2886 upper_limit = (1LL << 32) - 1;
2888 /* total blocks in file system block size */
2889 upper_limit >>= (bits - 9);
2893 * We use 48 bit ext4_inode i_blocks
2894 * With EXT4_HUGE_FILE_FL set the i_blocks
2895 * represent total number of blocks in
2896 * file system block size
2898 upper_limit = (1LL << 48) - 1;
2902 /* indirect blocks */
2904 /* double indirect blocks */
2905 meta_blocks += 1 + (1LL << (bits-2));
2906 /* tripple indirect blocks */
2907 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2909 upper_limit -= meta_blocks;
2910 upper_limit <<= bits;
2912 res += 1LL << (bits-2);
2913 res += 1LL << (2*(bits-2));
2914 res += 1LL << (3*(bits-2));
2916 if (res > upper_limit)
2919 if (res > MAX_LFS_FILESIZE)
2920 res = MAX_LFS_FILESIZE;
2925 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2926 ext4_fsblk_t logical_sb_block, int nr)
2928 struct ext4_sb_info *sbi = EXT4_SB(sb);
2929 ext4_group_t bg, first_meta_bg;
2932 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2934 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2935 return logical_sb_block + nr + 1;
2936 bg = sbi->s_desc_per_block * nr;
2937 if (ext4_bg_has_super(sb, bg))
2941 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2942 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2943 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2946 if (sb->s_blocksize == 1024 && nr == 0 &&
2947 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2950 return (has_super + ext4_group_first_block_no(sb, bg));
2954 * ext4_get_stripe_size: Get the stripe size.
2955 * @sbi: In memory super block info
2957 * If we have specified it via mount option, then
2958 * use the mount option value. If the value specified at mount time is
2959 * greater than the blocks per group use the super block value.
2960 * If the super block value is greater than blocks per group return 0.
2961 * Allocator needs it be less than blocks per group.
2964 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2966 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2967 unsigned long stripe_width =
2968 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2971 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2972 ret = sbi->s_stripe;
2973 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2975 else if (stride && stride <= sbi->s_blocks_per_group)
2981 * If the stripe width is 1, this makes no sense and
2982 * we set it to 0 to turn off stripe handling code.
2991 * Check whether this filesystem can be mounted based on
2992 * the features present and the RDONLY/RDWR mount requested.
2993 * Returns 1 if this filesystem can be mounted as requested,
2994 * 0 if it cannot be.
2996 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2998 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2999 ext4_msg(sb, KERN_ERR,
3000 "Couldn't mount because of "
3001 "unsupported optional features (%x)",
3002 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3003 ~EXT4_FEATURE_INCOMPAT_SUPP));
3007 #ifndef CONFIG_UNICODE
3008 if (ext4_has_feature_casefold(sb)) {
3009 ext4_msg(sb, KERN_ERR,
3010 "Filesystem with casefold feature cannot be "
3011 "mounted without CONFIG_UNICODE");
3019 if (ext4_has_feature_readonly(sb)) {
3020 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3021 sb->s_flags |= SB_RDONLY;
3025 /* Check that feature set is OK for a read-write mount */
3026 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3027 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3028 "unsupported optional features (%x)",
3029 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3030 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3033 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3034 ext4_msg(sb, KERN_ERR,
3035 "Can't support bigalloc feature without "
3036 "extents feature\n");
3040 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3041 if (!readonly && (ext4_has_feature_quota(sb) ||
3042 ext4_has_feature_project(sb))) {
3043 ext4_msg(sb, KERN_ERR,
3044 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3047 #endif /* CONFIG_QUOTA */
3052 * This function is called once a day if we have errors logged
3053 * on the file system
3055 static void print_daily_error_info(struct timer_list *t)
3057 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3058 struct super_block *sb = sbi->s_sb;
3059 struct ext4_super_block *es = sbi->s_es;
3061 if (es->s_error_count)
3062 /* fsck newer than v1.41.13 is needed to clean this condition. */
3063 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3064 le32_to_cpu(es->s_error_count));
3065 if (es->s_first_error_time) {
3066 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3068 ext4_get_tstamp(es, s_first_error_time),
3069 (int) sizeof(es->s_first_error_func),
3070 es->s_first_error_func,
3071 le32_to_cpu(es->s_first_error_line));
3072 if (es->s_first_error_ino)
3073 printk(KERN_CONT ": inode %u",
3074 le32_to_cpu(es->s_first_error_ino));
3075 if (es->s_first_error_block)
3076 printk(KERN_CONT ": block %llu", (unsigned long long)
3077 le64_to_cpu(es->s_first_error_block));
3078 printk(KERN_CONT "\n");
3080 if (es->s_last_error_time) {
3081 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3083 ext4_get_tstamp(es, s_last_error_time),
3084 (int) sizeof(es->s_last_error_func),
3085 es->s_last_error_func,
3086 le32_to_cpu(es->s_last_error_line));
3087 if (es->s_last_error_ino)
3088 printk(KERN_CONT ": inode %u",
3089 le32_to_cpu(es->s_last_error_ino));
3090 if (es->s_last_error_block)
3091 printk(KERN_CONT ": block %llu", (unsigned long long)
3092 le64_to_cpu(es->s_last_error_block));
3093 printk(KERN_CONT "\n");
3095 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3098 /* Find next suitable group and run ext4_init_inode_table */
3099 static int ext4_run_li_request(struct ext4_li_request *elr)
3101 struct ext4_group_desc *gdp = NULL;
3102 ext4_group_t group, ngroups;
3103 struct super_block *sb;
3104 unsigned long timeout = 0;
3108 ngroups = EXT4_SB(sb)->s_groups_count;
3110 for (group = elr->lr_next_group; group < ngroups; group++) {
3111 gdp = ext4_get_group_desc(sb, group, NULL);
3117 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3121 if (group >= ngroups)
3126 ret = ext4_init_inode_table(sb, group,
3127 elr->lr_timeout ? 0 : 1);
3128 if (elr->lr_timeout == 0) {
3129 timeout = (jiffies - timeout) *
3130 elr->lr_sbi->s_li_wait_mult;
3131 elr->lr_timeout = timeout;
3133 elr->lr_next_sched = jiffies + elr->lr_timeout;
3134 elr->lr_next_group = group + 1;
3140 * Remove lr_request from the list_request and free the
3141 * request structure. Should be called with li_list_mtx held
3143 static void ext4_remove_li_request(struct ext4_li_request *elr)
3145 struct ext4_sb_info *sbi;
3152 list_del(&elr->lr_request);
3153 sbi->s_li_request = NULL;
3157 static void ext4_unregister_li_request(struct super_block *sb)
3159 mutex_lock(&ext4_li_mtx);
3160 if (!ext4_li_info) {
3161 mutex_unlock(&ext4_li_mtx);
3165 mutex_lock(&ext4_li_info->li_list_mtx);
3166 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3167 mutex_unlock(&ext4_li_info->li_list_mtx);
3168 mutex_unlock(&ext4_li_mtx);
3171 static struct task_struct *ext4_lazyinit_task;
3174 * This is the function where ext4lazyinit thread lives. It walks
3175 * through the request list searching for next scheduled filesystem.
3176 * When such a fs is found, run the lazy initialization request
3177 * (ext4_rn_li_request) and keep track of the time spend in this
3178 * function. Based on that time we compute next schedule time of
3179 * the request. When walking through the list is complete, compute
3180 * next waking time and put itself into sleep.
3182 static int ext4_lazyinit_thread(void *arg)
3184 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3185 struct list_head *pos, *n;
3186 struct ext4_li_request *elr;
3187 unsigned long next_wakeup, cur;
3189 BUG_ON(NULL == eli);
3193 next_wakeup = MAX_JIFFY_OFFSET;
3195 mutex_lock(&eli->li_list_mtx);
3196 if (list_empty(&eli->li_request_list)) {
3197 mutex_unlock(&eli->li_list_mtx);
3200 list_for_each_safe(pos, n, &eli->li_request_list) {
3203 elr = list_entry(pos, struct ext4_li_request,
3206 if (time_before(jiffies, elr->lr_next_sched)) {
3207 if (time_before(elr->lr_next_sched, next_wakeup))
3208 next_wakeup = elr->lr_next_sched;
3211 if (down_read_trylock(&elr->lr_super->s_umount)) {
3212 if (sb_start_write_trylock(elr->lr_super)) {
3215 * We hold sb->s_umount, sb can not
3216 * be removed from the list, it is
3217 * now safe to drop li_list_mtx
3219 mutex_unlock(&eli->li_list_mtx);
3220 err = ext4_run_li_request(elr);
3221 sb_end_write(elr->lr_super);
3222 mutex_lock(&eli->li_list_mtx);
3225 up_read((&elr->lr_super->s_umount));
3227 /* error, remove the lazy_init job */
3229 ext4_remove_li_request(elr);
3233 elr->lr_next_sched = jiffies +
3235 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3237 if (time_before(elr->lr_next_sched, next_wakeup))
3238 next_wakeup = elr->lr_next_sched;
3240 mutex_unlock(&eli->li_list_mtx);
3245 if ((time_after_eq(cur, next_wakeup)) ||
3246 (MAX_JIFFY_OFFSET == next_wakeup)) {
3251 schedule_timeout_interruptible(next_wakeup - cur);
3253 if (kthread_should_stop()) {
3254 ext4_clear_request_list();
3261 * It looks like the request list is empty, but we need
3262 * to check it under the li_list_mtx lock, to prevent any
3263 * additions into it, and of course we should lock ext4_li_mtx
3264 * to atomically free the list and ext4_li_info, because at
3265 * this point another ext4 filesystem could be registering
3268 mutex_lock(&ext4_li_mtx);
3269 mutex_lock(&eli->li_list_mtx);
3270 if (!list_empty(&eli->li_request_list)) {
3271 mutex_unlock(&eli->li_list_mtx);
3272 mutex_unlock(&ext4_li_mtx);
3275 mutex_unlock(&eli->li_list_mtx);
3276 kfree(ext4_li_info);
3277 ext4_li_info = NULL;
3278 mutex_unlock(&ext4_li_mtx);
3283 static void ext4_clear_request_list(void)
3285 struct list_head *pos, *n;
3286 struct ext4_li_request *elr;
3288 mutex_lock(&ext4_li_info->li_list_mtx);
3289 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3290 elr = list_entry(pos, struct ext4_li_request,
3292 ext4_remove_li_request(elr);
3294 mutex_unlock(&ext4_li_info->li_list_mtx);
3297 static int ext4_run_lazyinit_thread(void)
3299 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3300 ext4_li_info, "ext4lazyinit");
3301 if (IS_ERR(ext4_lazyinit_task)) {
3302 int err = PTR_ERR(ext4_lazyinit_task);
3303 ext4_clear_request_list();
3304 kfree(ext4_li_info);
3305 ext4_li_info = NULL;
3306 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3307 "initialization thread\n",
3311 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3316 * Check whether it make sense to run itable init. thread or not.
