1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/phy.h>
37 #include <linux/usb/otg.h>
42 /*-------------------------------------------------------------------------*/
45 * USB Host Controller Driver framework
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 /*-------------------------------------------------------------------------*/
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr);
83 EXPORT_SYMBOL_GPL (usb_bus_idr);
85 /* used when allocating bus numbers */
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock);
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock);
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104 static inline int is_root_hub(struct usb_device *udev)
106 return (udev->parent == NULL);
109 /*-------------------------------------------------------------------------*/
112 * Sharable chunks of root hub code.
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
227 /*-------------------------------------------------------------------------*/
229 /* Configuration descriptors for our root hubs */
231 static const u8 fs_rh_config_descriptor[] = {
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
245 0x00, /* __u8 MaxPower; */
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
278 static const u8 hs_rh_config_descriptor[] = {
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
292 0x00, /* __u8 MaxPower; */
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
327 static const u8 ss_rh_config_descriptor[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
340 0x00, /* __u8 MaxPower; */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
377 static int authorized_default = -1;
378 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
379 MODULE_PARM_DESC(authorized_default,
380 "Default USB device authorization: 0 is not authorized, 1 is "
381 "authorized, -1 is authorized except for wireless USB (default, "
383 /*-------------------------------------------------------------------------*/
386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
387 * @s: Null-terminated ASCII (actually ISO-8859-1) string
388 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
389 * @len: Length (in bytes; may be odd) of descriptor buffer.
391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * USB String descriptors can contain at most 126 characters; input
396 * strings longer than that are truncated.
399 ascii2desc(char const *s, u8 *buf, unsigned len)
401 unsigned n, t = 2 + 2*strlen(s);
404 t = 254; /* Longest possible UTF string descriptor */
408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
416 t = (unsigned char)*s++;
422 * rh_string() - provides string descriptors for root hub
423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
424 * @hcd: the host controller for this root hub
425 * @data: buffer for output packet
426 * @len: length of the provided buffer
428 * Produces either a manufacturer, product or serial number string for the
429 * virtual root hub device.
431 * Return: The number of bytes filled in: the length of the descriptor or
432 * of the provided buffer, whichever is less.
435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
448 memcpy(data, langids, len);
452 s = hcd->self.bus_name;
456 s = hcd->product_desc;
460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
461 init_utsname()->release, hcd->driver->description);
465 /* Can't happen; caller guarantees it */
469 return ascii2desc(s, data, len);
473 /* Root hub control transfers execute synchronously */
474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476 struct usb_ctrlrequest *cmd;
477 u16 typeReq, wValue, wIndex, wLength;
478 u8 *ubuf = urb->transfer_buffer;
482 u8 patch_protocol = 0;
489 spin_lock_irq(&hcd_root_hub_lock);
490 status = usb_hcd_link_urb_to_ep(hcd, urb);
491 spin_unlock_irq(&hcd_root_hub_lock);
494 urb->hcpriv = hcd; /* Indicate it's queued */
496 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
498 wValue = le16_to_cpu (cmd->wValue);
499 wIndex = le16_to_cpu (cmd->wIndex);
500 wLength = le16_to_cpu (cmd->wLength);
502 if (wLength > urb->transfer_buffer_length)
506 * tbuf should be at least as big as the
507 * USB hub descriptor.
509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
510 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
519 urb->actual_length = 0;
522 /* DEVICE REQUESTS */
524 /* The root hub's remote wakeup enable bit is implemented using
525 * driver model wakeup flags. If this system supports wakeup
526 * through USB, userspace may change the default "allow wakeup"
527 * policy through sysfs or these calls.
529 * Most root hubs support wakeup from downstream devices, for
530 * runtime power management (disabling USB clocks and reducing
531 * VBUS power usage). However, not all of them do so; silicon,
532 * board, and BIOS bugs here are not uncommon, so these can't
533 * be treated quite like external hubs.
535 * Likewise, not all root hubs will pass wakeup events upstream,
536 * to wake up the whole system. So don't assume root hub and
537 * controller capabilities are identical.
540 case DeviceRequest | USB_REQ_GET_STATUS:
541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
542 << USB_DEVICE_REMOTE_WAKEUP)
543 | (1 << USB_DEVICE_SELF_POWERED);
547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
548 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
553 case DeviceOutRequest | USB_REQ_SET_FEATURE:
554 if (device_can_wakeup(&hcd->self.root_hub->dev)
555 && wValue == USB_DEVICE_REMOTE_WAKEUP)
556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
560 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
567 switch (wValue & 0xff00) {
568 case USB_DT_DEVICE << 8:
569 switch (hcd->speed) {
571 bufp = usb31_rh_dev_descriptor;
574 bufp = usb3_rh_dev_descriptor;
577 bufp = usb25_rh_dev_descriptor;
580 bufp = usb2_rh_dev_descriptor;
583 bufp = usb11_rh_dev_descriptor;
592 case USB_DT_CONFIG << 8:
593 switch (hcd->speed) {
596 bufp = ss_rh_config_descriptor;
597 len = sizeof ss_rh_config_descriptor;
601 bufp = hs_rh_config_descriptor;
602 len = sizeof hs_rh_config_descriptor;
605 bufp = fs_rh_config_descriptor;
606 len = sizeof fs_rh_config_descriptor;
611 if (device_can_wakeup(&hcd->self.root_hub->dev))
614 case USB_DT_STRING << 8:
615 if ((wValue & 0xff) < 4)
616 urb->actual_length = rh_string(wValue & 0xff,
618 else /* unsupported IDs --> "protocol stall" */
621 case USB_DT_BOS << 8:
627 case DeviceRequest | USB_REQ_GET_INTERFACE:
631 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
633 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
634 /* wValue == urb->dev->devaddr */
635 dev_dbg (hcd->self.controller, "root hub device address %d\n",
639 /* INTERFACE REQUESTS (no defined feature/status flags) */
641 /* ENDPOINT REQUESTS */
643 case EndpointRequest | USB_REQ_GET_STATUS:
644 /* ENDPOINT_HALT flag */
649 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
650 case EndpointOutRequest | USB_REQ_SET_FEATURE:
651 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
654 /* CLASS REQUESTS (and errors) */
658 /* non-generic request */
664 if (wValue == HUB_PORT_STATUS)
667 /* other port status types return 8 bytes */
670 case GetHubDescriptor:
671 len = sizeof (struct usb_hub_descriptor);
673 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
674 /* len is returned by hub_control */
677 status = hcd->driver->hub_control (hcd,
678 typeReq, wValue, wIndex,
681 if (typeReq == GetHubDescriptor)
682 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
683 (struct usb_hub_descriptor *)tbuf);
686 /* "protocol stall" on error */
692 if (status != -EPIPE) {
693 dev_dbg (hcd->self.controller,
694 "CTRL: TypeReq=0x%x val=0x%x "
695 "idx=0x%x len=%d ==> %d\n",
696 typeReq, wValue, wIndex,
699 } else if (status > 0) {
700 /* hub_control may return the length of data copied. */
705 if (urb->transfer_buffer_length < len)
706 len = urb->transfer_buffer_length;
707 urb->actual_length = len;
708 /* always USB_DIR_IN, toward host */
709 memcpy (ubuf, bufp, len);
711 /* report whether RH hardware supports remote wakeup */
713 len > offsetof (struct usb_config_descriptor,
715 ((struct usb_config_descriptor *)ubuf)->bmAttributes
716 |= USB_CONFIG_ATT_WAKEUP;
718 /* report whether RH hardware has an integrated TT */
719 if (patch_protocol &&
720 len > offsetof(struct usb_device_descriptor,
722 ((struct usb_device_descriptor *) ubuf)->
723 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
729 /* any errors get returned through the urb completion */
730 spin_lock_irq(&hcd_root_hub_lock);
731 usb_hcd_unlink_urb_from_ep(hcd, urb);
732 usb_hcd_giveback_urb(hcd, urb, status);
733 spin_unlock_irq(&hcd_root_hub_lock);
737 /*-------------------------------------------------------------------------*/
740 * Root Hub interrupt transfers are polled using a timer if the
741 * driver requests it; otherwise the driver is responsible for
742 * calling usb_hcd_poll_rh_status() when an event occurs.
