1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
91 old = spi->driver_override;
93 spi->driver_override = driver_override;
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
246 &spi_device_statistics_group,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
302 spin_lock_irqsave(&stats->lock, flags);
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
356 if (acpi_driver_match_device(dev, drv))
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
370 rc = acpi_device_uevent_modalias(dev, env);
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
392 ret = of_clk_set_defaults(dev->of_node, false);
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
404 ret = dev_pm_domain_attach(dev, true);
408 ret = sdrv->probe(spi);
410 dev_pm_domain_detach(dev, true);
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
446 sdrv->driver.probe = spi_drv_probe;
448 sdrv->driver.remove = spi_drv_remove;
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * Prevents addition of devices with same chip select and
480 * addition of devices below an unregistering controller.
482 static DEFINE_MUTEX(spi_add_lock);
485 * spi_alloc_device - Allocate a new SPI device
486 * @ctlr: Controller to which device is connected
489 * Allows a driver to allocate and initialize a spi_device without
490 * registering it immediately. This allows a driver to directly
491 * fill the spi_device with device parameters before calling
492 * spi_add_device() on it.
494 * Caller is responsible to call spi_add_device() on the returned
495 * spi_device structure to add it to the SPI controller. If the caller
496 * needs to discard the spi_device without adding it, then it should
497 * call spi_dev_put() on it.
499 * Return: a pointer to the new device, or NULL.
501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
503 struct spi_device *spi;
505 if (!spi_controller_get(ctlr))
508 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
510 spi_controller_put(ctlr);
514 spi->master = spi->controller = ctlr;
515 spi->dev.parent = &ctlr->dev;
516 spi->dev.bus = &spi_bus_type;
517 spi->dev.release = spidev_release;
518 spi->cs_gpio = -ENOENT;
519 spi->mode = ctlr->buswidth_override_bits;
521 spin_lock_init(&spi->statistics.lock);
523 device_initialize(&spi->dev);
526 EXPORT_SYMBOL_GPL(spi_alloc_device);
528 static void spi_dev_set_name(struct spi_device *spi)
530 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
533 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
537 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
541 static int spi_dev_check(struct device *dev, void *data)
543 struct spi_device *spi = to_spi_device(dev);
544 struct spi_device *new_spi = data;
546 if (spi->controller == new_spi->controller &&
547 spi->chip_select == new_spi->chip_select)
553 * spi_add_device - Add spi_device allocated with spi_alloc_device
554 * @spi: spi_device to register
556 * Companion function to spi_alloc_device. Devices allocated with
557 * spi_alloc_device can be added onto the spi bus with this function.
559 * Return: 0 on success; negative errno on failure
561 int spi_add_device(struct spi_device *spi)
563 struct spi_controller *ctlr = spi->controller;
564 struct device *dev = ctlr->dev.parent;
567 /* Chipselects are numbered 0..max; validate. */
568 if (spi->chip_select >= ctlr->num_chipselect) {
569 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
570 ctlr->num_chipselect);
574 /* Set the bus ID string */
575 spi_dev_set_name(spi);
577 /* We need to make sure there's no other device with this
578 * chipselect **BEFORE** we call setup(), else we'll trash
579 * its configuration. Lock against concurrent add() calls.
581 mutex_lock(&spi_add_lock);
583 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
585 dev_err(dev, "chipselect %d already in use\n",
590 /* Controller may unregister concurrently */
591 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
592 !device_is_registered(&ctlr->dev)) {
597 /* Descriptors take precedence */
599 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
600 else if (ctlr->cs_gpios)
601 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
603 /* Drivers may modify this initial i/o setup, but will
604 * normally rely on the device being setup. Devices
605 * using SPI_CS_HIGH can't coexist well otherwise...
