4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/nfs_fs.h>
25 #include <linux/nfs_mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/aio.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
32 #include <asm/uaccess.h>
33 #include <asm/system.h>
35 #include "delegation.h"
41 #define NFSDBG_FACILITY NFSDBG_FILE
43 static int nfs_file_open(struct inode *, struct file *);
44 static int nfs_file_release(struct inode *, struct file *);
45 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
46 static int nfs_file_mmap(struct file *, struct vm_area_struct *);
47 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
48 struct pipe_inode_info *pipe,
49 size_t count, unsigned int flags);
50 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
51 unsigned long nr_segs, loff_t pos);
52 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
53 struct file *filp, loff_t *ppos,
54 size_t count, unsigned int flags);
55 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
56 unsigned long nr_segs, loff_t pos);
57 static int nfs_file_flush(struct file *, fl_owner_t id);
58 static int nfs_file_fsync(struct file *, loff_t, loff_t, int datasync);
59 static int nfs_check_flags(int flags);
60 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
61 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
62 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
64 static const struct vm_operations_struct nfs_file_vm_ops;
66 const struct file_operations nfs_file_operations = {
67 .llseek = nfs_file_llseek,
69 .write = do_sync_write,
70 .aio_read = nfs_file_read,
71 .aio_write = nfs_file_write,
72 .mmap = nfs_file_mmap,
73 .open = nfs_file_open,
74 .flush = nfs_file_flush,
75 .release = nfs_file_release,
76 .fsync = nfs_file_fsync,
79 .splice_read = nfs_file_splice_read,
80 .splice_write = nfs_file_splice_write,
81 .check_flags = nfs_check_flags,
82 .setlease = nfs_setlease,
85 const struct inode_operations nfs_file_inode_operations = {
86 .permission = nfs_permission,
87 .getattr = nfs_getattr,
88 .setattr = nfs_setattr,
92 const struct inode_operations nfs3_file_inode_operations = {
93 .permission = nfs_permission,
94 .getattr = nfs_getattr,
95 .setattr = nfs_setattr,
96 .listxattr = nfs3_listxattr,
97 .getxattr = nfs3_getxattr,
98 .setxattr = nfs3_setxattr,
99 .removexattr = nfs3_removexattr,
101 #endif /* CONFIG_NFS_v3 */
103 /* Hack for future NFS swap support */
105 # define IS_SWAPFILE(inode) (0)
108 static int nfs_check_flags(int flags)
110 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
120 nfs_file_open(struct inode *inode, struct file *filp)
124 dprintk("NFS: open file(%s/%s)\n",
125 filp->f_path.dentry->d_parent->d_name.name,
126 filp->f_path.dentry->d_name.name);
128 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129 res = nfs_check_flags(filp->f_flags);
133 res = nfs_open(inode, filp);
138 nfs_file_release(struct inode *inode, struct file *filp)
140 dprintk("NFS: release(%s/%s)\n",
141 filp->f_path.dentry->d_parent->d_name.name,
142 filp->f_path.dentry->d_name.name);
144 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
145 return nfs_release(inode, filp);
149 * nfs_revalidate_size - Revalidate the file size
150 * @inode - pointer to inode struct
151 * @file - pointer to struct file
153 * Revalidates the file length. This is basically a wrapper around
154 * nfs_revalidate_inode() that takes into account the fact that we may
155 * have cached writes (in which case we don't care about the server's
156 * idea of what the file length is), or O_DIRECT (in which case we
157 * shouldn't trust the cache).