744 * Completions are called in_interrupt(), but they may or may not
747 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
752 char buffer[6]; /* Any root hubs with > 31 ports? */
754 if (unlikely(!hcd->rh_pollable))
756 if (!hcd->uses_new_polling && !hcd->status_urb)
759 length = hcd->driver->hub_status_data(hcd, buffer);
762 /* try to complete the status urb */
763 spin_lock_irqsave(&hcd_root_hub_lock, flags);
764 urb = hcd->status_urb;
766 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
767 hcd->status_urb = NULL;
768 urb->actual_length = length;
769 memcpy(urb->transfer_buffer, buffer, length);
771 usb_hcd_unlink_urb_from_ep(hcd, urb);
772 usb_hcd_giveback_urb(hcd, urb, 0);
775 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
777 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
780 /* The USB 2.0 spec says 256 ms. This is close enough and won't
781 * exceed that limit if HZ is 100. The math is more clunky than
782 * maybe expected, this is to make sure that all timers for USB devices
783 * fire at the same time to give the CPU a break in between */
784 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
785 (length == 0 && hcd->status_urb != NULL))
786 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
788 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
791 static void rh_timer_func (unsigned long _hcd)
793 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
796 /*-------------------------------------------------------------------------*/
798 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802 unsigned len = 1 + (urb->dev->maxchild / 8);
804 spin_lock_irqsave (&hcd_root_hub_lock, flags);
805 if (hcd->status_urb || urb->transfer_buffer_length < len) {
806 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
811 retval = usb_hcd_link_urb_to_ep(hcd, urb);
815 hcd->status_urb = urb;
816 urb->hcpriv = hcd; /* indicate it's queued */
817 if (!hcd->uses_new_polling)
818 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
820 /* If a status change has already occurred, report it ASAP */
821 else if (HCD_POLL_PENDING(hcd))
822 mod_timer(&hcd->rh_timer, jiffies);
825 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
831 if (usb_endpoint_xfer_int(&urb->ep->desc))
832 return rh_queue_status (hcd, urb);
833 if (usb_endpoint_xfer_control(&urb->ep->desc))
834 return rh_call_control (hcd, urb);
838 /*-------------------------------------------------------------------------*/
840 /* Unlinks of root-hub control URBs are legal, but they don't do anything
841 * since these URBs always execute synchronously.
843 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
848 spin_lock_irqsave(&hcd_root_hub_lock, flags);
849 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
856 } else { /* Status URB */
857 if (!hcd->uses_new_polling)
858 del_timer (&hcd->rh_timer);
859 if (urb == hcd->status_urb) {
860 hcd->status_urb = NULL;
861 usb_hcd_unlink_urb_from_ep(hcd, urb);
862 usb_hcd_giveback_urb(hcd, urb, status);
866 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
873 * Show & store the current value of authorized_default
875 static ssize_t authorized_default_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
878 struct usb_device *rh_usb_dev = to_usb_device(dev);
879 struct usb_bus *usb_bus = rh_usb_dev->bus;
882 hcd = bus_to_hcd(usb_bus);
883 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
886 static ssize_t authorized_default_store(struct device *dev,
887 struct device_attribute *attr,
888 const char *buf, size_t size)
892 struct usb_device *rh_usb_dev = to_usb_device(dev);
893 struct usb_bus *usb_bus = rh_usb_dev->bus;
896 hcd = bus_to_hcd(usb_bus);
897 result = sscanf(buf, "%u\n", &val);
900 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
902 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
910 static DEVICE_ATTR_RW(authorized_default);
913 * interface_authorized_default_show - show default authorization status
916 * note: interface_authorized_default is the default value
917 * for initializing the authorized attribute of interfaces
919 static ssize_t interface_authorized_default_show(struct device *dev,
920 struct device_attribute *attr, char *buf)
922 struct usb_device *usb_dev = to_usb_device(dev);
923 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
925 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929 * interface_authorized_default_store - store default authorization status
932 * note: interface_authorized_default is the default value
933 * for initializing the authorized attribute of interfaces
935 static ssize_t interface_authorized_default_store(struct device *dev,
936 struct device_attribute *attr, const char *buf, size_t count)
938 struct usb_device *usb_dev = to_usb_device(dev);
939 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943 if (strtobool(buf, &val) != 0)
947 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
949 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953 static DEVICE_ATTR_RW(interface_authorized_default);
955 /* Group all the USB bus attributes */
956 static struct attribute *usb_bus_attrs[] = {
957 &dev_attr_authorized_default.attr,
958 &dev_attr_interface_authorized_default.attr,
962 static const struct attribute_group usb_bus_attr_group = {
963 .name = NULL, /* we want them in the same directory */
964 .attrs = usb_bus_attrs,
969 /*-------------------------------------------------------------------------*/
972 * usb_bus_init - shared initialization code
973 * @bus: the bus structure being initialized
975 * This code is used to initialize a usb_bus structure, memory for which is
976 * separately managed.
978 static void usb_bus_init (struct usb_bus *bus)
980 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
982 bus->devnum_next = 1;
984 bus->root_hub = NULL;
986 bus->bandwidth_allocated = 0;
987 bus->bandwidth_int_reqs = 0;
988 bus->bandwidth_isoc_reqs = 0;
989 mutex_init(&bus->devnum_next_mutex);
992 /*-------------------------------------------------------------------------*/
995 * usb_register_bus - registers the USB host controller with the usb core
996 * @bus: pointer to the bus to register
997 * Context: !in_interrupt()
999 * Assigns a bus number, and links the controller into usbcore data
1000 * structures so that it can be seen by scanning the bus list.
1002 * Return: 0 if successful. A negative error code otherwise.
1004 static int usb_register_bus(struct usb_bus *bus)
1006 int result = -E2BIG;
1009 mutex_lock(&usb_bus_idr_lock);
1010 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1012 pr_err("%s: failed to get bus number\n", usbcore_name);
1013 goto error_find_busnum;
1015 bus->busnum = busnum;
1016 mutex_unlock(&usb_bus_idr_lock);
1018 usb_notify_add_bus(bus);
1020 dev_info (bus->controller, "new USB bus registered, assigned bus "
1021 "number %d\n", bus->busnum);
1025 mutex_unlock(&usb_bus_idr_lock);
1030 * usb_deregister_bus - deregisters the USB host controller
1031 * @bus: pointer to the bus to deregister
1032 * Context: !in_interrupt()
1034 * Recycles the bus number, and unlinks the controller from usbcore data
1035 * structures so that it won't be seen by scanning the bus list.
1037 static void usb_deregister_bus (struct usb_bus *bus)
1039 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1042 * NOTE: make sure that all the devices are removed by the
1043 * controller code, as well as having it call this when cleaning
1046 mutex_lock(&usb_bus_idr_lock);
1047 idr_remove(&usb_bus_idr, bus->busnum);
1048 mutex_unlock(&usb_bus_idr_lock);
1050 usb_notify_remove_bus(bus);
1054 * register_root_hub - called by usb_add_hcd() to register a root hub
1055 * @hcd: host controller for this root hub
1057 * This function registers the root hub with the USB subsystem. It sets up
1058 * the device properly in the device tree and then calls usb_new_device()
1059 * to register the usb device. It also assigns the root hub's USB address
1062 * Return: 0 if successful. A negative error code otherwise.