607 status = spi_setup(spi);
609 dev_err(dev, "can't setup %s, status %d\n",
610 dev_name(&spi->dev), status);
614 /* Device may be bound to an active driver when this returns */
615 status = device_add(&spi->dev);
617 dev_err(dev, "can't add %s, status %d\n",
618 dev_name(&spi->dev), status);
620 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
623 mutex_unlock(&spi_add_lock);
626 EXPORT_SYMBOL_GPL(spi_add_device);
629 * spi_new_device - instantiate one new SPI device
630 * @ctlr: Controller to which device is connected
631 * @chip: Describes the SPI device
634 * On typical mainboards, this is purely internal; and it's not needed
635 * after board init creates the hard-wired devices. Some development
636 * platforms may not be able to use spi_register_board_info though, and
637 * this is exported so that for example a USB or parport based adapter
638 * driver could add devices (which it would learn about out-of-band).
640 * Return: the new device, or NULL.
642 struct spi_device *spi_new_device(struct spi_controller *ctlr,
643 struct spi_board_info *chip)
645 struct spi_device *proxy;
648 /* NOTE: caller did any chip->bus_num checks necessary.
650 * Also, unless we change the return value convention to use
651 * error-or-pointer (not NULL-or-pointer), troubleshootability
652 * suggests syslogged diagnostics are best here (ugh).
655 proxy = spi_alloc_device(ctlr);
659 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
661 proxy->chip_select = chip->chip_select;
662 proxy->max_speed_hz = chip->max_speed_hz;
663 proxy->mode = chip->mode;
664 proxy->irq = chip->irq;
665 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
666 proxy->dev.platform_data = (void *) chip->platform_data;
667 proxy->controller_data = chip->controller_data;
668 proxy->controller_state = NULL;
670 if (chip->properties) {
671 status = device_add_properties(&proxy->dev, chip->properties);
674 "failed to add properties to '%s': %d\n",
675 chip->modalias, status);
680 status = spi_add_device(proxy);
682 goto err_remove_props;
687 if (chip->properties)
688 device_remove_properties(&proxy->dev);
693 EXPORT_SYMBOL_GPL(spi_new_device);
696 * spi_unregister_device - unregister a single SPI device
697 * @spi: spi_device to unregister
699 * Start making the passed SPI device vanish. Normally this would be handled
700 * by spi_unregister_controller().
702 void spi_unregister_device(struct spi_device *spi)
707 if (spi->dev.of_node) {
708 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
709 of_node_put(spi->dev.of_node);
711 if (ACPI_COMPANION(&spi->dev))
712 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
713 device_unregister(&spi->dev);
715 EXPORT_SYMBOL_GPL(spi_unregister_device);
717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
718 struct spi_board_info *bi)
720 struct spi_device *dev;
722 if (ctlr->bus_num != bi->bus_num)
725 dev = spi_new_device(ctlr, bi);
727 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
732 * spi_register_board_info - register SPI devices for a given board
733 * @info: array of chip descriptors
734 * @n: how many descriptors are provided
737 * Board-specific early init code calls this (probably during arch_initcall)
738 * with segments of the SPI device table. Any device nodes are created later,
739 * after the relevant parent SPI controller (bus_num) is defined. We keep
740 * this table of devices forever, so that reloading a controller driver will
741 * not make Linux forget about these hard-wired devices.
743 * Other code can also call this, e.g. a particular add-on board might provide
744 * SPI devices through its expansion connector, so code initializing that board
745 * would naturally declare its SPI devices.
747 * The board info passed can safely be __initdata ... but be careful of
748 * any embedded pointers (platform_data, etc), they're copied as-is.
749 * Device properties are deep-copied though.
751 * Return: zero on success, else a negative error code.
753 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
755 struct boardinfo *bi;
761 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
765 for (i = 0; i < n; i++, bi++, info++) {
766 struct spi_controller *ctlr;
768 memcpy(&bi->board_info, info, sizeof(*info));
769 if (info->properties) {
770 bi->board_info.properties =
771 property_entries_dup(info->properties);
772 if (IS_ERR(bi->board_info.properties))
773 return PTR_ERR(bi->board_info.properties);
776 mutex_lock(&board_lock);
777 list_add_tail(&bi->list, &board_list);
778 list_for_each_entry(ctlr, &spi_controller_list, list)
779 spi_match_controller_to_boardinfo(ctlr,
781 mutex_unlock(&board_lock);
787 /*-------------------------------------------------------------------------*/
789 static void spi_set_cs(struct spi_device *spi, bool enable)
791 bool enable1 = enable;
794 * Avoid calling into the driver (or doing delays) if the chip select
795 * isn't actually changing from the last time this was called.