3317 * If there is at least one uninitialized inode table, return
3318 * corresponding group number, else the loop goes through all
3319 * groups and return total number of groups.
3321 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3323 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3324 struct ext4_group_desc *gdp = NULL;
3326 if (!ext4_has_group_desc_csum(sb))
3329 for (group = 0; group < ngroups; group++) {
3330 gdp = ext4_get_group_desc(sb, group, NULL);
3334 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3341 static int ext4_li_info_new(void)
3343 struct ext4_lazy_init *eli = NULL;
3345 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3349 INIT_LIST_HEAD(&eli->li_request_list);
3350 mutex_init(&eli->li_list_mtx);
3352 eli->li_state |= EXT4_LAZYINIT_QUIT;
3359 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3362 struct ext4_sb_info *sbi = EXT4_SB(sb);
3363 struct ext4_li_request *elr;
3365 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3371 elr->lr_next_group = start;
3374 * Randomize first schedule time of the request to
3375 * spread the inode table initialization requests
3378 elr->lr_next_sched = jiffies + (prandom_u32() %
3379 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3383 int ext4_register_li_request(struct super_block *sb,
3384 ext4_group_t first_not_zeroed)
3386 struct ext4_sb_info *sbi = EXT4_SB(sb);
3387 struct ext4_li_request *elr = NULL;
3388 ext4_group_t ngroups = sbi->s_groups_count;
3391 mutex_lock(&ext4_li_mtx);
3392 if (sbi->s_li_request != NULL) {
3394 * Reset timeout so it can be computed again, because
3395 * s_li_wait_mult might have changed.
3397 sbi->s_li_request->lr_timeout = 0;
3401 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3402 !test_opt(sb, INIT_INODE_TABLE))
3405 elr = ext4_li_request_new(sb, first_not_zeroed);
3411 if (NULL == ext4_li_info) {
3412 ret = ext4_li_info_new();
3417 mutex_lock(&ext4_li_info->li_list_mtx);
3418 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3419 mutex_unlock(&ext4_li_info->li_list_mtx);
3421 sbi->s_li_request = elr;
3423 * set elr to NULL here since it has been inserted to
3424 * the request_list and the removal and free of it is
3425 * handled by ext4_clear_request_list from now on.
3429 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3430 ret = ext4_run_lazyinit_thread();
3435 mutex_unlock(&ext4_li_mtx);
3442 * We do not need to lock anything since this is called on
3445 static void ext4_destroy_lazyinit_thread(void)
3448 * If thread exited earlier
3449 * there's nothing to be done.
3451 if (!ext4_li_info || !ext4_lazyinit_task)
3454 kthread_stop(ext4_lazyinit_task);
3457 static int set_journal_csum_feature_set(struct super_block *sb)
3460 int compat, incompat;
3461 struct ext4_sb_info *sbi = EXT4_SB(sb);
3463 if (ext4_has_metadata_csum(sb)) {
3464 /* journal checksum v3 */
3466 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3468 /* journal checksum v1 */
3469 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3473 jbd2_journal_clear_features(sbi->s_journal,
3474 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3475 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3476 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3477 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3478 ret = jbd2_journal_set_features(sbi->s_journal,
3480 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3482 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3483 ret = jbd2_journal_set_features(sbi->s_journal,
3486 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3487 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3489 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3490 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3497 * Note: calculating the overhead so we can be compatible with
3498 * historical BSD practice is quite difficult in the face of
3499 * clusters/bigalloc. This is because multiple metadata blocks from
3500 * different block group can end up in the same allocation cluster.
3501 * Calculating the exact overhead in the face of clustered allocation
3502 * requires either O(all block bitmaps) in memory or O(number of block
3503 * groups**2) in time. We will still calculate the superblock for
3504 * older file systems --- and if we come across with a bigalloc file
3505 * system with zero in s_overhead_clusters the estimate will be close to
3506 * correct especially for very large cluster sizes --- but for newer
3507 * file systems, it's better to calculate this figure once at mkfs
3508 * time, and store it in the superblock. If the superblock value is
3509 * present (even for non-bigalloc file systems), we will use it.
3511 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3514 struct ext4_sb_info *sbi = EXT4_SB(sb);
3515 struct ext4_group_desc *gdp;
3516 ext4_fsblk_t first_block, last_block, b;
3517 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3518 int s, j, count = 0;
3520 if (!ext4_has_feature_bigalloc(sb))
3521 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3522 sbi->s_itb_per_group + 2);
3524 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3525 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3526 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3527 for (i = 0; i < ngroups; i++) {
3528 gdp = ext4_get_group_desc(sb, i, NULL);
3529 b = ext4_block_bitmap(sb, gdp);
3530 if (b >= first_block && b <= last_block) {
3531 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3534 b = ext4_inode_bitmap(sb, gdp);
3535 if (b >= first_block && b <= last_block) {
3536 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3539 b = ext4_inode_table(sb, gdp);
3540 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3541 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3542 int c = EXT4_B2C(sbi, b - first_block);
3543 ext4_set_bit(c, buf);
3549 if (ext4_bg_has_super(sb, grp)) {
3550 ext4_set_bit(s++, buf);
3553 j = ext4_bg_num_gdb(sb, grp);
3554 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3555 ext4_error(sb, "Invalid number of block group "
3556 "descriptor blocks: %d", j);
3557 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3561 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3565 return EXT4_CLUSTERS_PER_GROUP(sb) -
3566 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3570 * Compute the overhead and stash it in sbi->s_overhead
3572 int ext4_calculate_overhead(struct super_block *sb)
3574 struct ext4_sb_info *sbi = EXT4_SB(sb);
3575 struct ext4_super_block *es = sbi->s_es;
3576 struct inode *j_inode;
3577 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3578 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3579 ext4_fsblk_t overhead = 0;
3580 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3586 * Compute the overhead (FS structures). This is constant
3587 * for a given filesystem unless the number of block groups
3588 * changes so we cache the previous value until it does.
3592 * All of the blocks before first_data_block are overhead
3594 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3597 * Add the overhead found in each block group
3599 for (i = 0; i < ngroups; i++) {
3602 blks = count_overhead(sb, i, buf);
3605 memset(buf, 0, PAGE_SIZE);
3610 * Add the internal journal blocks whether the journal has been
3613 if (sbi->s_journal && !sbi->journal_bdev)
3614 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3615 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3616 /* j_inum for internal journal is non-zero */
3617 j_inode = ext4_get_journal_inode(sb, j_inum);
3619 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3620 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3623 ext4_msg(sb, KERN_ERR, "can't get journal size");
3626 sbi->s_overhead = overhead;
3628 free_page((unsigned long) buf);
3632 static void ext4_set_resv_clusters(struct super_block *sb)
3634 ext4_fsblk_t resv_clusters;
3635 struct ext4_sb_info *sbi = EXT4_SB(sb);
3638 * There's no need to reserve anything when we aren't using extents.
3639 * The space estimates are exact, there are no unwritten extents,
3640 * hole punching doesn't need new metadata... This is needed especially
3641 * to keep ext2/3 backward compatibility.
3643 if (!ext4_has_feature_extents(sb))
3646 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3647 * This should cover the situations where we can not afford to run
3648 * out of space like for example punch hole, or converting
3649 * unwritten extents in delalloc path. In most cases such
3650 * allocation would require 1, or 2 blocks, higher numbers are
3653 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3654 sbi->s_cluster_bits);
3656 do_div(resv_clusters, 50);
3657 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3659 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3662 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3664 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3665 char *orig_data = kstrdup(data, GFP_KERNEL);
3666 struct buffer_head *bh, **group_desc;
3667 struct ext4_super_block *es = NULL;
3668 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3669 struct flex_groups **flex_groups;
3671 ext4_fsblk_t sb_block = get_sb_block(&data);
3672 ext4_fsblk_t logical_sb_block;
3673 unsigned long offset = 0;
3674 unsigned long journal_devnum = 0;
3675 unsigned long def_mount_opts;
3679 int blocksize, clustersize;
3680 unsigned int db_count;
3682 int needs_recovery, has_huge_files, has_bigalloc;
3685 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3686 ext4_group_t first_not_zeroed;
3688 if ((data && !orig_data) || !sbi)
3691 sbi->s_daxdev = dax_dev;
3692 sbi->s_blockgroup_lock =
3693 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3694 if (!sbi->s_blockgroup_lock)
3697 sb->s_fs_info = sbi;
3699 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3700 sbi->s_sb_block = sb_block;
3701 if (sb->s_bdev->bd_part)
3702 sbi->s_sectors_written_start =
3703 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3705 /* Cleanup superblock name */
3706 strreplace(sb->s_id, '/', '!');
3708 /* -EINVAL is default */
3710 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3712 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3717 * The ext4 superblock will not be buffer aligned for other than 1kB
3718 * block sizes. We need to calculate the offset from buffer start.