1064 static int register_root_hub(struct usb_hcd *hcd)
1066 struct device *parent_dev = hcd->self.controller;
1067 struct usb_device *usb_dev = hcd->self.root_hub;
1068 const int devnum = 1;
1071 usb_dev->devnum = devnum;
1072 usb_dev->bus->devnum_next = devnum + 1;
1073 memset (&usb_dev->bus->devmap.devicemap, 0,
1074 sizeof usb_dev->bus->devmap.devicemap);
1075 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1076 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1078 mutex_lock(&usb_bus_idr_lock);
1080 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1081 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1082 if (retval != sizeof usb_dev->descriptor) {
1083 mutex_unlock(&usb_bus_idr_lock);
1084 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1085 dev_name(&usb_dev->dev), retval);
1086 return (retval < 0) ? retval : -EMSGSIZE;
1089 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1090 retval = usb_get_bos_descriptor(usb_dev);
1092 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1093 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1094 mutex_unlock(&usb_bus_idr_lock);
1095 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1096 dev_name(&usb_dev->dev), retval);
1101 retval = usb_new_device (usb_dev);
1103 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1104 dev_name(&usb_dev->dev), retval);
1106 spin_lock_irq (&hcd_root_hub_lock);
1107 hcd->rh_registered = 1;
1108 spin_unlock_irq (&hcd_root_hub_lock);
1110 /* Did the HC die before the root hub was registered? */
1112 usb_hc_died (hcd); /* This time clean up */
1114 mutex_unlock(&usb_bus_idr_lock);
1120 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1121 * @bus: the bus which the root hub belongs to
1122 * @portnum: the port which is being resumed
1124 * HCDs should call this function when they know that a resume signal is
1125 * being sent to a root-hub port. The root hub will be prevented from
1126 * going into autosuspend until usb_hcd_end_port_resume() is called.
1128 * The bus's private lock must be held by the caller.
1130 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1132 unsigned bit = 1 << portnum;
1134 if (!(bus->resuming_ports & bit)) {
1135 bus->resuming_ports |= bit;
1136 pm_runtime_get_noresume(&bus->root_hub->dev);
1139 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1142 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1143 * @bus: the bus which the root hub belongs to
1144 * @portnum: the port which is being resumed
1146 * HCDs should call this function when they know that a resume signal has
1147 * stopped being sent to a root-hub port. The root hub will be allowed to
1148 * autosuspend again.
1150 * The bus's private lock must be held by the caller.
1152 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1154 unsigned bit = 1 << portnum;
1156 if (bus->resuming_ports & bit) {
1157 bus->resuming_ports &= ~bit;
1158 pm_runtime_put_noidle(&bus->root_hub->dev);
1161 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1163 /*-------------------------------------------------------------------------*/
1166 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1167 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1168 * @is_input: true iff the transaction sends data to the host
1169 * @isoc: true for isochronous transactions, false for interrupt ones
1170 * @bytecount: how many bytes in the transaction.
1172 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1175 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1176 * scheduled in software, this function is only used for such scheduling.
1178 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1183 case USB_SPEED_LOW: /* INTR only */
1185 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1186 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1188 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1191 case USB_SPEED_FULL: /* ISOC or INTR */
1193 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1196 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return 9107L + BW_HOST_DELAY + tmp;
1199 case USB_SPEED_HIGH: /* ISOC or INTR */
1200 /* FIXME adjust for input vs output */
1202 tmp = HS_NSECS_ISO (bytecount);
1204 tmp = HS_NSECS (bytecount);
1207 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1214 /*-------------------------------------------------------------------------*/
1217 * Generic HC operations.
1220 /*-------------------------------------------------------------------------*/
1223 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1224 * @hcd: host controller to which @urb was submitted
1225 * @urb: URB being submitted
1227 * Host controller drivers should call this routine in their enqueue()
1228 * method. The HCD's private spinlock must be held and interrupts must
1229 * be disabled. The actions carried out here are required for URB
1230 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1232 * Return: 0 for no error, otherwise a negative error code (in which case
1233 * the enqueue() method must fail). If no error occurs but enqueue() fails
1234 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1235 * the private spinlock and returning.
1237 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241 spin_lock(&hcd_urb_list_lock);
1243 /* Check that the URB isn't being killed */
1244 if (unlikely(atomic_read(&urb->reject))) {
1249 if (unlikely(!urb->ep->enabled)) {
1254 if (unlikely(!urb->dev->can_submit)) {
1260 * Check the host controller's state and add the URB to the
1263 if (HCD_RH_RUNNING(hcd)) {
1265 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1271 spin_unlock(&hcd_urb_list_lock);
1274 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1277 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1278 * @hcd: host controller to which @urb was submitted
1279 * @urb: URB being checked for unlinkability
1280 * @status: error code to store in @urb if the unlink succeeds
1282 * Host controller drivers should call this routine in their dequeue()
1283 * method. The HCD's private spinlock must be held and interrupts must
1284 * be disabled. The actions carried out here are required for making
1285 * sure than an unlink is valid.
1287 * Return: 0 for no error, otherwise a negative error code (in which case
1288 * the dequeue() method must fail). The possible error codes are:
1290 * -EIDRM: @urb was not submitted or has already completed.
1291 * The completion function may not have been called yet.
1293 * -EBUSY: @urb has already been unlinked.
1295 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1298 struct list_head *tmp;
1300 /* insist the urb is still queued */
1301 list_for_each(tmp, &urb->ep->urb_list) {
1302 if (tmp == &urb->urb_list)
1305 if (tmp != &urb->urb_list)
1308 /* Any status except -EINPROGRESS means something already started to
1309 * unlink this URB from the hardware. So there's no more work to do.
1313 urb->unlinked = status;
1316 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1319 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1320 * @hcd: host controller to which @urb was submitted
1321 * @urb: URB being unlinked
1323 * Host controller drivers should call this routine before calling
1324 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1325 * interrupts must be disabled. The actions carried out here are required
1326 * for URB completion.
1328 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1330 /* clear all state linking urb to this dev (and hcd) */
1331 spin_lock(&hcd_urb_list_lock);
1332 list_del_init(&urb->urb_list);
1333 spin_unlock(&hcd_urb_list_lock);
1335 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1338 * Some usb host controllers can only perform dma using a small SRAM area.
1339 * The usb core itself is however optimized for host controllers that can dma
1340 * using regular system memory - like pci devices doing bus mastering.
1342 * To support host controllers with limited dma capabilities we provide dma
1343 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1344 * For this to work properly the host controller code must first use the
1345 * function dma_declare_coherent_memory() to point out which memory area
1346 * that should be used for dma allocations.
1348 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1349 * dma using dma_alloc_coherent() which in turn allocates from the memory
1350 * area pointed out with dma_declare_coherent_memory().
1352 * So, to summarize...
1354 * - We need "local" memory, canonical example being
1355 * a small SRAM on a discrete controller being the
1356 * only memory that the controller can read ...
1357 * (a) "normal" kernel memory is no good, and
1358 * (b) there's not enough to share
1360 * - The only *portable* hook for such stuff in the
1361 * DMA framework is dma_declare_coherent_memory()
1363 * - So we use that, even though the primary requirement
1364 * is that the memory be "local" (hence addressable
1365 * by that device), not "coherent".
1369 static int hcd_alloc_coherent(struct usb_bus *bus,
1370 gfp_t mem_flags, dma_addr_t *dma_handle,
1371 void **vaddr_handle, size_t size,
1372 enum dma_data_direction dir)
1374 unsigned char *vaddr;
1376 if (*vaddr_handle == NULL) {
1381 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1382 mem_flags, dma_handle);
1387 * Store the virtual address of the buffer at the end
1388 * of the allocated dma buffer. The size of the buffer
1389 * may be uneven so use unaligned functions instead
1390 * of just rounding up. It makes sense to optimize for
1391 * memory footprint over access speed since the amount
1392 * of memory available for dma may be limited.