797 if ((spi->controller->last_cs_enable == enable) &&
798 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
801 spi->controller->last_cs_enable = enable;
802 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
804 if (!spi->controller->set_cs_timing) {
806 spi_delay_exec(&spi->controller->cs_setup, NULL);
808 spi_delay_exec(&spi->controller->cs_hold, NULL);
811 if (spi->mode & SPI_CS_HIGH)
814 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
815 if (!(spi->mode & SPI_NO_CS)) {
817 /* polarity handled by gpiolib */
818 gpiod_set_value_cansleep(spi->cs_gpiod,
822 * invert the enable line, as active low is
825 gpio_set_value_cansleep(spi->cs_gpio, !enable);
827 /* Some SPI masters need both GPIO CS & slave_select */
828 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
829 spi->controller->set_cs)
830 spi->controller->set_cs(spi, !enable);
831 } else if (spi->controller->set_cs) {
832 spi->controller->set_cs(spi, !enable);
835 if (!spi->controller->set_cs_timing) {
837 spi_delay_exec(&spi->controller->cs_inactive, NULL);
841 #ifdef CONFIG_HAS_DMA
842 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
843 struct sg_table *sgt, void *buf, size_t len,
844 enum dma_data_direction dir)
846 const bool vmalloced_buf = is_vmalloc_addr(buf);
847 unsigned int max_seg_size = dma_get_max_seg_size(dev);
848 #ifdef CONFIG_HIGHMEM
849 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
850 (unsigned long)buf < (PKMAP_BASE +
851 (LAST_PKMAP * PAGE_SIZE)));
853 const bool kmap_buf = false;
857 struct page *vm_page;
858 struct scatterlist *sg;
863 if (vmalloced_buf || kmap_buf) {
864 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
865 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
866 } else if (virt_addr_valid(buf)) {
867 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
868 sgs = DIV_ROUND_UP(len, desc_len);
873 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
878 for (i = 0; i < sgs; i++) {
880 if (vmalloced_buf || kmap_buf) {
882 * Next scatterlist entry size is the minimum between
883 * the desc_len and the remaining buffer length that
886 min = min_t(size_t, desc_len,
888 PAGE_SIZE - offset_in_page(buf)));
890 vm_page = vmalloc_to_page(buf);
892 vm_page = kmap_to_page(buf);
897 sg_set_page(sg, vm_page,
898 min, offset_in_page(buf));
900 min = min_t(size_t, len, desc_len);
902 sg_set_buf(sg, sg_buf, min);
910 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
923 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
924 struct sg_table *sgt, enum dma_data_direction dir)
926 if (sgt->orig_nents) {
927 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
932 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
934 struct device *tx_dev, *rx_dev;
935 struct spi_transfer *xfer;
942 tx_dev = ctlr->dma_tx->device->dev;
944 tx_dev = ctlr->dev.parent;
947 rx_dev = ctlr->dma_rx->device->dev;
949 rx_dev = ctlr->dev.parent;
951 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
952 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
955 if (xfer->tx_buf != NULL) {
956 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
957 (void *)xfer->tx_buf, xfer->len,
963 if (xfer->rx_buf != NULL) {
964 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
965 xfer->rx_buf, xfer->len,
968 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
975 ctlr->cur_msg_mapped = true;
980 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
982 struct spi_transfer *xfer;
983 struct device *tx_dev, *rx_dev;
985 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
989 tx_dev = ctlr->dma_tx->device->dev;
991 tx_dev = ctlr->dev.parent;
994 rx_dev = ctlr->dma_rx->device->dev;
996 rx_dev = ctlr->dev.parent;
998 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
999 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1003 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1006 ctlr->cur_msg_mapped = false;
1010 #else /* !CONFIG_HAS_DMA */
1011 static inline int __spi_map_msg(struct spi_controller *ctlr,