159 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
161 struct nfs_server *server = NFS_SERVER(inode);
162 struct nfs_inode *nfsi = NFS_I(inode);
164 if (nfs_have_delegated_attributes(inode))
167 if (filp->f_flags & O_DIRECT)
169 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
171 if (nfs_attribute_timeout(inode))
176 return __nfs_revalidate_inode(server, inode);
179 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
181 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
182 filp->f_path.dentry->d_parent->d_name.name,
183 filp->f_path.dentry->d_name.name,
187 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
188 * the cached file length
190 if (origin != SEEK_SET || origin != SEEK_CUR) {
191 struct inode *inode = filp->f_mapping->host;
193 int retval = nfs_revalidate_file_size(inode, filp);
195 return (loff_t)retval;
198 return generic_file_llseek(filp, offset, origin);
202 * Flush all dirty pages, and check for write errors.
205 nfs_file_flush(struct file *file, fl_owner_t id)
207 struct dentry *dentry = file->f_path.dentry;
208 struct inode *inode = dentry->d_inode;
210 dprintk("NFS: flush(%s/%s)\n",
211 dentry->d_parent->d_name.name,
212 dentry->d_name.name);
214 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
215 if ((file->f_mode & FMODE_WRITE) == 0)
218 /* Flush writes to the server and return any errors */
219 return vfs_fsync(file, 0);
223 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
224 unsigned long nr_segs, loff_t pos)
226 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
227 struct inode * inode = dentry->d_inode;
230 if (iocb->ki_filp->f_flags & O_DIRECT)
231 return nfs_file_direct_read(iocb, iov, nr_segs, pos);
233 dprintk("NFS: read(%s/%s, %lu@%lu)\n",
234 dentry->d_parent->d_name.name, dentry->d_name.name,
235 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
237 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
239 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
241 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
247 nfs_file_splice_read(struct file *filp, loff_t *ppos,
248 struct pipe_inode_info *pipe, size_t count,
251 struct dentry *dentry = filp->f_path.dentry;
252 struct inode *inode = dentry->d_inode;
255 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
256 dentry->d_parent->d_name.name, dentry->d_name.name,
257 (unsigned long) count, (unsigned long long) *ppos);
259 res = nfs_revalidate_mapping(inode, filp->f_mapping);
261 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
263 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
269 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
271 struct dentry *dentry = file->f_path.dentry;
272 struct inode *inode = dentry->d_inode;
275 dprintk("NFS: mmap(%s/%s)\n",
276 dentry->d_parent->d_name.name, dentry->d_name.name);
278 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
279 * so we call that before revalidating the mapping
281 status = generic_file_mmap(file, vma);
283 vma->vm_ops = &nfs_file_vm_ops;
284 status = nfs_revalidate_mapping(inode, file->f_mapping);
290 * Flush any dirty pages for this process, and check for write errors.
291 * The return status from this call provides a reliable indication of
292 * whether any write errors occurred for this process.
294 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
295 * disk, but it retrieves and clears ctx->error after synching, despite
296 * the two being set at the same time in nfs_context_set_write_error().
297 * This is because the former is used to notify the _next_ call to
298 * nfs_file_write() that a write error occurred, and hence cause it to
299 * fall back to doing a synchronous write.
302 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
304 struct dentry *dentry = file->f_path.dentry;
305 struct nfs_open_context *ctx = nfs_file_open_context(file);
306 struct inode *inode = dentry->d_inode;
307 int have_error, status;
310 dprintk("NFS: fsync file(%s/%s) datasync %d\n",
311 dentry->d_parent->d_name.name, dentry->d_name.name,
314 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
317 mutex_lock(&inode->i_mutex);
319 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
320 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
321 status = nfs_commit_inode(inode, FLUSH_SYNC);
322 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
324 ret = xchg(&ctx->error, 0);
325 if (!ret && status < 0)
327 if (!ret && !datasync)
328 /* application has asked for meta-data sync */
329 ret = pnfs_layoutcommit_inode(inode, true);
330 mutex_unlock(&inode->i_mutex);
335 * Decide whether a read/modify/write cycle may be more efficient
336 * then a modify/write/read cycle when writing to a page in the
339 * The modify/write/read cycle may occur if a page is read before
340 * being completely filled by the writer. In this situation, the
341 * page must be completely written to stable storage on the server
342 * before it can be refilled by reading in the page from the server.