1394 put_unaligned((unsigned long)*vaddr_handle,
1395 (unsigned long *)(vaddr + size));
1397 if (dir == DMA_TO_DEVICE)
1398 memcpy(vaddr, *vaddr_handle, size);
1400 *vaddr_handle = vaddr;
1404 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1405 void **vaddr_handle, size_t size,
1406 enum dma_data_direction dir)
1408 unsigned char *vaddr = *vaddr_handle;
1410 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1412 if (dir == DMA_FROM_DEVICE)
1413 memcpy(vaddr, *vaddr_handle, size);
1415 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1417 *vaddr_handle = vaddr;
1421 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1423 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1424 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1425 dma_unmap_single(hcd->self.sysdev,
1427 sizeof(struct usb_ctrlrequest),
1429 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1430 hcd_free_coherent(urb->dev->bus,
1432 (void **) &urb->setup_packet,
1433 sizeof(struct usb_ctrlrequest),
1436 /* Make it safe to call this routine more than once */
1437 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1439 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1441 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1443 if (hcd->driver->unmap_urb_for_dma)
1444 hcd->driver->unmap_urb_for_dma(hcd, urb);
1446 usb_hcd_unmap_urb_for_dma(hcd, urb);
1449 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1451 enum dma_data_direction dir;
1453 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1455 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1456 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1457 (urb->transfer_flags & URB_DMA_MAP_SG))
1458 dma_unmap_sg(hcd->self.sysdev,
1462 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1463 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1464 dma_unmap_page(hcd->self.sysdev,
1466 urb->transfer_buffer_length,
1468 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1469 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1470 dma_unmap_single(hcd->self.sysdev,
1472 urb->transfer_buffer_length,
1474 else if (urb->transfer_flags & URB_MAP_LOCAL)
1475 hcd_free_coherent(urb->dev->bus,
1477 &urb->transfer_buffer,
1478 urb->transfer_buffer_length,
1481 /* Make it safe to call this routine more than once */
1482 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1483 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1485 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1487 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1490 if (hcd->driver->map_urb_for_dma)
1491 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1493 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1496 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1499 enum dma_data_direction dir;
1502 /* Map the URB's buffers for DMA access.
1503 * Lower level HCD code should use *_dma exclusively,
1504 * unless it uses pio or talks to another transport,
1505 * or uses the provided scatter gather list for bulk.
1508 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1509 if (hcd->self.uses_pio_for_control)
1511 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1512 if (is_vmalloc_addr(urb->setup_packet)) {
1513 WARN_ONCE(1, "setup packet is not dma capable\n");
1515 } else if (object_is_on_stack(urb->setup_packet)) {
1516 WARN_ONCE(1, "setup packet is on stack\n");
1520 urb->setup_dma = dma_map_single(
1523 sizeof(struct usb_ctrlrequest),
1525 if (dma_mapping_error(hcd->self.sysdev,
1528 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530 ret = hcd_alloc_coherent(
1531 urb->dev->bus, mem_flags,
1533 (void **)&urb->setup_packet,
1534 sizeof(struct usb_ctrlrequest),
1538 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543 if (urb->transfer_buffer_length != 0
1544 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549 /* We don't support sg for isoc transfers ! */
1550 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1563 urb->transfer_flags |= URB_DMA_MAP_SG;
1564 urb->num_mapped_sgs = n;
1565 if (n != urb->num_sgs)
1566 urb->transfer_flags |=
1567 URB_DMA_SG_COMBINED;
1568 } else if (urb->sg) {
1569 struct scatterlist *sg = urb->sg;
1570 urb->transfer_dma = dma_map_page(
1574 urb->transfer_buffer_length,
1576 if (dma_mapping_error(hcd->self.sysdev,
1580 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582 WARN_ONCE(1, "transfer buffer not dma capable\n");
1584 } else if (object_is_on_stack(urb->transfer_buffer)) {
1585 WARN_ONCE(1, "transfer buffer is on stack\n");
1588 urb->transfer_dma = dma_map_single(
1590 urb->transfer_buffer,
1591 urb->transfer_buffer_length,
1593 if (dma_mapping_error(hcd->self.sysdev,
1597 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1599 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1600 ret = hcd_alloc_coherent(
1601 urb->dev->bus, mem_flags,
1603 &urb->transfer_buffer,
1604 urb->transfer_buffer_length,
1607 urb->transfer_flags |= URB_MAP_LOCAL;
1609 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1610 URB_SETUP_MAP_LOCAL)))
1611 usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1617 /*-------------------------------------------------------------------------*/
1619 /* may be called in any context with a valid urb->dev usecount
1620 * caller surrenders "ownership" of urb
1621 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1629 /* increment urb's reference count as part of giving it to the HCD
1630 * (which will control it). HCD guarantees that it either returns
1631 * an error or calls giveback(), but not both.
1634 atomic_inc(&urb->use_count);
1635 atomic_inc(&urb->dev->urbnum);
1636 usbmon_urb_submit(&hcd->self, urb);
1638 /* NOTE requirements on root-hub callers (usbfs and the hub
1639 * driver, for now): URBs' urb->transfer_buffer must be
1640 * valid and usb_buffer_{sync,unmap}() not be needed, since
1641 * they could clobber root hub response data. Also, control
1642 * URBs must be submitted in process context with interrupts
1646 if (is_root_hub(urb->dev)) {
1647 status = rh_urb_enqueue(hcd, urb);
1649 status = map_urb_for_dma(hcd, urb, mem_flags);
1650 if (likely(status == 0)) {
1651 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1652 if (unlikely(status))
1653 unmap_urb_for_dma(hcd, urb);
1657 if (unlikely(status)) {
1658 usbmon_urb_submit_error(&hcd->self, urb, status);
1660 INIT_LIST_HEAD(&urb->urb_list);
1661 atomic_dec(&urb->use_count);
1662 atomic_dec(&urb->dev->urbnum);
1663 if (atomic_read(&urb->reject))
1664 wake_up(&usb_kill_urb_queue);
1670 /*-------------------------------------------------------------------------*/
1672 /* this makes the hcd giveback() the urb more quickly, by kicking it
1673 * off hardware queues (which may take a while) and returning it as
1674 * soon as practical. we've already set up the urb's return status,
1675 * but we can't know if the callback completed already.
1677 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 if (is_root_hub(urb->dev))
1682 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 /* The only reason an HCD might fail this call is if
1686 * it has not yet fully queued the urb to begin with.
1687 * Such failures should be harmless. */
1688 value = hcd->driver->urb_dequeue(hcd, urb, status);
1694 * called in any context
1696 * caller guarantees urb won't be recycled till both unlink()
1697 * and the urb's completion function return
1699 int usb_hcd_unlink_urb (struct urb *urb, int status)
1701 struct usb_hcd *hcd;
1702 struct usb_device *udev = urb->dev;
1703 int retval = -EIDRM;
1704 unsigned long flags;
1706 /* Prevent the device and bus from going away while
1707 * the unlink is carried out. If they are already gone
1708 * then urb->use_count must be 0, since disconnected
1709 * devices can't have any active URBs.
1711 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1712 if (atomic_read(&urb->use_count) > 0) {
1716 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1718 hcd = bus_to_hcd(urb->dev->bus);
1719 retval = unlink1(hcd, urb, status);
1721 retval = -EINPROGRESS;
1722 else if (retval != -EIDRM && retval != -EBUSY)
1723 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1730 /*-------------------------------------------------------------------------*/
1732 static void __usb_hcd_giveback_urb(struct urb *urb)
1734 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1735 struct usb_anchor *anchor = urb->anchor;
1736 int status = urb->unlinked;
1737 unsigned long flags;
1740 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1741 urb->actual_length < urb->transfer_buffer_length &&
1743 status = -EREMOTEIO;
1745 unmap_urb_for_dma(hcd, urb);
1746 usbmon_urb_complete(&hcd->self, urb, status);
1747 usb_anchor_suspend_wakeups(anchor);
1748 usb_unanchor_urb(urb);
1749 if (likely(status == 0))
1750 usb_led_activity(USB_LED_EVENT_HOST);
1752 /* pass ownership to the completion handler */
1753 urb->status = status;
1756 * We disable local IRQs here avoid possible deadlock because
1757 * drivers may call spin_lock() to hold lock which might be
1758 * acquired in one hard interrupt handler.
1760 * The local_irq_save()/local_irq_restore() around complete()
1761 * will be removed if current USB drivers have been cleaned up
1762 * and no one may trigger the above deadlock situation when
1763 * running complete() in tasklet.