3720 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3721 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3722 offset = do_div(logical_sb_block, blocksize);
3724 logical_sb_block = sb_block;
3727 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3728 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3732 * Note: s_es must be initialized as soon as possible because
3733 * some ext4 macro-instructions depend on its value
3735 es = (struct ext4_super_block *) (bh->b_data + offset);
3737 sb->s_magic = le16_to_cpu(es->s_magic);
3738 if (sb->s_magic != EXT4_SUPER_MAGIC)
3740 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3742 /* Warn if metadata_csum and gdt_csum are both set. */
3743 if (ext4_has_feature_metadata_csum(sb) &&
3744 ext4_has_feature_gdt_csum(sb))
3745 ext4_warning(sb, "metadata_csum and uninit_bg are "
3746 "redundant flags; please run fsck.");
3748 /* Check for a known checksum algorithm */
3749 if (!ext4_verify_csum_type(sb, es)) {
3750 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3751 "unknown checksum algorithm.");
3756 /* Load the checksum driver */
3757 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3758 if (IS_ERR(sbi->s_chksum_driver)) {
3759 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3760 ret = PTR_ERR(sbi->s_chksum_driver);
3761 sbi->s_chksum_driver = NULL;
3765 /* Check superblock checksum */
3766 if (!ext4_superblock_csum_verify(sb, es)) {
3767 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3768 "invalid superblock checksum. Run e2fsck?");
3774 /* Precompute checksum seed for all metadata */
3775 if (ext4_has_feature_csum_seed(sb))
3776 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3777 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3778 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3779 sizeof(es->s_uuid));
3781 /* Set defaults before we parse the mount options */
3782 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3783 set_opt(sb, INIT_INODE_TABLE);
3784 if (def_mount_opts & EXT4_DEFM_DEBUG)
3786 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3788 if (def_mount_opts & EXT4_DEFM_UID16)
3789 set_opt(sb, NO_UID32);
3790 /* xattr user namespace & acls are now defaulted on */
3791 set_opt(sb, XATTR_USER);
3792 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3793 set_opt(sb, POSIX_ACL);
3795 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3796 if (ext4_has_metadata_csum(sb))
3797 set_opt(sb, JOURNAL_CHECKSUM);
3799 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3800 set_opt(sb, JOURNAL_DATA);
3801 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3802 set_opt(sb, ORDERED_DATA);
3803 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3804 set_opt(sb, WRITEBACK_DATA);
3806 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3807 set_opt(sb, ERRORS_PANIC);
3808 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3809 set_opt(sb, ERRORS_CONT);
3811 set_opt(sb, ERRORS_RO);
3812 /* block_validity enabled by default; disable with noblock_validity */
3813 set_opt(sb, BLOCK_VALIDITY);
3814 if (def_mount_opts & EXT4_DEFM_DISCARD)
3815 set_opt(sb, DISCARD);
3817 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3818 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3819 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3820 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3821 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3823 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3824 set_opt(sb, BARRIER);
3827 * enable delayed allocation by default
3828 * Use -o nodelalloc to turn it off
3830 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3831 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3832 set_opt(sb, DELALLOC);
3835 * set default s_li_wait_mult for lazyinit, for the case there is
3836 * no mount option specified.
3838 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3840 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3842 if (blocksize == PAGE_SIZE)
3843 set_opt(sb, DIOREAD_NOLOCK);
3845 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3846 blocksize > EXT4_MAX_BLOCK_SIZE) {
3847 ext4_msg(sb, KERN_ERR,
3848 "Unsupported filesystem blocksize %d (%d log_block_size)",
3849 blocksize, le32_to_cpu(es->s_log_block_size));
3853 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3854 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3855 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3857 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3858 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3859 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3860 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3864 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3865 (!is_power_of_2(sbi->s_inode_size)) ||
3866 (sbi->s_inode_size > blocksize)) {
3867 ext4_msg(sb, KERN_ERR,
3868 "unsupported inode size: %d",
3870 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3874 * i_atime_extra is the last extra field available for
3875 * [acm]times in struct ext4_inode. Checking for that
3876 * field should suffice to ensure we have extra space
3879 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3880 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3881 sb->s_time_gran = 1;
3882 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3884 sb->s_time_gran = NSEC_PER_SEC;
3885 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3887 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3889 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3890 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3891 EXT4_GOOD_OLD_INODE_SIZE;
3892 if (ext4_has_feature_extra_isize(sb)) {
3893 unsigned v, max = (sbi->s_inode_size -
3894 EXT4_GOOD_OLD_INODE_SIZE);
3896 v = le16_to_cpu(es->s_want_extra_isize);
3898 ext4_msg(sb, KERN_ERR,
3899 "bad s_want_extra_isize: %d", v);
3902 if (sbi->s_want_extra_isize < v)
3903 sbi->s_want_extra_isize = v;
3905 v = le16_to_cpu(es->s_min_extra_isize);
3907 ext4_msg(sb, KERN_ERR,
3908 "bad s_min_extra_isize: %d", v);
3911 if (sbi->s_want_extra_isize < v)
3912 sbi->s_want_extra_isize = v;
3916 if (sbi->s_es->s_mount_opts[0]) {
3917 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3918 sizeof(sbi->s_es->s_mount_opts),
3922 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3923 &journal_ioprio, 0)) {
3924 ext4_msg(sb, KERN_WARNING,
3925 "failed to parse options in superblock: %s",
3928 kfree(s_mount_opts);
3930 sbi->s_def_mount_opt = sbi->s_mount_opt;
3931 if (!parse_options((char *) data, sb, &journal_devnum,
3932 &journal_ioprio, 0))
3935 #ifdef CONFIG_UNICODE
3936 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3937 const struct ext4_sb_encodings *encoding_info;
3938 struct unicode_map *encoding;
3939 __u16 encoding_flags;
3941 if (ext4_has_feature_encrypt(sb)) {
3942 ext4_msg(sb, KERN_ERR,
3943 "Can't mount with encoding and encryption");
3947 if (ext4_sb_read_encoding(es, &encoding_info,
3949 ext4_msg(sb, KERN_ERR,
3950 "Encoding requested by superblock is unknown");
3954 encoding = utf8_load(encoding_info->version);
3955 if (IS_ERR(encoding)) {
3956 ext4_msg(sb, KERN_ERR,
3957 "can't mount with superblock charset: %s-%s "
3958 "not supported by the kernel. flags: 0x%x.",
3959 encoding_info->name, encoding_info->version,
3963 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3964 "%s-%s with flags 0x%hx", encoding_info->name,
3965 encoding_info->version?:"\b", encoding_flags);
3967 sbi->s_encoding = encoding;
3968 sbi->s_encoding_flags = encoding_flags;
3972 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3973 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
3974 /* can't mount with both data=journal and dioread_nolock. */
3975 clear_opt(sb, DIOREAD_NOLOCK);
3976 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3977 ext4_msg(sb, KERN_ERR, "can't mount with "
3978 "both data=journal and delalloc");
3981 if (test_opt(sb, DAX)) {
3982 ext4_msg(sb, KERN_ERR, "can't mount with "
3983 "both data=journal and dax");
3986 if (ext4_has_feature_encrypt(sb)) {
3987 ext4_msg(sb, KERN_WARNING,
3988 "encrypted files will use data=ordered "
3989 "instead of data journaling mode");
3991 if (test_opt(sb, DELALLOC))
3992 clear_opt(sb, DELALLOC);
3994 sb->s_iflags |= SB_I_CGROUPWB;
3997 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3998 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4000 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4001 (ext4_has_compat_features(sb) ||
4002 ext4_has_ro_compat_features(sb) ||
4003 ext4_has_incompat_features(sb)))
4004 ext4_msg(sb, KERN_WARNING,
4005 "feature flags set on rev 0 fs, "
4006 "running e2fsck is recommended");
4008 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4009 set_opt2(sb, HURD_COMPAT);
4010 if (ext4_has_feature_64bit(sb)) {
4011 ext4_msg(sb, KERN_ERR,
4012 "The Hurd can't support 64-bit file systems");
4017 * ea_inode feature uses l_i_version field which is not
4018 * available in HURD_COMPAT mode.
4020 if (ext4_has_feature_ea_inode(sb)) {
4021 ext4_msg(sb, KERN_ERR,
4022 "ea_inode feature is not supported for Hurd");
4027 if (IS_EXT2_SB(sb)) {
4028 if (ext2_feature_set_ok(sb))
4029 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4030 "using the ext4 subsystem");
4033 * If we're probing be silent, if this looks like
4034 * it's actually an ext[34] filesystem.
4036 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4038 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4039 "to feature incompatibilities");
4044 if (IS_EXT3_SB(sb)) {
4045 if (ext3_feature_set_ok(sb))
4046 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4047 "using the ext4 subsystem");
4050 * If we're probing be silent, if this looks like
4051 * it's actually an ext4 filesystem.
4053 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4055 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4056 "to feature incompatibilities");
4062 * Check feature flags regardless of the revision level, since we
4063 * previously didn't change the revision level when setting the flags,
4064 * so there is a chance incompat flags are set on a rev 0 filesystem.
