1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_domain.h>
16 #include <linux/pm_opp.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
20 #include <soc/tegra/common.h>
21 #include <soc/tegra/pmc.h>
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_blend.h>
26 #include <drm/drm_debugfs.h>
27 #include <drm/drm_fourcc.h>
28 #include <drm/drm_framebuffer.h>
29 #include <drm/drm_vblank.h>
37 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
38 struct drm_crtc_state *state);
40 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
48 /* Reads the active copy of a register. */
49 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
53 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
54 value = tegra_dc_readl(dc, offset);
55 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
60 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
63 if (offset >= 0x500 && offset <= 0x638) {
64 offset = 0x000 + (offset - 0x500);
65 return plane->offset + offset;
68 if (offset >= 0x700 && offset <= 0x719) {
69 offset = 0x180 + (offset - 0x700);
70 return plane->offset + offset;
73 if (offset >= 0x800 && offset <= 0x839) {
74 offset = 0x1c0 + (offset - 0x800);
75 return plane->offset + offset;
78 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
80 return plane->offset + offset;
83 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
86 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
89 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
92 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
95 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
97 struct device_node *np = dc->dev->of_node;
98 struct of_phandle_iterator it;
101 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
102 if (it.node == dev->of_node)
109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111 * Latching happens mmediately if the display controller is in STOP mode or
112 * on the next frame boundary otherwise.
114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117 * into the ACTIVE copy, either immediately if the display controller is in
118 * STOP mode, or at the next frame boundary otherwise.
120 void tegra_dc_commit(struct tegra_dc *dc)
122 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
126 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
129 fixed20_12 outf = dfixed_init(out);
130 fixed20_12 inf = dfixed_init(in);
151 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
152 inf.full -= dfixed_const(1);
154 dda_inc = dfixed_div(inf, outf);
155 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
160 static inline u32 compute_initial_dda(unsigned int in)
162 fixed20_12 inf = dfixed_init(in);
163 return dfixed_frac(inf);
166 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
168 u32 background[3] = {
169 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
170 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
174 BLEND_COLOR_KEY_NONE;
175 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
176 struct tegra_plane_state *state;
180 /* disable blending for non-overlapping case */
181 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
182 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
184 state = to_tegra_plane_state(plane->base.state);
188 * Since custom fix-weight blending isn't utilized and weight
189 * of top window is set to max, we can enforce dependent
190 * blending which in this case results in transparent bottom
191 * window if top window is opaque and if top window enables
192 * alpha blending, then bottom window is getting alpha value
193 * of 1 minus the sum of alpha components of the overlapping
196 background[0] |= BLEND_CONTROL_DEPENDENT;
197 background[1] |= BLEND_CONTROL_DEPENDENT;
200 * The region where three windows overlap is the intersection
201 * of the two regions where two windows overlap. It contributes
202 * to the area if all of the windows on top of it have an alpha
205 switch (state->base.normalized_zpos) {
207 if (state->blending[0].alpha &&
208 state->blending[1].alpha)
209 background[2] |= BLEND_CONTROL_DEPENDENT;
213 background[2] |= BLEND_CONTROL_DEPENDENT;
218 * Enable alpha blending if pixel format has an alpha
221 foreground |= BLEND_CONTROL_ALPHA;
224 * If any of the windows on top of this window is opaque, it
225 * will completely conceal this window within that area. If
226 * top window has an alpha component, it is blended over the
229 for (i = 0; i < 2; i++) {
230 if (state->blending[i].alpha &&
231 state->blending[i].top)
232 background[i] |= BLEND_CONTROL_DEPENDENT;
235 switch (state->base.normalized_zpos) {
237 if (state->blending[0].alpha &&
238 state->blending[1].alpha)
239 background[2] |= BLEND_CONTROL_DEPENDENT;
244 * When both middle and topmost windows have an alpha,
245 * these windows a mixed together and then the result
246 * is blended over the bottom window.
248 if (state->blending[0].alpha &&
249 state->blending[0].top)
250 background[2] |= BLEND_CONTROL_ALPHA;
252 if (state->blending[1].alpha &&
253 state->blending[1].top)
254 background[2] |= BLEND_CONTROL_ALPHA;
259 switch (state->base.normalized_zpos) {
261 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
262 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
263 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
268 * If window B / C is topmost, then X / Y registers are
269 * matching the order of blending[...] state indices,
270 * otherwise a swap is required.
272 if (!state->blending[0].top && state->blending[1].top) {
273 blending[0] = foreground;
274 blending[1] = background[1];
276 blending[0] = background[0];
277 blending[1] = foreground;
280 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
281 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
282 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
286 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
287 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
288 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
293 static void tegra_plane_setup_blending(struct tegra_plane *plane,
294 const struct tegra_dc_window *window)
298 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
299 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
300 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
301 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
303 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
304 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
305 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
306 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
308 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
309 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
313 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
314 const struct tegra_dc_window *window)
316 struct tegra_dc *dc = plane->dc;
318 if (window->src.w == window->dst.w)
321 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
328 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
329 const struct tegra_dc_window *window)
331 struct tegra_dc *dc = plane->dc;
333 if (window->src.h == window->dst.h)
336 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
339 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
345 static void tegra_dc_setup_window(struct tegra_plane *plane,
346 const struct tegra_dc_window *window)
348 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
349 struct tegra_dc *dc = plane->dc;
355 * For YUV planar modes, the number of bytes per pixel takes into
356 * account only the luma component and therefore is 1.
358 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
360 bpp = window->bits_per_pixel / 8;
362 bpp = (planes > 1) ? 1 : 2;
364 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
365 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
367 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
368 tegra_plane_writel(plane, value, DC_WIN_POSITION);
370 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
371 tegra_plane_writel(plane, value, DC_WIN_SIZE);
373 h_offset = window->src.x * bpp;
374 v_offset = window->src.y;
375 h_size = window->src.w * bpp;
376 v_size = window->src.h;
378 if (window->reflect_x)
379 h_offset += (window->src.w - 1) * bpp;
381 if (window->reflect_y)
382 v_offset += window->src.h - 1;
384 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
385 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
388 * For DDA computations the number of bytes per pixel for YUV planar
389 * modes needs to take into account all Y, U and V components.
391 if (yuv && planes > 1)
394 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
395 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
397 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
398 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
400 h_dda = compute_initial_dda(window->src.x);
401 v_dda = compute_initial_dda(window->src.y);
403 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
404 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
406 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
407 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
409 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
411 if (yuv && planes > 1) {
412 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
415 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
417 value = window->stride[1] << 16 | window->stride[0];
418 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
420 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
423 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
424 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
426 if (dc->soc->supports_block_linear) {
427 unsigned long height = window->tiling.value;
429 switch (window->tiling.mode) {
430 case TEGRA_BO_TILING_MODE_PITCH:
431 value = DC_WINBUF_SURFACE_KIND_PITCH;
434 case TEGRA_BO_TILING_MODE_TILED:
435 value = DC_WINBUF_SURFACE_KIND_TILED;
438 case TEGRA_BO_TILING_MODE_BLOCK:
439 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
440 DC_WINBUF_SURFACE_KIND_BLOCK;
444 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
446 switch (window->tiling.mode) {
447 case TEGRA_BO_TILING_MODE_PITCH:
448 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
449 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
452 case TEGRA_BO_TILING_MODE_TILED:
453 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
454 DC_WIN_BUFFER_ADDR_MODE_TILE;
457 case TEGRA_BO_TILING_MODE_BLOCK:
459 * No need to handle this here because ->atomic_check
460 * will already have filtered it out.
465 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
471 /* setup default colorspace conversion coefficients */
472 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
473 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
474 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
475 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
476 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
477 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
478 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
479 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
482 } else if (window->bits_per_pixel < 24) {
483 value |= COLOR_EXPAND;
486 if (window->reflect_x)
487 value |= H_DIRECTION;
489 if (window->reflect_y)
490 value |= V_DIRECTION;
492 if (tegra_plane_use_horizontal_filtering(plane, window)) {
494 * Enable horizontal 6-tap filter and set filtering
495 * coefficients to the default values defined in TRM.
497 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
498 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
499 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
500 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
501 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
502 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
503 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
504 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
505 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
506 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
507 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
508 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
509 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
510 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
511 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
512 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
517 if (tegra_plane_use_vertical_filtering(plane, window)) {
521 * Enable vertical 2-tap filter and set filtering
522 * coefficients to the default values defined in TRM.
524 for (i = 0, k = 128; i < 16; i++, k -= 8)
525 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
530 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
532 if (dc->soc->has_legacy_blending)
533 tegra_plane_setup_blending_legacy(plane);
535 tegra_plane_setup_blending(plane, window);
538 static const u32 tegra20_primary_formats[] = {
545 /* non-native formats */
552 static const u64 tegra20_modifiers[] = {
553 DRM_FORMAT_MOD_LINEAR,
554 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
555 DRM_FORMAT_MOD_INVALID
558 static const u32 tegra114_primary_formats[] = {
565 /* new on Tegra114 */
580 static const u32 tegra124_primary_formats[] = {
587 /* new on Tegra114 */
600 /* new on Tegra124 */
605 static const u64 tegra124_modifiers[] = {
606 DRM_FORMAT_MOD_LINEAR,
607 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
608 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
611 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
612 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
613 DRM_FORMAT_MOD_INVALID
616 static int tegra_plane_atomic_check(struct drm_plane *plane,
617 struct drm_atomic_state *state)
619 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
621 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
622 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
625 unsigned int rotation = new_plane_state->rotation;
626 struct tegra_bo_tiling *tiling = &plane_state->tiling;
627 struct tegra_plane *tegra = to_tegra_plane(plane);
628 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
631 plane_state->peak_memory_bandwidth = 0;
632 plane_state->avg_memory_bandwidth = 0;
634 /* no need for further checks if the plane is being disabled */
635 if (!new_plane_state->crtc) {
636 plane_state->total_peak_memory_bandwidth = 0;
640 err = tegra_plane_format(new_plane_state->fb->format->format,
641 &plane_state->format,
647 * Tegra20 and Tegra30 are special cases here because they support
648 * only variants of specific formats with an alpha component, but not
649 * the corresponding opaque formats. However, the opaque formats can
650 * be emulated by disabling alpha blending for the plane.
652 if (dc->soc->has_legacy_blending) {
653 err = tegra_plane_setup_legacy_state(tegra, plane_state);
658 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
662 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
663 !dc->soc->supports_block_linear) {
664 DRM_ERROR("hardware doesn't support block linear mode\n");
669 * Older userspace used custom BO flag in order to specify the Y
670 * reflection, while modern userspace uses the generic DRM rotation
671 * property in order to achieve the same result. The legacy BO flag
672 * duplicates the DRM rotation property when both are set.
674 if (tegra_fb_is_bottom_up(new_plane_state->fb))
675 rotation |= DRM_MODE_REFLECT_Y;
677 rotation = drm_rotation_simplify(rotation, supported_rotation);
679 if (rotation & DRM_MODE_REFLECT_X)
680 plane_state->reflect_x = true;
682 plane_state->reflect_x = false;
684 if (rotation & DRM_MODE_REFLECT_Y)
685 plane_state->reflect_y = true;
687 plane_state->reflect_y = false;
690 * Tegra doesn't support different strides for U and V planes so we
691 * error out if the user tries to display a framebuffer with such a
694 if (new_plane_state->fb->format->num_planes > 2) {
695 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
696 DRM_ERROR("unsupported UV-plane configuration\n");
701 err = tegra_plane_state_add(tegra, new_plane_state);
708 static void tegra_plane_atomic_disable(struct drm_plane *plane,
709 struct drm_atomic_state *state)
711 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
713 struct tegra_plane *p = to_tegra_plane(plane);
716 /* rien ne va plus */
717 if (!old_state || !old_state->crtc)
720 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
721 value &= ~WIN_ENABLE;
722 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
725 static void tegra_plane_atomic_update(struct drm_plane *plane,
726 struct drm_atomic_state *state)
728 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
730 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
731 struct drm_framebuffer *fb = new_state->fb;
732 struct tegra_plane *p = to_tegra_plane(plane);
733 struct tegra_dc_window window;
736 /* rien ne va plus */
737 if (!new_state->crtc || !new_state->fb)
740 if (!new_state->visible)
741 return tegra_plane_atomic_disable(plane, state);
743 memset(&window, 0, sizeof(window));
744 window.src.x = new_state->src.x1 >> 16;
745 window.src.y = new_state->src.y1 >> 16;
746 window.src.w = drm_rect_width(&new_state->src) >> 16;
747 window.src.h = drm_rect_height(&new_state->src) >> 16;
748 window.dst.x = new_state->dst.x1;
749 window.dst.y = new_state->dst.y1;
750 window.dst.w = drm_rect_width(&new_state->dst);
751 window.dst.h = drm_rect_height(&new_state->dst);
752 window.bits_per_pixel = fb->format->cpp[0] * 8;
753 window.reflect_x = tegra_plane_state->reflect_x;
754 window.reflect_y = tegra_plane_state->reflect_y;
756 /* copy from state */
757 window.zpos = new_state->normalized_zpos;
758 window.tiling = tegra_plane_state->tiling;
759 window.format = tegra_plane_state->format;
760 window.swap = tegra_plane_state->swap;
762 for (i = 0; i < fb->format->num_planes; i++) {
763 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
766 * Tegra uses a shared stride for UV planes. Framebuffers are
767 * already checked for this in the tegra_plane_atomic_check()
768 * function, so it's safe to ignore the V-plane pitch here.
771 window.stride[i] = fb->pitches[i];
774 tegra_dc_setup_window(p, &window);
777 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
778 .prepare_fb = tegra_plane_prepare_fb,
779 .cleanup_fb = tegra_plane_cleanup_fb,
780 .atomic_check = tegra_plane_atomic_check,
781 .atomic_disable = tegra_plane_atomic_disable,
782 .atomic_update = tegra_plane_atomic_update,
785 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
788 * Ideally this would use drm_crtc_mask(), but that would require the
789 * CRTC to already be in the mode_config's list of CRTCs. However, it
790 * will only be added to that list in the drm_crtc_init_with_planes()
791 * (in tegra_dc_init()), which in turn requires registration of these
792 * planes. So we have ourselves a nice little chicken and egg problem
795 * We work around this by manually creating the mask from the number
796 * of CRTCs that have been registered, and should therefore always be
797 * the same as drm_crtc_index() after registration.
799 return 1 << drm->mode_config.num_crtc;
802 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
805 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
806 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
807 struct tegra_plane *plane;
808 unsigned int num_formats;
809 const u64 *modifiers;
813 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 return ERR_PTR(-ENOMEM);
817 /* Always use window A as primary window */
818 plane->offset = 0xa00;
822 num_formats = dc->soc->num_primary_formats;
823 formats = dc->soc->primary_formats;
824 modifiers = dc->soc->modifiers;
826 err = tegra_plane_interconnect_init(plane);
832 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
833 &tegra_plane_funcs, formats,
834 num_formats, modifiers, type, NULL);
840 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
841 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
843 err = drm_plane_create_rotation_property(&plane->base,
846 DRM_MODE_ROTATE_180 |
850 dev_err(dc->dev, "failed to create rotation property: %d\n",
856 static const u32 tegra_legacy_cursor_plane_formats[] = {
860 static const u32 tegra_cursor_plane_formats[] = {
864 static int tegra_cursor_atomic_check(struct drm_plane *plane,
865 struct drm_atomic_state *state)
867 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
869 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
870 struct tegra_plane *tegra = to_tegra_plane(plane);
873 plane_state->peak_memory_bandwidth = 0;
874 plane_state->avg_memory_bandwidth = 0;
876 /* no need for further checks if the plane is being disabled */
877 if (!new_plane_state->crtc) {
878 plane_state->total_peak_memory_bandwidth = 0;
882 /* scaling not supported for cursor */
883 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
884 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
887 /* only square cursors supported */
888 if (new_plane_state->src_w != new_plane_state->src_h)
891 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
892 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
895 err = tegra_plane_state_add(tegra, new_plane_state);
902 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
903 struct drm_plane_state *new_state)
905 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
906 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
907 struct tegra_drm *tegra = plane->dev->dev_private;
908 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
909 u64 dma_mask = *dc->dev->dma_mask;
914 /* rien ne va plus */
915 if (!new_state->crtc || !new_state->fb)
919 * Legacy display supports hardware clipping of the cursor, but
920 * nvdisplay relies on software to clip the cursor to the screen.