1765 local_irq_save(flags);
1767 local_irq_restore(flags);
1769 usb_anchor_resume_wakeups(anchor);
1770 atomic_dec(&urb->use_count);
1771 if (unlikely(atomic_read(&urb->reject)))
1772 wake_up(&usb_kill_urb_queue);
1776 static void usb_giveback_urb_bh(unsigned long param)
1778 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1779 struct list_head local_list;
1781 spin_lock_irq(&bh->lock);
1784 list_replace_init(&bh->head, &local_list);
1785 spin_unlock_irq(&bh->lock);
1787 while (!list_empty(&local_list)) {
1790 urb = list_entry(local_list.next, struct urb, urb_list);
1791 list_del_init(&urb->urb_list);
1792 bh->completing_ep = urb->ep;
1793 __usb_hcd_giveback_urb(urb);
1794 bh->completing_ep = NULL;
1797 /* check if there are new URBs to giveback */
1798 spin_lock_irq(&bh->lock);
1799 if (!list_empty(&bh->head))
1801 bh->running = false;
1802 spin_unlock_irq(&bh->lock);
1806 * usb_hcd_giveback_urb - return URB from HCD to device driver
1807 * @hcd: host controller returning the URB
1808 * @urb: urb being returned to the USB device driver.
1809 * @status: completion status code for the URB.
1810 * Context: in_interrupt()
1812 * This hands the URB from HCD to its USB device driver, using its
1813 * completion function. The HCD has freed all per-urb resources
1814 * (and is done using urb->hcpriv). It also released all HCD locks;
1815 * the device driver won't cause problems if it frees, modifies,
1816 * or resubmits this URB.
1818 * If @urb was unlinked, the value of @status will be overridden by
1819 * @urb->unlinked. Erroneous short transfers are detected in case
1820 * the HCD hasn't checked for them.
1822 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1824 struct giveback_urb_bh *bh;
1825 bool running, high_prio_bh;
1827 /* pass status to tasklet via unlinked */
1828 if (likely(!urb->unlinked))
1829 urb->unlinked = status;
1831 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1832 __usb_hcd_giveback_urb(urb);
1836 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1837 bh = &hcd->high_prio_bh;
1838 high_prio_bh = true;
1840 bh = &hcd->low_prio_bh;
1841 high_prio_bh = false;
1844 spin_lock(&bh->lock);
1845 list_add_tail(&urb->urb_list, &bh->head);
1846 running = bh->running;
1847 spin_unlock(&bh->lock);
1851 else if (high_prio_bh)
1852 tasklet_hi_schedule(&bh->bh);
1854 tasklet_schedule(&bh->bh);
1856 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1858 /*-------------------------------------------------------------------------*/
1860 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1861 * queue to drain completely. The caller must first insure that no more
1862 * URBs can be submitted for this endpoint.
1864 void usb_hcd_flush_endpoint(struct usb_device *udev,
1865 struct usb_host_endpoint *ep)
1867 struct usb_hcd *hcd;
1873 hcd = bus_to_hcd(udev->bus);
1875 /* No more submits can occur */
1876 spin_lock_irq(&hcd_urb_list_lock);
1878 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1884 is_in = usb_urb_dir_in(urb);
1885 spin_unlock(&hcd_urb_list_lock);
1888 unlink1(hcd, urb, -ESHUTDOWN);
1889 dev_dbg (hcd->self.controller,
1890 "shutdown urb %pK ep%d%s%s\n",
1891 urb, usb_endpoint_num(&ep->desc),
1892 is_in ? "in" : "out",
1895 switch (usb_endpoint_type(&ep->desc)) {
1896 case USB_ENDPOINT_XFER_CONTROL:
1898 case USB_ENDPOINT_XFER_BULK:
1900 case USB_ENDPOINT_XFER_INT:
1909 /* list contents may have changed */
1910 spin_lock(&hcd_urb_list_lock);
1913 spin_unlock_irq(&hcd_urb_list_lock);
1915 /* Wait until the endpoint queue is completely empty */
1916 while (!list_empty (&ep->urb_list)) {
1917 spin_lock_irq(&hcd_urb_list_lock);
1919 /* The list may have changed while we acquired the spinlock */
1921 if (!list_empty (&ep->urb_list)) {
1922 urb = list_entry (ep->urb_list.prev, struct urb,
1926 spin_unlock_irq(&hcd_urb_list_lock);
1936 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1938 * @udev: target &usb_device
1939 * @new_config: new configuration to install
1940 * @cur_alt: the current alternate interface setting
1941 * @new_alt: alternate interface setting that is being installed
1943 * To change configurations, pass in the new configuration in new_config,
1944 * and pass NULL for cur_alt and new_alt.
1946 * To reset a device's configuration (put the device in the ADDRESSED state),
1947 * pass in NULL for new_config, cur_alt, and new_alt.
1949 * To change alternate interface settings, pass in NULL for new_config,
1950 * pass in the current alternate interface setting in cur_alt,
1951 * and pass in the new alternate interface setting in new_alt.
1953 * Return: An error if the requested bandwidth change exceeds the
1954 * bus bandwidth or host controller internal resources.
1956 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1957 struct usb_host_config *new_config,
1958 struct usb_host_interface *cur_alt,
1959 struct usb_host_interface *new_alt)
1961 int num_intfs, i, j;
1962 struct usb_host_interface *alt = NULL;
1964 struct usb_hcd *hcd;
1965 struct usb_host_endpoint *ep;
1967 hcd = bus_to_hcd(udev->bus);
1968 if (!hcd->driver->check_bandwidth)
1971 /* Configuration is being removed - set configuration 0 */
1972 if (!new_config && !cur_alt) {
1973 for (i = 1; i < 16; ++i) {
1974 ep = udev->ep_out[i];
1976 hcd->driver->drop_endpoint(hcd, udev, ep);
1977 ep = udev->ep_in[i];
1979 hcd->driver->drop_endpoint(hcd, udev, ep);
1981 hcd->driver->check_bandwidth(hcd, udev);
1984 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1985 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1986 * of the bus. There will always be bandwidth for endpoint 0, so it's
1990 num_intfs = new_config->desc.bNumInterfaces;
1991 /* Remove endpoints (except endpoint 0, which is always on the
1992 * schedule) from the old config from the schedule
1994 for (i = 1; i < 16; ++i) {
1995 ep = udev->ep_out[i];
1997 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 ep = udev->ep_in[i];
2003 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2008 for (i = 0; i < num_intfs; ++i) {
2009 struct usb_host_interface *first_alt;
2012 first_alt = &new_config->intf_cache[i]->altsetting[0];
2013 iface_num = first_alt->desc.bInterfaceNumber;
2014 /* Set up endpoints for alternate interface setting 0 */
2015 alt = usb_find_alt_setting(new_config, iface_num, 0);
2017 /* No alt setting 0? Pick the first setting. */
2020 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2021 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2027 if (cur_alt && new_alt) {
2028 struct usb_interface *iface = usb_ifnum_to_if(udev,
2029 cur_alt->desc.bInterfaceNumber);
2033 if (iface->resetting_device) {
2035 * The USB core just reset the device, so the xHCI host
2036 * and the device will think alt setting 0 is installed.
2037 * However, the USB core will pass in the alternate
2038 * setting installed before the reset as cur_alt. Dig
2039 * out the alternate setting 0 structure, or the first
2040 * alternate setting if a broken device doesn't have alt
2043 cur_alt = usb_altnum_to_altsetting(iface, 0);
2045 cur_alt = &iface->altsetting[0];
2048 /* Drop all the endpoints in the current alt setting */
2049 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2050 ret = hcd->driver->drop_endpoint(hcd, udev,
2051 &cur_alt->endpoint[i]);
2055 /* Add all the endpoints in the new alt setting */
2056 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2057 ret = hcd->driver->add_endpoint(hcd, udev,
2058 &new_alt->endpoint[i]);
2063 ret = hcd->driver->check_bandwidth(hcd, udev);
2066 hcd->driver->reset_bandwidth(hcd, udev);
2070 /* Disables the endpoint: synchronizes with the hcd to make sure all
2071 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2072 * have been called previously. Use for set_configuration, set_interface,
2073 * driver removal, physical disconnect.
2075 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2076 * type, maxpacket size, toggle, halt status, and scheduling.