1012 struct spi_message *msg)
1017 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1018 struct spi_message *msg)
1022 #endif /* !CONFIG_HAS_DMA */
1024 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1025 struct spi_message *msg)
1027 struct spi_transfer *xfer;
1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1031 * Restore the original value of tx_buf or rx_buf if they are
1034 if (xfer->tx_buf == ctlr->dummy_tx)
1035 xfer->tx_buf = NULL;
1036 if (xfer->rx_buf == ctlr->dummy_rx)
1037 xfer->rx_buf = NULL;
1040 return __spi_unmap_msg(ctlr, msg);
1043 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1045 struct spi_transfer *xfer;
1047 unsigned int max_tx, max_rx;
1049 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1050 && !(msg->spi->mode & SPI_3WIRE)) {
1054 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1055 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1057 max_tx = max(xfer->len, max_tx);
1058 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1060 max_rx = max(xfer->len, max_rx);
1064 tmp = krealloc(ctlr->dummy_tx, max_tx,
1065 GFP_KERNEL | GFP_DMA);
1068 ctlr->dummy_tx = tmp;
1069 memset(tmp, 0, max_tx);
1073 tmp = krealloc(ctlr->dummy_rx, max_rx,
1074 GFP_KERNEL | GFP_DMA);
1077 ctlr->dummy_rx = tmp;
1080 if (max_tx || max_rx) {
1081 list_for_each_entry(xfer, &msg->transfers,
1086 xfer->tx_buf = ctlr->dummy_tx;
1088 xfer->rx_buf = ctlr->dummy_rx;
1093 return __spi_map_msg(ctlr, msg);
1096 static int spi_transfer_wait(struct spi_controller *ctlr,
1097 struct spi_message *msg,
1098 struct spi_transfer *xfer)
1100 struct spi_statistics *statm = &ctlr->statistics;
1101 struct spi_statistics *stats = &msg->spi->statistics;
1102 unsigned long long ms;
1104 if (spi_controller_is_slave(ctlr)) {
1105 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1106 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1110 ms = 8LL * 1000LL * xfer->len;
1111 do_div(ms, xfer->speed_hz);
1112 ms += ms + 200; /* some tolerance */
1117 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1118 msecs_to_jiffies(ms));
1121 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1122 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1123 dev_err(&msg->spi->dev,
1124 "SPI transfer timed out\n");
1132 static void _spi_transfer_delay_ns(u32 ns)
1139 u32 us = DIV_ROUND_UP(ns, 1000);
1144 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1148 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1150 u32 delay = _delay->value;
1151 u32 unit = _delay->unit;
1158 case SPI_DELAY_UNIT_USECS:
1161 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1163 case SPI_DELAY_UNIT_SCK:
1164 /* clock cycles need to be obtained from spi_transfer */
1167 /* if there is no effective speed know, then approximate
1168 * by underestimating with half the requested hz
1170 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173 delay *= DIV_ROUND_UP(1000000000, hz);
1181 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1183 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1192 delay = spi_delay_to_ns(_delay, xfer);
1196 _spi_transfer_delay_ns(delay);
1200 EXPORT_SYMBOL_GPL(spi_delay_exec);
1202 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1203 struct spi_transfer *xfer)
1205 u32 delay = xfer->cs_change_delay.value;
1206 u32 unit = xfer->cs_change_delay.unit;
1209 /* return early on "fast" mode - for everything but USECS */
1211 if (unit == SPI_DELAY_UNIT_USECS)
1212 _spi_transfer_delay_ns(10000);
1216 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1218 dev_err_once(&msg->spi->dev,
1219 "Use of unsupported delay unit %i, using default of 10us\n",
1221 _spi_transfer_delay_ns(10000);
1226 * spi_transfer_one_message - Default implementation of transfer_one_message()
1228 * This is a standard implementation of transfer_one_message() for
1229 * drivers which implement a transfer_one() operation. It provides
1230 * standard handling of delays and chip select management.