343 * This can lead to expensive, small, FILE_SYNC mode writes being
346 * It may be more efficient to read the page first if the file is
347 * open for reading in addition to writing, the page is not marked
348 * as Uptodate, it is not dirty or waiting to be committed,
349 * indicating that it was previously allocated and then modified,
350 * that there were valid bytes of data in that range of the file,
351 * and that the new data won't completely replace the old data in
352 * that range of the file.
354 static int nfs_want_read_modify_write(struct file *file, struct page *page,
355 loff_t pos, unsigned len)
357 unsigned int pglen = nfs_page_length(page);
358 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
359 unsigned int end = offset + len;
361 if ((file->f_mode & FMODE_READ) && /* open for read? */
362 !PageUptodate(page) && /* Uptodate? */
363 !PagePrivate(page) && /* i/o request already? */
364 pglen && /* valid bytes of file? */
365 (end < pglen || offset)) /* replace all valid bytes? */
371 * This does the "real" work of the write. We must allocate and lock the
372 * page to be sent back to the generic routine, which then copies the
373 * data from user space.
375 * If the writer ends up delaying the write, the writer needs to
376 * increment the page use counts until he is done with the page.
378 static int nfs_write_begin(struct file *file, struct address_space *mapping,
379 loff_t pos, unsigned len, unsigned flags,
380 struct page **pagep, void **fsdata)
383 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
387 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
388 file->f_path.dentry->d_parent->d_name.name,
389 file->f_path.dentry->d_name.name,
390 mapping->host->i_ino, len, (long long) pos);
394 * Prevent starvation issues if someone is doing a consistency
397 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
398 nfs_wait_bit_killable, TASK_KILLABLE);
402 page = grab_cache_page_write_begin(mapping, index, flags);
407 ret = nfs_flush_incompatible(file, page);
410 page_cache_release(page);
411 } else if (!once_thru &&
412 nfs_want_read_modify_write(file, page, pos, len)) {
414 ret = nfs_readpage(file, page);
415 page_cache_release(page);
422 static int nfs_write_end(struct file *file, struct address_space *mapping,
423 loff_t pos, unsigned len, unsigned copied,
424 struct page *page, void *fsdata)
426 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
429 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
430 file->f_path.dentry->d_parent->d_name.name,
431 file->f_path.dentry->d_name.name,
432 mapping->host->i_ino, len, (long long) pos);
435 * Zero any uninitialised parts of the page, and then mark the page
436 * as up to date if it turns out that we're extending the file.
438 if (!PageUptodate(page)) {
439 unsigned pglen = nfs_page_length(page);
440 unsigned end = offset + len;
443 zero_user_segments(page, 0, offset,
444 end, PAGE_CACHE_SIZE);
445 SetPageUptodate(page);
446 } else if (end >= pglen) {
447 zero_user_segment(page, end, PAGE_CACHE_SIZE);
449 SetPageUptodate(page);
451 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
454 status = nfs_updatepage(file, page, offset, copied);
457 page_cache_release(page);
465 * Partially or wholly invalidate a page
466 * - Release the private state associated with a page if undergoing complete
468 * - Called if either PG_private or PG_fscache is set on the page
469 * - Caller holds page lock
471 static void nfs_invalidate_page(struct page *page, unsigned long offset)
473 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
477 /* Cancel any unstarted writes on this page */
478 nfs_wb_page_cancel(page->mapping->host, page);
480 nfs_fscache_invalidate_page(page, page->mapping->host);
484 * Attempt to release the private state associated with a page
485 * - Called if either PG_private or PG_fscache is set on the page