2078 void usb_hcd_disable_endpoint(struct usb_device *udev,
2079 struct usb_host_endpoint *ep)
2081 struct usb_hcd *hcd;
2084 hcd = bus_to_hcd(udev->bus);
2085 if (hcd->driver->endpoint_disable)
2086 hcd->driver->endpoint_disable(hcd, ep);
2090 * usb_hcd_reset_endpoint - reset host endpoint state
2091 * @udev: USB device.
2092 * @ep: the endpoint to reset.
2094 * Resets any host endpoint state such as the toggle bit, sequence
2095 * number and current window.
2097 void usb_hcd_reset_endpoint(struct usb_device *udev,
2098 struct usb_host_endpoint *ep)
2100 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2102 if (hcd->driver->endpoint_reset)
2103 hcd->driver->endpoint_reset(hcd, ep);
2105 int epnum = usb_endpoint_num(&ep->desc);
2106 int is_out = usb_endpoint_dir_out(&ep->desc);
2107 int is_control = usb_endpoint_xfer_control(&ep->desc);
2109 usb_settoggle(udev, epnum, is_out, 0);
2111 usb_settoggle(udev, epnum, !is_out, 0);
2116 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2117 * @interface: alternate setting that includes all endpoints.
2118 * @eps: array of endpoints that need streams.
2119 * @num_eps: number of endpoints in the array.
2120 * @num_streams: number of streams to allocate.
2121 * @mem_flags: flags hcd should use to allocate memory.
2123 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2124 * Drivers may queue multiple transfers to different stream IDs, which may
2125 * complete in a different order than they were queued.
2127 * Return: On success, the number of allocated streams. On failure, a negative
2130 int usb_alloc_streams(struct usb_interface *interface,
2131 struct usb_host_endpoint **eps, unsigned int num_eps,
2132 unsigned int num_streams, gfp_t mem_flags)
2134 struct usb_hcd *hcd;
2135 struct usb_device *dev;
2138 dev = interface_to_usbdev(interface);
2139 hcd = bus_to_hcd(dev->bus);
2140 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2142 if (dev->speed < USB_SPEED_SUPER)
2144 if (dev->state < USB_STATE_CONFIGURED)
2147 for (i = 0; i < num_eps; i++) {
2148 /* Streams only apply to bulk endpoints. */
2149 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2151 /* Re-alloc is not allowed */
2152 if (eps[i]->streams)
2156 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2157 num_streams, mem_flags);
2161 for (i = 0; i < num_eps; i++)
2162 eps[i]->streams = ret;
2166 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169 * usb_free_streams - free bulk endpoint stream IDs.
2170 * @interface: alternate setting that includes all endpoints.
2171 * @eps: array of endpoints to remove streams from.
2172 * @num_eps: number of endpoints in the array.
2173 * @mem_flags: flags hcd should use to allocate memory.
2175 * Reverts a group of bulk endpoints back to not using stream IDs.
2176 * Can fail if we are given bad arguments, or HCD is broken.
2178 * Return: 0 on success. On failure, a negative error code.
2180 int usb_free_streams(struct usb_interface *interface,
2181 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 struct usb_hcd *hcd;
2185 struct usb_device *dev;
2188 dev = interface_to_usbdev(interface);
2189 hcd = bus_to_hcd(dev->bus);
2190 if (dev->speed < USB_SPEED_SUPER)
2193 /* Double-free is not allowed */
2194 for (i = 0; i < num_eps; i++)
2195 if (!eps[i] || !eps[i]->streams)
2198 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202 for (i = 0; i < num_eps; i++)
2203 eps[i]->streams = 0;
2207 EXPORT_SYMBOL_GPL(usb_free_streams);
2209 /* Protect against drivers that try to unlink URBs after the device
2210 * is gone, by waiting until all unlinks for @udev are finished.
2211 * Since we don't currently track URBs by device, simply wait until
2212 * nothing is running in the locked region of usb_hcd_unlink_urb().
2214 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2216 spin_lock_irq(&hcd_urb_unlink_lock);
2217 spin_unlock_irq(&hcd_urb_unlink_lock);
2220 /*-------------------------------------------------------------------------*/
2222 /* called in any context */
2223 int usb_hcd_get_frame_number (struct usb_device *udev)
2225 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2227 if (!HCD_RH_RUNNING(hcd))
2229 return hcd->driver->get_frame_number (hcd);
2232 /*-------------------------------------------------------------------------*/
2236 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2238 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2240 int old_state = hcd->state;
2242 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2243 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2244 rhdev->do_remote_wakeup);
2245 if (HCD_DEAD(hcd)) {
2246 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250 if (!hcd->driver->bus_suspend) {
2253 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2254 hcd->state = HC_STATE_QUIESCING;
2255 status = hcd->driver->bus_suspend(hcd);
2258 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2259 hcd->state = HC_STATE_SUSPENDED;
2261 /* Did we race with a root-hub wakeup event? */
2262 if (rhdev->do_remote_wakeup) {
2265 status = hcd->driver->hub_status_data(hcd, buffer);
2267 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2268 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2273 spin_lock_irq(&hcd_root_hub_lock);
2274 if (!HCD_DEAD(hcd)) {
2275 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2276 hcd->state = old_state;
2278 spin_unlock_irq(&hcd_root_hub_lock);
2279 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2285 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2287 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2289 int old_state = hcd->state;
2291 dev_dbg(&rhdev->dev, "usb %sresume\n",
2292 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2293 if (HCD_DEAD(hcd)) {
2294 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 if (!hcd->driver->bus_resume)
2299 if (HCD_RH_RUNNING(hcd))
2302 hcd->state = HC_STATE_RESUMING;
2303 status = hcd->driver->bus_resume(hcd);
2304 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2306 struct usb_device *udev;
2309 spin_lock_irq(&hcd_root_hub_lock);
2310 if (!HCD_DEAD(hcd)) {
2311 usb_set_device_state(rhdev, rhdev->actconfig
2312 ? USB_STATE_CONFIGURED
2313 : USB_STATE_ADDRESS);
2314 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2315 hcd->state = HC_STATE_RUNNING;
2317 spin_unlock_irq(&hcd_root_hub_lock);
2320 * Check whether any of the enabled ports on the root hub are
2321 * unsuspended. If they are then a TRSMRCY delay is needed
2322 * (this is what the USB-2 spec calls a "global resume").
2323 * Otherwise we can skip the delay.
2325 usb_hub_for_each_child(rhdev, port1, udev) {
2326 if (udev->state != USB_STATE_NOTATTACHED &&
2327 !udev->port_is_suspended) {
2328 usleep_range(10000, 11000); /* TRSMRCY */
2333 hcd->state = old_state;
2334 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2336 if (status != -ESHUTDOWN)
2342 /* Workqueue routine for root-hub remote wakeup */
2343 static void hcd_resume_work(struct work_struct *work)
2345 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2346 struct usb_device *udev = hcd->self.root_hub;
2348 usb_remote_wakeup(udev);
2352 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2353 * @hcd: host controller for this root hub
2355 * The USB host controller calls this function when its root hub is
2356 * suspended (with the remote wakeup feature enabled) and a remote
2357 * wakeup request is received. The routine submits a workqueue request
2358 * to resume the root hub (that is, manage its downstream ports again).
2360 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2362 unsigned long flags;
2364 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2365 if (hcd->rh_registered) {
2366 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2367 queue_work(pm_wq, &hcd->wakeup_work);
2369 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2371 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2373 #endif /* CONFIG_PM */
2375 /*-------------------------------------------------------------------------*/
2377 #ifdef CONFIG_USB_OTG
2380 * usb_bus_start_enum - start immediate enumeration (for OTG)
2381 * @bus: the bus (must use hcd framework)
2382 * @port_num: 1-based number of port; usually bus->otg_port
2383 * Context: in_interrupt()
2385 * Starts enumeration, with an immediate reset followed later by
2386 * hub_wq identifying and possibly configuring the device.
2387 * This is needed by OTG controller drivers, where it helps meet
2388 * HNP protocol timing requirements for starting a port reset.
2390 * Return: 0 if successful.
2392 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2394 struct usb_hcd *hcd;
2395 int status = -EOPNOTSUPP;
2397 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2398 * boards with root hubs hooked up to internal devices (instead of
2399 * just the OTG port) may need more attention to resetting...
