]> Git Repo - linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge tag 'for-6.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_domain.h>
16 #include <linux/pm_opp.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19
20 #include <soc/tegra/common.h>
21 #include <soc/tegra/pmc.h>
22
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_blend.h>
26 #include <drm/drm_debugfs.h>
27 #include <drm/drm_fourcc.h>
28 #include <drm/drm_framebuffer.h>
29 #include <drm/drm_vblank.h>
30
31 #include "dc.h"
32 #include "drm.h"
33 #include "gem.h"
34 #include "hub.h"
35 #include "plane.h"
36
37 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
38                                             struct drm_crtc_state *state);
39
40 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
41 {
42         stats->frames = 0;
43         stats->vblank = 0;
44         stats->underflow = 0;
45         stats->overflow = 0;
46 }
47
48 /* Reads the active copy of a register. */
49 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
50 {
51         u32 value;
52
53         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
54         value = tegra_dc_readl(dc, offset);
55         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
56
57         return value;
58 }
59
60 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
61                                               unsigned int offset)
62 {
63         if (offset >= 0x500 && offset <= 0x638) {
64                 offset = 0x000 + (offset - 0x500);
65                 return plane->offset + offset;
66         }
67
68         if (offset >= 0x700 && offset <= 0x719) {
69                 offset = 0x180 + (offset - 0x700);
70                 return plane->offset + offset;
71         }
72
73         if (offset >= 0x800 && offset <= 0x839) {
74                 offset = 0x1c0 + (offset - 0x800);
75                 return plane->offset + offset;
76         }
77
78         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
79
80         return plane->offset + offset;
81 }
82
83 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
84                                     unsigned int offset)
85 {
86         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
87 }
88
89 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
90                                       unsigned int offset)
91 {
92         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
93 }
94
95 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
96 {
97         struct device_node *np = dc->dev->of_node;
98         struct of_phandle_iterator it;
99         int err;
100
101         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
102                 if (it.node == dev->of_node)
103                         return true;
104
105         return false;
106 }
107
108 /*
109  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111  * Latching happens mmediately if the display controller is in STOP mode or
112  * on the next frame boundary otherwise.
113  *
114  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117  * into the ACTIVE copy, either immediately if the display controller is in
118  * STOP mode, or at the next frame boundary otherwise.
119  */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125
126 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
127                                   unsigned int bpp)
128 {
129         fixed20_12 outf = dfixed_init(out);
130         fixed20_12 inf = dfixed_init(in);
131         u32 dda_inc;
132         int max;
133
134         if (v)
135                 max = 15;
136         else {
137                 switch (bpp) {
138                 case 2:
139                         max = 8;
140                         break;
141
142                 default:
143                         WARN_ON_ONCE(1);
144                         fallthrough;
145                 case 4:
146                         max = 4;
147                         break;
148                 }
149         }
150
151         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
152         inf.full -= dfixed_const(1);
153
154         dda_inc = dfixed_div(inf, outf);
155         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
156
157         return dda_inc;
158 }
159
160 static inline u32 compute_initial_dda(unsigned int in)
161 {
162         fixed20_12 inf = dfixed_init(in);
163         return dfixed_frac(inf);
164 }
165
166 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
167 {
168         u32 background[3] = {
169                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
170                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172         };
173         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
174                          BLEND_COLOR_KEY_NONE;
175         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
176         struct tegra_plane_state *state;
177         u32 blending[2];
178         unsigned int i;
179
180         /* disable blending for non-overlapping case */
181         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
182         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
183
184         state = to_tegra_plane_state(plane->base.state);
185
186         if (state->opaque) {
187                 /*
188                  * Since custom fix-weight blending isn't utilized and weight
189                  * of top window is set to max, we can enforce dependent
190                  * blending which in this case results in transparent bottom
191                  * window if top window is opaque and if top window enables
192                  * alpha blending, then bottom window is getting alpha value
193                  * of 1 minus the sum of alpha components of the overlapping
194                  * plane.
195                  */
196                 background[0] |= BLEND_CONTROL_DEPENDENT;
197                 background[1] |= BLEND_CONTROL_DEPENDENT;
198
199                 /*
200                  * The region where three windows overlap is the intersection
201                  * of the two regions where two windows overlap. It contributes
202                  * to the area if all of the windows on top of it have an alpha
203                  * component.
204                  */
205                 switch (state->base.normalized_zpos) {
206                 case 0:
207                         if (state->blending[0].alpha &&
208                             state->blending[1].alpha)
209                                 background[2] |= BLEND_CONTROL_DEPENDENT;
210                         break;
211
212                 case 1:
213                         background[2] |= BLEND_CONTROL_DEPENDENT;
214                         break;
215                 }
216         } else {
217                 /*
218                  * Enable alpha blending if pixel format has an alpha
219                  * component.
220                  */
221                 foreground |= BLEND_CONTROL_ALPHA;
222
223                 /*
224                  * If any of the windows on top of this window is opaque, it
225                  * will completely conceal this window within that area. If
226                  * top window has an alpha component, it is blended over the
227                  * bottom window.
228                  */
229                 for (i = 0; i < 2; i++) {
230                         if (state->blending[i].alpha &&
231                             state->blending[i].top)
232                                 background[i] |= BLEND_CONTROL_DEPENDENT;
233                 }
234
235                 switch (state->base.normalized_zpos) {
236                 case 0:
237                         if (state->blending[0].alpha &&
238                             state->blending[1].alpha)
239                                 background[2] |= BLEND_CONTROL_DEPENDENT;
240                         break;
241
242                 case 1:
243                         /*
244                          * When both middle and topmost windows have an alpha,
245                          * these windows a mixed together and then the result
246                          * is blended over the bottom window.
247                          */
248                         if (state->blending[0].alpha &&
249                             state->blending[0].top)
250                                 background[2] |= BLEND_CONTROL_ALPHA;
251
252                         if (state->blending[1].alpha &&
253                             state->blending[1].top)
254                                 background[2] |= BLEND_CONTROL_ALPHA;
255                         break;
256                 }
257         }
258
259         switch (state->base.normalized_zpos) {
260         case 0:
261                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
262                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
263                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
264                 break;
265
266         case 1:
267                 /*
268                  * If window B / C is topmost, then X / Y registers are
269                  * matching the order of blending[...] state indices,
270                  * otherwise a swap is required.
271                  */
272                 if (!state->blending[0].top && state->blending[1].top) {
273                         blending[0] = foreground;
274                         blending[1] = background[1];
275                 } else {
276                         blending[0] = background[0];
277                         blending[1] = foreground;
278                 }
279
280                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
281                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
282                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
283                 break;
284
285         case 2:
286                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
287                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
288                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
289                 break;
290         }
291 }
292
293 static void tegra_plane_setup_blending(struct tegra_plane *plane,
294                                        const struct tegra_dc_window *window)
295 {
296         u32 value;
297
298         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
299                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
300                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
301         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
302
303         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
304                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
305                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
306         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
307
308         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
309         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
310 }
311
312 static bool
313 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
314                                      const struct tegra_dc_window *window)
315 {
316         struct tegra_dc *dc = plane->dc;
317
318         if (window->src.w == window->dst.w)
319                 return false;
320
321         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
322                 return false;
323
324         return true;
325 }
326
327 static bool
328 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
329                                    const struct tegra_dc_window *window)
330 {
331         struct tegra_dc *dc = plane->dc;
332
333         if (window->src.h == window->dst.h)
334                 return false;
335
336         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
337                 return false;
338
339         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
340                 return false;
341
342         return true;
343 }
344
345 static void tegra_dc_setup_window(struct tegra_plane *plane,
346                                   const struct tegra_dc_window *window)
347 {
348         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
349         struct tegra_dc *dc = plane->dc;
350         unsigned int planes;
351         u32 value;
352         bool yuv;
353
354         /*
355          * For YUV planar modes, the number of bytes per pixel takes into
356          * account only the luma component and therefore is 1.
357          */
358         yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
359         if (!yuv)
360                 bpp = window->bits_per_pixel / 8;
361         else
362                 bpp = (planes > 1) ? 1 : 2;
363
364         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
365         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
366
367         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
368         tegra_plane_writel(plane, value, DC_WIN_POSITION);
369
370         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
371         tegra_plane_writel(plane, value, DC_WIN_SIZE);
372
373         h_offset = window->src.x * bpp;
374         v_offset = window->src.y;
375         h_size = window->src.w * bpp;
376         v_size = window->src.h;
377
378         if (window->reflect_x)
379                 h_offset += (window->src.w - 1) * bpp;
380
381         if (window->reflect_y)
382                 v_offset += window->src.h - 1;
383
384         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
385         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
386
387         /*
388          * For DDA computations the number of bytes per pixel for YUV planar
389          * modes needs to take into account all Y, U and V components.
390          */
391         if (yuv && planes > 1)
392                 bpp = 2;
393
394         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
395         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
396
397         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
398         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
399
400         h_dda = compute_initial_dda(window->src.x);
401         v_dda = compute_initial_dda(window->src.y);
402
403         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
404         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
405
406         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
407         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
408
409         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
410
411         if (yuv && planes > 1) {
412                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
413
414                 if (planes > 2)
415                         tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
416
417                 value = window->stride[1] << 16 | window->stride[0];
418                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
419         } else {
420                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
421         }
422
423         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
424         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
425
426         if (dc->soc->supports_block_linear) {
427                 unsigned long height = window->tiling.value;
428
429                 switch (window->tiling.mode) {
430                 case TEGRA_BO_TILING_MODE_PITCH:
431                         value = DC_WINBUF_SURFACE_KIND_PITCH;
432                         break;
433
434                 case TEGRA_BO_TILING_MODE_TILED:
435                         value = DC_WINBUF_SURFACE_KIND_TILED;
436                         break;
437
438                 case TEGRA_BO_TILING_MODE_BLOCK:
439                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
440                                 DC_WINBUF_SURFACE_KIND_BLOCK;
441                         break;
442                 }
443
444                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
445         } else {
446                 switch (window->tiling.mode) {
447                 case TEGRA_BO_TILING_MODE_PITCH:
448                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
449                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
450                         break;
451
452                 case TEGRA_BO_TILING_MODE_TILED:
453                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
454                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
455                         break;
456
457                 case TEGRA_BO_TILING_MODE_BLOCK:
458                         /*
459                          * No need to handle this here because ->atomic_check
460                          * will already have filtered it out.
461                          */
462                         break;
463                 }
464
465                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
466         }
467
468         value = WIN_ENABLE;
469
470         if (yuv) {
471                 /* setup default colorspace conversion coefficients */
472                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
473                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
474                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
475                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
476                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
477                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
478                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
479                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
480
481                 value |= CSC_ENABLE;
482         } else if (window->bits_per_pixel < 24) {
483                 value |= COLOR_EXPAND;
484         }
485
486         if (window->reflect_x)
487                 value |= H_DIRECTION;
488
489         if (window->reflect_y)
490                 value |= V_DIRECTION;
491
492         if (tegra_plane_use_horizontal_filtering(plane, window)) {
493                 /*
494                  * Enable horizontal 6-tap filter and set filtering
495                  * coefficients to the default values defined in TRM.