4066 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4069 if (le32_to_cpu(es->s_log_block_size) >
4070 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4071 ext4_msg(sb, KERN_ERR,
4072 "Invalid log block size: %u",
4073 le32_to_cpu(es->s_log_block_size));
4076 if (le32_to_cpu(es->s_log_cluster_size) >
4077 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4078 ext4_msg(sb, KERN_ERR,
4079 "Invalid log cluster size: %u",
4080 le32_to_cpu(es->s_log_cluster_size));
4084 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4085 ext4_msg(sb, KERN_ERR,
4086 "Number of reserved GDT blocks insanely large: %d",
4087 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4091 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4092 if (ext4_has_feature_inline_data(sb)) {
4093 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4094 " that may contain inline data");
4097 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4098 ext4_msg(sb, KERN_ERR,
4099 "DAX unsupported by block device.");
4104 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4105 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4106 es->s_encryption_level);
4110 if (sb->s_blocksize != blocksize) {
4111 /* Validate the filesystem blocksize */
4112 if (!sb_set_blocksize(sb, blocksize)) {
4113 ext4_msg(sb, KERN_ERR, "bad block size %d",
4119 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4120 offset = do_div(logical_sb_block, blocksize);
4121 bh = sb_bread_unmovable(sb, logical_sb_block);
4123 ext4_msg(sb, KERN_ERR,
4124 "Can't read superblock on 2nd try");
4127 es = (struct ext4_super_block *)(bh->b_data + offset);
4129 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4130 ext4_msg(sb, KERN_ERR,
4131 "Magic mismatch, very weird!");
4136 has_huge_files = ext4_has_feature_huge_file(sb);
4137 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4139 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4141 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4142 if (ext4_has_feature_64bit(sb)) {
4143 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4144 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4145 !is_power_of_2(sbi->s_desc_size)) {
4146 ext4_msg(sb, KERN_ERR,
4147 "unsupported descriptor size %lu",
4152 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4154 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4155 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4157 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4158 if (sbi->s_inodes_per_block == 0)
4160 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4161 sbi->s_inodes_per_group > blocksize * 8) {
4162 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4163 sbi->s_inodes_per_group);
4166 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4167 sbi->s_inodes_per_block;
4168 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4170 sbi->s_mount_state = le16_to_cpu(es->s_state);
4171 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4172 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4174 for (i = 0; i < 4; i++)
4175 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4176 sbi->s_def_hash_version = es->s_def_hash_version;
4177 if (ext4_has_feature_dir_index(sb)) {
4178 i = le32_to_cpu(es->s_flags);
4179 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4180 sbi->s_hash_unsigned = 3;
4181 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4182 #ifdef __CHAR_UNSIGNED__
4185 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4186 sbi->s_hash_unsigned = 3;
4190 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4195 /* Handle clustersize */
4196 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4197 has_bigalloc = ext4_has_feature_bigalloc(sb);
4199 if (clustersize < blocksize) {
4200 ext4_msg(sb, KERN_ERR,
4201 "cluster size (%d) smaller than "
4202 "block size (%d)", clustersize, blocksize);
4205 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4206 le32_to_cpu(es->s_log_block_size);
4207 sbi->s_clusters_per_group =
4208 le32_to_cpu(es->s_clusters_per_group);
4209 if (sbi->s_clusters_per_group > blocksize * 8) {
4210 ext4_msg(sb, KERN_ERR,
4211 "#clusters per group too big: %lu",
4212 sbi->s_clusters_per_group);
4215 if (sbi->s_blocks_per_group !=
4216 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4217 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4218 "clusters per group (%lu) inconsistent",
4219 sbi->s_blocks_per_group,
4220 sbi->s_clusters_per_group);
4224 if (clustersize != blocksize) {
4225 ext4_msg(sb, KERN_ERR,
4226 "fragment/cluster size (%d) != "
4227 "block size (%d)", clustersize, blocksize);
4230 if (sbi->s_blocks_per_group > blocksize * 8) {
4231 ext4_msg(sb, KERN_ERR,
4232 "#blocks per group too big: %lu",
4233 sbi->s_blocks_per_group);
4236 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4237 sbi->s_cluster_bits = 0;
4239 sbi->s_cluster_ratio = clustersize / blocksize;
4241 /* Do we have standard group size of clustersize * 8 blocks ? */
4242 if (sbi->s_blocks_per_group == clustersize << 3)
4243 set_opt2(sb, STD_GROUP_SIZE);
4246 * Test whether we have more sectors than will fit in sector_t,
4247 * and whether the max offset is addressable by the page cache.
4249 err = generic_check_addressable(sb->s_blocksize_bits,
4250 ext4_blocks_count(es));
4252 ext4_msg(sb, KERN_ERR, "filesystem"
4253 " too large to mount safely on this system");
4257 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4260 /* check blocks count against device size */
4261 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4262 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4263 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4264 "exceeds size of device (%llu blocks)",
4265 ext4_blocks_count(es), blocks_count);
4270 * It makes no sense for the first data block to be beyond the end
4271 * of the filesystem.
4273 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4274 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4275 "block %u is beyond end of filesystem (%llu)",
4276 le32_to_cpu(es->s_first_data_block),
4277 ext4_blocks_count(es));
4280 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4281 (sbi->s_cluster_ratio == 1)) {
4282 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4283 "block is 0 with a 1k block and cluster size");
4287 blocks_count = (ext4_blocks_count(es) -
4288 le32_to_cpu(es->s_first_data_block) +
4289 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4290 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4291 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4292 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4293 "(block count %llu, first data block %u, "
4294 "blocks per group %lu)", blocks_count,
4295 ext4_blocks_count(es),
4296 le32_to_cpu(es->s_first_data_block),
4297 EXT4_BLOCKS_PER_GROUP(sb));
4300 sbi->s_groups_count = blocks_count;
4301 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4302 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4303 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4304 le32_to_cpu(es->s_inodes_count)) {
4305 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4306 le32_to_cpu(es->s_inodes_count),
4307 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4311 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4312 EXT4_DESC_PER_BLOCK(sb);
4313 if (ext4_has_feature_meta_bg(sb)) {
4314 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4315 ext4_msg(sb, KERN_WARNING,
4316 "first meta block group too large: %u "
4317 "(group descriptor block count %u)",
4318 le32_to_cpu(es->s_first_meta_bg), db_count);
4322 rcu_assign_pointer(sbi->s_group_desc,
4323 kvmalloc_array(db_count,
4324 sizeof(struct buffer_head *),
4326 if (sbi->s_group_desc == NULL) {
4327 ext4_msg(sb, KERN_ERR, "not enough memory");
4332 bgl_lock_init(sbi->s_blockgroup_lock);
4334 /* Pre-read the descriptors into the buffer cache */
4335 for (i = 0; i < db_count; i++) {
4336 block = descriptor_loc(sb, logical_sb_block, i);
4337 sb_breadahead_unmovable(sb, block);
4340 for (i = 0; i < db_count; i++) {
4341 struct buffer_head *bh;
4343 block = descriptor_loc(sb, logical_sb_block, i);
4344 bh = sb_bread_unmovable(sb, block);
4346 ext4_msg(sb, KERN_ERR,
4347 "can't read group descriptor %d", i);
4352 rcu_dereference(sbi->s_group_desc)[i] = bh;
4355 sbi->s_gdb_count = db_count;
4356 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4357 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4358 ret = -EFSCORRUPTED;
4362 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4364 /* Register extent status tree shrinker */
4365 if (ext4_es_register_shrinker(sbi))
4368 sbi->s_stripe = ext4_get_stripe_size(sbi);
4369 sbi->s_extent_max_zeroout_kb = 32;
4372 * set up enough so that it can read an inode
4374 sb->s_op = &ext4_sops;
4375 sb->s_export_op = &ext4_export_ops;
4376 sb->s_xattr = ext4_xattr_handlers;
4377 #ifdef CONFIG_FS_ENCRYPTION
4378 sb->s_cop = &ext4_cryptops;
4380 #ifdef CONFIG_FS_VERITY
4381 sb->s_vop = &ext4_verityops;
4384 sb->dq_op = &ext4_quota_operations;
4385 if (ext4_has_feature_quota(sb))
4386 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4388 sb->s_qcop = &ext4_qctl_operations;
4389 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4391 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4393 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4394 mutex_init(&sbi->s_orphan_lock);
4398 needs_recovery = (es->s_last_orphan != 0 ||
4399 ext4_has_feature_journal_needs_recovery(sb));
4401 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4402 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4403 goto failed_mount3a;
4406 * The first inode we look at is the journal inode. Don't try
4407 * root first: it may be modified in the journal!