2401 hcd = bus_to_hcd(bus);
2402 if (port_num && hcd->driver->start_port_reset)
2403 status = hcd->driver->start_port_reset(hcd, port_num);
2405 /* allocate hub_wq shortly after (first) root port reset finishes;
2406 * it may issue others, until at least 50 msecs have passed.
2409 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2416 /*-------------------------------------------------------------------------*/
2419 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2420 * @irq: the IRQ being raised
2421 * @__hcd: pointer to the HCD whose IRQ is being signaled
2423 * If the controller isn't HALTed, calls the driver's irq handler.
2424 * Checks whether the controller is now dead.
2426 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2428 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2430 struct usb_hcd *hcd = __hcd;
2433 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2435 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2442 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2444 /*-------------------------------------------------------------------------*/
2447 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2448 * @hcd: pointer to the HCD representing the controller
2450 * This is called by bus glue to report a USB host controller that died
2451 * while operations may still have been pending. It's called automatically
2452 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2454 * Only call this function with the primary HCD.
2456 void usb_hc_died (struct usb_hcd *hcd)
2458 unsigned long flags;
2460 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2462 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2463 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2464 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2465 if (hcd->rh_registered) {
2466 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2468 /* make hub_wq clean up old urbs and devices */
2469 usb_set_device_state (hcd->self.root_hub,
2470 USB_STATE_NOTATTACHED);
2471 usb_kick_hub_wq(hcd->self.root_hub);
2473 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2474 hcd = hcd->shared_hcd;
2475 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2476 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2477 if (hcd->rh_registered) {
2478 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2480 /* make hub_wq clean up old urbs and devices */
2481 usb_set_device_state(hcd->self.root_hub,
2482 USB_STATE_NOTATTACHED);
2483 usb_kick_hub_wq(hcd->self.root_hub);
2486 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487 /* Make sure that the other roothub is also deallocated. */
2489 EXPORT_SYMBOL_GPL (usb_hc_died);
2491 /*-------------------------------------------------------------------------*/
2493 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2496 spin_lock_init(&bh->lock);
2497 INIT_LIST_HEAD(&bh->head);
2498 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2501 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2502 struct device *sysdev, struct device *dev, const char *bus_name,
2503 struct usb_hcd *primary_hcd)
2505 struct usb_hcd *hcd;
2507 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2510 if (primary_hcd == NULL) {
2511 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2513 if (!hcd->address0_mutex) {
2515 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2518 mutex_init(hcd->address0_mutex);
2519 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2521 if (!hcd->bandwidth_mutex) {
2522 kfree(hcd->address0_mutex);
2524 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2527 mutex_init(hcd->bandwidth_mutex);
2528 dev_set_drvdata(dev, hcd);
2530 mutex_lock(&usb_port_peer_mutex);
2531 hcd->address0_mutex = primary_hcd->address0_mutex;
2532 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2533 hcd->primary_hcd = primary_hcd;
2534 primary_hcd->primary_hcd = primary_hcd;
2535 hcd->shared_hcd = primary_hcd;
2536 primary_hcd->shared_hcd = hcd;
2537 mutex_unlock(&usb_port_peer_mutex);
2540 kref_init(&hcd->kref);
2542 usb_bus_init(&hcd->self);
2543 hcd->self.controller = dev;
2544 hcd->self.sysdev = sysdev;
2545 hcd->self.bus_name = bus_name;
2546 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2548 setup_timer(&hcd->rh_timer, rh_timer_func, (unsigned long)hcd);
2550 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2553 hcd->driver = driver;
2554 hcd->speed = driver->flags & HCD_MASK;
2555 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2556 "USB Host Controller";
2559 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2562 * usb_create_shared_hcd - create and initialize an HCD structure
2563 * @driver: HC driver that will use this hcd
2564 * @dev: device for this HC, stored in hcd->self.controller
2565 * @bus_name: value to store in hcd->self.bus_name
2566 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2567 * PCI device. Only allocate certain resources for the primary HCD
2568 * Context: !in_interrupt()
2570 * Allocate a struct usb_hcd, with extra space at the end for the
2571 * HC driver's private data. Initialize the generic members of the
2574 * Return: On success, a pointer to the created and initialized HCD structure.
2575 * On failure (e.g. if memory is unavailable), %NULL.
2577 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2578 struct device *dev, const char *bus_name,
2579 struct usb_hcd *primary_hcd)
2581 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2583 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2586 * usb_create_hcd - create and initialize an HCD structure
2587 * @driver: HC driver that will use this hcd
2588 * @dev: device for this HC, stored in hcd->self.controller
2589 * @bus_name: value to store in hcd->self.bus_name
2590 * Context: !in_interrupt()
2592 * Allocate a struct usb_hcd, with extra space at the end for the
2593 * HC driver's private data. Initialize the generic members of the
2596 * Return: On success, a pointer to the created and initialized HCD
2597 * structure. On failure (e.g. if memory is unavailable), %NULL.
2599 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2600 struct device *dev, const char *bus_name)
2602 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2604 EXPORT_SYMBOL_GPL(usb_create_hcd);
2607 * Roothubs that share one PCI device must also share the bandwidth mutex.
2608 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2611 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2612 * freed. When hcd_release() is called for either hcd in a peer set,
2613 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2615 static void hcd_release(struct kref *kref)
2617 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2619 mutex_lock(&usb_port_peer_mutex);
2620 if (hcd->shared_hcd) {
2621 struct usb_hcd *peer = hcd->shared_hcd;
2623 peer->shared_hcd = NULL;
2624 peer->primary_hcd = NULL;
2626 kfree(hcd->address0_mutex);
2627 kfree(hcd->bandwidth_mutex);
2629 mutex_unlock(&usb_port_peer_mutex);
2633 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2636 kref_get (&hcd->kref);
2639 EXPORT_SYMBOL_GPL(usb_get_hcd);
2641 void usb_put_hcd (struct usb_hcd *hcd)
2644 kref_put (&hcd->kref, hcd_release);
2646 EXPORT_SYMBOL_GPL(usb_put_hcd);
2648 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2650 if (!hcd->primary_hcd)
2652 return hcd == hcd->primary_hcd;
2654 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2656 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2658 if (!hcd->driver->find_raw_port_number)
2661 return hcd->driver->find_raw_port_number(hcd, port1);
2664 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2665 unsigned int irqnum, unsigned long irqflags)
2669 if (hcd->driver->irq) {
2671 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2672 hcd->driver->description, hcd->self.busnum);
2673 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2674 hcd->irq_descr, hcd);
2676 dev_err(hcd->self.controller,
2677 "request interrupt %d failed\n",
2682 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2683 (hcd->driver->flags & HCD_MEMORY) ?
2684 "io mem" : "io base",
2685 (unsigned long long)hcd->rsrc_start);
2688 if (hcd->rsrc_start)
2689 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2690 (hcd->driver->flags & HCD_MEMORY) ?
2691 "io mem" : "io base",
2692 (unsigned long long)hcd->rsrc_start);
2698 * Before we free this root hub, flush in-flight peering attempts
2699 * and disable peer lookups
2701 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2703 struct usb_device *rhdev;
2705 mutex_lock(&usb_port_peer_mutex);
2706 rhdev = hcd->self.root_hub;
2707 hcd->self.root_hub = NULL;
2708 mutex_unlock(&usb_port_peer_mutex);
2713 * usb_add_hcd - finish generic HCD structure initialization and register
2714 * @hcd: the usb_hcd structure to initialize
2715 * @irqnum: Interrupt line to allocate
2716 * @irqflags: Interrupt type flags
2718 * Finish the remaining parts of generic HCD initialization: allocate the
2719 * buffers of consistent memory, register the bus, request the IRQ line,
2720 * and call the driver's reset() and start() routines.