496                  */
497                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
498                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
499                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
500                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
501                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
502                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
503                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
504                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
505                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
506                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
507                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
508                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
509                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
510                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
511                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
512                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
513
514                 value |= H_FILTER;
515         }
516
517         if (tegra_plane_use_vertical_filtering(plane, window)) {
518                 unsigned int i, k;
519
520                 /*
521                  * Enable vertical 2-tap filter and set filtering
522                  * coefficients to the default values defined in TRM.
523                  */
524                 for (i = 0, k = 128; i < 16; i++, k -= 8)
525                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
526
527                 value |= V_FILTER;
528         }
529
530         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
531
532         if (dc->soc->has_legacy_blending)
533                 tegra_plane_setup_blending_legacy(plane);
534         else
535                 tegra_plane_setup_blending(plane, window);
536 }
537
538 static const u32 tegra20_primary_formats[] = {
539         DRM_FORMAT_ARGB4444,
540         DRM_FORMAT_ARGB1555,
541         DRM_FORMAT_RGB565,
542         DRM_FORMAT_RGBA5551,
543         DRM_FORMAT_ABGR8888,
544         DRM_FORMAT_ARGB8888,
545         /* non-native formats */
546         DRM_FORMAT_XRGB1555,
547         DRM_FORMAT_RGBX5551,
548         DRM_FORMAT_XBGR8888,
549         DRM_FORMAT_XRGB8888,
550 };
551
552 static const u64 tegra20_modifiers[] = {
553         DRM_FORMAT_MOD_LINEAR,
554         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
555         DRM_FORMAT_MOD_INVALID
556 };
557
558 static const u32 tegra114_primary_formats[] = {
559         DRM_FORMAT_ARGB4444,
560         DRM_FORMAT_ARGB1555,
561         DRM_FORMAT_RGB565,
562         DRM_FORMAT_RGBA5551,
563         DRM_FORMAT_ABGR8888,
564         DRM_FORMAT_ARGB8888,
565         /* new on Tegra114 */
566         DRM_FORMAT_ABGR4444,
567         DRM_FORMAT_ABGR1555,
568         DRM_FORMAT_BGRA5551,
569         DRM_FORMAT_XRGB1555,
570         DRM_FORMAT_RGBX5551,
571         DRM_FORMAT_XBGR1555,
572         DRM_FORMAT_BGRX5551,
573         DRM_FORMAT_BGR565,
574         DRM_FORMAT_BGRA8888,
575         DRM_FORMAT_RGBA8888,
576         DRM_FORMAT_XRGB8888,
577         DRM_FORMAT_XBGR8888,
578 };
579
580 static const u32 tegra124_primary_formats[] = {
581         DRM_FORMAT_ARGB4444,
582         DRM_FORMAT_ARGB1555,
583         DRM_FORMAT_RGB565,
584         DRM_FORMAT_RGBA5551,
585         DRM_FORMAT_ABGR8888,
586         DRM_FORMAT_ARGB8888,
587         /* new on Tegra114 */
588         DRM_FORMAT_ABGR4444,
589         DRM_FORMAT_ABGR1555,
590         DRM_FORMAT_BGRA5551,
591         DRM_FORMAT_XRGB1555,
592         DRM_FORMAT_RGBX5551,
593         DRM_FORMAT_XBGR1555,
594         DRM_FORMAT_BGRX5551,
595         DRM_FORMAT_BGR565,
596         DRM_FORMAT_BGRA8888,
597         DRM_FORMAT_RGBA8888,
598         DRM_FORMAT_XRGB8888,
599         DRM_FORMAT_XBGR8888,
600         /* new on Tegra124 */
601         DRM_FORMAT_RGBX8888,
602         DRM_FORMAT_BGRX8888,
603 };
604
605 static const u64 tegra124_modifiers[] = {
606         DRM_FORMAT_MOD_LINEAR,
607         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
608         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
609         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
610         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
611         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
612         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
613         DRM_FORMAT_MOD_INVALID
614 };
615
616 static int tegra_plane_atomic_check(struct drm_plane *plane,
617                                     struct drm_atomic_state *state)
618 {
619         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
620                                                                                  plane);
621         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
622         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
623                                           DRM_MODE_REFLECT_X |
624                                           DRM_MODE_REFLECT_Y;
625         unsigned int rotation = new_plane_state->rotation;
626         struct tegra_bo_tiling *tiling = &plane_state->tiling;
627         struct tegra_plane *tegra = to_tegra_plane(plane);
628         struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
629         int err;
630
631         plane_state->peak_memory_bandwidth = 0;
632         plane_state->avg_memory_bandwidth = 0;
633
634         /* no need for further checks if the plane is being disabled */
635         if (!new_plane_state->crtc) {
636                 plane_state->total_peak_memory_bandwidth = 0;
637                 return 0;
638         }
639
640         err = tegra_plane_format(new_plane_state->fb->format->format,
641                                  &plane_state->format,
642                                  &plane_state->swap);
643         if (err < 0)
644                 return err;
645
646         /*
647          * Tegra20 and Tegra30 are special cases here because they support
648          * only variants of specific formats with an alpha component, but not
649          * the corresponding opaque formats. However, the opaque formats can
650          * be emulated by disabling alpha blending for the plane.
651          */
652         if (dc->soc->has_legacy_blending) {
653                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
654                 if (err < 0)
655                         return err;
656         }
657
658         err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
659         if (err < 0)
660                 return err;
661
662         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
663             !dc->soc->supports_block_linear) {
664                 DRM_ERROR("hardware doesn't support block linear mode\n");
665                 return -EINVAL;
666         }
667
668         /*
669          * Older userspace used custom BO flag in order to specify the Y
670          * reflection, while modern userspace uses the generic DRM rotation
671          * property in order to achieve the same result.  The legacy BO flag
672          * duplicates the DRM rotation property when both are set.
673          */
674         if (tegra_fb_is_bottom_up(new_plane_state->fb))
675                 rotation |= DRM_MODE_REFLECT_Y;
676
677         rotation = drm_rotation_simplify(rotation, supported_rotation);
678
679         if (rotation & DRM_MODE_REFLECT_X)
680                 plane_state->reflect_x = true;
681         else
682                 plane_state->reflect_x = false;
683
684         if (rotation & DRM_MODE_REFLECT_Y)
685                 plane_state->reflect_y = true;
686         else
687                 plane_state->reflect_y = false;
688
689         /*
690          * Tegra doesn't support different strides for U and V planes so we
691          * error out if the user tries to display a framebuffer with such a
692          * configuration.
693          */
694         if (new_plane_state->fb->format->num_planes > 2) {
695                 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
696                         DRM_ERROR("unsupported UV-plane configuration\n");
697                         return -EINVAL;
698                 }
699         }
700
701         err = tegra_plane_state_add(tegra, new_plane_state);
702         if (err < 0)
703                 return err;
704
705         return 0;
706 }
707
708 static void tegra_plane_atomic_disable(struct drm_plane *plane,
709                                        struct drm_atomic_state *state)
710 {
711         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
712                                                                            plane);
713         struct tegra_plane *p = to_tegra_plane(plane);
714         u32 value;
715
716         /* rien ne va plus */
717         if (!old_state || !old_state->crtc)
718                 return;
719
720         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
721         value &= ~WIN_ENABLE;
722         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
723 }
724
725 static void tegra_plane_atomic_update(struct drm_plane *plane,
726                                       struct drm_atomic_state *state)
727 {
728         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
729                                                                            plane);
730         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
731         struct drm_framebuffer *fb = new_state->fb;
732         struct tegra_plane *p = to_tegra_plane(plane);
733         struct tegra_dc_window window;
734         unsigned int i;
735
736         /* rien ne va plus */
737         if (!new_state->crtc || !new_state->fb)
738                 return;
739
740         if (!new_state->visible)
741                 return tegra_plane_atomic_disable(plane, state);
742
743         memset(&window, 0, sizeof(window));
744         window.src.x = new_state->src.x1 >> 16;
745         window.src.y = new_state->src.y1 >> 16;
746         window.src.w = drm_rect_width(&new_state->src) >> 16;
747         window.src.h = drm_rect_height(&new_state->src) >> 16;
748         window.dst.x = new_state->dst.x1;
749         window.dst.y = new_state->dst.y1;
750         window.dst.w = drm_rect_width(&new_state->dst);
751         window.dst.h = drm_rect_height(&new_state->dst);
752         window.bits_per_pixel = fb->format->cpp[0] * 8;
753         window.reflect_x = tegra_plane_state->reflect_x;
754         window.reflect_y = tegra_plane_state->reflect_y;
755
756         /* copy from state */
757         window.zpos = new_state->normalized_zpos;
758         window.tiling = tegra_plane_state->tiling;
759         window.format = tegra_plane_state->format;
760         window.swap = tegra_plane_state->swap;
761
762         for (i = 0; i < fb->format->num_planes; i++) {
763                 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
764
765                 /*
766                  * Tegra uses a shared stride for UV planes. Framebuffers are
767                  * already checked for this in the tegra_plane_atomic_check()
768                  * function, so it's safe to ignore the V-plane pitch here.
769                  */
770                 if (i < 2)
771                         window.stride[i] = fb->pitches[i];
772         }
773
774         tegra_dc_setup_window(p, &window);
775 }
776
777 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
778         .prepare_fb = tegra_plane_prepare_fb,
779         .cleanup_fb = tegra_plane_cleanup_fb,
780         .atomic_check = tegra_plane_atomic_check,
781         .atomic_disable = tegra_plane_atomic_disable,
782         .atomic_update = tegra_plane_atomic_update,
783 };
784
785 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
786 {
787         /*
788          * Ideally this would use drm_crtc_mask(), but that would require the
789          * CRTC to already be in the mode_config's list of CRTCs. However, it
790          * will only be added to that list in the drm_crtc_init_with_planes()
791          * (in tegra_dc_init()), which in turn requires registration of these
792          * planes. So we have ourselves a nice little chicken and egg problem
793          * here.
794          *
795          * We work around this by manually creating the mask from the number
796          * of CRTCs that have been registered, and should therefore always be
797          * the same as drm_crtc_index() after registration.