922 if (!dc->soc->has_nvdisplay)
923 value |= CURSOR_CLIP_DISPLAY;
925 switch (new_state->crtc_w) {
927 value |= CURSOR_SIZE_32x32;
931 value |= CURSOR_SIZE_64x64;
935 value |= CURSOR_SIZE_128x128;
939 value |= CURSOR_SIZE_256x256;
943 WARN(1, "cursor size %ux%u not supported\n",
944 new_state->crtc_w, new_state->crtc_h);
948 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
949 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
951 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
952 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
953 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
956 /* enable cursor and set blend mode */
957 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
958 value |= CURSOR_ENABLE;
959 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
961 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
962 value &= ~CURSOR_DST_BLEND_MASK;
963 value &= ~CURSOR_SRC_BLEND_MASK;
965 if (dc->soc->has_nvdisplay)
966 value &= ~CURSOR_COMPOSITION_MODE_XOR;
968 value |= CURSOR_MODE_NORMAL;
970 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
971 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
972 value |= CURSOR_ALPHA;
973 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
975 /* nvdisplay relies on software for clipping */
976 if (dc->soc->has_nvdisplay) {
979 x = new_state->dst.x1;
980 y = new_state->dst.y1;
982 drm_rect_fp_to_int(&src, &new_state->src);
984 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
985 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
987 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
988 (drm_rect_width(&src) & tegra->hmask);
989 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
991 x = new_state->crtc_x;
992 y = new_state->crtc_y;
995 /* position the cursor */
996 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
997 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
1000 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1001 struct drm_atomic_state *state)
1003 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1005 __tegra_cursor_atomic_update(plane, new_state);
1008 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1009 struct drm_atomic_state *state)
1011 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1013 struct tegra_dc *dc;
1016 /* rien ne va plus */
1017 if (!old_state || !old_state->crtc)
1020 dc = to_tegra_dc(old_state->crtc);
1022 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1023 value &= ~CURSOR_ENABLE;
1024 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1027 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1029 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1030 struct drm_crtc_state *crtc_state;
1031 int min_scale, max_scale;
1034 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1035 if (WARN_ON(!crtc_state))
1038 if (!crtc_state->active)
1041 if (plane->state->crtc != new_state->crtc ||
1042 plane->state->src_w != new_state->src_w ||
1043 plane->state->src_h != new_state->src_h ||
1044 plane->state->crtc_w != new_state->crtc_w ||
1045 plane->state->crtc_h != new_state->crtc_h ||
1046 plane->state->fb != new_state->fb ||
1047 plane->state->fb == NULL)
1050 min_scale = (1 << 16) / 8;
1051 max_scale = (8 << 16) / 1;
1053 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1058 if (new_state->visible != plane->state->visible)
1064 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1065 struct drm_atomic_state *state)
1067 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1068 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1070 plane->state->src_x = new_state->src_x;
1071 plane->state->src_y = new_state->src_y;
1072 plane->state->crtc_x = new_state->crtc_x;
1073 plane->state->crtc_y = new_state->crtc_y;
1075 if (new_state->visible) {
1076 struct tegra_plane *p = to_tegra_plane(plane);
1079 __tegra_cursor_atomic_update(plane, new_state);
1081 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1082 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1083 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1085 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1086 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1087 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1091 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1092 .prepare_fb = tegra_plane_prepare_fb,
1093 .cleanup_fb = tegra_plane_cleanup_fb,
1094 .atomic_check = tegra_cursor_atomic_check,
1095 .atomic_update = tegra_cursor_atomic_update,
1096 .atomic_disable = tegra_cursor_atomic_disable,
1097 .atomic_async_check = tegra_cursor_atomic_async_check,
1098 .atomic_async_update = tegra_cursor_atomic_async_update,
1101 static const uint64_t linear_modifiers[] = {
1102 DRM_FORMAT_MOD_LINEAR,
1103 DRM_FORMAT_MOD_INVALID
1106 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1107 struct tegra_dc *dc)
1109 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1110 struct tegra_plane *plane;
1111 unsigned int num_formats;
1115 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1117 return ERR_PTR(-ENOMEM);
1120 * This index is kind of fake. The cursor isn't a regular plane, but
1121 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1122 * use the same programming. Setting this fake index here allows the
1123 * code in tegra_add_plane_state() to do the right thing without the
1124 * need to special-casing the cursor plane.
1129 if (!dc->soc->has_nvdisplay) {
1130 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1131 formats = tegra_legacy_cursor_plane_formats;
1133 err = tegra_plane_interconnect_init(plane);
1136 return ERR_PTR(err);
1139 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1140 formats = tegra_cursor_plane_formats;
1143 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1144 &tegra_plane_funcs, formats,
1145 num_formats, linear_modifiers,
1146 DRM_PLANE_TYPE_CURSOR, NULL);
1149 return ERR_PTR(err);
1152 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1153 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1155 return &plane->base;
1158 static const u32 tegra20_overlay_formats[] = {
1159 DRM_FORMAT_ARGB4444,
1160 DRM_FORMAT_ARGB1555,
1162 DRM_FORMAT_RGBA5551,
1163 DRM_FORMAT_ABGR8888,
1164 DRM_FORMAT_ARGB8888,
1165 /* non-native formats */
1166 DRM_FORMAT_XRGB1555,
1167 DRM_FORMAT_RGBX5551,
1168 DRM_FORMAT_XBGR8888,
1169 DRM_FORMAT_XRGB8888,
1170 /* planar formats */
1177 static const u32 tegra114_overlay_formats[] = {
1178 DRM_FORMAT_ARGB4444,
1179 DRM_FORMAT_ARGB1555,
1181 DRM_FORMAT_RGBA5551,
1182 DRM_FORMAT_ABGR8888,
1183 DRM_FORMAT_ARGB8888,
1184 /* new on Tegra114 */
1185 DRM_FORMAT_ABGR4444,
1186 DRM_FORMAT_ABGR1555,
1187 DRM_FORMAT_BGRA5551,
1188 DRM_FORMAT_XRGB1555,
1189 DRM_FORMAT_RGBX5551,
1190 DRM_FORMAT_XBGR1555,
1191 DRM_FORMAT_BGRX5551,
1193 DRM_FORMAT_BGRA8888,
1194 DRM_FORMAT_RGBA8888,
1195 DRM_FORMAT_XRGB8888,
1196 DRM_FORMAT_XBGR8888,
1197 /* planar formats */
1202 /* semi-planar formats */
1211 static const u32 tegra124_overlay_formats[] = {
1212 DRM_FORMAT_ARGB4444,
1213 DRM_FORMAT_ARGB1555,
1215 DRM_FORMAT_RGBA5551,
1216 DRM_FORMAT_ABGR8888,
1217 DRM_FORMAT_ARGB8888,
1218 /* new on Tegra114 */
1219 DRM_FORMAT_ABGR4444,
1220 DRM_FORMAT_ABGR1555,
1221 DRM_FORMAT_BGRA5551,
1222 DRM_FORMAT_XRGB1555,
1223 DRM_FORMAT_RGBX5551,
1224 DRM_FORMAT_XBGR1555,
1225 DRM_FORMAT_BGRX5551,
1227 DRM_FORMAT_BGRA8888,
1228 DRM_FORMAT_RGBA8888,
1229 DRM_FORMAT_XRGB8888,
1230 DRM_FORMAT_XBGR8888,
1231 /* new on Tegra124 */
1232 DRM_FORMAT_RGBX8888,
1233 DRM_FORMAT_BGRX8888,
1234 /* planar formats */
1239 DRM_FORMAT_YUV420, /* YU12 */
1240 DRM_FORMAT_YUV422, /* YU16 */
1241 DRM_FORMAT_YUV444, /* YU24 */
1242 /* semi-planar formats */
1251 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1252 struct tegra_dc *dc,
1256 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1257 struct tegra_plane *plane;
1258 unsigned int num_formats;
1259 enum drm_plane_type type;
1263 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1265 return ERR_PTR(-ENOMEM);
1267 plane->offset = 0xa00 + 0x200 * index;
1268 plane->index = index;
1271 num_formats = dc->soc->num_overlay_formats;
1272 formats = dc->soc->overlay_formats;
1274 err = tegra_plane_interconnect_init(plane);
1277 return ERR_PTR(err);
1281 type = DRM_PLANE_TYPE_OVERLAY;
1283 type = DRM_PLANE_TYPE_CURSOR;
1285 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1286 &tegra_plane_funcs, formats,
1287 num_formats, linear_modifiers,
1291 return ERR_PTR(err);
1294 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1295 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1297 err = drm_plane_create_rotation_property(&plane->base,
1300 DRM_MODE_ROTATE_180 |
1301 DRM_MODE_REFLECT_X |
1302 DRM_MODE_REFLECT_Y);
1304 dev_err(dc->dev, "failed to create rotation property: %d\n",
1307 return &plane->base;
1310 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1311 struct tegra_dc *dc)
1313 struct drm_plane *plane, *primary = NULL;
1316 for (i = 0; i < dc->soc->num_wgrps; i++) {
1317 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1319 if (wgrp->dc == dc->pipe) {
1320 for (j = 0; j < wgrp->num_windows; j++) {
1321 unsigned int index = wgrp->windows[j];
1323 plane = tegra_shared_plane_create(drm, dc,
1330 * Choose the first shared plane owned by this
1331 * head as the primary plane.