2722 int usb_add_hcd(struct usb_hcd *hcd,
2723 unsigned int irqnum, unsigned long irqflags)
2726 struct usb_device *rhdev;
2728 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2729 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2732 retval = PTR_ERR(phy);
2733 if (retval == -EPROBE_DEFER)
2736 retval = usb_phy_init(phy);
2742 hcd->remove_phy = 1;
2746 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2747 struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2750 retval = PTR_ERR(phy);
2751 if (retval == -EPROBE_DEFER)
2754 retval = phy_init(phy);
2759 retval = phy_power_on(phy);
2766 hcd->remove_phy = 1;
2770 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2772 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2773 if (authorized_default < 0 || authorized_default > 1) {
2775 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2777 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2779 if (authorized_default)
2780 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2782 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2784 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2786 /* per default all interfaces are authorized */
2787 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2789 /* HC is in reset state, but accessible. Now do the one-time init,
2790 * bottom up so that hcds can customize the root hubs before hub_wq
2791 * starts talking to them. (Note, bus id is assigned early too.)
2793 retval = hcd_buffer_create(hcd);
2795 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2796 goto err_create_buf;
2799 retval = usb_register_bus(&hcd->self);
2801 goto err_register_bus;
2803 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2804 if (rhdev == NULL) {
2805 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2807 goto err_allocate_root_hub;
2809 mutex_lock(&usb_port_peer_mutex);
2810 hcd->self.root_hub = rhdev;
2811 mutex_unlock(&usb_port_peer_mutex);
2813 switch (hcd->speed) {
2815 rhdev->speed = USB_SPEED_FULL;
2818 rhdev->speed = USB_SPEED_HIGH;
2821 rhdev->speed = USB_SPEED_WIRELESS;
2824 rhdev->speed = USB_SPEED_SUPER;
2827 rhdev->speed = USB_SPEED_SUPER_PLUS;
2831 goto err_set_rh_speed;
2834 /* wakeup flag init defaults to "everything works" for root hubs,
2835 * but drivers can override it in reset() if needed, along with
2836 * recording the overall controller's system wakeup capability.
2838 device_set_wakeup_capable(&rhdev->dev, 1);
2840 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2841 * registered. But since the controller can die at any time,
2842 * let's initialize the flag before touching the hardware.
2844 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2846 /* "reset" is misnamed; its role is now one-time init. the controller
2847 * should already have been reset (and boot firmware kicked off etc).
2849 if (hcd->driver->reset) {
2850 retval = hcd->driver->reset(hcd);
2852 dev_err(hcd->self.controller, "can't setup: %d\n",
2854 goto err_hcd_driver_setup;
2857 hcd->rh_pollable = 1;
2859 /* NOTE: root hub and controller capabilities may not be the same */
2860 if (device_can_wakeup(hcd->self.controller)
2861 && device_can_wakeup(&hcd->self.root_hub->dev))
2862 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2864 /* initialize tasklets */
2865 init_giveback_urb_bh(&hcd->high_prio_bh);
2866 init_giveback_urb_bh(&hcd->low_prio_bh);
2868 /* enable irqs just before we start the controller,
2869 * if the BIOS provides legacy PCI irqs.
2871 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2872 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2874 goto err_request_irq;
2877 hcd->state = HC_STATE_RUNNING;
2878 retval = hcd->driver->start(hcd);
2880 dev_err(hcd->self.controller, "startup error %d\n", retval);
2881 goto err_hcd_driver_start;
2884 /* starting here, usbcore will pay attention to this root hub */
2885 retval = register_root_hub(hcd);
2887 goto err_register_root_hub;
2889 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2891 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2893 goto error_create_attr_group;
2895 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2896 usb_hcd_poll_rh_status(hcd);
2900 error_create_attr_group:
2901 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2902 if (HC_IS_RUNNING(hcd->state))
2903 hcd->state = HC_STATE_QUIESCING;
2904 spin_lock_irq(&hcd_root_hub_lock);
2905 hcd->rh_registered = 0;
2906 spin_unlock_irq(&hcd_root_hub_lock);
2909 cancel_work_sync(&hcd->wakeup_work);
2911 mutex_lock(&usb_bus_idr_lock);
2912 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2913 mutex_unlock(&usb_bus_idr_lock);
2914 err_register_root_hub:
2915 hcd->rh_pollable = 0;
2916 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2917 del_timer_sync(&hcd->rh_timer);
2918 hcd->driver->stop(hcd);
2919 hcd->state = HC_STATE_HALT;
2920 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2921 del_timer_sync(&hcd->rh_timer);
2922 err_hcd_driver_start:
2923 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2924 free_irq(irqnum, hcd);
2926 err_hcd_driver_setup:
2928 usb_put_invalidate_rhdev(hcd);
2929 err_allocate_root_hub:
2930 usb_deregister_bus(&hcd->self);
2932 hcd_buffer_destroy(hcd);
2934 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2935 phy_power_off(hcd->phy);
2941 if (hcd->remove_phy && hcd->usb_phy) {
2942 usb_phy_shutdown(hcd->usb_phy);
2943 usb_put_phy(hcd->usb_phy);
2944 hcd->usb_phy = NULL;
2948 EXPORT_SYMBOL_GPL(usb_add_hcd);
2951 * usb_remove_hcd - shutdown processing for generic HCDs
2952 * @hcd: the usb_hcd structure to remove
2953 * Context: !in_interrupt()
2955 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2956 * invoking the HCD's stop() method.
2958 void usb_remove_hcd(struct usb_hcd *hcd)
2960 struct usb_device *rhdev = hcd->self.root_hub;
2962 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2965 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2967 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2968 if (HC_IS_RUNNING (hcd->state))
2969 hcd->state = HC_STATE_QUIESCING;
2971 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2972 spin_lock_irq (&hcd_root_hub_lock);
2973 hcd->rh_registered = 0;
2974 spin_unlock_irq (&hcd_root_hub_lock);
2977 cancel_work_sync(&hcd->wakeup_work);
2980 mutex_lock(&usb_bus_idr_lock);
2981 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2982 mutex_unlock(&usb_bus_idr_lock);
2985 * tasklet_kill() isn't needed here because:
2986 * - driver's disconnect() called from usb_disconnect() should
2987 * make sure its URBs are completed during the disconnect()
2990 * - it is too late to run complete() here since driver may have
2991 * been removed already now
2994 /* Prevent any more root-hub status calls from the timer.
2995 * The HCD might still restart the timer (if a port status change
2996 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2997 * the hub_status_data() callback.
2999 hcd->rh_pollable = 0;
3000 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3001 del_timer_sync(&hcd->rh_timer);
3003 hcd->driver->stop(hcd);
3004 hcd->state = HC_STATE_HALT;
3006 /* In case the HCD restarted the timer, stop it again. */
3007 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3008 del_timer_sync(&hcd->rh_timer);
3010 if (usb_hcd_is_primary_hcd(hcd)) {
3012 free_irq(hcd->irq, hcd);
3015 usb_deregister_bus(&hcd->self);
3016 hcd_buffer_destroy(hcd);
3018 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3019 phy_power_off(hcd->phy);
3024 if (hcd->remove_phy && hcd->usb_phy) {
3025 usb_phy_shutdown(hcd->usb_phy);
3026 usb_put_phy(hcd->usb_phy);
3027 hcd->usb_phy = NULL;
3030 usb_put_invalidate_rhdev(hcd);
3033 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3036 usb_hcd_platform_shutdown(struct platform_device *dev)
3038 struct usb_hcd *hcd = platform_get_drvdata(dev);
3040 if (hcd->driver->shutdown)
3041 hcd->driver->shutdown(hcd);
3043 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3045 /*-------------------------------------------------------------------------*/
3047 #if IS_ENABLED(CONFIG_USB_MON)
3049 const struct usb_mon_operations *mon_ops;
3052 * The registration is unlocked.
3053 * We do it this way because we do not want to lock in hot paths.
3055 * Notice that the code is minimally error-proof. Because usbmon needs
3056 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3059 int usb_mon_register(const struct usb_mon_operations *ops)
3069 EXPORT_SYMBOL_GPL (usb_mon_register);
3071 void usb_mon_deregister (void)
3074 if (mon_ops == NULL) {
3075 printk(KERN_ERR "USB: monitor was not registered\n");
3081 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3083 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */