3 * Library for filesystems writers.
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
22 struct inode *inode = dentry->d_inode;
23 generic_fillattr(inode, stat);
24 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
30 buf->f_type = dentry->d_sb->s_magic;
31 buf->f_bsize = PAGE_CACHE_SIZE;
32 buf->f_namelen = NAME_MAX;
37 * Retaining negative dentries for an in-memory filesystem just wastes
38 * memory and lookup time: arrange for them to be deleted immediately.
40 static int simple_delete_dentry(struct dentry *dentry)
46 * Lookup the data. This is trivial - if the dentry didn't already
47 * exist, we know it is negative. Set d_op to delete negative dentries.
49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
51 static const struct dentry_operations simple_dentry_operations = {
52 .d_delete = simple_delete_dentry,
55 if (dentry->d_name.len > NAME_MAX)
56 return ERR_PTR(-ENAMETOOLONG);
57 dentry->d_op = &simple_dentry_operations;
62 int dcache_dir_open(struct inode *inode, struct file *file)
64 static struct qstr cursor_name = {.len = 1, .name = "."};
66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
68 return file->private_data ? 0 : -ENOMEM;
71 int dcache_dir_close(struct inode *inode, struct file *file)
73 dput(file->private_data);
77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
82 offset += file->f_pos;
87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
90 if (offset != file->f_pos) {
92 if (file->f_pos >= 2) {
94 struct dentry *cursor = file->private_data;
95 loff_t n = file->f_pos - 2;
97 spin_lock(&dcache_lock);
98 list_del(&cursor->d_u.d_child);
99 p = file->f_path.dentry->d_subdirs.next;
100 while (n && p != &file->f_path.dentry->d_subdirs) {
102 next = list_entry(p, struct dentry, d_u.d_child);
103 if (!d_unhashed(next) && next->d_inode)
107 list_add_tail(&cursor->d_u.d_child, p);
108 spin_unlock(&dcache_lock);
111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
115 /* Relationship between i_mode and the DT_xxx types */
116 static inline unsigned char dt_type(struct inode *inode)
118 return (inode->i_mode >> 12) & 15;
122 * Directory is locked and all positive dentries in it are safe, since
123 * for ramfs-type trees they can't go away without unlink() or rmdir(),
124 * both impossible due to the lock on directory.
127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
129 struct dentry *dentry = filp->f_path.dentry;
130 struct dentry *cursor = filp->private_data;
131 struct list_head *p, *q = &cursor->d_u.d_child;
137 ino = dentry->d_inode->i_ino;
138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
144 ino = parent_ino(dentry);
145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
151 spin_lock(&dcache_lock);
152 if (filp->f_pos == 2)
153 list_move(q, &dentry->d_subdirs);
155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 next = list_entry(p, struct dentry, d_u.d_child);
158 if (d_unhashed(next) || !next->d_inode)
161 spin_unlock(&dcache_lock);
162 if (filldir(dirent, next->d_name.name,
163 next->d_name.len, filp->f_pos,
164 next->d_inode->i_ino,
165 dt_type(next->d_inode)) < 0)
167 spin_lock(&dcache_lock);
168 /* next is still alive */
173 spin_unlock(&dcache_lock);
178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
183 const struct file_operations simple_dir_operations = {
184 .open = dcache_dir_open,
185 .release = dcache_dir_close,
186 .llseek = dcache_dir_lseek,
187 .read = generic_read_dir,
188 .readdir = dcache_readdir,
192 const struct inode_operations simple_dir_inode_operations = {
193 .lookup = simple_lookup,
196 static const struct super_operations simple_super_operations = {
197 .statfs = simple_statfs,
201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
202 * will never be mountable)
204 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
205 const struct super_operations *ops, unsigned long magic,
206 struct vfsmount *mnt)
208 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
209 struct dentry *dentry;
211 struct qstr d_name = {.name = name, .len = strlen(name)};
216 s->s_flags = MS_NOUSER;
217 s->s_maxbytes = MAX_LFS_FILESIZE;
218 s->s_blocksize = PAGE_SIZE;
219 s->s_blocksize_bits = PAGE_SHIFT;
221 s->s_op = ops ? ops : &simple_super_operations;
227 * since this is the first inode, make it number 1. New inodes created
228 * after this must take care not to collide with it (by passing
229 * max_reserved of 1 to iunique).
232 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
233 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
234 dentry = d_alloc(NULL, &d_name);
240 dentry->d_parent = dentry;
241 d_instantiate(dentry, root);
243 s->s_flags |= MS_ACTIVE;
244 simple_set_mnt(mnt, s);
248 deactivate_locked_super(s);
252 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
254 struct inode *inode = old_dentry->d_inode;
256 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
258 atomic_inc(&inode->i_count);
260 d_instantiate(dentry, inode);
264 static inline int simple_positive(struct dentry *dentry)
266 return dentry->d_inode && !d_unhashed(dentry);
269 int simple_empty(struct dentry *dentry)
271 struct dentry *child;
274 spin_lock(&dcache_lock);
275 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
276 if (simple_positive(child))
280 spin_unlock(&dcache_lock);
284 int simple_unlink(struct inode *dir, struct dentry *dentry)
286 struct inode *inode = dentry->d_inode;
288 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
294 int simple_rmdir(struct inode *dir, struct dentry *dentry)
296 if (!simple_empty(dentry))
299 drop_nlink(dentry->d_inode);
300 simple_unlink(dir, dentry);
305 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
306 struct inode *new_dir, struct dentry *new_dentry)
308 struct inode *inode = old_dentry->d_inode;
309 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
311 if (!simple_empty(new_dentry))
314 if (new_dentry->d_inode) {
315 simple_unlink(new_dir, new_dentry);
318 } else if (they_are_dirs) {
323 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
324 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
330 * simple_setsize - handle core mm and vfs requirements for file size change
332 * @newsize: new file size
334 * Returns 0 on success, -error on failure.
336 * simple_setsize must be called with inode_mutex held.
338 * simple_setsize will check that the requested new size is OK (see
339 * inode_newsize_ok), and then will perform the necessary i_size update
340 * and pagecache truncation (if necessary). It will be typically be called
341 * from the filesystem's setattr function when ATTR_SIZE is passed in.
343 * The inode itself must have correct permissions and attributes to allow
344 * i_size to be changed, this function then just checks that the new size
345 * requested is valid.
347 * In the case of simple in-memory filesystems with inodes stored solely
348 * in the inode cache, and file data in the pagecache, nothing more needs
349 * to be done to satisfy a truncate request. Filesystems with on-disk
350 * blocks for example will need to free them in the case of truncate, in
351 * that case it may be easier not to use simple_setsize (but each of its
352 * components will likely be required at some point to update pagecache
355 int simple_setsize(struct inode *inode, loff_t newsize)
360 error = inode_newsize_ok(inode, newsize);
364 oldsize = inode->i_size;
365 i_size_write(inode, newsize);
366 truncate_pagecache(inode, oldsize, newsize);
370 EXPORT_SYMBOL(simple_setsize);
373 * simple_setattr - setattr for simple in-memory filesystem
375 * @iattr: iattr structure
377 * Returns 0 on success, -error on failure.
379 * simple_setattr implements setattr for an in-memory filesystem which
380 * does not store its own file data or metadata (eg. uses the page cache
381 * and inode cache as its data store).
383 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
385 struct inode *inode = dentry->d_inode;
388 error = inode_change_ok(inode, iattr);
392 if (iattr->ia_valid & ATTR_SIZE) {
393 error = simple_setsize(inode, iattr->ia_size);
398 generic_setattr(inode, iattr);
402 EXPORT_SYMBOL(simple_setattr);
404 int simple_readpage(struct file *file, struct page *page)
406 clear_highpage(page);
407 flush_dcache_page(page);
408 SetPageUptodate(page);
413 int simple_write_begin(struct file *file, struct address_space *mapping,
414 loff_t pos, unsigned len, unsigned flags,
415 struct page **pagep, void **fsdata)
420 index = pos >> PAGE_CACHE_SHIFT;
422 page = grab_cache_page_write_begin(mapping, index, flags);
428 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
429 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
431 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
437 * simple_write_end - .write_end helper for non-block-device FSes
438 * @available: See .write_end of address_space_operations
447 * simple_write_end does the minimum needed for updating a page after writing is
448 * done. It has the same API signature as the .write_end of
449 * address_space_operations vector. So it can just be set onto .write_end for
450 * FSes that don't need any other processing. i_mutex is assumed to be held.
451 * Block based filesystems should use generic_write_end().
452 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
453 * is not called, so a filesystem that actually does store data in .write_inode
454 * should extend on what's done here with a call to mark_inode_dirty() in the
455 * case that i_size has changed.
457 int simple_write_end(struct file *file, struct address_space *mapping,
458 loff_t pos, unsigned len, unsigned copied,
459 struct page *page, void *fsdata)
461 struct inode *inode = page->mapping->host;
462 loff_t last_pos = pos + copied;
464 /* zero the stale part of the page if we did a short copy */
466 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
468 zero_user(page, from + copied, len - copied);
471 if (!PageUptodate(page))
472 SetPageUptodate(page);
474 * No need to use i_size_read() here, the i_size
475 * cannot change under us because we hold the i_mutex.
477 if (last_pos > inode->i_size)
478 i_size_write(inode, last_pos);
480 set_page_dirty(page);
482 page_cache_release(page);
488 * the inodes created here are not hashed. If you use iunique to generate
489 * unique inode values later for this filesystem, then you must take care
490 * to pass it an appropriate max_reserved value to avoid collisions.
492 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
496 struct dentry *dentry;
499 s->s_blocksize = PAGE_CACHE_SIZE;
500 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
502 s->s_op = &simple_super_operations;
505 inode = new_inode(s);
509 * because the root inode is 1, the files array must not contain an
513 inode->i_mode = S_IFDIR | 0755;
514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
515 inode->i_op = &simple_dir_inode_operations;
516 inode->i_fop = &simple_dir_operations;
518 root = d_alloc_root(inode);
523 for (i = 0; !files->name || files->name[0]; i++, files++) {
527 /* warn if it tries to conflict with the root inode */
528 if (unlikely(i == 1))
529 printk(KERN_WARNING "%s: %s passed in a files array"
530 "with an index of 1!\n", __func__,
533 dentry = d_alloc_name(root, files->name);
536 inode = new_inode(s);
539 inode->i_mode = S_IFREG | files->mode;
540 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
541 inode->i_fop = files->ops;
543 d_add(dentry, inode);
553 static DEFINE_SPINLOCK(pin_fs_lock);
555 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
557 struct vfsmount *mnt = NULL;
558 spin_lock(&pin_fs_lock);
559 if (unlikely(!*mount)) {
560 spin_unlock(&pin_fs_lock);
561 mnt = vfs_kern_mount(type, 0, type->name, NULL);
564 spin_lock(&pin_fs_lock);
570 spin_unlock(&pin_fs_lock);
575 void simple_release_fs(struct vfsmount **mount, int *count)
577 struct vfsmount *mnt;
578 spin_lock(&pin_fs_lock);
582 spin_unlock(&pin_fs_lock);
587 * simple_read_from_buffer - copy data from the buffer to user space
588 * @to: the user space buffer to read to
589 * @count: the maximum number of bytes to read
590 * @ppos: the current position in the buffer
591 * @from: the buffer to read from
592 * @available: the size of the buffer
594 * The simple_read_from_buffer() function reads up to @count bytes from the
595 * buffer @from at offset @ppos into the user space address starting at @to.
597 * On success, the number of bytes read is returned and the offset @ppos is
598 * advanced by this number, or negative value is returned on error.
600 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
601 const void *from, size_t available)
608 if (pos >= available || !count)
610 if (count > available - pos)
611 count = available - pos;
612 ret = copy_to_user(to, from + pos, count);
621 * simple_write_to_buffer - copy data from user space to the buffer
622 * @to: the buffer to write to
623 * @available: the size of the buffer
624 * @ppos: the current position in the buffer
625 * @from: the user space buffer to read from
626 * @count: the maximum number of bytes to read
628 * The simple_write_to_buffer() function reads up to @count bytes from the user
629 * space address starting at @from into the buffer @to at offset @ppos.
631 * On success, the number of bytes written is returned and the offset @ppos is
632 * advanced by this number, or negative value is returned on error.
634 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
635 const void __user *from, size_t count)
642 if (pos >= available || !count)
644 if (count > available - pos)
645 count = available - pos;
646 res = copy_from_user(to + pos, from, count);
655 * memory_read_from_buffer - copy data from the buffer
656 * @to: the kernel space buffer to read to
657 * @count: the maximum number of bytes to read
658 * @ppos: the current position in the buffer
659 * @from: the buffer to read from
660 * @available: the size of the buffer
662 * The memory_read_from_buffer() function reads up to @count bytes from the
663 * buffer @from at offset @ppos into the kernel space address starting at @to.
665 * On success, the number of bytes read is returned and the offset @ppos is
666 * advanced by this number, or negative value is returned on error.
668 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
669 const void *from, size_t available)
675 if (pos >= available)
677 if (count > available - pos)
678 count = available - pos;
679 memcpy(to, from + pos, count);
686 * Transaction based IO.
687 * The file expects a single write which triggers the transaction, and then
688 * possibly a read which collects the result - which is stored in a
692 void simple_transaction_set(struct file *file, size_t n)
694 struct simple_transaction_argresp *ar = file->private_data;
696 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
699 * The barrier ensures that ar->size will really remain zero until
700 * ar->data is ready for reading.
706 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
708 struct simple_transaction_argresp *ar;
709 static DEFINE_SPINLOCK(simple_transaction_lock);
711 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
712 return ERR_PTR(-EFBIG);
714 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
716 return ERR_PTR(-ENOMEM);
718 spin_lock(&simple_transaction_lock);
720 /* only one write allowed per open */
721 if (file->private_data) {
722 spin_unlock(&simple_transaction_lock);
723 free_page((unsigned long)ar);
724 return ERR_PTR(-EBUSY);
727 file->private_data = ar;
729 spin_unlock(&simple_transaction_lock);
731 if (copy_from_user(ar->data, buf, size))
732 return ERR_PTR(-EFAULT);
737 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
739 struct simple_transaction_argresp *ar = file->private_data;
743 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
746 int simple_transaction_release(struct inode *inode, struct file *file)
748 free_page((unsigned long)file->private_data);
752 /* Simple attribute files */
755 int (*get)(void *, u64 *);
756 int (*set)(void *, u64);
757 char get_buf[24]; /* enough to store a u64 and "\n\0" */
760 const char *fmt; /* format for read operation */
761 struct mutex mutex; /* protects access to these buffers */
764 /* simple_attr_open is called by an actual attribute open file operation
765 * to set the attribute specific access operations. */
766 int simple_attr_open(struct inode *inode, struct file *file,
767 int (*get)(void *, u64 *), int (*set)(void *, u64),
770 struct simple_attr *attr;
772 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
778 attr->data = inode->i_private;
780 mutex_init(&attr->mutex);
782 file->private_data = attr;
784 return nonseekable_open(inode, file);
787 int simple_attr_release(struct inode *inode, struct file *file)
789 kfree(file->private_data);
793 /* read from the buffer that is filled with the get function */
794 ssize_t simple_attr_read(struct file *file, char __user *buf,
795 size_t len, loff_t *ppos)
797 struct simple_attr *attr;
801 attr = file->private_data;
806 ret = mutex_lock_interruptible(&attr->mutex);
810 if (*ppos) { /* continued read */
811 size = strlen(attr->get_buf);
812 } else { /* first read */
814 ret = attr->get(attr->data, &val);
818 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
819 attr->fmt, (unsigned long long)val);
822 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
824 mutex_unlock(&attr->mutex);
828 /* interpret the buffer as a number to call the set function with */
829 ssize_t simple_attr_write(struct file *file, const char __user *buf,
830 size_t len, loff_t *ppos)
832 struct simple_attr *attr;
837 attr = file->private_data;
841 ret = mutex_lock_interruptible(&attr->mutex);
846 size = min(sizeof(attr->set_buf) - 1, len);
847 if (copy_from_user(attr->set_buf, buf, size))
850 attr->set_buf[size] = '\0';
851 val = simple_strtol(attr->set_buf, NULL, 0);
852 ret = attr->set(attr->data, val);
854 ret = len; /* on success, claim we got the whole input */
856 mutex_unlock(&attr->mutex);
861 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
862 * @sb: filesystem to do the file handle conversion on
863 * @fid: file handle to convert
864 * @fh_len: length of the file handle in bytes
865 * @fh_type: type of file handle
866 * @get_inode: filesystem callback to retrieve inode
868 * This function decodes @fid as long as it has one of the well-known
869 * Linux filehandle types and calls @get_inode on it to retrieve the
870 * inode for the object specified in the file handle.
872 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
873 int fh_len, int fh_type, struct inode *(*get_inode)
874 (struct super_block *sb, u64 ino, u32 gen))
876 struct inode *inode = NULL;
882 case FILEID_INO32_GEN:
883 case FILEID_INO32_GEN_PARENT:
884 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
888 return d_obtain_alias(inode);
890 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
893 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
894 * @sb: filesystem to do the file handle conversion on
895 * @fid: file handle to convert
896 * @fh_len: length of the file handle in bytes
897 * @fh_type: type of file handle
898 * @get_inode: filesystem callback to retrieve inode
900 * This function decodes @fid as long as it has one of the well-known
901 * Linux filehandle types and calls @get_inode on it to retrieve the
902 * inode for the _parent_ object specified in the file handle if it
903 * is specified in the file handle, or NULL otherwise.
905 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
906 int fh_len, int fh_type, struct inode *(*get_inode)
907 (struct super_block *sb, u64 ino, u32 gen))
909 struct inode *inode = NULL;
915 case FILEID_INO32_GEN_PARENT:
916 inode = get_inode(sb, fid->i32.parent_ino,
917 (fh_len > 3 ? fid->i32.parent_gen : 0));
921 return d_obtain_alias(inode);
923 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
926 * generic_file_fsync - generic fsync implementation for simple filesystems
927 * @file: file to synchronize
928 * @datasync: only synchronize essential metadata if true
930 * This is a generic implementation of the fsync method for simple
931 * filesystems which track all non-inode metadata in the buffers list
932 * hanging off the address_space structure.
934 int generic_file_fsync(struct file *file, int datasync)
936 struct writeback_control wbc = {
937 .sync_mode = WB_SYNC_ALL,
938 .nr_to_write = 0, /* metadata-only; caller takes care of data */
940 struct inode *inode = file->f_mapping->host;
944 ret = sync_mapping_buffers(inode->i_mapping);
945 if (!(inode->i_state & I_DIRTY))
947 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
950 err = sync_inode(inode, &wbc);
955 EXPORT_SYMBOL(generic_file_fsync);
958 * No-op implementation of ->fsync for in-memory filesystems.
960 int noop_fsync(struct file *file, int datasync)
965 EXPORT_SYMBOL(dcache_dir_close);
966 EXPORT_SYMBOL(dcache_dir_lseek);
967 EXPORT_SYMBOL(dcache_dir_open);
968 EXPORT_SYMBOL(dcache_readdir);
969 EXPORT_SYMBOL(generic_read_dir);
970 EXPORT_SYMBOL(get_sb_pseudo);
971 EXPORT_SYMBOL(simple_write_begin);
972 EXPORT_SYMBOL(simple_write_end);
973 EXPORT_SYMBOL(simple_dir_inode_operations);
974 EXPORT_SYMBOL(simple_dir_operations);
975 EXPORT_SYMBOL(simple_empty);
976 EXPORT_SYMBOL(simple_fill_super);
977 EXPORT_SYMBOL(simple_getattr);
978 EXPORT_SYMBOL(simple_link);
979 EXPORT_SYMBOL(simple_lookup);
980 EXPORT_SYMBOL(simple_pin_fs);
981 EXPORT_SYMBOL(simple_readpage);
982 EXPORT_SYMBOL(simple_release_fs);
983 EXPORT_SYMBOL(simple_rename);
984 EXPORT_SYMBOL(simple_rmdir);
985 EXPORT_SYMBOL(simple_statfs);
986 EXPORT_SYMBOL(noop_fsync);
987 EXPORT_SYMBOL(simple_unlink);
988 EXPORT_SYMBOL(simple_read_from_buffer);
989 EXPORT_SYMBOL(simple_write_to_buffer);
990 EXPORT_SYMBOL(memory_read_from_buffer);
991 EXPORT_SYMBOL(simple_transaction_set);
992 EXPORT_SYMBOL(simple_transaction_get);
993 EXPORT_SYMBOL(simple_transaction_read);
994 EXPORT_SYMBOL(simple_transaction_release);
995 EXPORT_SYMBOL_GPL(simple_attr_open);
996 EXPORT_SYMBOL_GPL(simple_attr_release);
997 EXPORT_SYMBOL_GPL(simple_attr_read);
998 EXPORT_SYMBOL_GPL(simple_attr_write);