798          */
799         return 1 << drm->mode_config.num_crtc;
800 }
801
802 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
803                                                     struct tegra_dc *dc)
804 {
805         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
806         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
807         struct tegra_plane *plane;
808         unsigned int num_formats;
809         const u64 *modifiers;
810         const u32 *formats;
811         int err;
812
813         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814         if (!plane)
815                 return ERR_PTR(-ENOMEM);
816
817         /* Always use window A as primary window */
818         plane->offset = 0xa00;
819         plane->index = 0;
820         plane->dc = dc;
821
822         num_formats = dc->soc->num_primary_formats;
823         formats = dc->soc->primary_formats;
824         modifiers = dc->soc->modifiers;
825
826         err = tegra_plane_interconnect_init(plane);
827         if (err) {
828                 kfree(plane);
829                 return ERR_PTR(err);
830         }
831
832         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
833                                        &tegra_plane_funcs, formats,
834                                        num_formats, modifiers, type, NULL);
835         if (err < 0) {
836                 kfree(plane);
837                 return ERR_PTR(err);
838         }
839
840         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
841         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
842
843         err = drm_plane_create_rotation_property(&plane->base,
844                                                  DRM_MODE_ROTATE_0,
845                                                  DRM_MODE_ROTATE_0 |
846                                                  DRM_MODE_ROTATE_180 |
847                                                  DRM_MODE_REFLECT_X |
848                                                  DRM_MODE_REFLECT_Y);
849         if (err < 0)
850                 dev_err(dc->dev, "failed to create rotation property: %d\n",
851                         err);
852
853         return &plane->base;
854 }
855
856 static const u32 tegra_legacy_cursor_plane_formats[] = {
857         DRM_FORMAT_RGBA8888,
858 };
859
860 static const u32 tegra_cursor_plane_formats[] = {
861         DRM_FORMAT_ARGB8888,
862 };
863
864 static int tegra_cursor_atomic_check(struct drm_plane *plane,
865                                      struct drm_atomic_state *state)
866 {
867         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
868                                                                                  plane);
869         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
870         struct tegra_plane *tegra = to_tegra_plane(plane);
871         int err;
872
873         plane_state->peak_memory_bandwidth = 0;
874         plane_state->avg_memory_bandwidth = 0;
875
876         /* no need for further checks if the plane is being disabled */
877         if (!new_plane_state->crtc) {
878                 plane_state->total_peak_memory_bandwidth = 0;
879                 return 0;
880         }
881
882         /* scaling not supported for cursor */
883         if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
884             (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
885                 return -EINVAL;
886
887         /* only square cursors supported */
888         if (new_plane_state->src_w != new_plane_state->src_h)
889                 return -EINVAL;
890
891         if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
892             new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
893                 return -EINVAL;
894
895         err = tegra_plane_state_add(tegra, new_plane_state);
896         if (err < 0)
897                 return err;
898
899         return 0;
900 }
901
902 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
903                                          struct drm_plane_state *new_state)
904 {
905         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
906         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
907         struct tegra_drm *tegra = plane->dev->dev_private;
908 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
909         u64 dma_mask = *dc->dev->dma_mask;
910 #endif
911         unsigned int x, y;
912         u32 value = 0;
913
914         /* rien ne va plus */
915         if (!new_state->crtc || !new_state->fb)
916                 return;
917
918         /*
919          * Legacy display supports hardware clipping of the cursor, but
920          * nvdisplay relies on software to clip the cursor to the screen.
921          */
922         if (!dc->soc->has_nvdisplay)
923                 value |= CURSOR_CLIP_DISPLAY;
924
925         switch (new_state->crtc_w) {
926         case 32:
927                 value |= CURSOR_SIZE_32x32;
928                 break;
929
930         case 64:
931                 value |= CURSOR_SIZE_64x64;
932                 break;
933
934         case 128:
935                 value |= CURSOR_SIZE_128x128;
936                 break;
937
938         case 256:
939                 value |= CURSOR_SIZE_256x256;
940                 break;
941
942         default:
943                 WARN(1, "cursor size %ux%u not supported\n",
944                      new_state->crtc_w, new_state->crtc_h);
945                 return;
946         }
947
948         value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
949         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
950
951 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
952         value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
953         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
954 #endif
955
956         /* enable cursor and set blend mode */
957         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
958         value |= CURSOR_ENABLE;
959         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
960
961         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
962         value &= ~CURSOR_DST_BLEND_MASK;
963         value &= ~CURSOR_SRC_BLEND_MASK;
964
965         if (dc->soc->has_nvdisplay)
966                 value &= ~CURSOR_COMPOSITION_MODE_XOR;
967         else
968                 value |= CURSOR_MODE_NORMAL;
969
970         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
971         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
972         value |= CURSOR_ALPHA;
973         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
974
975         /* nvdisplay relies on software for clipping */
976         if (dc->soc->has_nvdisplay) {
977                 struct drm_rect src;
978
979                 x = new_state->dst.x1;
980                 y = new_state->dst.y1;
981
982                 drm_rect_fp_to_int(&src, &new_state->src);
983
984                 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
985                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
986
987                 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
988                         (drm_rect_width(&src) & tegra->hmask);
989                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
990         } else {
991                 x = new_state->crtc_x;
992                 y = new_state->crtc_y;
993         }
994
995         /* position the cursor */
996         value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
997         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
998 }
999
1000 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1001                                        struct drm_atomic_state *state)
1002 {
1003         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1004
1005         __tegra_cursor_atomic_update(plane, new_state);
1006 }
1007
1008 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1009                                         struct drm_atomic_state *state)
1010 {
1011         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1012                                                                            plane);
1013         struct tegra_dc *dc;
1014         u32 value;
1015
1016         /* rien ne va plus */
1017         if (!old_state || !old_state->crtc)
1018                 return;
1019
1020         dc = to_tegra_dc(old_state->crtc);
1021
1022         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1023         value &= ~CURSOR_ENABLE;
1024         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1025 }
1026
1027 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1028 {
1029         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1030         struct drm_crtc_state *crtc_state;
1031         int min_scale, max_scale;
1032         int err;
1033
1034         crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1035         if (WARN_ON(!crtc_state))
1036                 return -EINVAL;
1037
1038         if (!crtc_state->active)
1039                 return -EINVAL;
1040
1041         if (plane->state->crtc != new_state->crtc ||
1042             plane->state->src_w != new_state->src_w ||
1043             plane->state->src_h != new_state->src_h ||
1044             plane->state->crtc_w != new_state->crtc_w ||
1045             plane->state->crtc_h != new_state->crtc_h ||
1046             plane->state->fb != new_state->fb ||
1047             plane->state->fb == NULL)
1048                 return -EINVAL;
1049
1050         min_scale = (1 << 16) / 8;
1051         max_scale = (8 << 16) / 1;
1052
1053         err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1054                                                   true, true);
1055         if (err < 0)
1056                 return err;
1057
1058         if (new_state->visible != plane->state->visible)
1059                 return -EINVAL;
1060
1061         return 0;
1062 }
1063
1064 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1065                                              struct drm_atomic_state *state)
1066 {
1067         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1068         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1069
1070         plane->state->src_x = new_state->src_x;
1071         plane->state->src_y = new_state->src_y;
1072         plane->state->crtc_x = new_state->crtc_x;
1073         plane->state->crtc_y = new_state->crtc_y;
1074
1075         if (new_state->visible) {
1076                 struct tegra_plane *p = to_tegra_plane(plane);
1077                 u32 value;
1078
1079                 __tegra_cursor_atomic_update(plane, new_state);
1080
1081                 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1082                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1083                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1084
1085                 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1086                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1087                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1088         }
1089 }
1090
1091 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1092         .prepare_fb = tegra_plane_prepare_fb,
1093         .cleanup_fb = tegra_plane_cleanup_fb,
1094         .atomic_check = tegra_cursor_atomic_check,
1095         .atomic_update = tegra_cursor_atomic_update,
1096         .atomic_disable = tegra_cursor_atomic_disable,
1097         .atomic_async_check = tegra_cursor_atomic_async_check,
1098         .atomic_async_update = tegra_cursor_atomic_async_update,
1099 };
1100
1101 static const uint64_t linear_modifiers[] = {
1102         DRM_FORMAT_MOD_LINEAR,
1103         DRM_FORMAT_MOD_INVALID
1104 };
1105
1106 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1107                                                       struct tegra_dc *dc)
1108 {
1109         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1110         struct tegra_plane *plane;
1111         unsigned int num_formats;
1112         const u32 *formats;
1113         int err;
1114
1115         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1116         if (!plane)
1117                 return ERR_PTR(-ENOMEM);
1118
1119         /*
1120          * This index is kind of fake. The cursor isn't a regular plane, but
1121          * its update and activation request bits in DC_CMD_STATE_CONTROL do
1122          * use the same programming. Setting this fake index here allows the
1123          * code in tegra_add_plane_state() to do the right thing without the
1124          * need to special-casing the cursor plane.
1125          */
1126         plane->index = 6;
1127         plane->dc = dc;
1128
1129         if (!dc->soc->has_nvdisplay) {
1130                 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1131                 formats = tegra_legacy_cursor_plane_formats;
1132
1133                 err = tegra_plane_interconnect_init(plane);
1134                 if (err) {
1135                         kfree(plane);
1136                         return ERR_PTR(err);
1137                 }
1138         } else {
1139                 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1140                 formats = tegra_cursor_plane_formats;
1141         }
1142
1143         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1144                                        &tegra_plane_funcs, formats,
1145                                        num_formats, linear_modifiers,
1146                                        DRM_PLANE_TYPE_CURSOR, NULL);
1147         if (err < 0) {
1148                 kfree(plane);
1149                 return ERR_PTR(err);
1150         }
1151
1152         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1153         drm_plane_create_zpos_immutable_property(&plane->base, 255);
1154
1155         return &plane->base;
1156 }
1157
1158 static const u32 tegra20_overlay_formats[] = {
1159         DRM_FORMAT_ARGB4444,
1160         DRM_FORMAT_ARGB1555,
1161         DRM_FORMAT_RGB565,
1162         DRM_FORMAT_RGBA5551,
1163         DRM_FORMAT_ABGR8888,
1164         DRM_FORMAT_ARGB8888,
1165         /* non-native formats */
1166         DRM_FORMAT_XRGB1555,
1167         DRM_FORMAT_RGBX5551,
1168         DRM_FORMAT_XBGR8888,
1169         DRM_FORMAT_XRGB8888,
1170         /* planar formats */
1171         DRM_FORMAT_UYVY,
1172         DRM_FORMAT_YUYV,
1173         DRM_FORMAT_YUV420,
1174         DRM_FORMAT_YUV422,
1175 };
1176
1177 static const u32 tegra114_overlay_formats[] = {
1178         DRM_FORMAT_ARGB4444,
1179         DRM_FORMAT_ARGB1555,
1180         DRM_FORMAT_RGB565,
1181         DRM_FORMAT_RGBA5551,
1182         DRM_FORMAT_ABGR8888,
1183         DRM_FORMAT_ARGB8888,
1184         /* new on Tegra114 */
1185         DRM_FORMAT_ABGR4444,
1186         DRM_FORMAT_ABGR1555,
1187         DRM_FORMAT_BGRA5551,
1188         DRM_FORMAT_XRGB1555,
1189         DRM_FORMAT_RGBX5551,
1190         DRM_FORMAT_XBGR1555,
1191         DRM_FORMAT_BGRX5551,
1192         DRM_FORMAT_BGR565,
1193         DRM_FORMAT_BGRA8888,
1194         DRM_FORMAT_RGBA8888,
1195         DRM_FORMAT_XRGB8888,
1196         DRM_FORMAT_XBGR8888,
1197         /* planar formats */
1198         DRM_FORMAT_UYVY,
1199         DRM_FORMAT_YUYV,
1200         DRM_FORMAT_YUV420,
1201         DRM_FORMAT_YUV422,
1202         /* semi-planar formats */
1203         DRM_FORMAT_NV12,
1204         DRM_FORMAT_NV21,
1205         DRM_FORMAT_NV16,
1206         DRM_FORMAT_NV61,
1207         DRM_FORMAT_NV24,
1208         DRM_FORMAT_NV42,
1209 };
1210
1211 static const u32 tegra124_overlay_formats[] = {
1212         DRM_FORMAT_ARGB4444,
1213         DRM_FORMAT_ARGB1555,
1214         DRM_FORMAT_RGB565,
1215         DRM_FORMAT_RGBA5551,
1216         DRM_FORMAT_ABGR8888,
1217         DRM_FORMAT_ARGB8888,
1218         /* new on Tegra114 */
1219         DRM_FORMAT_ABGR4444,
1220         DRM_FORMAT_ABGR1555,
1221         DRM_FORMAT_BGRA5551,
1222         DRM_FORMAT_XRGB1555,
1223         DRM_FORMAT_RGBX5551,
1224         DRM_FORMAT_XBGR1555,
1225         DRM_FORMAT_BGRX5551,
1226         DRM_FORMAT_BGR565,
1227         DRM_FORMAT_BGRA8888,
1228         DRM_FORMAT_RGBA8888,
1229         DRM_FORMAT_XRGB8888,
1230         DRM_FORMAT_XBGR8888,
1231         /* new on Tegra124 */
1232         DRM_FORMAT_RGBX8888,
1233         DRM_FORMAT_BGRX8888,
1234         /* planar formats */
1235         DRM_FORMAT_UYVY,
1236         DRM_FORMAT_YUYV,
1237         DRM_FORMAT_YVYU,
1238         DRM_FORMAT_VYUY,
1239         DRM_FORMAT_YUV420, /* YU12 */
1240         DRM_FORMAT_YUV422, /* YU16 */
1241         DRM_FORMAT_YUV444, /* YU24 */
1242         /* semi-planar formats */
1243         DRM_FORMAT_NV12,
1244         DRM_FORMAT_NV21,
1245         DRM_FORMAT_NV16,
1246         DRM_FORMAT_NV61,
1247         DRM_FORMAT_NV24,
1248         DRM_FORMAT_NV42,
1249 };
1250
1251 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1252                                                        struct tegra_dc *dc,
1253                                                        unsigned int index,
1254                                                        bool cursor)
1255 {
1256         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1257         struct tegra_plane *plane;
1258         unsigned int num_formats;
1259         enum drm_plane_type type;
1260         const u32 *formats;
1261         int err;
1262
1263         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1264         if (!plane)
1265                 return ERR_PTR(-ENOMEM);
1266
1267         plane->offset = 0xa00 + 0x200 * index;
1268         plane->index = index;
1269         plane->dc = dc;
1270
1271         num_formats = dc->soc->num_overlay_formats;
1272         formats = dc->soc->overlay_formats;
1273
1274         err = tegra_plane_interconnect_init(plane);
1275         if (err) {
1276                 kfree(plane);
1277                 return ERR_PTR(err);
1278         }
1279
1280         if (!cursor)
1281                 type = DRM_PLANE_TYPE_OVERLAY;
1282         else
1283                 type = DRM_PLANE_TYPE_CURSOR;
1284
1285         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1286                                        &tegra_plane_funcs, formats,
1287                                        num_formats, linear_modifiers,
1288                                        type, NULL);
1289         if (err < 0) {
1290                 kfree(plane);
1291                 return ERR_PTR(err);
1292         }
1293
1294         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1295         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1296
1297         err = drm_plane_create_rotation_property(&plane->base,
1298                                                  DRM_MODE_ROTATE_0,
1299                                                  DRM_MODE_ROTATE_0 |
1300                                                  DRM_MODE_ROTATE_180 |
1301                                                  DRM_MODE_REFLECT_X |
1302                                                  DRM_MODE_REFLECT_Y);
1303         if (err < 0)
1304                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1305                         err);
1306
1307         return &plane->base;
1308 }
1309
1310 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1311                                                     struct tegra_dc *dc)
1312 {
1313         struct drm_plane *plane, *primary = NULL;
1314         unsigned int i, j;
1315
1316         for (i = 0; i < dc->soc->num_wgrps; i++) {
1317                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1318
1319                 if (wgrp->dc == dc->pipe) {
1320                         for (j = 0; j < wgrp->num_windows; j++) {
1321                                 unsigned int index = wgrp->windows[j];
1322
1323                                 plane = tegra_shared_plane_create(drm, dc,
1324                                                                   wgrp->index,
1325                                                                   index);
1326                                 if (IS_ERR(plane))
1327                                         return plane;
1328
1329                                 /*
1330                                  * Choose the first shared plane owned by this
1331                                  * head as the primary plane.
1332                                  */
1333                                 if (!primary) {
1334                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1335                                         primary = plane;
1336                                 }
1337                         }
1338                 }
1339         }
1340
1341         return primary;
1342 }
1343
1344 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1345                                              struct tegra_dc *dc)
1346 {
1347         struct drm_plane *planes[2], *primary;
1348         unsigned int planes_num;
1349         unsigned int i;
1350         int err;
1351
1352         primary = tegra_primary_plane_create(drm, dc);
1353         if (IS_ERR(primary))
1354                 return primary;
1355
1356         if (dc->soc->supports_cursor)
1357                 planes_num = 2;
1358         else
1359                 planes_num = 1;
1360
1361         for (i = 0; i < planes_num; i++) {
1362                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1363                                                           false);
1364                 if (IS_ERR(planes[i])) {
1365                         err = PTR_ERR(planes[i]);
1366
1367                         while (i--)
1368                                 planes[i]->funcs->destroy(planes[i]);
1369
1370                         primary->funcs->destroy(primary);
1371                         return ERR_PTR(err);
1372                 }
1373         }
1374
1375         return primary;
1376 }
1377
1378 static void tegra_dc_destroy(struct drm_crtc *crtc)
1379 {
1380         drm_crtc_cleanup(crtc);
1381 }
1382
1383 static void tegra_crtc_reset(struct drm_crtc *crtc)
1384 {
1385         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1386
1387         if (crtc->state)
1388                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1389
1390         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1391 }
1392
1393 static struct drm_crtc_state *
1394 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1395 {
1396         struct tegra_dc_state *state = to_dc_state(crtc->state);
1397         struct tegra_dc_state *copy;
1398
1399         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1400         if (!copy)
1401                 return NULL;
1402
1403         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1404         copy->clk = state->clk;
1405         copy->pclk = state->pclk;
1406         copy->div = state->div;
1407         copy->planes = state->planes;
1408
1409         return &copy->base;
1410 }
1411
1412 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1413                                             struct drm_crtc_state *state)
1414 {
1415         __drm_atomic_helper_crtc_destroy_state(state);
1416         kfree(state);
1417 }
1418
1419 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1420
1421 static const struct debugfs_reg32 tegra_dc_regs[] = {
1422         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1423         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1424         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1425         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1426         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1427         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1428         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1429         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1430         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1431         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1432         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1433         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1434         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1435         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1436         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1437         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1438         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1439         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1440         DEBUGFS_REG32(DC_CMD_INT_MASK),
1441         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1442         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1443         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1444         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1445         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1446         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1447         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1448         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1449         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1450         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1451         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1452         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1453         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1454         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1455         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1456         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1457         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1458         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1459         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1460         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1461         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1462         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1463         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1464         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1465         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1466         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1467         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1468         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1469         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1470         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1471         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1472         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1473         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1474         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1475         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1476         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1477         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1478         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1479         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1480         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1481         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1482         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1483         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1484         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1485         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1486         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1487         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1488         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1489         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1490         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1491         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1492         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1493         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1494         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1495         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1496         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1497         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1498         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1499         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1500         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1501         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1502         DEBUGFS_REG32(DC_DISP_ACTIVE),
1503         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1504         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1505         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1506         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1507         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1508         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1509         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1510         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1511         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1512         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1513         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1514         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1515         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1516         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1517         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1518         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1519         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1520         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1521         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1522         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1523         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1524         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1525         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1526         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1527         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1528         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1529         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1530         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1531         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1532         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1533         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1534         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1535         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1536         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1537         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1538         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1539         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1540         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1541         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1542         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1543         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1544         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1545         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1546         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1547         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1548         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1549         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1550         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1551         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1552         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1553         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1554         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1555         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1556         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1557         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1558         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1559         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1560         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1561         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1562         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1563         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1564         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1565         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1566         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1567         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1568         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1569         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1570         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1571         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1572         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1573         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1574         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1575         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1576         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1577         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1578         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1579         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1580         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1581         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1582         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1583         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1584         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1585         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1586         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1587         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1588         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1589         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1590         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1591         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1592         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1593         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1594         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1595         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1596         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1597         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1598         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1599         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1600         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1601         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1602         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1603         DEBUGFS_REG32(DC_WIN_POSITION),
1604         DEBUGFS_REG32(DC_WIN_SIZE),
1605         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1606         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1607         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1608         DEBUGFS_REG32(DC_WIN_DDA_INC),
1609         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1610         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1611         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1612         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1613         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1614         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1615         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1616         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1617         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1618         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1619         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1620         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1621         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1622         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1623         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1624         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1625         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1626         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1627         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1628         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1629         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1630         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1631         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1632         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1633         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1634 };
1635
1636 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1637 {
1638         struct drm_info_node *node = s->private;
1639         struct tegra_dc *dc = node->info_ent->data;
1640         unsigned int i;
1641         int err = 0;
1642
1643         drm_modeset_lock(&dc->base.mutex, NULL);
1644
1645         if (!dc->base.state->active) {
1646                 err = -EBUSY;
1647                 goto unlock;
1648         }
1649
1650         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1651                 unsigned int offset = tegra_dc_regs[i].offset;
1652
1653                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1654                            offset, tegra_dc_readl(dc, offset));
1655         }
1656
1657 unlock:
1658         drm_modeset_unlock(&dc->base.mutex);
1659         return err;
1660 }
1661
1662 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1663 {
1664         struct drm_info_node *node = s->private;
1665         struct tegra_dc *dc = node->info_ent->data;
1666         int err = 0;
1667         u32 value;
1668
1669         drm_modeset_lock(&dc->base.mutex, NULL);
1670
1671         if (!dc->base.state->active) {
1672                 err = -EBUSY;
1673                 goto unlock;
1674         }
1675
1676         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1677         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1678         tegra_dc_commit(dc);
1679
1680         drm_crtc_wait_one_vblank(&dc->base);
1681         drm_crtc_wait_one_vblank(&dc->base);
1682
1683         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1684         seq_printf(s, "%08x\n", value);
1685
1686         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1687
1688 unlock:
1689         drm_modeset_unlock(&dc->base.mutex);
1690         return err;
1691 }
1692
1693 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1694 {
1695         struct drm_info_node *node = s->private;
1696         struct tegra_dc *dc = node->info_ent->data;
1697
1698         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1699         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1700         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1701         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1702
1703         seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1704         seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1705         seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1706         seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1707
1708         return 0;
1709 }
1710
1711 static struct drm_info_list debugfs_files[] = {
1712         { "regs", tegra_dc_show_regs, 0, NULL },
1713         { "crc", tegra_dc_show_crc, 0, NULL },
1714         { "stats", tegra_dc_show_stats, 0, NULL },
1715 };
1716
1717 static int tegra_dc_late_register(struct drm_crtc *crtc)
1718 {
1719         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1720         struct drm_minor *minor = crtc->dev->primary;
1721         struct dentry *root;
1722         struct tegra_dc *dc = to_tegra_dc(crtc);
1723
1724 #ifdef CONFIG_DEBUG_FS
1725         root = crtc->debugfs_entry;
1726 #else
1727         root = NULL;
1728 #endif
1729
1730         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1731                                     GFP_KERNEL);
1732         if (!dc->debugfs_files)
1733                 return -ENOMEM;
1734
1735         for (i = 0; i < count; i++)
1736                 dc->debugfs_files[i].data = dc;
1737
1738         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1739
1740         return 0;
1741 }
1742
1743 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1744 {
1745         unsigned int count = ARRAY_SIZE(debugfs_files);
1746         struct drm_minor *minor = crtc->dev->primary;
1747         struct tegra_dc *dc = to_tegra_dc(crtc);
1748
1749         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1750         kfree(dc->debugfs_files);
1751         dc->debugfs_files = NULL;
1752 }
1753
1754 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1755 {
1756         struct tegra_dc *dc = to_tegra_dc(crtc);
1757
1758         /* XXX vblank syncpoints don't work with nvdisplay yet */
1759         if (dc->syncpt && !dc->soc->has_nvdisplay)
1760                 return host1x_syncpt_read(dc->syncpt);
1761
1762         /* fallback to software emulated VBLANK counter */
1763         return (u32)drm_crtc_vblank_count(&dc->base);
1764 }
1765
1766 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1767 {
1768         struct tegra_dc *dc = to_tegra_dc(crtc);
1769         u32 value;
1770
1771         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1772         value |= VBLANK_INT;
1773         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1774
1775         return 0;
1776 }
1777
1778 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1779 {
1780         struct tegra_dc *dc = to_tegra_dc(crtc);
1781         u32 value;
1782
1783         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1784         value &= ~VBLANK_INT;
1785         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1786 }
1787
1788 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1789         .page_flip = drm_atomic_helper_page_flip,
1790         .set_config = drm_atomic_helper_set_config,
1791         .destroy = tegra_dc_destroy,
1792         .reset = tegra_crtc_reset,
1793         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1794         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1795         .late_register = tegra_dc_late_register,
1796         .early_unregister = tegra_dc_early_unregister,
1797         .get_vblank_counter = tegra_dc_get_vblank_counter,
1798         .enable_vblank = tegra_dc_enable_vblank,
1799         .disable_vblank = tegra_dc_disable_vblank,
1800 };
1801
1802 static int tegra_dc_set_timings(struct tegra_dc *dc,
1803                                 struct drm_display_mode *mode)
1804 {
1805         unsigned int h_ref_to_sync = 1;
1806         unsigned int v_ref_to_sync = 1;
1807         unsigned long value;
1808
1809         if (!dc->soc->has_nvdisplay) {
1810                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1811
1812                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1813                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1814         }
1815
1816         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1817                 ((mode->hsync_end - mode->hsync_start) <<  0);
1818         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1819
1820         value = ((mode->vtotal - mode->vsync_end) << 16) |
1821                 ((mode->htotal - mode->hsync_end) <<  0);
1822         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1823
1824         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1825                 ((mode->hsync_start - mode->hdisplay) <<  0);
1826         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1827
1828         value = (mode->vdisplay << 16) | mode->hdisplay;
1829         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1830
1831         return 0;
1832 }
1833
1834 /**
1835  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1836  *     state
1837  * @dc: display controller
1838  * @crtc_state: CRTC atomic state
1839  * @clk: parent clock for display controller
1840  * @pclk: pixel clock
1841  * @div: shift clock divider
1842  *
1843  * Returns:
1844  * 0 on success or a negative error-code on failure.
1845  */
1846 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1847                                struct drm_crtc_state *crtc_state,
1848                                struct clk *clk, unsigned long pclk,
1849                                unsigned int div)
1850 {
1851         struct tegra_dc_state *state = to_dc_state(crtc_state);
1852
1853         if (!clk_has_parent(dc->clk, clk))
1854                 return -EINVAL;
1855
1856         state->clk = clk;
1857         state->pclk = pclk;
1858         state->div = div;
1859
1860         return 0;
1861 }
1862
1863 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1864                                           struct tegra_dc_state *state)
1865 {
1866         unsigned long rate, pstate;
1867         struct dev_pm_opp *opp;
1868         int err;
1869
1870         if (!dc->has_opp_table)
1871                 return;
1872
1873         /* calculate actual pixel clock rate which depends on internal divider */
1874         rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1875
1876         /* find suitable OPP for the rate */
1877         opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1878
1879         /*
1880          * Very high resolution modes may results in a clock rate that is
1881          * above the characterized maximum. In this case it's okay to fall
1882          * back to the characterized maximum.
1883          */
1884         if (opp == ERR_PTR(-ERANGE))
1885                 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1886
1887         if (IS_ERR(opp)) {
1888                 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1889                         rate, opp);
1890                 return;
1891         }
1892
1893         pstate = dev_pm_opp_get_required_pstate(opp, 0);
1894         dev_pm_opp_put(opp);
1895
1896         /*
1897          * The minimum core voltage depends on the pixel clock rate (which
1898          * depends on internal clock divider of the CRTC) and not on the
1899          * rate of the display controller clock. This is why we're not using
1900          * dev_pm_opp_set_rate() API and instead controlling the power domain
1901          * directly.
1902          */
1903         err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1904         if (err)
1905                 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1906                         pstate, err);
1907 }
1908
1909 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1910                                     struct tegra_dc_state *state)
1911 {
1912         int err;
1913
1914         err = clk_set_parent(dc->clk, state->clk);
1915         if (err < 0)
1916                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1917
1918         /*
1919          * Outputs may not want to change the parent clock rate. This is only
1920          * relevant to Tegra20 where only a single display PLL is available.
1921          * Since that PLL would typically be used for HDMI, an internal LVDS
1922          * panel would need to be driven by some other clock such as PLL_P
1923          * which is shared with other peripherals. Changing the clock rate
1924          * should therefore be avoided.
1925          */
1926         if (state->pclk > 0) {
1927                 err = clk_set_rate(state->clk, state->pclk);
1928                 if (err < 0)
1929                         dev_err(dc->dev,
1930                                 "failed to set clock rate to %lu Hz\n",
1931                                 state->pclk);
1932
1933                 err = clk_set_rate(dc->clk, state->pclk);
1934                 if (err < 0)
1935                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1936                                 dc->clk, state->pclk, err);
1937         }
1938
1939         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1940                       state->div);
1941         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1942
1943         tegra_dc_update_voltage_state(dc, state);
1944 }
1945
1946 static void tegra_dc_stop(struct tegra_dc *dc)
1947 {
1948         u32 value;
1949
1950         /* stop the display controller */
1951         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1952         value &= ~DISP_CTRL_MODE_MASK;
1953         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1954
1955         tegra_dc_commit(dc);
1956 }
1957
1958 static bool tegra_dc_idle(struct tegra_dc *dc)
1959 {
1960         u32 value;
1961
1962         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1963
1964         return (value & DISP_CTRL_MODE_MASK) == 0;
1965 }
1966
1967 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1968 {
1969         timeout = jiffies + msecs_to_jiffies(timeout);
1970
1971         while (time_before(jiffies, timeout)) {
1972                 if (tegra_dc_idle(dc))
1973                         return 0;
1974
1975                 usleep_range(1000, 2000);
1976         }
1977
1978         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1979         return -ETIMEDOUT;
1980 }
1981
1982 static void
1983 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1984                                    struct drm_atomic_state *state,
1985                                    bool prepare_bandwidth_transition)
1986 {
1987         const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1988         u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1989         const struct drm_plane_state *old_plane_state;
1990         const struct drm_crtc_state *old_crtc_state;
1991         struct tegra_dc_window window, old_window;
1992         struct tegra_dc *dc = to_tegra_dc(crtc);
1993         struct tegra_plane *tegra;
1994         struct drm_plane *plane;
1995
1996         if (dc->soc->has_nvdisplay)
1997                 return;
1998
1999         old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2000
2001         if (!crtc->state->active) {
2002                 if (!old_crtc_state->active)
2003                         return;
2004
2005                 /*
2006                  * When CRTC is disabled on DPMS, the state of attached planes
2007                  * is kept unchanged. Hence we need to enforce removal of the
2008                  * bandwidths from the ICC paths.
2009                  */
2010                 drm_atomic_crtc_for_each_plane(plane, crtc) {
2011                         tegra = to_tegra_plane(plane);
2012
2013                         icc_set_bw(tegra->icc_mem, 0, 0);
2014                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2015                 }
2016
2017                 return;
2018         }
2019
2020         for_each_old_plane_in_state(old_crtc_state->state, plane,
2021                                     old_plane_state, i) {
2022                 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2023                 new_tegra_state = to_const_tegra_plane_state(plane->state);
2024                 tegra = to_tegra_plane(plane);
2025
2026                 /*
2027                  * We're iterating over the global atomic state and it contains
2028                  * planes from another CRTC, hence we need to filter out the
2029                  * planes unrelated to this CRTC.
2030                  */
2031                 if (tegra->dc != dc)
2032                         continue;
2033
2034                 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2035                 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2036
2037                 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2038                 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2039
2040                 /*
2041                  * See the comment related to !crtc->state->active above,
2042                  * which explains why bandwidths need to be updated when
2043                  * CRTC is turning ON.
2044                  */
2045                 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2046                     old_crtc_state->active)
2047                         continue;
2048
2049                 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2050                 window.dst.h = drm_rect_height(&plane->state->dst);
2051
2052                 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2053                 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2054
2055                 /*
2056                  * During the preparation phase (atomic_begin), the memory
2057                  * freq should go high before the DC changes are committed
2058                  * if bandwidth requirement goes up, otherwise memory freq
2059                  * should to stay high if BW requirement goes down.  The
2060                  * opposite applies to the completion phase (post_commit).
2061                  */
2062                 if (prepare_bandwidth_transition) {
2063                         new_avg_bw = max(old_avg_bw, new_avg_bw);
2064                         new_peak_bw = max(old_peak_bw, new_peak_bw);
2065
2066                         if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2067                                 window = old_window;
2068                 }
2069
2070                 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2071
2072                 if (tegra_plane_use_vertical_filtering(tegra, &window))
2073                         icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2074                 else
2075                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2076         }
2077 }
2078
2079 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2080                                       struct drm_atomic_state *state)
2081 {
2082         struct tegra_dc *dc = to_tegra_dc(crtc);
2083         u32 value;
2084         int err;
2085
2086         if (!tegra_dc_idle(dc)) {
2087                 tegra_dc_stop(dc);
2088
2089                 /*
2090                  * Ignore the return value, there isn't anything useful to do
2091                  * in case this fails.
2092                  */
2093                 tegra_dc_wait_idle(dc, 100);
2094         }
2095
2096         /*
2097          * This should really be part of the RGB encoder driver, but clearing
2098          * these bits has the side-effect of stopping the display controller.
2099          * When that happens no VBLANK interrupts will be raised. At the same
2100          * time the encoder is disabled before the display controller, so the
2101          * above code is always going to timeout waiting for the controller
2102          * to go idle.
2103          *
2104          * Given the close coupling between the RGB encoder and the display
2105          * controller doing it here is still kind of okay. None of the other
2106          * encoder drivers require these bits to be cleared.
2107          *
2108          * XXX: Perhaps given that the display controller is switched off at
2109          * this point anyway maybe clearing these bits isn't even useful for
2110          * the RGB encoder?
2111          */
2112         if (dc->rgb) {
2113                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2114                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2115                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2116                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2117         }
2118
2119         tegra_dc_stats_reset(&dc->stats);
2120         drm_crtc_vblank_off(crtc);
2121
2122         spin_lock_irq(&crtc->dev->event_lock);
2123
2124         if (crtc->state->event) {
2125                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2126                 crtc->state->event = NULL;
2127         }
2128
2129         spin_unlock_irq(&crtc->dev->event_lock);
2130
2131         err = host1x_client_suspend(&dc->client);
2132         if (err < 0)
2133                 dev_err(dc->dev, "failed to suspend: %d\n", err);
2134
2135         if (dc->has_opp_table) {
2136                 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2137                 if (err)
2138                         dev_err(dc->dev,
2139                                 "failed to clear power domain state: %d\n", err);
2140         }
2141 }
2142
2143 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2144                                      struct drm_atomic_state *state)
2145 {
2146         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2147         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2148         struct tegra_dc *dc = to_tegra_dc(crtc);
2149         u32 value;
2150         int err;
2151
2152         /* apply PLL changes */
2153         tegra_dc_set_clock_rate(dc, crtc_state);
2154
2155         err = host1x_client_resume(&dc->client);
2156         if (err < 0) {
2157                 dev_err(dc->dev, "failed to resume: %d\n", err);
2158                 return;
2159         }
2160
2161         /* initialize display controller */
2162         if (dc->syncpt) {
2163                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2164
2165                 if (dc->soc->has_nvdisplay)
2166                         enable = 1 << 31;
2167                 else
2168                         enable = 1 << 8;
2169
2170                 value = SYNCPT_CNTRL_NO_STALL;
2171                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2172
2173                 value = enable | syncpt;
2174                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2175         }
2176
2177         if (dc->soc->has_nvdisplay) {
2178                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2179                         DSC_OBUF_UF_INT;
2180                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2181
2182                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2183                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2184                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2185                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2186                         VBLANK_INT | FRAME_END_INT;
2187                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2188
2189                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2190                         FRAME_END_INT;
2191                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2192
2193                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2194                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2195
2196                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2197         } else {
2198                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2199                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2200                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2201
2202                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2203                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2204                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205
2206                 /* initialize timer */
2207                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2208                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2209                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2210
2211                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2212                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2213                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2214
2215                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2218
2219                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2222         }
2223
2224         if (dc->soc->supports_background_color)
2225                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2226         else
2227                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2228
2229         /* apply pixel clock changes */
2230         if (!dc->soc->has_nvdisplay) {
2231                 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2232                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2233         }
2234
2235         /* program display mode */
2236         tegra_dc_set_timings(dc, mode);
2237
2238         /* interlacing isn't supported yet, so disable it */
2239         if (dc->soc->supports_interlacing) {
2240                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2241                 value &= ~INTERLACE_ENABLE;
2242                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2243         }
2244
2245         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2246         value &= ~DISP_CTRL_MODE_MASK;
2247         value |= DISP_CTRL_MODE_C_DISPLAY;
2248         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2249
2250         if (!dc->soc->has_nvdisplay) {
2251                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2252                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2253                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2254                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2255         }
2256
2257         /* enable underflow reporting and display red for missing pixels */
2258         if (dc->soc->has_nvdisplay) {
2259                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2260                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2261         }
2262
2263         if (dc->rgb) {
2264                 /* XXX: parameterize? */
2265                 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2266                 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2267         }
2268
2269         tegra_dc_commit(dc);
2270
2271         drm_crtc_vblank_on(crtc);
2272 }
2273
2274 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2275                                     struct drm_atomic_state *state)
2276 {
2277         unsigned long flags;
2278
2279         tegra_crtc_update_memory_bandwidth(crtc, state, true);
2280
2281         if (crtc->state->event) {
2282                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2283
2284                 if (drm_crtc_vblank_get(crtc) != 0)
2285                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
2286                 else
2287                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2288
2289                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2290
2291                 crtc->state->event = NULL;
2292         }
2293 }
2294
2295 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2296                                     struct drm_atomic_state *state)
2297 {
2298         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2299                                                                           crtc);
2300         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2301         struct tegra_dc *dc = to_tegra_dc(crtc);
2302         u32 value;
2303
2304         value = dc_state->planes << 8 | GENERAL_UPDATE;
2305         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2306         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2307
2308         value = dc_state->planes | GENERAL_ACT_REQ;
2309         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2310         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2311 }
2312
2313 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2314 {
2315         const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2316         const struct drm_format_info *fmt = state->fb->format;
2317         unsigned int src_w = drm_rect_width(&state->src) >> 16;
2318         unsigned int dst_w = drm_rect_width(&state->dst);
2319
2320         if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2321                 return false;
2322
2323         if (soc->supports_cursor)
2324                 return true;
2325
2326         if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2327                 return false;
2328
2329         return true;
2330 }
2331
2332 static unsigned long
2333 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2334                          const struct drm_plane_state *plane_state)
2335 {
2336         const struct drm_plane_state *other_state;
2337         const struct tegra_plane *tegra;
2338         unsigned long overlap_mask = 0;
2339         struct drm_plane *plane;
2340         struct drm_rect rect;
2341
2342         if (!plane_state->visible || !plane_state->fb)
2343                 return 0;
2344
2345         /*
2346          * Data-prefetch FIFO will easily help to overcome temporal memory
2347          * pressure if other plane overlaps with the cursor plane.
2348          */
2349         if (tegra_plane_is_cursor(plane_state))
2350                 return 0;
2351
2352         drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2353                 rect = plane_state->dst;
2354
2355                 tegra = to_tegra_plane(other_state->plane);
2356
2357                 if (!other_state->visible || !other_state->fb)
2358                         continue;
2359
2360                 /*
2361                  * Ignore cursor plane overlaps because it's not practical to
2362                  * assume that it contributes to the bandwidth in overlapping
2363                  * area if window width is small.
2364                  */
2365                 if (tegra_plane_is_cursor(other_state))
2366                         continue;
2367
2368                 if (drm_rect_intersect(&rect, &other_state->dst))
2369                         overlap_mask |= BIT(tegra->index);
2370         }
2371
2372         return overlap_mask;
2373 }
2374
2375 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2376                                                  struct drm_atomic_state *state)
2377 {
2378         ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2379         u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2380         bool all_planes_overlap_simultaneously = true;
2381         const struct tegra_plane_state *tegra_state;
2382         const struct drm_plane_state *plane_state;
2383         struct tegra_dc *dc = to_tegra_dc(crtc);
2384         struct drm_crtc_state *new_state;
2385         struct tegra_plane *tegra;
2386         struct drm_plane *plane;
2387
2388         /*
2389          * The nv-display uses shared planes.  The algorithm below assumes
2390          * maximum 3 planes per-CRTC, this assumption isn't applicable to
2391          * the nv-display.  Note that T124 support has additional windows,
2392          * but currently they aren't supported by the driver.
2393          */
2394         if (dc->soc->has_nvdisplay)
2395                 return 0;
2396
2397         new_state = drm_atomic_get_new_crtc_state(state, crtc);
2398
2399         /*
2400          * For overlapping planes pixel's data is fetched for each plane at
2401          * the same time, hence bandwidths are accumulated in this case.
2402          * This needs to be taken into account for calculating total bandwidth
2403          * consumed by all planes.
2404          *
2405          * Here we get the overlapping state of each plane, which is a
2406          * bitmask of plane indices telling with what planes there is an
2407          * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408          * to make further code nicer and simpler.
2409          */
2410         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411                 tegra_state = to_const_tegra_plane_state(plane_state);
2412                 tegra = to_tegra_plane(plane);
2413
2414                 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2415                         return -EINVAL;
2416
2417                 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418                 mask = tegra_plane_overlap_mask(new_state, plane_state);
2419                 overlap_mask[tegra->index] = mask;
2420
2421                 if (hweight_long(mask) != 3)
2422                         all_planes_overlap_simultaneously = false;
2423         }
2424
2425         /*
2426          * Then we calculate maximum bandwidth of each plane state.
2427          * The bandwidth includes the plane BW + BW of the "simultaneously"
2428          * overlapping planes, where "simultaneously" means areas where DC
2429          * fetches from the planes simultaneously during of scan-out process.
2430          *
2431          * For example, if plane A overlaps with planes B and C, but B and C
2432          * don't overlap, then the peak bandwidth will be either in area where
2433          * A-and-B or A-and-C planes overlap.
2434          *
2435          * The plane_peak_bw[] contains peak memory bandwidth values of
2436          * each plane, this information is needed by interconnect provider
2437          * in order to set up latency allowance based on the peak BW, see
2438          * tegra_crtc_update_memory_bandwidth().
2439          */
2440         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441                 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2442
2443                 /*
2444                  * Note that plane's atomic check doesn't touch the
2445                  * total_peak_memory_bandwidth of enabled plane, hence the
2446                  * current state contains the old bandwidth state from the
2447                  * previous CRTC commit.
2448                  */
2449                 tegra_state = to_const_tegra_plane_state(plane_state);
2450                 tegra = to_tegra_plane(plane);
2451
2452                 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453                         if (i == tegra->index)
2454                                 continue;
2455
2456                         if (all_planes_overlap_simultaneously)
2457                                 overlap_bw += plane_peak_bw[i];
2458                         else
2459                                 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2460                 }
2461
2462                 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463                 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2464
2465                 /*
2466                  * If plane's peak bandwidth changed (for example plane isn't
2467                  * overlapped anymore) and plane isn't in the atomic state,
2468                  * then add plane to the state in order to have the bandwidth
2469                  * updated.
2470                  */
2471                 if (old_peak_bw != new_peak_bw) {
2472                         struct tegra_plane_state *new_tegra_state;
2473                         struct drm_plane_state *new_plane_state;
2474
2475                         new_plane_state = drm_atomic_get_plane_state(state, plane);
2476                         if (IS_ERR(new_plane_state))
2477                                 return PTR_ERR(new_plane_state);
2478
2479                         new_tegra_state = to_tegra_plane_state(new_plane_state);
2480                         new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2481                 }
2482         }
2483
2484         return 0;
2485 }
2486
2487 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488                                    struct drm_atomic_state *state)
2489 {
2490         int err;
2491
2492         err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2493         if (err)
2494                 return err;
2495
2496         return 0;
2497 }
2498
2499 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500                                    struct drm_atomic_state *state)
2501 {
2502         /*
2503          * Display bandwidth is allowed to go down only once hardware state
2504          * is known to be armed, i.e. state was committed and VBLANK event
2505          * received.
2506          */
2507         tegra_crtc_update_memory_bandwidth(crtc, state, false);
2508 }
2509
2510 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511         .atomic_check = tegra_crtc_atomic_check,
2512         .atomic_begin = tegra_crtc_atomic_begin,
2513         .atomic_flush = tegra_crtc_atomic_flush,
2514         .atomic_enable = tegra_crtc_atomic_enable,
2515         .atomic_disable = tegra_crtc_atomic_disable,
2516 };
2517
2518 static irqreturn_t tegra_dc_irq(int irq, void *data)
2519 {
2520         struct tegra_dc *dc = data;
2521         unsigned long status;
2522
2523         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2525
2526         if (status & FRAME_END_INT) {
2527                 /*
2528                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2529                 */
2530                 dc->stats.frames_total++;
2531                 dc->stats.frames++;
2532         }
2533
2534         if (status & VBLANK_INT) {
2535                 /*
2536                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2537                 */
2538                 drm_crtc_handle_vblank(&dc->base);
2539                 dc->stats.vblank_total++;
2540                 dc->stats.vblank++;
2541         }
2542
2543         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2544                 /*
2545                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2546                 */
2547                 dc->stats.underflow_total++;
2548                 dc->stats.underflow++;
2549         }
2550
2551         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2552                 /*
2553                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2554                 */
2555                 dc->stats.overflow_total++;
2556                 dc->stats.overflow++;
2557         }
2558
2559         if (status & HEAD_UF_INT) {
2560                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561                 dc->stats.underflow_total++;
2562                 dc->stats.underflow++;
2563         }
2564
2565         return IRQ_HANDLED;
2566 }
2567
2568 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2569 {
2570         unsigned int i;
2571
2572         if (!dc->soc->wgrps)
2573                 return true;
2574
2575         for (i = 0; i < dc->soc->num_wgrps; i++) {
2576                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2577
2578                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2579                         return true;
2580         }
2581
2582         return false;
2583 }
2584
2585 static int tegra_dc_early_init(struct host1x_client *client)
2586 {
2587         struct drm_device *drm = dev_get_drvdata(client->host);
2588         struct tegra_drm *tegra = drm->dev_private;
2589
2590         tegra->num_crtcs++;
2591
2592         return 0;
2593 }
2594
2595 static int tegra_dc_init(struct host1x_client *client)
2596 {
2597         struct drm_device *drm = dev_get_drvdata(client->host);
2598         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599         struct tegra_dc *dc = host1x_client_to_dc(client);
2600         struct tegra_drm *tegra = drm->dev_private;
2601         struct drm_plane *primary = NULL;
2602         struct drm_plane *cursor = NULL;
2603         int err;
2604
2605         /*
2606          * DC has been reset by now, so VBLANK syncpoint can be released
2607          * for general use.
2608          */
2609         host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2610
2611         /*
2612          * XXX do not register DCs with no window groups because we cannot
2613          * assign a primary plane to them, which in turn will cause KMS to
2614          * crash.
2615          */
2616         if (!tegra_dc_has_window_groups(dc))
2617                 return 0;
2618
2619         /*
2620          * Set the display hub as the host1x client parent for the display
2621          * controller. This is needed for the runtime reference counting that
2622          * ensures the display hub is always powered when any of the display
2623          * controllers are.
2624          */
2625         if (dc->soc->has_nvdisplay)
2626                 client->parent = &tegra->hub->client;
2627
2628         dc->syncpt = host1x_syncpt_request(client, flags);
2629         if (!dc->syncpt)
2630                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2631
2632         err = host1x_client_iommu_attach(client);
2633         if (err < 0 && err != -ENODEV) {
2634                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2635                 return err;
2636         }
2637
2638         if (dc->soc->wgrps)
2639                 primary = tegra_dc_add_shared_planes(drm, dc);
2640         else
2641                 primary = tegra_dc_add_planes(drm, dc);
2642
2643         if (IS_ERR(primary)) {
2644                 err = PTR_ERR(primary);
2645                 goto cleanup;
2646         }
2647
2648         if (dc->soc->supports_cursor) {
2649                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2650                 if (IS_ERR(cursor)) {
2651                         err = PTR_ERR(cursor);
2652                         goto cleanup;
2653                 }
2654         } else {
2655                 /* dedicate one overlay to mouse cursor */
2656                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657                 if (IS_ERR(cursor)) {
2658                         err = PTR_ERR(cursor);
2659                         goto cleanup;
2660                 }
2661         }
2662
2663         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664                                         &tegra_crtc_funcs, NULL);
2665         if (err < 0)
2666                 goto cleanup;
2667
2668         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2669
2670         /*
2671          * Keep track of the minimum pitch alignment across all display
2672          * controllers.
2673          */
2674         if (dc->soc->pitch_align > tegra->pitch_align)
2675                 tegra->pitch_align = dc->soc->pitch_align;
2676
2677         /* track maximum resolution */
2678         if (dc->soc->has_nvdisplay)
2679                 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2680         else
2681                 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2682
2683         err = tegra_dc_rgb_init(drm, dc);
2684         if (err < 0 && err != -ENODEV) {
2685                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2686                 goto cleanup;
2687         }
2688
2689         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690                                dev_name(dc->dev), dc);
2691         if (err < 0) {
2692                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2693                         err);
2694                 goto cleanup;
2695         }
2696
2697         /*
2698          * Inherit the DMA parameters (such as maximum segment size) from the
2699          * parent host1x device.
2700          */
2701         client->dev->dma_parms = client->host->dma_parms;
2702
2703         return 0;
2704
2705 cleanup:
2706         if (!IS_ERR_OR_NULL(cursor))
2707                 drm_plane_cleanup(cursor);
2708
2709         if (!IS_ERR(primary))
2710                 drm_plane_cleanup(primary);
2711
2712         host1x_client_iommu_detach(client);
2713         host1x_syncpt_put(dc->syncpt);
2714
2715         return err;
2716 }
2717
2718 static int tegra_dc_exit(struct host1x_client *client)
2719 {
2720         struct tegra_dc *dc = host1x_client_to_dc(client);
2721         int err;
2722
2723         if (!tegra_dc_has_window_groups(dc))
2724                 return 0;
2725
2726         /* avoid a dangling pointer just in case this disappears */
2727         client->dev->dma_parms = NULL;
2728
2729         devm_free_irq(dc->dev, dc->irq, dc);
2730
2731         err = tegra_dc_rgb_exit(dc);
2732         if (err) {
2733                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2734                 return err;
2735         }
2736
2737         host1x_client_iommu_detach(client);
2738         host1x_syncpt_put(dc->syncpt);
2739
2740         return 0;
2741 }
2742
2743 static int tegra_dc_late_exit(struct host1x_client *client)
2744 {
2745         struct drm_device *drm = dev_get_drvdata(client->host);
2746         struct tegra_drm *tegra = drm->dev_private;
2747
2748         tegra->num_crtcs--;
2749
2750         return 0;
2751 }
2752
2753 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2754 {
2755         struct tegra_dc *dc = host1x_client_to_dc(client);
2756         struct device *dev = client->dev;
2757         int err;
2758
2759         err = reset_control_assert(dc->rst);
2760         if (err < 0) {
2761                 dev_err(dev, "failed to assert reset: %d\n", err);
2762                 return err;
2763         }
2764
2765         if (dc->soc->has_powergate)
2766                 tegra_powergate_power_off(dc->powergate);
2767
2768         clk_disable_unprepare(dc->clk);
2769         pm_runtime_put_sync(dev);
2770
2771         return 0;
2772 }
2773
2774 static int tegra_dc_runtime_resume(struct host1x_client *client)
2775 {
2776         struct tegra_dc *dc = host1x_client_to_dc(client);
2777         struct device *dev = client->dev;
2778         int err;
2779
2780         err = pm_runtime_resume_and_get(dev);
2781         if (err < 0) {
2782                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2783                 return err;
2784         }
2785
2786         if (dc->soc->has_powergate) {
2787                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2788                                                         dc->rst);
2789                 if (err < 0) {
2790                         dev_err(dev, "failed to power partition: %d\n", err);
2791                         goto put_rpm;
2792                 }
2793         } else {
2794                 err = clk_prepare_enable(dc->clk);
2795                 if (err < 0) {
2796                         dev_err(dev, "failed to enable clock: %d\n", err);
2797                         goto put_rpm;
2798                 }
2799
2800                 err = reset_control_deassert(dc->rst);
2801                 if (err < 0) {
2802                         dev_err(dev, "failed to deassert reset: %d\n", err);
2803                         goto disable_clk;
2804                 }
2805         }
2806
2807         return 0;
2808
2809 disable_clk:
2810         clk_disable_unprepare(dc->clk);
2811 put_rpm:
2812         pm_runtime_put_sync(dev);
2813         return err;
2814 }
2815
2816 static const struct host1x_client_ops dc_client_ops = {
2817         .early_init = tegra_dc_early_init,
2818         .init = tegra_dc_init,
2819         .exit = tegra_dc_exit,
2820         .late_exit = tegra_dc_late_exit,
2821         .suspend = tegra_dc_runtime_suspend,
2822         .resume = tegra_dc_runtime_resume,
2823 };
2824
2825 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826         .supports_background_color = false,
2827         .supports_interlacing = false,
2828         .supports_cursor = false,
2829         .supports_block_linear = false,
2830         .supports_sector_layout = false,
2831         .has_legacy_blending = true,
2832         .pitch_align = 8,
2833         .has_powergate = false,
2834         .coupled_pm = true,
2835         .has_nvdisplay = false,
2836         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837         .primary_formats = tegra20_primary_formats,
2838         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839         .overlay_formats = tegra20_overlay_formats,
2840         .modifiers = tegra20_modifiers,
2841         .has_win_a_without_filters = true,
2842         .has_win_b_vfilter_mem_client = true,
2843         .has_win_c_without_vert_filter = true,
2844         .plane_tiled_memory_bandwidth_x2 = false,
2845         .has_pll_d2_out0 = false,
2846 };
2847
2848 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849         .supports_background_color = false,
2850         .supports_interlacing = false,
2851         .supports_cursor = false,
2852         .supports_block_linear = false,
2853         .supports_sector_layout = false,
2854         .has_legacy_blending = true,
2855         .pitch_align = 8,
2856         .has_powergate = false,
2857         .coupled_pm = false,
2858         .has_nvdisplay = false,
2859         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860         .primary_formats = tegra20_primary_formats,
2861         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862         .overlay_formats = tegra20_overlay_formats,
2863         .modifiers = tegra20_modifiers,
2864         .has_win_a_without_filters = false,
2865         .has_win_b_vfilter_mem_client = true,
2866         .has_win_c_without_vert_filter = false,
2867         .plane_tiled_memory_bandwidth_x2 = true,
2868         .has_pll_d2_out0 = true,
2869 };
2870
2871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872         .supports_background_color = false,
2873         .supports_interlacing = false,
2874         .supports_cursor = false,
2875         .supports_block_linear = false,
2876         .supports_sector_layout = false,
2877         .has_legacy_blending = true,
2878         .pitch_align = 64,
2879         .has_powergate = true,
2880         .coupled_pm = false,
2881         .has_nvdisplay = false,
2882         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883         .primary_formats = tegra114_primary_formats,
2884         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885         .overlay_formats = tegra114_overlay_formats,
2886         .modifiers = tegra20_modifiers,
2887         .has_win_a_without_filters = false,
2888         .has_win_b_vfilter_mem_client = false,
2889         .has_win_c_without_vert_filter = false,
2890         .plane_tiled_memory_bandwidth_x2 = true,
2891         .has_pll_d2_out0 = true,
2892 };
2893
2894 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895         .supports_background_color = true,
2896         .supports_interlacing = true,
2897         .supports_cursor = true,
2898         .supports_block_linear = true,
2899         .supports_sector_layout = false,
2900         .has_legacy_blending = false,
2901         .pitch_align = 64,
2902         .has_powergate = true,
2903         .coupled_pm = false,
2904         .has_nvdisplay = false,
2905         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906         .primary_formats = tegra124_primary_formats,
2907         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908         .overlay_formats = tegra124_overlay_formats,
2909         .modifiers = tegra124_modifiers,
2910         .has_win_a_without_filters = false,
2911         .has_win_b_vfilter_mem_client = false,
2912         .has_win_c_without_vert_filter = false,
2913         .plane_tiled_memory_bandwidth_x2 = false,
2914         .has_pll_d2_out0 = true,
2915 };
2916
2917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918         .supports_background_color = true,
2919         .supports_interlacing = true,
2920         .supports_cursor = true,
2921         .supports_block_linear = true,
2922         .supports_sector_layout = false,
2923         .has_legacy_blending = false,
2924         .pitch_align = 64,
2925         .has_powergate = true,
2926         .coupled_pm = false,
2927         .has_nvdisplay = false,
2928         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929         .primary_formats = tegra114_primary_formats,
2930         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931         .overlay_formats = tegra114_overlay_formats,
2932         .modifiers = tegra124_modifiers,
2933         .has_win_a_without_filters = false,
2934         .has_win_b_vfilter_mem_client = false,
2935         .has_win_c_without_vert_filter = false,
2936         .plane_tiled_memory_bandwidth_x2 = false,
2937         .has_pll_d2_out0 = true,
2938 };
2939
2940 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2941         {
2942                 .index = 0,
2943                 .dc = 0,
2944                 .windows = (const unsigned int[]) { 0 },
2945                 .num_windows = 1,
2946         }, {
2947                 .index = 1,
2948                 .dc = 1,
2949                 .windows = (const unsigned int[]) { 1 },
2950                 .num_windows = 1,
2951         }, {
2952                 .index = 2,
2953                 .dc = 1,
2954                 .windows = (const unsigned int[]) { 2 },
2955                 .num_windows = 1,
2956         }, {
2957                 .index = 3,
2958                 .dc = 2,
2959                 .windows = (const unsigned int[]) { 3 },
2960                 .num_windows = 1,
2961         }, {
2962                 .index = 4,
2963                 .dc = 2,
2964                 .windows = (const unsigned int[]) { 4 },
2965                 .num_windows = 1,
2966         }, {
2967                 .index = 5,
2968                 .dc = 2,
2969                 .windows = (const unsigned int[]) { 5 },
2970                 .num_windows = 1,
2971         },
2972 };
2973
2974 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975         .supports_background_color = true,
2976         .supports_interlacing = true,
2977         .supports_cursor = true,
2978         .supports_block_linear = true,
2979         .supports_sector_layout = false,
2980         .has_legacy_blending = false,
2981         .pitch_align = 64,
2982         .has_powergate = false,
2983         .coupled_pm = false,
2984         .has_nvdisplay = true,
2985         .wgrps = tegra186_dc_wgrps,
2986         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987         .plane_tiled_memory_bandwidth_x2 = false,
2988         .has_pll_d2_out0 = false,
2989 };
2990
2991 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2992         {
2993                 .index = 0,
2994                 .dc = 0,
2995                 .windows = (const unsigned int[]) { 0 },
2996                 .num_windows = 1,
2997         }, {
2998                 .index = 1,
2999                 .dc = 1,
3000                 .windows = (const unsigned int[]) { 1 },
3001                 .num_windows = 1,
3002         }, {
3003                 .index = 2,
3004                 .dc = 1,
3005                 .windows = (const unsigned int[]) { 2 },
3006                 .num_windows = 1,
3007         }, {
3008                 .index = 3,
3009                 .dc = 2,
3010                 .windows = (const unsigned int[]) { 3 },
3011                 .num_windows = 1,
3012         }, {
3013                 .index = 4,
3014                 .dc = 2,
3015                 .windows = (const unsigned int[]) { 4 },
3016                 .num_windows = 1,
3017         }, {
3018                 .index = 5,
3019                 .dc = 2,
3020                 .windows = (const unsigned int[]) { 5 },
3021                 .num_windows = 1,
3022         },
3023 };
3024
3025 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026         .supports_background_color = true,
3027         .supports_interlacing = true,
3028         .supports_cursor = true,
3029         .supports_block_linear = true,
3030         .supports_sector_layout = true,
3031         .has_legacy_blending = false,
3032         .pitch_align = 64,
3033         .has_powergate = false,
3034         .coupled_pm = false,
3035         .has_nvdisplay = true,
3036         .wgrps = tegra194_dc_wgrps,
3037         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038         .plane_tiled_memory_bandwidth_x2 = false,
3039         .has_pll_d2_out0 = false,
3040 };
3041
3042 static const struct of_device_id tegra_dc_of_match[] = {
3043         {
3044                 .compatible = "nvidia,tegra194-dc",
3045                 .data = &tegra194_dc_soc_info,
3046         }, {
3047                 .compatible = "nvidia,tegra186-dc",
3048                 .data = &tegra186_dc_soc_info,
3049         }, {
3050                 .compatible = "nvidia,tegra210-dc",
3051                 .data = &tegra210_dc_soc_info,
3052         }, {
3053                 .compatible = "nvidia,tegra124-dc",
3054                 .data = &tegra124_dc_soc_info,
3055         }, {
3056                 .compatible = "nvidia,tegra114-dc",
3057                 .data = &tegra114_dc_soc_info,
3058         }, {
3059                 .compatible = "nvidia,tegra30-dc",
3060                 .data = &tegra30_dc_soc_info,
3061         }, {
3062                 .compatible = "nvidia,tegra20-dc",
3063                 .data = &tegra20_dc_soc_info,
3064         }, {
3065                 /* sentinel */
3066         }
3067 };
3068 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3069
3070 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3071 {
3072         struct device_node *np;
3073         u32 value = 0;
3074         int err;
3075
3076         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3077         if (err < 0) {
3078                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3079
3080                 /*
3081                  * If the nvidia,head property isn't present, try to find the
3082                  * correct head number by looking up the position of this
3083                  * display controller's node within the device tree. Assuming
3084                  * that the nodes are ordered properly in the DTS file and
3085                  * that the translation into a flattened device tree blob
3086                  * preserves that ordering this will actually yield the right
3087                  * head number.
3088                  *
3089                  * If those assumptions don't hold, this will still work for
3090                  * cases where only a single display controller is used.
3091                  */
3092                 for_each_matching_node(np, tegra_dc_of_match) {
3093                         if (np == dc->dev->of_node) {
3094                                 of_node_put(np);
3095                                 break;
3096                         }
3097
3098                         value++;
3099                 }
3100         }
3101
3102         dc->pipe = value;
3103
3104         return 0;
3105 }
3106
3107 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3108 {
3109         struct tegra_dc *dc = dev_get_drvdata(dev);
3110         unsigned int pipe = (unsigned long)(void *)data;
3111
3112         return dc->pipe == pipe;
3113 }
3114
3115 static int tegra_dc_couple(struct tegra_dc *dc)
3116 {
3117         /*
3118          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120          * POWER_CONTROL registers during CRTC enabling.
3121          */
3122         if (dc->soc->coupled_pm && dc->pipe == 1) {
3123                 struct device *companion;
3124                 struct tegra_dc *parent;
3125
3126                 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127                                                tegra_dc_match_by_pipe);
3128                 if (!companion)
3129                         return -EPROBE_DEFER;
3130
3131                 parent = dev_get_drvdata(companion);
3132                 dc->client.parent = &parent->client;
3133
3134                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3135         }
3136
3137         return 0;
3138 }
3139
3140 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3141 {
3142         struct tegra_core_opp_params opp_params = {};
3143         int err;
3144
3145         err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146         if (err && err != -ENODEV)
3147                 return err;
3148
3149         if (err)
3150                 dc->has_opp_table = false;
3151         else
3152                 dc->has_opp_table = true;
3153
3154         return 0;
3155 }
3156
3157 static int tegra_dc_probe(struct platform_device *pdev)
3158 {
3159         u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160         struct tegra_dc *dc;
3161         int err;
3162
3163         err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3164         if (err < 0) {
3165                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3166                 return err;
3167         }
3168
3169         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3170         if (!dc)
3171                 return -ENOMEM;
3172
3173         dc->soc = of_device_get_match_data(&pdev->dev);
3174
3175         INIT_LIST_HEAD(&dc->list);
3176         dc->dev = &pdev->dev;
3177
3178         err = tegra_dc_parse_dt(dc);
3179         if (err < 0)
3180                 return err;
3181
3182         err = tegra_dc_couple(dc);
3183         if (err < 0)
3184                 return err;
3185
3186         dc->clk = devm_clk_get(&pdev->dev, NULL);
3187         if (IS_ERR(dc->clk)) {
3188                 dev_err(&pdev->dev, "failed to get clock\n");
3189                 return PTR_ERR(dc->clk);
3190         }
3191
3192         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193         if (IS_ERR(dc->rst)) {
3194                 dev_err(&pdev->dev, "failed to get reset\n");
3195                 return PTR_ERR(dc->rst);
3196         }
3197
3198         /* assert reset and disable clock */
3199         err = clk_prepare_enable(dc->clk);
3200         if (err < 0)
3201                 return err;
3202
3203         usleep_range(2000, 4000);
3204
3205         err = reset_control_assert(dc->rst);
3206         if (err < 0) {
3207                 clk_disable_unprepare(dc->clk);
3208                 return err;
3209         }
3210
3211         usleep_range(2000, 4000);
3212
3213         clk_disable_unprepare(dc->clk);
3214
3215         if (dc->soc->has_powergate) {
3216                 if (dc->pipe == 0)
3217                         dc->powergate = TEGRA_POWERGATE_DIS;
3218                 else
3219                         dc->powergate = TEGRA_POWERGATE_DISB;
3220
3221                 tegra_powergate_power_off(dc->powergate);
3222         }
3223
3224         err = tegra_dc_init_opp_table(dc);
3225         if (err < 0)
3226                 return err;
3227
3228         dc->regs = devm_platform_ioremap_resource(pdev, 0);
3229         if (IS_ERR(dc->regs))
3230                 return PTR_ERR(dc->regs);
3231
3232         dc->irq = platform_get_irq(pdev, 0);
3233         if (dc->irq < 0)
3234                 return -ENXIO;
3235
3236         err = tegra_dc_rgb_probe(dc);
3237         if (err < 0 && err != -ENODEV)
3238                 return dev_err_probe(&pdev->dev, err,
3239                                      "failed to probe RGB output\n");
3240
3241         platform_set_drvdata(pdev, dc);
3242         pm_runtime_enable(&pdev->dev);
3243
3244         INIT_LIST_HEAD(&dc->client.list);
3245         dc->client.ops = &dc_client_ops;
3246         dc->client.dev = &pdev->dev;
3247
3248         err = host1x_client_register(&dc->client);
3249         if (err < 0) {
3250                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3251                         err);
3252                 goto disable_pm;
3253         }
3254
3255         return 0;
3256
3257 disable_pm:
3258         pm_runtime_disable(&pdev->dev);
3259         tegra_dc_rgb_remove(dc);
3260
3261         return err;
3262 }
3263
3264 static void tegra_dc_remove(struct platform_device *pdev)
3265 {
3266         struct tegra_dc *dc = platform_get_drvdata(pdev);
3267
3268         host1x_client_unregister(&dc->client);
3269
3270         tegra_dc_rgb_remove(dc);
3271
3272         pm_runtime_disable(&pdev->dev);
3273 }
3274
3275 struct platform_driver tegra_dc_driver = {
3276         .driver = {
3277                 .name = "tegra-dc",
3278                 .of_match_table = tegra_dc_of_match,
3279         },
3280         .probe = tegra_dc_probe,
3281         .remove_new = tegra_dc_remove,
3282 };
This page took 0.228384 seconds and 4 git commands to generate.