1334 plane->type = DRM_PLANE_TYPE_PRIMARY;
1344 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1345 struct tegra_dc *dc)
1347 struct drm_plane *planes[2], *primary;
1348 unsigned int planes_num;
1352 primary = tegra_primary_plane_create(drm, dc);
1353 if (IS_ERR(primary))
1356 if (dc->soc->supports_cursor)
1361 for (i = 0; i < planes_num; i++) {
1362 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1364 if (IS_ERR(planes[i])) {
1365 err = PTR_ERR(planes[i]);
1368 planes[i]->funcs->destroy(planes[i]);
1370 primary->funcs->destroy(primary);
1371 return ERR_PTR(err);
1378 static void tegra_dc_destroy(struct drm_crtc *crtc)
1380 drm_crtc_cleanup(crtc);
1383 static void tegra_crtc_reset(struct drm_crtc *crtc)
1385 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1388 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1390 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1393 static struct drm_crtc_state *
1394 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1396 struct tegra_dc_state *state = to_dc_state(crtc->state);
1397 struct tegra_dc_state *copy;
1399 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1403 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1404 copy->clk = state->clk;
1405 copy->pclk = state->pclk;
1406 copy->div = state->div;
1407 copy->planes = state->planes;
1412 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1413 struct drm_crtc_state *state)
1415 __drm_atomic_helper_crtc_destroy_state(state);
1419 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1421 static const struct debugfs_reg32 tegra_dc_regs[] = {
1422 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1423 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1424 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1425 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1426 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1427 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1428 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1429 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1430 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1431 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1432 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1433 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1434 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1435 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1436 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1437 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1438 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1439 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1440 DEBUGFS_REG32(DC_CMD_INT_MASK),
1441 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1442 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1443 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1444 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1445 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1446 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1447 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1448 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1449 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1450 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1451 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1452 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1453 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1455 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1456 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1457 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1458 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1459 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1460 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1461 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1462 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1463 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1464 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1465 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1466 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1467 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1468 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1469 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1470 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1471 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1475 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1476 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1477 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1478 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1479 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1480 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1481 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1482 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1483 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1484 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1485 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1486 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1487 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1488 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1489 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1490 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1491 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1492 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1493 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1494 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1495 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1496 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1497 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1498 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1499 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1500 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1501 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1502 DEBUGFS_REG32(DC_DISP_ACTIVE),
1503 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1504 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1505 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1506 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1507 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1508 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1509 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1510 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1511 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1512 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1513 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1514 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1515 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1516 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1517 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1518 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1519 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1520 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1521 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1522 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1523 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1524 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1525 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1526 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1527 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1528 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1529 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1530 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1531 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1532 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1533 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1534 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1535 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1536 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1537 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1538 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1539 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1540 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1541 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1542 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1543 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1544 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1545 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1546 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1547 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1548 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1549 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1550 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1551 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1552 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1553 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1554 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1555 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1556 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1557 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1558 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1559 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1560 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1561 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1562 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1563 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1564 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1565 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1566 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1567 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1568 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1569 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1570 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1571 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1572 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1573 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1574 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1575 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1576 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1577 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1578 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1579 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1580 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1581 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1582 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1583 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1584 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1585 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1586 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1587 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1588 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1589 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1590 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1591 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1592 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1593 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1594 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1595 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1596 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1597 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1598 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1599 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1600 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1601 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1602 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1603 DEBUGFS_REG32(DC_WIN_POSITION),
1604 DEBUGFS_REG32(DC_WIN_SIZE),
1605 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1606 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1607 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1608 DEBUGFS_REG32(DC_WIN_DDA_INC),
1609 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1610 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1611 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1612 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1613 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1614 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1615 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1616 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1617 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1618 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1619 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1620 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1621 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1622 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1623 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1624 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1625 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1626 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1627 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1628 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1629 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1630 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1631 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1632 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1633 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1636 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1638 struct drm_info_node *node = s->private;
1639 struct tegra_dc *dc = node->info_ent->data;
1643 drm_modeset_lock(&dc->base.mutex, NULL);
1645 if (!dc->base.state->active) {
1650 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1651 unsigned int offset = tegra_dc_regs[i].offset;
1653 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1654 offset, tegra_dc_readl(dc, offset));
1658 drm_modeset_unlock(&dc->base.mutex);
1662 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1664 struct drm_info_node *node = s->private;
1665 struct tegra_dc *dc = node->info_ent->data;
1669 drm_modeset_lock(&dc->base.mutex, NULL);
1671 if (!dc->base.state->active) {
1676 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1677 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1678 tegra_dc_commit(dc);
1680 drm_crtc_wait_one_vblank(&dc->base);
1681 drm_crtc_wait_one_vblank(&dc->base);
1683 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1684 seq_printf(s, "%08x\n", value);
1686 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1689 drm_modeset_unlock(&dc->base.mutex);
1693 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1695 struct drm_info_node *node = s->private;
1696 struct tegra_dc *dc = node->info_ent->data;
1698 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1699 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1700 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1701 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1703 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1704 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1705 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1706 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1711 static struct drm_info_list debugfs_files[] = {
1712 { "regs", tegra_dc_show_regs, 0, NULL },
1713 { "crc", tegra_dc_show_crc, 0, NULL },
1714 { "stats", tegra_dc_show_stats, 0, NULL },
1717 static int tegra_dc_late_register(struct drm_crtc *crtc)
1719 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1720 struct drm_minor *minor = crtc->dev->primary;
1721 struct dentry *root;
1722 struct tegra_dc *dc = to_tegra_dc(crtc);
1724 #ifdef CONFIG_DEBUG_FS
1725 root = crtc->debugfs_entry;
1730 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1732 if (!dc->debugfs_files)
1735 for (i = 0; i < count; i++)
1736 dc->debugfs_files[i].data = dc;
1738 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1743 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1745 unsigned int count = ARRAY_SIZE(debugfs_files);
1746 struct drm_minor *minor = crtc->dev->primary;
1747 struct tegra_dc *dc = to_tegra_dc(crtc);
1749 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1750 kfree(dc->debugfs_files);
1751 dc->debugfs_files = NULL;
1754 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1756 struct tegra_dc *dc = to_tegra_dc(crtc);
1758 /* XXX vblank syncpoints don't work with nvdisplay yet */
1759 if (dc->syncpt && !dc->soc->has_nvdisplay)
1760 return host1x_syncpt_read(dc->syncpt);
1762 /* fallback to software emulated VBLANK counter */
1763 return (u32)drm_crtc_vblank_count(&dc->base);
1766 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1768 struct tegra_dc *dc = to_tegra_dc(crtc);
1771 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1772 value |= VBLANK_INT;
1773 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1778 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1780 struct tegra_dc *dc = to_tegra_dc(crtc);
1783 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1784 value &= ~VBLANK_INT;
1785 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1788 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1789 .page_flip = drm_atomic_helper_page_flip,
1790 .set_config = drm_atomic_helper_set_config,
1791 .destroy = tegra_dc_destroy,
1792 .reset = tegra_crtc_reset,
1793 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1794 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1795 .late_register = tegra_dc_late_register,
1796 .early_unregister = tegra_dc_early_unregister,
1797 .get_vblank_counter = tegra_dc_get_vblank_counter,
1798 .enable_vblank = tegra_dc_enable_vblank,
1799 .disable_vblank = tegra_dc_disable_vblank,
1802 static int tegra_dc_set_timings(struct tegra_dc *dc,
1803 struct drm_display_mode *mode)
1805 unsigned int h_ref_to_sync = 1;
1806 unsigned int v_ref_to_sync = 1;
1807 unsigned long value;
1809 if (!dc->soc->has_nvdisplay) {
1810 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1812 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1813 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1816 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1817 ((mode->hsync_end - mode->hsync_start) << 0);
1818 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1820 value = ((mode->vtotal - mode->vsync_end) << 16) |
1821 ((mode->htotal - mode->hsync_end) << 0);
1822 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1824 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1825 ((mode->hsync_start - mode->hdisplay) << 0);
1826 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1828 value = (mode->vdisplay << 16) | mode->hdisplay;
1829 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1835 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1837 * @dc: display controller
1838 * @crtc_state: CRTC atomic state
1839 * @clk: parent clock for display controller
1840 * @pclk: pixel clock
1841 * @div: shift clock divider
1844 * 0 on success or a negative error-code on failure.
1846 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1847 struct drm_crtc_state *crtc_state,
1848 struct clk *clk, unsigned long pclk,
1851 struct tegra_dc_state *state = to_dc_state(crtc_state);
1853 if (!clk_has_parent(dc->clk, clk))
1863 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1864 struct tegra_dc_state *state)
1866 unsigned long rate, pstate;
1867 struct dev_pm_opp *opp;
1870 if (!dc->has_opp_table)
1873 /* calculate actual pixel clock rate which depends on internal divider */
1874 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1876 /* find suitable OPP for the rate */
1877 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1880 * Very high resolution modes may results in a clock rate that is
1881 * above the characterized maximum. In this case it's okay to fall
1882 * back to the characterized maximum.
1884 if (opp == ERR_PTR(-ERANGE))
1885 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1888 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1893 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1894 dev_pm_opp_put(opp);
1897 * The minimum core voltage depends on the pixel clock rate (which
1898 * depends on internal clock divider of the CRTC) and not on the
1899 * rate of the display controller clock. This is why we're not using
1900 * dev_pm_opp_set_rate() API and instead controlling the power domain
1903 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1905 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1909 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1910 struct tegra_dc_state *state)
1914 err = clk_set_parent(dc->clk, state->clk);
1916 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1919 * Outputs may not want to change the parent clock rate. This is only
1920 * relevant to Tegra20 where only a single display PLL is available.
1921 * Since that PLL would typically be used for HDMI, an internal LVDS
1922 * panel would need to be driven by some other clock such as PLL_P
1923 * which is shared with other peripherals. Changing the clock rate
1924 * should therefore be avoided.
1926 if (state->pclk > 0) {
1927 err = clk_set_rate(state->clk, state->pclk);
1930 "failed to set clock rate to %lu Hz\n",
1933 err = clk_set_rate(dc->clk, state->pclk);
1935 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1936 dc->clk, state->pclk, err);
1939 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1941 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1943 tegra_dc_update_voltage_state(dc, state);
1946 static void tegra_dc_stop(struct tegra_dc *dc)
1950 /* stop the display controller */
1951 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1952 value &= ~DISP_CTRL_MODE_MASK;
1953 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1955 tegra_dc_commit(dc);
1958 static bool tegra_dc_idle(struct tegra_dc *dc)
1962 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1964 return (value & DISP_CTRL_MODE_MASK) == 0;
1967 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1969 timeout = jiffies + msecs_to_jiffies(timeout);
1971 while (time_before(jiffies, timeout)) {
1972 if (tegra_dc_idle(dc))
1975 usleep_range(1000, 2000);
1978 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1983 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1984 struct drm_atomic_state *state,
1985 bool prepare_bandwidth_transition)
1987 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1988 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1989 const struct drm_plane_state *old_plane_state;
1990 const struct drm_crtc_state *old_crtc_state;
1991 struct tegra_dc_window window, old_window;
1992 struct tegra_dc *dc = to_tegra_dc(crtc);
1993 struct tegra_plane *tegra;
1994 struct drm_plane *plane;
1996 if (dc->soc->has_nvdisplay)
1999 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2001 if (!crtc->state->active) {
2002 if (!old_crtc_state->active)
2006 * When CRTC is disabled on DPMS, the state of attached planes
2007 * is kept unchanged. Hence we need to enforce removal of the
2008 * bandwidths from the ICC paths.
2010 drm_atomic_crtc_for_each_plane(plane, crtc) {
2011 tegra = to_tegra_plane(plane);
2013 icc_set_bw(tegra->icc_mem, 0, 0);
2014 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2020 for_each_old_plane_in_state(old_crtc_state->state, plane,
2021 old_plane_state, i) {
2022 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2023 new_tegra_state = to_const_tegra_plane_state(plane->state);
2024 tegra = to_tegra_plane(plane);
2027 * We're iterating over the global atomic state and it contains
2028 * planes from another CRTC, hence we need to filter out the
2029 * planes unrelated to this CRTC.
2031 if (tegra->dc != dc)
2034 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2035 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2037 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2038 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2041 * See the comment related to !crtc->state->active above,
2042 * which explains why bandwidths need to be updated when
2043 * CRTC is turning ON.
2045 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2046 old_crtc_state->active)
2049 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2050 window.dst.h = drm_rect_height(&plane->state->dst);
2052 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2053 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2056 * During the preparation phase (atomic_begin), the memory
2057 * freq should go high before the DC changes are committed
2058 * if bandwidth requirement goes up, otherwise memory freq
2059 * should to stay high if BW requirement goes down. The
2060 * opposite applies to the completion phase (post_commit).
2062 if (prepare_bandwidth_transition) {
2063 new_avg_bw = max(old_avg_bw, new_avg_bw);
2064 new_peak_bw = max(old_peak_bw, new_peak_bw);
2066 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2067 window = old_window;
2070 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2072 if (tegra_plane_use_vertical_filtering(tegra, &window))
2073 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2075 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2079 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2080 struct drm_atomic_state *state)
2082 struct tegra_dc *dc = to_tegra_dc(crtc);
2086 if (!tegra_dc_idle(dc)) {
2090 * Ignore the return value, there isn't anything useful to do
2091 * in case this fails.
2093 tegra_dc_wait_idle(dc, 100);
2097 * This should really be part of the RGB encoder driver, but clearing
2098 * these bits has the side-effect of stopping the display controller.
2099 * When that happens no VBLANK interrupts will be raised. At the same
2100 * time the encoder is disabled before the display controller, so the
2101 * above code is always going to timeout waiting for the controller
2104 * Given the close coupling between the RGB encoder and the display
2105 * controller doing it here is still kind of okay. None of the other
2106 * encoder drivers require these bits to be cleared.