1232 static int spi_transfer_one_message(struct spi_controller *ctlr,
1233 struct spi_message *msg)
1235 struct spi_transfer *xfer;
1236 bool keep_cs = false;
1238 struct spi_statistics *statm = &ctlr->statistics;
1239 struct spi_statistics *stats = &msg->spi->statistics;
1241 spi_set_cs(msg->spi, true);
1243 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1244 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247 trace_spi_transfer_start(msg, xfer);
1249 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1250 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1252 if (!ctlr->ptp_sts_supported) {
1253 xfer->ptp_sts_word_pre = 0;
1254 ptp_read_system_prets(xfer->ptp_sts);
1257 if (xfer->tx_buf || xfer->rx_buf) {
1258 reinit_completion(&ctlr->xfer_completion);
1261 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1263 if (ctlr->cur_msg_mapped &&
1264 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1265 __spi_unmap_msg(ctlr, msg);
1266 ctlr->fallback = true;
1267 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1271 SPI_STATISTICS_INCREMENT_FIELD(statm,
1273 SPI_STATISTICS_INCREMENT_FIELD(stats,
1275 dev_err(&msg->spi->dev,
1276 "SPI transfer failed: %d\n", ret);
1281 ret = spi_transfer_wait(ctlr, msg, xfer);
1287 dev_err(&msg->spi->dev,
1288 "Bufferless transfer has length %u\n",
1292 if (!ctlr->ptp_sts_supported) {
1293 ptp_read_system_postts(xfer->ptp_sts);
1294 xfer->ptp_sts_word_post = xfer->len;
1297 trace_spi_transfer_stop(msg, xfer);
1299 if (msg->status != -EINPROGRESS)
1302 spi_transfer_delay_exec(xfer);
1304 if (xfer->cs_change) {
1305 if (list_is_last(&xfer->transfer_list,
1309 spi_set_cs(msg->spi, false);
1310 _spi_transfer_cs_change_delay(msg, xfer);
1311 spi_set_cs(msg->spi, true);
1315 msg->actual_length += xfer->len;
1319 if (ret != 0 || !keep_cs)
1320 spi_set_cs(msg->spi, false);
1322 if (msg->status == -EINPROGRESS)
1325 if (msg->status && ctlr->handle_err)
1326 ctlr->handle_err(ctlr, msg);
1328 spi_finalize_current_message(ctlr);
1334 * spi_finalize_current_transfer - report completion of a transfer
1335 * @ctlr: the controller reporting completion
1337 * Called by SPI drivers using the core transfer_one_message()
1338 * implementation to notify it that the current interrupt driven
1339 * transfer has finished and the next one may be scheduled.
1341 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1343 complete(&ctlr->xfer_completion);
1345 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1347 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1349 if (ctlr->auto_runtime_pm) {
1350 pm_runtime_mark_last_busy(ctlr->dev.parent);
1351 pm_runtime_put_autosuspend(ctlr->dev.parent);
1356 * __spi_pump_messages - function which processes spi message queue
1357 * @ctlr: controller to process queue for
1358 * @in_kthread: true if we are in the context of the message pump thread
1360 * This function checks if there is any spi message in the queue that
1361 * needs processing and if so call out to the driver to initialize hardware
1362 * and transfer each message.
1364 * Note that it is called both from the kthread itself and also from
1365 * inside spi_sync(); the queue extraction handling at the top of the
1366 * function should deal with this safely.