486 * - Caller holds page lock
487 * - Return true (may release page) or false (may not)
489 static int nfs_release_page(struct page *page, gfp_t gfp)
491 struct address_space *mapping = page->mapping;
493 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
495 /* Only do I/O if gfp is a superset of GFP_KERNEL */
496 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
497 int how = FLUSH_SYNC;
499 /* Don't let kswapd deadlock waiting for OOM RPC calls */
500 if (current_is_kswapd())
502 nfs_commit_inode(mapping->host, how);
504 /* If PagePrivate() is set, then the page is not freeable */
505 if (PagePrivate(page))
507 return nfs_fscache_release_page(page, gfp);
511 * Attempt to clear the private state associated with a page when an error
512 * occurs that requires the cached contents of an inode to be written back or
514 * - Called if either PG_private or fscache is set on the page
515 * - Caller holds page lock
516 * - Return 0 if successful, -error otherwise
518 static int nfs_launder_page(struct page *page)
520 struct inode *inode = page->mapping->host;
521 struct nfs_inode *nfsi = NFS_I(inode);
523 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
524 inode->i_ino, (long long)page_offset(page));
526 nfs_fscache_wait_on_page_write(nfsi, page);
527 return nfs_wb_page(inode, page);
530 const struct address_space_operations nfs_file_aops = {
531 .readpage = nfs_readpage,
532 .readpages = nfs_readpages,
533 .set_page_dirty = __set_page_dirty_nobuffers,
534 .writepage = nfs_writepage,
535 .writepages = nfs_writepages,
536 .write_begin = nfs_write_begin,
537 .write_end = nfs_write_end,
538 .invalidatepage = nfs_invalidate_page,
539 .releasepage = nfs_release_page,
540 .direct_IO = nfs_direct_IO,
541 .migratepage = nfs_migrate_page,
542 .launder_page = nfs_launder_page,
543 .error_remove_page = generic_error_remove_page,
547 * Notification that a PTE pointing to an NFS page is about to be made
548 * writable, implying that someone is about to modify the page through a
549 * shared-writable mapping
551 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
553 struct page *page = vmf->page;
554 struct file *filp = vma->vm_file;
555 struct dentry *dentry = filp->f_path.dentry;
557 int ret = VM_FAULT_NOPAGE;
558 struct address_space *mapping;
560 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
561 dentry->d_parent->d_name.name, dentry->d_name.name,
562 filp->f_mapping->host->i_ino,
563 (long long)page_offset(page));
565 /* make sure the cache has finished storing the page */
566 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
569 mapping = page->mapping;
570 if (mapping != dentry->d_inode->i_mapping)
573 pagelen = nfs_page_length(page);
577 ret = VM_FAULT_LOCKED;
578 if (nfs_flush_incompatible(filp, page) == 0 &&
579 nfs_updatepage(filp, page, 0, pagelen) == 0)
582 ret = VM_FAULT_SIGBUS;
589 static const struct vm_operations_struct nfs_file_vm_ops = {
590 .fault = filemap_fault,
591 .page_mkwrite = nfs_vm_page_mkwrite,
594 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
596 struct nfs_open_context *ctx;
598 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
600 ctx = nfs_file_open_context(filp);
601 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
606 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
607 unsigned long nr_segs, loff_t pos)
609 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
610 struct inode * inode = dentry->d_inode;
611 unsigned long written = 0;
613 size_t count = iov_length(iov, nr_segs);
615 if (iocb->ki_filp->f_flags & O_DIRECT)
616 return nfs_file_direct_write(iocb, iov, nr_segs, pos);
618 dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
619 dentry->d_parent->d_name.name, dentry->d_name.name,
620 (unsigned long) count, (long long) pos);
623 if (IS_SWAPFILE(inode))
626 * O_APPEND implies that we must revalidate the file length.
628 if (iocb->ki_filp->f_flags & O_APPEND) {
629 result = nfs_revalidate_file_size(inode, iocb->ki_filp);
638 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
642 /* Return error values for O_DSYNC and IS_SYNC() */
643 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
644 int err = vfs_fsync(iocb->ki_filp, 0);
649 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
654 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
658 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
659 struct file *filp, loff_t *ppos,
660 size_t count, unsigned int flags)
662 struct dentry *dentry = filp->f_path.dentry;
663 struct inode *inode = dentry->d_inode;
664 unsigned long written = 0;
667 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
668 dentry->d_parent->d_name.name, dentry->d_name.name,
669 (unsigned long) count, (unsigned long long) *ppos);
672 * The combination of splice and an O_APPEND destination is disallowed.
675 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
679 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
680 int err = vfs_fsync(filp, 0);
685 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
690 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
692 struct inode *inode = filp->f_mapping->host;
694 unsigned int saved_type = fl->fl_type;
696 /* Try local locking first */
697 posix_test_lock(filp, fl);
698 if (fl->fl_type != F_UNLCK) {
699 /* found a conflict */
702 fl->fl_type = saved_type;
704 if (nfs_have_delegation(inode, FMODE_READ))
710 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
714 fl->fl_type = F_UNLCK;
718 static int do_vfs_lock(struct file *file, struct file_lock *fl)
721 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
723 res = posix_lock_file_wait(file, fl);
726 res = flock_lock_file_wait(file, fl);
735 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
737 struct inode *inode = filp->f_mapping->host;
741 * Flush all pending writes before doing anything
744 nfs_sync_mapping(filp->f_mapping);
746 /* NOTE: special case
747 * If we're signalled while cleaning up locks on process exit, we
748 * still need to complete the unlock.
751 * Use local locking if mounted with "-onolock" or with appropriate
755 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 status = do_vfs_lock(filp, fl);
762 is_time_granular(struct timespec *ts) {
763 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
767 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
769 struct inode *inode = filp->f_mapping->host;
773 * Flush all pending writes before doing anything
776 status = nfs_sync_mapping(filp->f_mapping);
781 * Use local locking if mounted with "-onolock" or with appropriate
785 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
787 status = do_vfs_lock(filp, fl);
792 * Revalidate the cache if the server has time stamps granular
793 * enough to detect subsecond changes. Otherwise, clear the
794 * cache to prevent missing any changes.
796 * This makes locking act as a cache coherency point.
798 nfs_sync_mapping(filp->f_mapping);
799 if (!nfs_have_delegation(inode, FMODE_READ)) {
800 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
801 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
803 nfs_zap_caches(inode);
810 * Lock a (portion of) a file
812 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
814 struct inode *inode = filp->f_mapping->host;
818 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
819 filp->f_path.dentry->d_parent->d_name.name,
820 filp->f_path.dentry->d_name.name,
821 fl->fl_type, fl->fl_flags,
822 (long long)fl->fl_start, (long long)fl->fl_end);
824 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
826 /* No mandatory locks over NFS */
827 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
830 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
833 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
834 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
840 ret = do_getlk(filp, cmd, fl, is_local);
841 else if (fl->fl_type == F_UNLCK)
842 ret = do_unlk(filp, cmd, fl, is_local);
844 ret = do_setlk(filp, cmd, fl, is_local);
850 * Lock a (portion of) a file
852 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
854 struct inode *inode = filp->f_mapping->host;
857 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
858 filp->f_path.dentry->d_parent->d_name.name,
859 filp->f_path.dentry->d_name.name,
860 fl->fl_type, fl->fl_flags);
862 if (!(fl->fl_flags & FL_FLOCK))
865 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
868 /* We're simulating flock() locks using posix locks on the server */
869 fl->fl_owner = (fl_owner_t)filp;
871 fl->fl_end = OFFSET_MAX;
873 if (fl->fl_type == F_UNLCK)
874 return do_unlk(filp, cmd, fl, is_local);
875 return do_setlk(filp, cmd, fl, is_local);
879 * There is no protocol support for leases, so we have no way to implement
880 * them correctly in the face of opens by other clients.
882 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
884 dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
885 file->f_path.dentry->d_parent->d_name.name,
886 file->f_path.dentry->d_name.name, arg);