2108 * XXX: Perhaps given that the display controller is switched off at
2109 * this point anyway maybe clearing these bits isn't even useful for
2113 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2114 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2115 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2116 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2119 tegra_dc_stats_reset(&dc->stats);
2120 drm_crtc_vblank_off(crtc);
2122 spin_lock_irq(&crtc->dev->event_lock);
2124 if (crtc->state->event) {
2125 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2126 crtc->state->event = NULL;
2129 spin_unlock_irq(&crtc->dev->event_lock);
2131 err = host1x_client_suspend(&dc->client);
2133 dev_err(dc->dev, "failed to suspend: %d\n", err);
2135 if (dc->has_opp_table) {
2136 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2139 "failed to clear power domain state: %d\n", err);
2143 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2144 struct drm_atomic_state *state)
2146 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2147 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2148 struct tegra_dc *dc = to_tegra_dc(crtc);
2152 /* apply PLL changes */
2153 tegra_dc_set_clock_rate(dc, crtc_state);
2155 err = host1x_client_resume(&dc->client);
2157 dev_err(dc->dev, "failed to resume: %d\n", err);
2161 /* initialize display controller */
2163 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2165 if (dc->soc->has_nvdisplay)
2170 value = SYNCPT_CNTRL_NO_STALL;
2171 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2173 value = enable | syncpt;
2174 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2177 if (dc->soc->has_nvdisplay) {
2178 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2180 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2182 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2183 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2184 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2185 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2186 VBLANK_INT | FRAME_END_INT;
2187 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2189 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2191 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2193 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2194 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2196 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2198 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2199 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2200 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2202 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2203 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2204 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2206 /* initialize timer */
2207 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2208 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2209 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2211 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2212 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2213 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2215 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2219 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2224 if (dc->soc->supports_background_color)
2225 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2227 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2229 /* apply pixel clock changes */
2230 if (!dc->soc->has_nvdisplay) {
2231 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2232 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2235 /* program display mode */
2236 tegra_dc_set_timings(dc, mode);
2238 /* interlacing isn't supported yet, so disable it */
2239 if (dc->soc->supports_interlacing) {
2240 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2241 value &= ~INTERLACE_ENABLE;
2242 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2245 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2246 value &= ~DISP_CTRL_MODE_MASK;
2247 value |= DISP_CTRL_MODE_C_DISPLAY;
2248 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2250 if (!dc->soc->has_nvdisplay) {
2251 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2252 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2253 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2254 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2257 /* enable underflow reporting and display red for missing pixels */
2258 if (dc->soc->has_nvdisplay) {
2259 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2260 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2264 /* XXX: parameterize? */
2265 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2266 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2269 tegra_dc_commit(dc);
2271 drm_crtc_vblank_on(crtc);
2274 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2275 struct drm_atomic_state *state)
2277 unsigned long flags;
2279 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2281 if (crtc->state->event) {
2282 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2284 if (drm_crtc_vblank_get(crtc) != 0)
2285 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2287 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2289 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2291 crtc->state->event = NULL;
2295 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2296 struct drm_atomic_state *state)
2298 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2300 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2301 struct tegra_dc *dc = to_tegra_dc(crtc);
2304 value = dc_state->planes << 8 | GENERAL_UPDATE;
2305 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2306 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2308 value = dc_state->planes | GENERAL_ACT_REQ;
2309 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2310 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2313 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2315 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2316 const struct drm_format_info *fmt = state->fb->format;
2317 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2318 unsigned int dst_w = drm_rect_width(&state->dst);
2320 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2323 if (soc->supports_cursor)
2326 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2332 static unsigned long
2333 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2334 const struct drm_plane_state *plane_state)
2336 const struct drm_plane_state *other_state;
2337 const struct tegra_plane *tegra;
2338 unsigned long overlap_mask = 0;
2339 struct drm_plane *plane;
2340 struct drm_rect rect;
2342 if (!plane_state->visible || !plane_state->fb)
2346 * Data-prefetch FIFO will easily help to overcome temporal memory
2347 * pressure if other plane overlaps with the cursor plane.
2349 if (tegra_plane_is_cursor(plane_state))
2352 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2353 rect = plane_state->dst;
2355 tegra = to_tegra_plane(other_state->plane);
2357 if (!other_state->visible || !other_state->fb)
2361 * Ignore cursor plane overlaps because it's not practical to
2362 * assume that it contributes to the bandwidth in overlapping
2363 * area if window width is small.
2365 if (tegra_plane_is_cursor(other_state))
2368 if (drm_rect_intersect(&rect, &other_state->dst))
2369 overlap_mask |= BIT(tegra->index);
2372 return overlap_mask;
2375 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2376 struct drm_atomic_state *state)
2378 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2379 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2380 bool all_planes_overlap_simultaneously = true;
2381 const struct tegra_plane_state *tegra_state;
2382 const struct drm_plane_state *plane_state;
2383 struct tegra_dc *dc = to_tegra_dc(crtc);
2384 struct drm_crtc_state *new_state;
2385 struct tegra_plane *tegra;
2386 struct drm_plane *plane;
2389 * The nv-display uses shared planes. The algorithm below assumes
2390 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2391 * the nv-display. Note that T124 support has additional windows,
2392 * but currently they aren't supported by the driver.
2394 if (dc->soc->has_nvdisplay)
2397 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2400 * For overlapping planes pixel's data is fetched for each plane at
2401 * the same time, hence bandwidths are accumulated in this case.
2402 * This needs to be taken into account for calculating total bandwidth
2403 * consumed by all planes.
2405 * Here we get the overlapping state of each plane, which is a
2406 * bitmask of plane indices telling with what planes there is an
2407 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408 * to make further code nicer and simpler.
2410 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411 tegra_state = to_const_tegra_plane_state(plane_state);
2412 tegra = to_tegra_plane(plane);
2414 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2417 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418 mask = tegra_plane_overlap_mask(new_state, plane_state);
2419 overlap_mask[tegra->index] = mask;
2421 if (hweight_long(mask) != 3)
2422 all_planes_overlap_simultaneously = false;
2426 * Then we calculate maximum bandwidth of each plane state.
2427 * The bandwidth includes the plane BW + BW of the "simultaneously"
2428 * overlapping planes, where "simultaneously" means areas where DC
2429 * fetches from the planes simultaneously during of scan-out process.
2431 * For example, if plane A overlaps with planes B and C, but B and C
2432 * don't overlap, then the peak bandwidth will be either in area where
2433 * A-and-B or A-and-C planes overlap.
2435 * The plane_peak_bw[] contains peak memory bandwidth values of
2436 * each plane, this information is needed by interconnect provider
2437 * in order to set up latency allowance based on the peak BW, see
2438 * tegra_crtc_update_memory_bandwidth().
2440 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2444 * Note that plane's atomic check doesn't touch the
2445 * total_peak_memory_bandwidth of enabled plane, hence the
2446 * current state contains the old bandwidth state from the
2447 * previous CRTC commit.
2449 tegra_state = to_const_tegra_plane_state(plane_state);
2450 tegra = to_tegra_plane(plane);
2452 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453 if (i == tegra->index)
2456 if (all_planes_overlap_simultaneously)
2457 overlap_bw += plane_peak_bw[i];
2459 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2462 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2466 * If plane's peak bandwidth changed (for example plane isn't
2467 * overlapped anymore) and plane isn't in the atomic state,
2468 * then add plane to the state in order to have the bandwidth
2471 if (old_peak_bw != new_peak_bw) {
2472 struct tegra_plane_state *new_tegra_state;
2473 struct drm_plane_state *new_plane_state;
2475 new_plane_state = drm_atomic_get_plane_state(state, plane);
2476 if (IS_ERR(new_plane_state))
2477 return PTR_ERR(new_plane_state);
2479 new_tegra_state = to_tegra_plane_state(new_plane_state);
2480 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2487 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488 struct drm_atomic_state *state)
2492 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2499 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500 struct drm_atomic_state *state)
2503 * Display bandwidth is allowed to go down only once hardware state
2504 * is known to be armed, i.e. state was committed and VBLANK event
2507 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2510 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511 .atomic_check = tegra_crtc_atomic_check,
2512 .atomic_begin = tegra_crtc_atomic_begin,
2513 .atomic_flush = tegra_crtc_atomic_flush,
2514 .atomic_enable = tegra_crtc_atomic_enable,
2515 .atomic_disable = tegra_crtc_atomic_disable,
2518 static irqreturn_t tegra_dc_irq(int irq, void *data)
2520 struct tegra_dc *dc = data;
2521 unsigned long status;
2523 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2526 if (status & FRAME_END_INT) {
2528 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2530 dc->stats.frames_total++;
2534 if (status & VBLANK_INT) {
2536 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2538 drm_crtc_handle_vblank(&dc->base);
2539 dc->stats.vblank_total++;
2543 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2545 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2547 dc->stats.underflow_total++;
2548 dc->stats.underflow++;
2551 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2553 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2555 dc->stats.overflow_total++;
2556 dc->stats.overflow++;
2559 if (status & HEAD_UF_INT) {
2560 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561 dc->stats.underflow_total++;
2562 dc->stats.underflow++;
2568 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2572 if (!dc->soc->wgrps)
2575 for (i = 0; i < dc->soc->num_wgrps; i++) {
2576 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2578 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2585 static int tegra_dc_early_init(struct host1x_client *client)
2587 struct drm_device *drm = dev_get_drvdata(client->host);
2588 struct tegra_drm *tegra = drm->dev_private;
2595 static int tegra_dc_init(struct host1x_client *client)
2597 struct drm_device *drm = dev_get_drvdata(client->host);
2598 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599 struct tegra_dc *dc = host1x_client_to_dc(client);
2600 struct tegra_drm *tegra = drm->dev_private;
2601 struct drm_plane *primary = NULL;
2602 struct drm_plane *cursor = NULL;
2606 * DC has been reset by now, so VBLANK syncpoint can be released
2609 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2612 * XXX do not register DCs with no window groups because we cannot
2613 * assign a primary plane to them, which in turn will cause KMS to
2616 if (!tegra_dc_has_window_groups(dc))
2620 * Set the display hub as the host1x client parent for the display
2621 * controller. This is needed for the runtime reference counting that
2622 * ensures the display hub is always powered when any of the display
2625 if (dc->soc->has_nvdisplay)
2626 client->parent = &tegra->hub->client;
2628 dc->syncpt = host1x_syncpt_request(client, flags);
2630 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2632 err = host1x_client_iommu_attach(client);
2633 if (err < 0 && err != -ENODEV) {
2634 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2639 primary = tegra_dc_add_shared_planes(drm, dc);
2641 primary = tegra_dc_add_planes(drm, dc);
2643 if (IS_ERR(primary)) {
2644 err = PTR_ERR(primary);
2648 if (dc->soc->supports_cursor) {
2649 cursor = tegra_dc_cursor_plane_create(drm, dc);
2650 if (IS_ERR(cursor)) {
2651 err = PTR_ERR(cursor);
2655 /* dedicate one overlay to mouse cursor */
2656 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657 if (IS_ERR(cursor)) {
2658 err = PTR_ERR(cursor);
2663 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664 &tegra_crtc_funcs, NULL);
2668 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2671 * Keep track of the minimum pitch alignment across all display
2674 if (dc->soc->pitch_align > tegra->pitch_align)
2675 tegra->pitch_align = dc->soc->pitch_align;
2677 /* track maximum resolution */
2678 if (dc->soc->has_nvdisplay)
2679 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2681 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2683 err = tegra_dc_rgb_init(drm, dc);
2684 if (err < 0 && err != -ENODEV) {
2685 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2689 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690 dev_name(dc->dev), dc);
2692 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2698 * Inherit the DMA parameters (such as maximum segment size) from the
2699 * parent host1x device.
2701 client->dev->dma_parms = client->host->dma_parms;
2706 if (!IS_ERR_OR_NULL(cursor))
2707 drm_plane_cleanup(cursor);
2709 if (!IS_ERR(primary))
2710 drm_plane_cleanup(primary);
2712 host1x_client_iommu_detach(client);
2713 host1x_syncpt_put(dc->syncpt);
2718 static int tegra_dc_exit(struct host1x_client *client)
2720 struct tegra_dc *dc = host1x_client_to_dc(client);
2723 if (!tegra_dc_has_window_groups(dc))
2726 /* avoid a dangling pointer just in case this disappears */
2727 client->dev->dma_parms = NULL;
2729 devm_free_irq(dc->dev, dc->irq, dc);
2731 err = tegra_dc_rgb_exit(dc);
2733 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2737 host1x_client_iommu_detach(client);
2738 host1x_syncpt_put(dc->syncpt);
2743 static int tegra_dc_late_exit(struct host1x_client *client)
2745 struct drm_device *drm = dev_get_drvdata(client->host);
2746 struct tegra_drm *tegra = drm->dev_private;
2753 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2755 struct tegra_dc *dc = host1x_client_to_dc(client);
2756 struct device *dev = client->dev;
2759 err = reset_control_assert(dc->rst);
2761 dev_err(dev, "failed to assert reset: %d\n", err);
2765 if (dc->soc->has_powergate)
2766 tegra_powergate_power_off(dc->powergate);
2768 clk_disable_unprepare(dc->clk);
2769 pm_runtime_put_sync(dev);
2774 static int tegra_dc_runtime_resume(struct host1x_client *client)
2776 struct tegra_dc *dc = host1x_client_to_dc(client);
2777 struct device *dev = client->dev;
2780 err = pm_runtime_resume_and_get(dev);
2782 dev_err(dev, "failed to get runtime PM: %d\n", err);
2786 if (dc->soc->has_powergate) {
2787 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2790 dev_err(dev, "failed to power partition: %d\n", err);
2794 err = clk_prepare_enable(dc->clk);
2796 dev_err(dev, "failed to enable clock: %d\n", err);
2800 err = reset_control_deassert(dc->rst);
2802 dev_err(dev, "failed to deassert reset: %d\n", err);
2810 clk_disable_unprepare(dc->clk);
2812 pm_runtime_put_sync(dev);
2816 static const struct host1x_client_ops dc_client_ops = {
2817 .early_init = tegra_dc_early_init,
2818 .init = tegra_dc_init,
2819 .exit = tegra_dc_exit,
2820 .late_exit = tegra_dc_late_exit,
2821 .suspend = tegra_dc_runtime_suspend,
2822 .resume = tegra_dc_runtime_resume,
2825 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826 .supports_background_color = false,
2827 .supports_interlacing = false,
2828 .supports_cursor = false,
2829 .supports_block_linear = false,
2830 .supports_sector_layout = false,
2831 .has_legacy_blending = true,
2833 .has_powergate = false,
2835 .has_nvdisplay = false,
2836 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837 .primary_formats = tegra20_primary_formats,
2838 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839 .overlay_formats = tegra20_overlay_formats,
2840 .modifiers = tegra20_modifiers,
2841 .has_win_a_without_filters = true,
2842 .has_win_b_vfilter_mem_client = true,
2843 .has_win_c_without_vert_filter = true,
2844 .plane_tiled_memory_bandwidth_x2 = false,
2845 .has_pll_d2_out0 = false,
2848 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849 .supports_background_color = false,
2850 .supports_interlacing = false,
2851 .supports_cursor = false,
2852 .supports_block_linear = false,
2853 .supports_sector_layout = false,
2854 .has_legacy_blending = true,
2856 .has_powergate = false,
2857 .coupled_pm = false,
2858 .has_nvdisplay = false,
2859 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860 .primary_formats = tegra20_primary_formats,
2861 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862 .overlay_formats = tegra20_overlay_formats,
2863 .modifiers = tegra20_modifiers,
2864 .has_win_a_without_filters = false,
2865 .has_win_b_vfilter_mem_client = true,
2866 .has_win_c_without_vert_filter = false,
2867 .plane_tiled_memory_bandwidth_x2 = true,
2868 .has_pll_d2_out0 = true,
2871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872 .supports_background_color = false,
2873 .supports_interlacing = false,
2874 .supports_cursor = false,
2875 .supports_block_linear = false,
2876 .supports_sector_layout = false,
2877 .has_legacy_blending = true,
2879 .has_powergate = true,
2880 .coupled_pm = false,
2881 .has_nvdisplay = false,
2882 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883 .primary_formats = tegra114_primary_formats,
2884 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885 .overlay_formats = tegra114_overlay_formats,
2886 .modifiers = tegra20_modifiers,
2887 .has_win_a_without_filters = false,
2888 .has_win_b_vfilter_mem_client = false,
2889 .has_win_c_without_vert_filter = false,
2890 .plane_tiled_memory_bandwidth_x2 = true,
2891 .has_pll_d2_out0 = true,
2894 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895 .supports_background_color = true,
2896 .supports_interlacing = true,
2897 .supports_cursor = true,
2898 .supports_block_linear = true,
2899 .supports_sector_layout = false,
2900 .has_legacy_blending = false,
2902 .has_powergate = true,
2903 .coupled_pm = false,
2904 .has_nvdisplay = false,
2905 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906 .primary_formats = tegra124_primary_formats,
2907 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908 .overlay_formats = tegra124_overlay_formats,
2909 .modifiers = tegra124_modifiers,
2910 .has_win_a_without_filters = false,
2911 .has_win_b_vfilter_mem_client = false,
2912 .has_win_c_without_vert_filter = false,
2913 .plane_tiled_memory_bandwidth_x2 = false,
2914 .has_pll_d2_out0 = true,
2917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918 .supports_background_color = true,
2919 .supports_interlacing = true,
2920 .supports_cursor = true,
2921 .supports_block_linear = true,
2922 .supports_sector_layout = false,
2923 .has_legacy_blending = false,
2925 .has_powergate = true,
2926 .coupled_pm = false,
2927 .has_nvdisplay = false,
2928 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929 .primary_formats = tegra114_primary_formats,
2930 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931 .overlay_formats = tegra114_overlay_formats,
2932 .modifiers = tegra124_modifiers,
2933 .has_win_a_without_filters = false,
2934 .has_win_b_vfilter_mem_client = false,
2935 .has_win_c_without_vert_filter = false,
2936 .plane_tiled_memory_bandwidth_x2 = false,
2937 .has_pll_d2_out0 = true,
2940 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2944 .windows = (const unsigned int[]) { 0 },
2949 .windows = (const unsigned int[]) { 1 },
2954 .windows = (const unsigned int[]) { 2 },
2959 .windows = (const unsigned int[]) { 3 },
2964 .windows = (const unsigned int[]) { 4 },
2969 .windows = (const unsigned int[]) { 5 },
2974 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975 .supports_background_color = true,
2976 .supports_interlacing = true,
2977 .supports_cursor = true,
2978 .supports_block_linear = true,
2979 .supports_sector_layout = false,
2980 .has_legacy_blending = false,
2982 .has_powergate = false,
2983 .coupled_pm = false,
2984 .has_nvdisplay = true,
2985 .wgrps = tegra186_dc_wgrps,
2986 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987 .plane_tiled_memory_bandwidth_x2 = false,
2988 .has_pll_d2_out0 = false,
2991 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2995 .windows = (const unsigned int[]) { 0 },
3000 .windows = (const unsigned int[]) { 1 },
3005 .windows = (const unsigned int[]) { 2 },
3010 .windows = (const unsigned int[]) { 3 },
3015 .windows = (const unsigned int[]) { 4 },
3020 .windows = (const unsigned int[]) { 5 },
3025 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026 .supports_background_color = true,
3027 .supports_interlacing = true,
3028 .supports_cursor = true,
3029 .supports_block_linear = true,
3030 .supports_sector_layout = true,
3031 .has_legacy_blending = false,
3033 .has_powergate = false,
3034 .coupled_pm = false,
3035 .has_nvdisplay = true,
3036 .wgrps = tegra194_dc_wgrps,
3037 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038 .plane_tiled_memory_bandwidth_x2 = false,
3039 .has_pll_d2_out0 = false,
3042 static const struct of_device_id tegra_dc_of_match[] = {
3044 .compatible = "nvidia,tegra194-dc",
3045 .data = &tegra194_dc_soc_info,
3047 .compatible = "nvidia,tegra186-dc",
3048 .data = &tegra186_dc_soc_info,
3050 .compatible = "nvidia,tegra210-dc",
3051 .data = &tegra210_dc_soc_info,
3053 .compatible = "nvidia,tegra124-dc",
3054 .data = &tegra124_dc_soc_info,
3056 .compatible = "nvidia,tegra114-dc",
3057 .data = &tegra114_dc_soc_info,
3059 .compatible = "nvidia,tegra30-dc",
3060 .data = &tegra30_dc_soc_info,
3062 .compatible = "nvidia,tegra20-dc",
3063 .data = &tegra20_dc_soc_info,
3068 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3070 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3072 struct device_node *np;
3076 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3078 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3081 * If the nvidia,head property isn't present, try to find the
3082 * correct head number by looking up the position of this
3083 * display controller's node within the device tree. Assuming
3084 * that the nodes are ordered properly in the DTS file and
3085 * that the translation into a flattened device tree blob
3086 * preserves that ordering this will actually yield the right
3089 * If those assumptions don't hold, this will still work for
3090 * cases where only a single display controller is used.
3092 for_each_matching_node(np, tegra_dc_of_match) {
3093 if (np == dc->dev->of_node) {
3107 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3109 struct tegra_dc *dc = dev_get_drvdata(dev);
3110 unsigned int pipe = (unsigned long)(void *)data;
3112 return dc->pipe == pipe;
3115 static int tegra_dc_couple(struct tegra_dc *dc)
3118 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120 * POWER_CONTROL registers during CRTC enabling.
3122 if (dc->soc->coupled_pm && dc->pipe == 1) {
3123 struct device *companion;
3124 struct tegra_dc *parent;
3126 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127 tegra_dc_match_by_pipe);
3129 return -EPROBE_DEFER;
3131 parent = dev_get_drvdata(companion);
3132 dc->client.parent = &parent->client;
3134 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3140 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3142 struct tegra_core_opp_params opp_params = {};
3145 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146 if (err && err != -ENODEV)
3150 dc->has_opp_table = false;
3152 dc->has_opp_table = true;
3157 static int tegra_dc_probe(struct platform_device *pdev)
3159 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160 struct tegra_dc *dc;
3163 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3165 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3169 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3173 dc->soc = of_device_get_match_data(&pdev->dev);
3175 INIT_LIST_HEAD(&dc->list);
3176 dc->dev = &pdev->dev;
3178 err = tegra_dc_parse_dt(dc);
3182 err = tegra_dc_couple(dc);
3186 dc->clk = devm_clk_get(&pdev->dev, NULL);
3187 if (IS_ERR(dc->clk)) {
3188 dev_err(&pdev->dev, "failed to get clock\n");
3189 return PTR_ERR(dc->clk);
3192 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193 if (IS_ERR(dc->rst)) {
3194 dev_err(&pdev->dev, "failed to get reset\n");
3195 return PTR_ERR(dc->rst);
3198 /* assert reset and disable clock */
3199 err = clk_prepare_enable(dc->clk);
3203 usleep_range(2000, 4000);
3205 err = reset_control_assert(dc->rst);
3207 clk_disable_unprepare(dc->clk);
3211 usleep_range(2000, 4000);
3213 clk_disable_unprepare(dc->clk);
3215 if (dc->soc->has_powergate) {
3217 dc->powergate = TEGRA_POWERGATE_DIS;
3219 dc->powergate = TEGRA_POWERGATE_DISB;
3221 tegra_powergate_power_off(dc->powergate);
3224 err = tegra_dc_init_opp_table(dc);
3228 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3229 if (IS_ERR(dc->regs))
3230 return PTR_ERR(dc->regs);
3232 dc->irq = platform_get_irq(pdev, 0);
3236 err = tegra_dc_rgb_probe(dc);
3237 if (err < 0 && err != -ENODEV)
3238 return dev_err_probe(&pdev->dev, err,
3239 "failed to probe RGB output\n");
3241 platform_set_drvdata(pdev, dc);
3242 pm_runtime_enable(&pdev->dev);
3244 INIT_LIST_HEAD(&dc->client.list);
3245 dc->client.ops = &dc_client_ops;
3246 dc->client.dev = &pdev->dev;
3248 err = host1x_client_register(&dc->client);
3250 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3258 pm_runtime_disable(&pdev->dev);
3259 tegra_dc_rgb_remove(dc);
3264 static void tegra_dc_remove(struct platform_device *pdev)
3266 struct tegra_dc *dc = platform_get_drvdata(pdev);
3268 host1x_client_unregister(&dc->client);
3270 tegra_dc_rgb_remove(dc);
3272 pm_runtime_disable(&pdev->dev);
3275 struct platform_driver tegra_dc_driver = {
3278 .of_match_table = tegra_dc_of_match,
3280 .probe = tegra_dc_probe,
3281 .remove_new = tegra_dc_remove,