1368 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1370 struct spi_transfer *xfer;
1371 struct spi_message *msg;
1372 bool was_busy = false;
1373 unsigned long flags;
1377 spin_lock_irqsave(&ctlr->queue_lock, flags);
1379 /* Make sure we are not already running a message */
1380 if (ctlr->cur_msg) {
1381 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1385 /* If another context is idling the device then defer */
1387 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1388 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1392 /* Check if the queue is idle */
1393 if (list_empty(&ctlr->queue) || !ctlr->running) {
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399 /* Defer any non-atomic teardown to the thread */
1401 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1402 !ctlr->unprepare_transfer_hardware) {
1403 spi_idle_runtime_pm(ctlr);
1405 trace_spi_controller_idle(ctlr);
1407 kthread_queue_work(ctlr->kworker,
1408 &ctlr->pump_messages);
1410 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1415 ctlr->idling = true;
1416 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1418 kfree(ctlr->dummy_rx);
1419 ctlr->dummy_rx = NULL;
1420 kfree(ctlr->dummy_tx);
1421 ctlr->dummy_tx = NULL;
1422 if (ctlr->unprepare_transfer_hardware &&
1423 ctlr->unprepare_transfer_hardware(ctlr))
1425 "failed to unprepare transfer hardware\n");
1426 spi_idle_runtime_pm(ctlr);
1427 trace_spi_controller_idle(ctlr);
1429 spin_lock_irqsave(&ctlr->queue_lock, flags);
1430 ctlr->idling = false;
1431 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1435 /* Extract head of queue */
1436 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1437 ctlr->cur_msg = msg;
1439 list_del_init(&msg->queue);
1444 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1446 mutex_lock(&ctlr->io_mutex);
1448 if (!was_busy && ctlr->auto_runtime_pm) {
1449 ret = pm_runtime_get_sync(ctlr->dev.parent);
1451 pm_runtime_put_noidle(ctlr->dev.parent);
1452 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1454 mutex_unlock(&ctlr->io_mutex);
1460 trace_spi_controller_busy(ctlr);
1462 if (!was_busy && ctlr->prepare_transfer_hardware) {
1463 ret = ctlr->prepare_transfer_hardware(ctlr);
1466 "failed to prepare transfer hardware: %d\n",
1469 if (ctlr->auto_runtime_pm)
1470 pm_runtime_put(ctlr->dev.parent);
1473 spi_finalize_current_message(ctlr);
1475 mutex_unlock(&ctlr->io_mutex);
1480 trace_spi_message_start(msg);
1482 if (ctlr->prepare_message) {
1483 ret = ctlr->prepare_message(ctlr, msg);
1485 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1488 spi_finalize_current_message(ctlr);
1491 ctlr->cur_msg_prepared = true;
1494 ret = spi_map_msg(ctlr, msg);
1497 spi_finalize_current_message(ctlr);
1501 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1502 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1503 xfer->ptp_sts_word_pre = 0;
1504 ptp_read_system_prets(xfer->ptp_sts);
1508 ret = ctlr->transfer_one_message(ctlr, msg);
1511 "failed to transfer one message from queue\n");
1516 mutex_unlock(&ctlr->io_mutex);
1518 /* Prod the scheduler in case transfer_one() was busy waiting */
1524 * spi_pump_messages - kthread work function which processes spi message queue
1525 * @work: pointer to kthread work struct contained in the controller struct
1527 static void spi_pump_messages(struct kthread_work *work)
1529 struct spi_controller *ctlr =
1530 container_of(work, struct spi_controller, pump_messages);
1532 __spi_pump_messages(ctlr, true);
1536 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1537 * TX timestamp for the requested byte from the SPI
1538 * transfer. The frequency with which this function
1539 * must be called (once per word, once for the whole
1540 * transfer, once per batch of words etc) is arbitrary
1541 * as long as the @tx buffer offset is greater than or
1542 * equal to the requested byte at the time of the
1543 * call. The timestamp is only taken once, at the
1544 * first such call. It is assumed that the driver
1545 * advances its @tx buffer pointer monotonically.
1546 * @ctlr: Pointer to the spi_controller structure of the driver
1547 * @xfer: Pointer to the transfer being timestamped
1548 * @progress: How many words (not bytes) have been transferred so far
1549 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1550 * transfer, for less jitter in time measurement. Only compatible
1551 * with PIO drivers. If true, must follow up with
1552 * spi_take_timestamp_post or otherwise system will crash.
1553 * WARNING: for fully predictable results, the CPU frequency must
1554 * also be under control (governor).