4409 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4410 err = ext4_load_journal(sb, es, journal_devnum);
4412 goto failed_mount3a;
4413 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4414 ext4_has_feature_journal_needs_recovery(sb)) {
4415 ext4_msg(sb, KERN_ERR, "required journal recovery "
4416 "suppressed and not mounted read-only");
4417 goto failed_mount_wq;
4419 /* Nojournal mode, all journal mount options are illegal */
4420 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4421 ext4_msg(sb, KERN_ERR, "can't mount with "
4422 "journal_checksum, fs mounted w/o journal");
4423 goto failed_mount_wq;
4425 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4426 ext4_msg(sb, KERN_ERR, "can't mount with "
4427 "journal_async_commit, fs mounted w/o journal");
4428 goto failed_mount_wq;
4430 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4431 ext4_msg(sb, KERN_ERR, "can't mount with "
4432 "commit=%lu, fs mounted w/o journal",
4433 sbi->s_commit_interval / HZ);
4434 goto failed_mount_wq;
4436 if (EXT4_MOUNT_DATA_FLAGS &
4437 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4438 ext4_msg(sb, KERN_ERR, "can't mount with "
4439 "data=, fs mounted w/o journal");
4440 goto failed_mount_wq;
4442 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4443 clear_opt(sb, JOURNAL_CHECKSUM);
4444 clear_opt(sb, DATA_FLAGS);
4445 sbi->s_journal = NULL;
4450 if (ext4_has_feature_64bit(sb) &&
4451 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4452 JBD2_FEATURE_INCOMPAT_64BIT)) {
4453 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4454 goto failed_mount_wq;
4457 if (!set_journal_csum_feature_set(sb)) {
4458 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4460 goto failed_mount_wq;
4463 /* We have now updated the journal if required, so we can
4464 * validate the data journaling mode. */
4465 switch (test_opt(sb, DATA_FLAGS)) {
4467 /* No mode set, assume a default based on the journal
4468 * capabilities: ORDERED_DATA if the journal can
4469 * cope, else JOURNAL_DATA
4471 if (jbd2_journal_check_available_features
4472 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4473 set_opt(sb, ORDERED_DATA);
4474 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4476 set_opt(sb, JOURNAL_DATA);
4477 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4481 case EXT4_MOUNT_ORDERED_DATA:
4482 case EXT4_MOUNT_WRITEBACK_DATA:
4483 if (!jbd2_journal_check_available_features
4484 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4485 ext4_msg(sb, KERN_ERR, "Journal does not support "
4486 "requested data journaling mode");
4487 goto failed_mount_wq;
4493 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4494 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4495 ext4_msg(sb, KERN_ERR, "can't mount with "
4496 "journal_async_commit in data=ordered mode");
4497 goto failed_mount_wq;
4500 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4502 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4505 if (!test_opt(sb, NO_MBCACHE)) {
4506 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4507 if (!sbi->s_ea_block_cache) {
4508 ext4_msg(sb, KERN_ERR,
4509 "Failed to create ea_block_cache");
4510 goto failed_mount_wq;
4513 if (ext4_has_feature_ea_inode(sb)) {
4514 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4515 if (!sbi->s_ea_inode_cache) {
4516 ext4_msg(sb, KERN_ERR,
4517 "Failed to create ea_inode_cache");
4518 goto failed_mount_wq;
4523 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4524 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4525 goto failed_mount_wq;
4528 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4529 !ext4_has_feature_encrypt(sb)) {
4530 ext4_set_feature_encrypt(sb);
4531 ext4_commit_super(sb, 1);
4535 * Get the # of file system overhead blocks from the
4536 * superblock if present.
4538 if (es->s_overhead_clusters)
4539 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4541 err = ext4_calculate_overhead(sb);
4543 goto failed_mount_wq;
4547 * The maximum number of concurrent works can be high and
4548 * concurrency isn't really necessary. Limit it to 1.
4550 EXT4_SB(sb)->rsv_conversion_wq =
4551 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4552 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4553 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4559 * The jbd2_journal_load will have done any necessary log recovery,
4560 * so we can safely mount the rest of the filesystem now.
4563 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4565 ext4_msg(sb, KERN_ERR, "get root inode failed");
4566 ret = PTR_ERR(root);
4570 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4571 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4576 #ifdef CONFIG_UNICODE
4577 if (sbi->s_encoding)
4578 sb->s_d_op = &ext4_dentry_ops;
4581 sb->s_root = d_make_root(root);
4583 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4588 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4589 if (ret == -EROFS) {
4590 sb->s_flags |= SB_RDONLY;
4593 goto failed_mount4a;
4595 ext4_set_resv_clusters(sb);
4597 err = ext4_setup_system_zone(sb);
4599 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4601 goto failed_mount4a;
4605 err = ext4_mb_init(sb);
4607 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4612 block = ext4_count_free_clusters(sb);
4613 ext4_free_blocks_count_set(sbi->s_es,
4614 EXT4_C2B(sbi, block));
4615 ext4_superblock_csum_set(sb);
4616 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4619 unsigned long freei = ext4_count_free_inodes(sb);
4620 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4621 ext4_superblock_csum_set(sb);
4622 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4626 err = percpu_counter_init(&sbi->s_dirs_counter,
4627 ext4_count_dirs(sb), GFP_KERNEL);
4629 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4632 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4635 ext4_msg(sb, KERN_ERR, "insufficient memory");
4639 if (ext4_has_feature_flex_bg(sb))
4640 if (!ext4_fill_flex_info(sb)) {
4641 ext4_msg(sb, KERN_ERR,
4642 "unable to initialize "
4643 "flex_bg meta info!");
4647 err = ext4_register_li_request(sb, first_not_zeroed);
4651 err = ext4_register_sysfs(sb);
4656 /* Enable quota usage during mount. */
4657 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4658 err = ext4_enable_quotas(sb);
4662 #endif /* CONFIG_QUOTA */
4664 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4665 ext4_orphan_cleanup(sb, es);
4666 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4667 if (needs_recovery) {
4668 ext4_msg(sb, KERN_INFO, "recovery complete");
4669 ext4_mark_recovery_complete(sb, es);
4671 if (EXT4_SB(sb)->s_journal) {
4672 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4673 descr = " journalled data mode";
4674 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4675 descr = " ordered data mode";
4677 descr = " writeback data mode";
4679 descr = "out journal";
4681 if (test_opt(sb, DISCARD)) {
4682 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4683 if (!blk_queue_discard(q))
4684 ext4_msg(sb, KERN_WARNING,
4685 "mounting with \"discard\" option, but "
4686 "the device does not support discard");
4689 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4690 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4691 "Opts: %.*s%s%s", descr,
4692 (int) sizeof(sbi->s_es->s_mount_opts),
4693 sbi->s_es->s_mount_opts,
4694 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4696 if (es->s_error_count)
4697 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4699 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4700 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4701 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4702 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4709 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4714 ext4_unregister_sysfs(sb);
4717 ext4_unregister_li_request(sb);
4719 ext4_mb_release(sb);
4721 flex_groups = rcu_dereference(sbi->s_flex_groups);
4723 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4724 kvfree(flex_groups[i]);
4725 kvfree(flex_groups);
4728 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4729 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4730 percpu_counter_destroy(&sbi->s_dirs_counter);
4731 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4732 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4734 ext4_ext_release(sb);
4735 ext4_release_system_zone(sb);
4740 ext4_msg(sb, KERN_ERR, "mount failed");
4741 if (EXT4_SB(sb)->rsv_conversion_wq)
4742 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4744 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4745 sbi->s_ea_inode_cache = NULL;
4747 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4748 sbi->s_ea_block_cache = NULL;
4750 if (sbi->s_journal) {
4751 jbd2_journal_destroy(sbi->s_journal);
4752 sbi->s_journal = NULL;
4755 ext4_es_unregister_shrinker(sbi);
4757 del_timer_sync(&sbi->s_err_report);
4759 kthread_stop(sbi->s_mmp_tsk);
4762 group_desc = rcu_dereference(sbi->s_group_desc);
4763 for (i = 0; i < db_count; i++)
4764 brelse(group_desc[i]);
4768 if (sbi->s_chksum_driver)
4769 crypto_free_shash(sbi->s_chksum_driver);
4771 #ifdef CONFIG_UNICODE
4772 utf8_unload(sbi->s_encoding);
4776 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4777 kfree(get_qf_name(sb, sbi, i));
4779 ext4_blkdev_remove(sbi);
4782 sb->s_fs_info = NULL;
4783 kfree(sbi->s_blockgroup_lock);
4787 fs_put_dax(dax_dev);
4788 return err ? err : ret;
4792 * Setup any per-fs journal parameters now. We'll do this both on
4793 * initial mount, once the journal has been initialised but before we've
4794 * done any recovery; and again on any subsequent remount.
4796 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4798 struct ext4_sb_info *sbi = EXT4_SB(sb);
4800 journal->j_commit_interval = sbi->s_commit_interval;
4801 journal->j_min_batch_time = sbi->s_min_batch_time;
4802 journal->j_max_batch_time = sbi->s_max_batch_time;
4804 write_lock(&journal->j_state_lock);
4805 if (test_opt(sb, BARRIER))
4806 journal->j_flags |= JBD2_BARRIER;
4808 journal->j_flags &= ~JBD2_BARRIER;
4809 if (test_opt(sb, DATA_ERR_ABORT))
4810 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4812 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4813 write_unlock(&journal->j_state_lock);
4816 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4817 unsigned int journal_inum)
4819 struct inode *journal_inode;
4822 * Test for the existence of a valid inode on disk. Bad things
4823 * happen if we iget() an unused inode, as the subsequent iput()
4824 * will try to delete it.
4826 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4827 if (IS_ERR(journal_inode)) {
4828 ext4_msg(sb, KERN_ERR, "no journal found");
4831 if (!journal_inode->i_nlink) {
4832 make_bad_inode(journal_inode);
4833 iput(journal_inode);
4834 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4838 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4839 journal_inode, journal_inode->i_size);
4840 if (!S_ISREG(journal_inode->i_mode)) {
4841 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4842 iput(journal_inode);
4845 return journal_inode;
4848 static journal_t *ext4_get_journal(struct super_block *sb,
4849 unsigned int journal_inum)
4851 struct inode *journal_inode;
4854 BUG_ON(!ext4_has_feature_journal(sb));
4856 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4860 journal = jbd2_journal_init_inode(journal_inode);
4862 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4863 iput(journal_inode);
4866 journal->j_private = sb;
4867 ext4_init_journal_params(sb, journal);
4871 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4874 struct buffer_head *bh;
4878 int hblock, blocksize;
4879 ext4_fsblk_t sb_block;
4880 unsigned long offset;
4881 struct ext4_super_block *es;
4882 struct block_device *bdev;
4884 BUG_ON(!ext4_has_feature_journal(sb));
4886 bdev = ext4_blkdev_get(j_dev, sb);
4890 blocksize = sb->s_blocksize;
4891 hblock = bdev_logical_block_size(bdev);
4892 if (blocksize < hblock) {
4893 ext4_msg(sb, KERN_ERR,
4894 "blocksize too small for journal device");
4898 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4899 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4900 set_blocksize(bdev, blocksize);
4901 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4902 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4903 "external journal");
4907 es = (struct ext4_super_block *) (bh->b_data + offset);
4908 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4909 !(le32_to_cpu(es->s_feature_incompat) &
4910 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4911 ext4_msg(sb, KERN_ERR, "external journal has "
4917 if ((le32_to_cpu(es->s_feature_ro_compat) &
4918 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4919 es->s_checksum != ext4_superblock_csum(sb, es)) {
4920 ext4_msg(sb, KERN_ERR, "external journal has "
4921 "corrupt superblock");
4926 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4927 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4932 len = ext4_blocks_count(es);
4933 start = sb_block + 1;
4934 brelse(bh); /* we're done with the superblock */
4936 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4937 start, len, blocksize);
4939 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4942 journal->j_private = sb;
4943 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4944 wait_on_buffer(journal->j_sb_buffer);
4945 if (!buffer_uptodate(journal->j_sb_buffer)) {
4946 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4949 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4950 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4951 "user (unsupported) - %d",
4952 be32_to_cpu(journal->j_superblock->s_nr_users));
4955 EXT4_SB(sb)->journal_bdev = bdev;
4956 ext4_init_journal_params(sb, journal);
4960 jbd2_journal_destroy(journal);
4962 ext4_blkdev_put(bdev);
4966 static int ext4_load_journal(struct super_block *sb,
4967 struct ext4_super_block *es,
4968 unsigned long journal_devnum)
4971 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4974 int really_read_only;
4976 BUG_ON(!ext4_has_feature_journal(sb));
4978 if (journal_devnum &&
4979 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4980 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4981 "numbers have changed");
4982 journal_dev = new_decode_dev(journal_devnum);
4984 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4986 really_read_only = bdev_read_only(sb->s_bdev);
4989 * Are we loading a blank journal or performing recovery after a
4990 * crash? For recovery, we need to check in advance whether we
4991 * can get read-write access to the device.
4993 if (ext4_has_feature_journal_needs_recovery(sb)) {
4994 if (sb_rdonly(sb)) {
4995 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4996 "required on readonly filesystem");
4997 if (really_read_only) {
4998 ext4_msg(sb, KERN_ERR, "write access "
4999 "unavailable, cannot proceed "
5000 "(try mounting with noload)");
5003 ext4_msg(sb, KERN_INFO, "write access will "
5004 "be enabled during recovery");
5008 if (journal_inum && journal_dev) {
5009 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
5010 "and inode journals!");
5015 if (!(journal = ext4_get_journal(sb, journal_inum)))
5018 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
5022 if (!(journal->j_flags & JBD2_BARRIER))
5023 ext4_msg(sb, KERN_INFO, "barriers disabled");
5025 if (!ext4_has_feature_journal_needs_recovery(sb))
5026 err = jbd2_journal_wipe(journal, !really_read_only);
5028 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5030 memcpy(save, ((char *) es) +
5031 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5032 err = jbd2_journal_load(journal);
5034 memcpy(((char *) es) + EXT4_S_ERR_START,
5035 save, EXT4_S_ERR_LEN);
5040 ext4_msg(sb, KERN_ERR, "error loading journal");
5041 jbd2_journal_destroy(journal);
5045 EXT4_SB(sb)->s_journal = journal;
5046 ext4_clear_journal_err(sb, es);
5048 if (!really_read_only && journal_devnum &&
5049 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5050 es->s_journal_dev = cpu_to_le32(journal_devnum);
5052 /* Make sure we flush the recovery flag to disk. */
5053 ext4_commit_super(sb, 1);
5059 static int ext4_commit_super(struct super_block *sb, int sync)
5061 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5062 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5065 if (!sbh || block_device_ejected(sb))
5069 * The superblock bh should be mapped, but it might not be if the
5070 * device was hot-removed. Not much we can do but fail the I/O.
5072 if (!buffer_mapped(sbh))
5076 * If the file system is mounted read-only, don't update the
5077 * superblock write time. This avoids updating the superblock
5078 * write time when we are mounting the root file system
5079 * read/only but we need to replay the journal; at that point,
5080 * for people who are east of GMT and who make their clock
5081 * tick in localtime for Windows bug-for-bug compatibility,
5082 * the clock is set in the future, and this will cause e2fsck
5083 * to complain and force a full file system check.
5085 if (!(sb->s_flags & SB_RDONLY))
5086 ext4_update_tstamp(es, s_wtime);
5087 if (sb->s_bdev->bd_part)
5088 es->s_kbytes_written =
5089 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5090 ((part_stat_read(sb->s_bdev->bd_part,
5091 sectors[STAT_WRITE]) -
5092 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5094 es->s_kbytes_written =
5095 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5096 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5097 ext4_free_blocks_count_set(es,
5098 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5099 &EXT4_SB(sb)->s_freeclusters_counter)));
5100 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5101 es->s_free_inodes_count =
5102 cpu_to_le32(percpu_counter_sum_positive(
5103 &EXT4_SB(sb)->s_freeinodes_counter));
5104 BUFFER_TRACE(sbh, "marking dirty");
5105 ext4_superblock_csum_set(sb);
5108 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5110 * Oh, dear. A previous attempt to write the
5111 * superblock failed. This could happen because the
5112 * USB device was yanked out. Or it could happen to
5113 * be a transient write error and maybe the block will
5114 * be remapped. Nothing we can do but to retry the
5115 * write and hope for the best.
5117 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5118 "superblock detected");
5119 clear_buffer_write_io_error(sbh);
5120 set_buffer_uptodate(sbh);
5122 mark_buffer_dirty(sbh);
5125 error = __sync_dirty_buffer(sbh,
5126 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5127 if (buffer_write_io_error(sbh)) {
5128 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5130 clear_buffer_write_io_error(sbh);
5131 set_buffer_uptodate(sbh);
5138 * Have we just finished recovery? If so, and if we are mounting (or
5139 * remounting) the filesystem readonly, then we will end up with a
5140 * consistent fs on disk. Record that fact.
5142 static void ext4_mark_recovery_complete(struct super_block *sb,
5143 struct ext4_super_block *es)
5145 journal_t *journal = EXT4_SB(sb)->s_journal;
5147 if (!ext4_has_feature_journal(sb)) {
5148 BUG_ON(journal != NULL);
5151 jbd2_journal_lock_updates(journal);
5152 if (jbd2_journal_flush(journal) < 0)
5155 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5156 ext4_clear_feature_journal_needs_recovery(sb);
5157 ext4_commit_super(sb, 1);
5161 jbd2_journal_unlock_updates(journal);
5165 * If we are mounting (or read-write remounting) a filesystem whose journal
5166 * has recorded an error from a previous lifetime, move that error to the
5167 * main filesystem now.
5169 static void ext4_clear_journal_err(struct super_block *sb,
5170 struct ext4_super_block *es)
5176 BUG_ON(!ext4_has_feature_journal(sb));
5178 journal = EXT4_SB(sb)->s_journal;
5181 * Now check for any error status which may have been recorded in the
5182 * journal by a prior ext4_error() or ext4_abort()
5185 j_errno = jbd2_journal_errno(journal);
5189 errstr = ext4_decode_error(sb, j_errno, nbuf);
5190 ext4_warning(sb, "Filesystem error recorded "
5191 "from previous mount: %s", errstr);
5192 ext4_warning(sb, "Marking fs in need of filesystem check.");
5194 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5195 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5196 ext4_commit_super(sb, 1);
5198 jbd2_journal_clear_err(journal);
5199 jbd2_journal_update_sb_errno(journal);
5204 * Force the running and committing transactions to commit,
5205 * and wait on the commit.
5207 int ext4_force_commit(struct super_block *sb)
5214 journal = EXT4_SB(sb)->s_journal;
5215 return ext4_journal_force_commit(journal);
5218 static int ext4_sync_fs(struct super_block *sb, int wait)
5222 bool needs_barrier = false;
5223 struct ext4_sb_info *sbi = EXT4_SB(sb);
5225 if (unlikely(ext4_forced_shutdown(sbi)))
5228 trace_ext4_sync_fs(sb, wait);
5229 flush_workqueue(sbi->rsv_conversion_wq);
5231 * Writeback quota in non-journalled quota case - journalled quota has
5234 dquot_writeback_dquots(sb, -1);
5236 * Data writeback is possible w/o journal transaction, so barrier must
5237 * being sent at the end of the function. But we can skip it if
5238 * transaction_commit will do it for us.
5240 if (sbi->s_journal) {
5241 target = jbd2_get_latest_transaction(sbi->s_journal);
5242 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5243 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5244 needs_barrier = true;
5246 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5248 ret = jbd2_log_wait_commit(sbi->s_journal,
5251 } else if (wait && test_opt(sb, BARRIER))
5252 needs_barrier = true;
5253 if (needs_barrier) {
5255 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5264 * LVM calls this function before a (read-only) snapshot is created. This
5265 * gives us a chance to flush the journal completely and mark the fs clean.
5267 * Note that only this function cannot bring a filesystem to be in a clean
5268 * state independently. It relies on upper layer to stop all data & metadata
5271 static int ext4_freeze(struct super_block *sb)
5279 journal = EXT4_SB(sb)->s_journal;
5282 /* Now we set up the journal barrier. */
5283 jbd2_journal_lock_updates(journal);
5286 * Don't clear the needs_recovery flag if we failed to
5287 * flush the journal.
5289 error = jbd2_journal_flush(journal);
5293 /* Journal blocked and flushed, clear needs_recovery flag. */
5294 ext4_clear_feature_journal_needs_recovery(sb);
5297 error = ext4_commit_super(sb, 1);
5300 /* we rely on upper layer to stop further updates */
5301 jbd2_journal_unlock_updates(journal);
5306 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5307 * flag here, even though the filesystem is not technically dirty yet.
5309 static int ext4_unfreeze(struct super_block *sb)
5311 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5314 if (EXT4_SB(sb)->s_journal) {
5315 /* Reset the needs_recovery flag before the fs is unlocked. */
5316 ext4_set_feature_journal_needs_recovery(sb);
5319 ext4_commit_super(sb, 1);
5324 * Structure to save mount options for ext4_remount's benefit
5326 struct ext4_mount_options {
5327 unsigned long s_mount_opt;
5328 unsigned long s_mount_opt2;
5331 unsigned long s_commit_interval;
5332 u32 s_min_batch_time, s_max_batch_time;
5335 char *s_qf_names[EXT4_MAXQUOTAS];
5339 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5341 struct ext4_super_block *es;
5342 struct ext4_sb_info *sbi = EXT4_SB(sb);
5343 unsigned long old_sb_flags;
5344 struct ext4_mount_options old_opts;
5345 int enable_quota = 0;
5347 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5351 char *to_free[EXT4_MAXQUOTAS];
5353 char *orig_data = kstrdup(data, GFP_KERNEL);
5355 if (data && !orig_data)
5358 /* Store the original options */
5359 old_sb_flags = sb->s_flags;
5360 old_opts.s_mount_opt = sbi->s_mount_opt;
5361 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5362 old_opts.s_resuid = sbi->s_resuid;
5363 old_opts.s_resgid = sbi->s_resgid;
5364 old_opts.s_commit_interval = sbi->s_commit_interval;
5365 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5366 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5368 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5369 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5370 if (sbi->s_qf_names[i]) {
5371 char *qf_name = get_qf_name(sb, sbi, i);
5373 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5374 if (!old_opts.s_qf_names[i]) {
5375 for (j = 0; j < i; j++)
5376 kfree(old_opts.s_qf_names[j]);
5381 old_opts.s_qf_names[i] = NULL;
5383 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5384 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5386 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5391 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5392 test_opt(sb, JOURNAL_CHECKSUM)) {
5393 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5394 "during remount not supported; ignoring");
5395 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5398 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5399 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5400 ext4_msg(sb, KERN_ERR, "can't mount with "
5401 "both data=journal and delalloc");
5405 if (test_opt(sb, DIOREAD_NOLOCK)) {
5406 ext4_msg(sb, KERN_ERR, "can't mount with "
5407 "both data=journal and dioread_nolock");
5411 if (test_opt(sb, DAX)) {
5412 ext4_msg(sb, KERN_ERR, "can't mount with "
5413 "both data=journal and dax");
5417 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5418 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5419 ext4_msg(sb, KERN_ERR, "can't mount with "
5420 "journal_async_commit in data=ordered mode");
5426 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5427 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5432 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5433 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5434 "dax flag with busy inodes while remounting");
5435 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5438 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5439 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5441 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5442 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5446 if (sbi->s_journal) {
5447 ext4_init_journal_params(sb, sbi->s_journal);
5448 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5451 if (*flags & SB_LAZYTIME)
5452 sb->s_flags |= SB_LAZYTIME;
5454 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5455 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5460 if (*flags & SB_RDONLY) {
5461 err = sync_filesystem(sb);
5464 err = dquot_suspend(sb, -1);
5469 * First of all, the unconditional stuff we have to do
5470 * to disable replay of the journal when we next remount
5472 sb->s_flags |= SB_RDONLY;
5475 * OK, test if we are remounting a valid rw partition
5476 * readonly, and if so set the rdonly flag and then
5477 * mark the partition as valid again.
5479 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5480 (sbi->s_mount_state & EXT4_VALID_FS))
5481 es->s_state = cpu_to_le16(sbi->s_mount_state);
5484 ext4_mark_recovery_complete(sb, es);
5486 kthread_stop(sbi->s_mmp_tsk);
5488 /* Make sure we can mount this feature set readwrite */
5489 if (ext4_has_feature_readonly(sb) ||
5490 !ext4_feature_set_ok(sb, 0)) {
5495 * Make sure the group descriptor checksums
5496 * are sane. If they aren't, refuse to remount r/w.
5498 for (g = 0; g < sbi->s_groups_count; g++) {
5499 struct ext4_group_desc *gdp =
5500 ext4_get_group_desc(sb, g, NULL);
5502 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5503 ext4_msg(sb, KERN_ERR,
5504 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5505 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5506 le16_to_cpu(gdp->bg_checksum));
5513 * If we have an unprocessed orphan list hanging
5514 * around from a previously readonly bdev mount,
5515 * require a full umount/remount for now.
5517 if (es->s_last_orphan) {
5518 ext4_msg(sb, KERN_WARNING, "Couldn't "
5519 "remount RDWR because of unprocessed "
5520 "orphan inode list. Please "
5521 "umount/remount instead");
5527 * Mounting a RDONLY partition read-write, so reread
5528 * and store the current valid flag. (It may have
5529 * been changed by e2fsck since we originally mounted
5533 ext4_clear_journal_err(sb, es);
5534 sbi->s_mount_state = le16_to_cpu(es->s_state);
5536 err = ext4_setup_super(sb, es, 0);
5540 sb->s_flags &= ~SB_RDONLY;
5541 if (ext4_has_feature_mmp(sb))
5542 if (ext4_multi_mount_protect(sb,
5543 le64_to_cpu(es->s_mmp_block))) {
5552 * Reinitialize lazy itable initialization thread based on
5555 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5556 ext4_unregister_li_request(sb);
5558 ext4_group_t first_not_zeroed;
5559 first_not_zeroed = ext4_has_uninit_itable(sb);
5560 ext4_register_li_request(sb, first_not_zeroed);
5563 ext4_setup_system_zone(sb);
5564 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5565 err = ext4_commit_super(sb, 1);
5571 /* Release old quota file names */
5572 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5573 kfree(old_opts.s_qf_names[i]);
5575 if (sb_any_quota_suspended(sb))
5576 dquot_resume(sb, -1);
5577 else if (ext4_has_feature_quota(sb)) {
5578 err = ext4_enable_quotas(sb);
5585 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5586 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5591 sb->s_flags = old_sb_flags;
5592 sbi->s_mount_opt = old_opts.s_mount_opt;
5593 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5594 sbi->s_resuid = old_opts.s_resuid;
5595 sbi->s_resgid = old_opts.s_resgid;
5596 sbi->s_commit_interval = old_opts.s_commit_interval;
5597 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5598 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5600 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5601 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5602 to_free[i] = get_qf_name(sb, sbi, i);
5603 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5606 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5614 static int ext4_statfs_project(struct super_block *sb,
5615 kprojid_t projid, struct kstatfs *buf)
5618 struct dquot *dquot;
5622 qid = make_kqid_projid(projid);
5623 dquot = dqget(sb, qid);
5625 return PTR_ERR(dquot);
5626 spin_lock(&dquot->dq_dqb_lock);
5628 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5629 dquot->dq_dqb.dqb_bhardlimit);
5630 limit >>= sb->s_blocksize_bits;
5632 if (limit && buf->f_blocks > limit) {
5633 curblock = (dquot->dq_dqb.dqb_curspace +
5634 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5635 buf->f_blocks = limit;
5636 buf->f_bfree = buf->f_bavail =
5637 (buf->f_blocks > curblock) ?
5638 (buf->f_blocks - curblock) : 0;
5641 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5642 dquot->dq_dqb.dqb_ihardlimit);
5643 if (limit && buf->f_files > limit) {
5644 buf->f_files = limit;
5646 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5647 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5650 spin_unlock(&dquot->dq_dqb_lock);
5656 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5658 struct super_block *sb = dentry->d_sb;
5659 struct ext4_sb_info *sbi = EXT4_SB(sb);
5660 struct ext4_super_block *es = sbi->s_es;
5661 ext4_fsblk_t overhead = 0, resv_blocks;
5664 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5666 if (!test_opt(sb, MINIX_DF))
5667 overhead = sbi->s_overhead;
5669 buf->f_type = EXT4_SUPER_MAGIC;
5670 buf->f_bsize = sb->s_blocksize;
5671 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5672 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5673 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5674 /* prevent underflow in case that few free space is available */
5675 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5676 buf->f_bavail = buf->f_bfree -
5677 (ext4_r_blocks_count(es) + resv_blocks);
5678 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5680 buf->f_files = le32_to_cpu(es->s_inodes_count);
5681 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5682 buf->f_namelen = EXT4_NAME_LEN;
5683 fsid = le64_to_cpup((void *)es->s_uuid) ^
5684 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5685 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5686 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5689 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5690 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5691 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5700 * Helper functions so that transaction is started before we acquire dqio_sem
5701 * to keep correct lock ordering of transaction > dqio_sem
5703 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5705 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5708 static int ext4_write_dquot(struct dquot *dquot)
5712 struct inode *inode;
5714 inode = dquot_to_inode(dquot);
5715 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5716 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5718 return PTR_ERR(handle);
5719 ret = dquot_commit(dquot);
5720 err = ext4_journal_stop(handle);
5726 static int ext4_acquire_dquot(struct dquot *dquot)
5731 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5732 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5734 return PTR_ERR(handle);
5735 ret = dquot_acquire(dquot);
5736 err = ext4_journal_stop(handle);
5742 static int ext4_release_dquot(struct dquot *dquot)
5747 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5748 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5749 if (IS_ERR(handle)) {
5750 /* Release dquot anyway to avoid endless cycle in dqput() */
5751 dquot_release(dquot);
5752 return PTR_ERR(handle);
5754 ret = dquot_release(dquot);
5755 err = ext4_journal_stop(handle);
5761 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5763 struct super_block *sb = dquot->dq_sb;
5764 struct ext4_sb_info *sbi = EXT4_SB(sb);
5766 /* Are we journaling quotas? */
5767 if (ext4_has_feature_quota(sb) ||
5768 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5769 dquot_mark_dquot_dirty(dquot);
5770 return ext4_write_dquot(dquot);
5772 return dquot_mark_dquot_dirty(dquot);
5776 static int ext4_write_info(struct super_block *sb, int type)
5781 /* Data block + inode block */
5782 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5784 return PTR_ERR(handle);
5785 ret = dquot_commit_info(sb, type);
5786 err = ext4_journal_stop(handle);
5793 * Turn on quotas during mount time - we need to find
5794 * the quota file and such...
5796 static int ext4_quota_on_mount(struct super_block *sb, int type)
5798 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5799 EXT4_SB(sb)->s_jquota_fmt, type);
5802 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5804 struct ext4_inode_info *ei = EXT4_I(inode);
5806 /* The first argument of lockdep_set_subclass has to be
5807 * *exactly* the same as the argument to init_rwsem() --- in
5808 * this case, in init_once() --- or lockdep gets unhappy
5809 * because the name of the lock is set using the
5810 * stringification of the argument to init_rwsem().
5812 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5813 lockdep_set_subclass(&ei->i_data_sem, subclass);
5817 * Standard function to be called on quota_on
5819 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5820 const struct path *path)
5824 if (!test_opt(sb, QUOTA))
5827 /* Quotafile not on the same filesystem? */
5828 if (path->dentry->d_sb != sb)
5830 /* Journaling quota? */
5831 if (EXT4_SB(sb)->s_qf_names[type]) {
5832 /* Quotafile not in fs root? */
5833 if (path->dentry->d_parent != sb->s_root)
5834 ext4_msg(sb, KERN_WARNING,
5835 "Quota file not on filesystem root. "
5836 "Journaled quota will not work");
5837 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5840 * Clear the flag just in case mount options changed since
5843 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5847 * When we journal data on quota file, we have to flush journal to see
5848 * all updates to the file when we bypass pagecache...
5850 if (EXT4_SB(sb)->s_journal &&
5851 ext4_should_journal_data(d_inode(path->dentry))) {
5853 * We don't need to lock updates but journal_flush() could
5854 * otherwise be livelocked...
5856 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5857 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5858 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5863 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5864 err = dquot_quota_on(sb, type, format_id, path);
5866 lockdep_set_quota_inode(path->dentry->d_inode,
5869 struct inode *inode = d_inode(path->dentry);
5873 * Set inode flags to prevent userspace from messing with quota
5874 * files. If this fails, we return success anyway since quotas
5875 * are already enabled and this is not a hard failure.
5878 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5881 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5882 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5883 S_NOATIME | S_IMMUTABLE);
5884 ext4_mark_inode_dirty(handle, inode);
5885 ext4_journal_stop(handle);
5887 inode_unlock(inode);
5892 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5896 struct inode *qf_inode;
5897 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5898 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5899 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5900 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5903 BUG_ON(!ext4_has_feature_quota(sb));
5905 if (!qf_inums[type])
5908 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5909 if (IS_ERR(qf_inode)) {
5910 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5911 return PTR_ERR(qf_inode);
5914 /* Don't account quota for quota files to avoid recursion */
5915 qf_inode->i_flags |= S_NOQUOTA;
5916 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5917 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5919 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5925 /* Enable usage tracking for all quota types. */
5926 static int ext4_enable_quotas(struct super_block *sb)
5929 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5930 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5931 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5932 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5934 bool quota_mopt[EXT4_MAXQUOTAS] = {
5935 test_opt(sb, USRQUOTA),
5936 test_opt(sb, GRPQUOTA),
5937 test_opt(sb, PRJQUOTA),
5940 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5941 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5942 if (qf_inums[type]) {
5943 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5944 DQUOT_USAGE_ENABLED |
5945 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5948 "Failed to enable quota tracking "
5949 "(type=%d, err=%d). Please run "
5950 "e2fsck to fix.", type, err);
5951 for (type--; type >= 0; type--)
5952 dquot_quota_off(sb, type);
5961 static int ext4_quota_off(struct super_block *sb, int type)
5963 struct inode *inode = sb_dqopt(sb)->files[type];
5967 /* Force all delayed allocation blocks to be allocated.
5968 * Caller already holds s_umount sem */
5969 if (test_opt(sb, DELALLOC))
5970 sync_filesystem(sb);
5972 if (!inode || !igrab(inode))
5975 err = dquot_quota_off(sb, type);
5976 if (err || ext4_has_feature_quota(sb))
5981 * Update modification times of quota files when userspace can
5982 * start looking at them. If we fail, we return success anyway since
5983 * this is not a hard failure and quotas are already disabled.
5985 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5988 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5989 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5990 inode->i_mtime = inode->i_ctime = current_time(inode);
5991 ext4_mark_inode_dirty(handle, inode);
5992 ext4_journal_stop(handle);
5994 inode_unlock(inode);
5996 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6000 return dquot_quota_off(sb, type);
6003 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6004 * acquiring the locks... As quota files are never truncated and quota code
6005 * itself serializes the operations (and no one else should touch the files)
6006 * we don't have to be afraid of races */
6007 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6008 size_t len, loff_t off)
6010 struct inode *inode = sb_dqopt(sb)->files[type];
6011 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6012 int offset = off & (sb->s_blocksize - 1);
6015 struct buffer_head *bh;
6016 loff_t i_size = i_size_read(inode);
6020 if (off+len > i_size)
6023 while (toread > 0) {
6024 tocopy = sb->s_blocksize - offset < toread ?
6025 sb->s_blocksize - offset : toread;
6026 bh = ext4_bread(NULL, inode, blk, 0);
6029 if (!bh) /* A hole? */
6030 memset(data, 0, tocopy);
6032 memcpy(data, bh->b_data+offset, tocopy);
6042 /* Write to quotafile (we know the transaction is already started and has
6043 * enough credits) */
6044 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6045 const char *data, size_t len, loff_t off)
6047 struct inode *inode = sb_dqopt(sb)->files[type];
6048 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6049 int err, offset = off & (sb->s_blocksize - 1);
6051 struct buffer_head *bh;
6052 handle_t *handle = journal_current_handle();
6054 if (EXT4_SB(sb)->s_journal && !handle) {
6055 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6056 " cancelled because transaction is not started",
6057 (unsigned long long)off, (unsigned long long)len);
6061 * Since we account only one data block in transaction credits,
6062 * then it is impossible to cross a block boundary.
6064 if (sb->s_blocksize - offset < len) {
6065 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6066 " cancelled because not block aligned",
6067 (unsigned long long)off, (unsigned long long)len);
6072 bh = ext4_bread(handle, inode, blk,
6073 EXT4_GET_BLOCKS_CREATE |
6074 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6075 } while (PTR_ERR(bh) == -ENOSPC &&
6076 ext4_should_retry_alloc(inode->i_sb, &retries));
6081 BUFFER_TRACE(bh, "get write access");
6082 err = ext4_journal_get_write_access(handle, bh);
6088 memcpy(bh->b_data+offset, data, len);
6089 flush_dcache_page(bh->b_page);
6091 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6094 if (inode->i_size < off + len) {
6095 i_size_write(inode, off + len);
6096 EXT4_I(inode)->i_disksize = inode->i_size;
6097 ext4_mark_inode_dirty(handle, inode);
6103 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6104 const char *dev_name, void *data)
6106 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6109 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6110 static inline void register_as_ext2(void)
6112 int err = register_filesystem(&ext2_fs_type);
6115 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6118 static inline void unregister_as_ext2(void)
6120 unregister_filesystem(&ext2_fs_type);
6123 static inline int ext2_feature_set_ok(struct super_block *sb)
6125 if (ext4_has_unknown_ext2_incompat_features(sb))
6129 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6134 static inline void register_as_ext2(void) { }
6135 static inline void unregister_as_ext2(void) { }
6136 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6139 static inline void register_as_ext3(void)
6141 int err = register_filesystem(&ext3_fs_type);
6144 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6147 static inline void unregister_as_ext3(void)
6149 unregister_filesystem(&ext3_fs_type);
6152 static inline int ext3_feature_set_ok(struct super_block *sb)
6154 if (ext4_has_unknown_ext3_incompat_features(sb))
6156 if (!ext4_has_feature_journal(sb))
6160 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6165 static struct file_system_type ext4_fs_type = {
6166 .owner = THIS_MODULE,
6168 .mount = ext4_mount,
6169 .kill_sb = kill_block_super,
6170 .fs_flags = FS_REQUIRES_DEV,
6172 MODULE_ALIAS_FS("ext4");
6174 /* Shared across all ext4 file systems */
6175 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6177 static int __init ext4_init_fs(void)
6181 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6182 ext4_li_info = NULL;
6183 mutex_init(&ext4_li_mtx);
6185 /* Build-time check for flags consistency */
6186 ext4_check_flag_values();
6188 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6189 init_waitqueue_head(&ext4__ioend_wq[i]);
6191 err = ext4_init_es();
6195 err = ext4_init_pending();
6199 err = ext4_init_post_read_processing();
6203 err = ext4_init_pageio();
6207 err = ext4_init_system_zone();
6211 err = ext4_init_sysfs();
6215 err = ext4_init_mballoc();
6218 err = init_inodecache();
6223 err = register_filesystem(&ext4_fs_type);
6229 unregister_as_ext2();
6230 unregister_as_ext3();
6231 destroy_inodecache();
6233 ext4_exit_mballoc();
6237 ext4_exit_system_zone();
6241 ext4_exit_post_read_processing();
6243 ext4_exit_pending();
6250 static void __exit ext4_exit_fs(void)
6252 ext4_destroy_lazyinit_thread();
6253 unregister_as_ext2();
6254 unregister_as_ext3();
6255 unregister_filesystem(&ext4_fs_type);
6256 destroy_inodecache();
6257 ext4_exit_mballoc();
6259 ext4_exit_system_zone();
6261 ext4_exit_post_read_processing();
6263 ext4_exit_pending();
6266 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6267 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6268 MODULE_LICENSE("GPL");
6269 MODULE_SOFTDEP("pre: crc32c");
6270 module_init(ext4_init_fs)
6271 module_exit(ext4_exit_fs)