1556 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1557 struct spi_transfer *xfer,
1558 size_t progress, bool irqs_off)
1563 if (xfer->timestamped)
1566 if (progress > xfer->ptp_sts_word_pre)
1569 /* Capture the resolution of the timestamp */
1570 xfer->ptp_sts_word_pre = progress;
1573 local_irq_save(ctlr->irq_flags);
1577 ptp_read_system_prets(xfer->ptp_sts);
1579 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1582 * spi_take_timestamp_post - helper for drivers to collect the end of the
1583 * TX timestamp for the requested byte from the SPI
1584 * transfer. Can be called with an arbitrary
1585 * frequency: only the first call where @tx exceeds
1586 * or is equal to the requested word will be
1588 * @ctlr: Pointer to the spi_controller structure of the driver
1589 * @xfer: Pointer to the transfer being timestamped
1590 * @progress: How many words (not bytes) have been transferred so far
1591 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1593 void spi_take_timestamp_post(struct spi_controller *ctlr,
1594 struct spi_transfer *xfer,
1595 size_t progress, bool irqs_off)
1600 if (xfer->timestamped)
1603 if (progress < xfer->ptp_sts_word_post)
1606 ptp_read_system_postts(xfer->ptp_sts);
1609 local_irq_restore(ctlr->irq_flags);
1613 /* Capture the resolution of the timestamp */
1614 xfer->ptp_sts_word_post = progress;
1616 xfer->timestamped = true;
1618 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1621 * spi_set_thread_rt - set the controller to pump at realtime priority
1622 * @ctlr: controller to boost priority of
1624 * This can be called because the controller requested realtime priority
1625 * (by setting the ->rt value before calling spi_register_controller()) or
1626 * because a device on the bus said that its transfers needed realtime
1629 * NOTE: at the moment if any device on a bus says it needs realtime then
1630 * the thread will be at realtime priority for all transfers on that
1631 * controller. If this eventually becomes a problem we may see if we can
1632 * find a way to boost the priority only temporarily during relevant
1635 static void spi_set_thread_rt(struct spi_controller *ctlr)
1637 dev_info(&ctlr->dev,
1638 "will run message pump with realtime priority\n");
1639 sched_set_fifo(ctlr->kworker->task);
1642 static int spi_init_queue(struct spi_controller *ctlr)
1644 ctlr->running = false;
1647 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1648 if (IS_ERR(ctlr->kworker)) {
1649 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1650 return PTR_ERR(ctlr->kworker);
1653 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1656 * Controller config will indicate if this controller should run the
1657 * message pump with high (realtime) priority to reduce the transfer
1658 * latency on the bus by minimising the delay between a transfer
1659 * request and the scheduling of the message pump thread. Without this
1660 * setting the message pump thread will remain at default priority.
1663 spi_set_thread_rt(ctlr);
1669 * spi_get_next_queued_message() - called by driver to check for queued
1671 * @ctlr: the controller to check for queued messages
1673 * If there are more messages in the queue, the next message is returned from
1676 * Return: the next message in the queue, else NULL if the queue is empty.
1678 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1680 struct spi_message *next;
1681 unsigned long flags;
1683 /* get a pointer to the next message, if any */
1684 spin_lock_irqsave(&ctlr->queue_lock, flags);
1685 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1687 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1691 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1694 * spi_finalize_current_message() - the current message is complete
1695 * @ctlr: the controller to return the message to
1697 * Called by the driver to notify the core that the message in the front of the
1698 * queue is complete and can be removed from the queue.
1700 void spi_finalize_current_message(struct spi_controller *ctlr)
1702 struct spi_transfer *xfer;
1703 struct spi_message *mesg;
1704 unsigned long flags;
1707 spin_lock_irqsave(&ctlr->queue_lock, flags);
1708 mesg = ctlr->cur_msg;
1709 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1711 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1712 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1713 ptp_read_system_postts(xfer->ptp_sts);
1714 xfer->ptp_sts_word_post = xfer->len;
1718 if (unlikely(ctlr->ptp_sts_supported))
1719 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1720 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1722 spi_unmap_msg(ctlr, mesg);
1724 /* In the prepare_messages callback the spi bus has the opportunity to
1725 * split a transfer to smaller chunks.
1726 * Release splited transfers here since spi_map_msg is done on the
1727 * splited transfers.
1729 spi_res_release(ctlr, mesg);
1731 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1732 ret = ctlr->unprepare_message(ctlr, mesg);
1734 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1739 spin_lock_irqsave(&ctlr->queue_lock, flags);
1740 ctlr->cur_msg = NULL;
1741 ctlr->cur_msg_prepared = false;
1742 ctlr->fallback = false;
1743 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1744 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1746 trace_spi_message_done(mesg);
1750 mesg->complete(mesg->context);
1752 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1754 static int spi_start_queue(struct spi_controller *ctlr)
1756 unsigned long flags;
1758 spin_lock_irqsave(&ctlr->queue_lock, flags);
1760 if (ctlr->running || ctlr->busy) {
1761 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1765 ctlr->running = true;
1766 ctlr->cur_msg = NULL;
1767 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1769 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1774 static int spi_stop_queue(struct spi_controller *ctlr)
1776 unsigned long flags;
1777 unsigned limit = 500;
1780 spin_lock_irqsave(&ctlr->queue_lock, flags);
1783 * This is a bit lame, but is optimized for the common execution path.
1784 * A wait_queue on the ctlr->busy could be used, but then the common
1785 * execution path (pump_messages) would be required to call wake_up or
1786 * friends on every SPI message. Do this instead.
1788 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1789 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1790 usleep_range(10000, 11000);
1791 spin_lock_irqsave(&ctlr->queue_lock, flags);
1794 if (!list_empty(&ctlr->queue) || ctlr->busy)
1797 ctlr->running = false;
1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802 dev_warn(&ctlr->dev, "could not stop message queue\n");
1808 static int spi_destroy_queue(struct spi_controller *ctlr)
1812 ret = spi_stop_queue(ctlr);
1815 * kthread_flush_worker will block until all work is done.
1816 * If the reason that stop_queue timed out is that the work will never
1817 * finish, then it does no good to call flush/stop thread, so
1821 dev_err(&ctlr->dev, "problem destroying queue\n");
1825 kthread_destroy_worker(ctlr->kworker);
1830 static int __spi_queued_transfer(struct spi_device *spi,
1831 struct spi_message *msg,
1834 struct spi_controller *ctlr = spi->controller;
1835 unsigned long flags;
1837 spin_lock_irqsave(&ctlr->queue_lock, flags);
1839 if (!ctlr->running) {
1840 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1843 msg->actual_length = 0;
1844 msg->status = -EINPROGRESS;
1846 list_add_tail(&msg->queue, &ctlr->queue);
1847 if (!ctlr->busy && need_pump)
1848 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1850 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1855 * spi_queued_transfer - transfer function for queued transfers
1856 * @spi: spi device which is requesting transfer
1857 * @msg: spi message which is to handled is queued to driver queue
1859 * Return: zero on success, else a negative error code.
1861 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1863 return __spi_queued_transfer(spi, msg, true);
1866 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1870 ctlr->transfer = spi_queued_transfer;
1871 if (!ctlr->transfer_one_message)
1872 ctlr->transfer_one_message = spi_transfer_one_message;
1874 /* Initialize and start queue */
1875 ret = spi_init_queue(ctlr);
1877 dev_err(&ctlr->dev, "problem initializing queue\n");
1878 goto err_init_queue;
1880 ctlr->queued = true;
1881 ret = spi_start_queue(ctlr);
1883 dev_err(&ctlr->dev, "problem starting queue\n");
1884 goto err_start_queue;
1890 spi_destroy_queue(ctlr);
1896 * spi_flush_queue - Send all pending messages in the queue from the callers'
1898 * @ctlr: controller to process queue for
1900 * This should be used when one wants to ensure all pending messages have been
1901 * sent before doing something. Is used by the spi-mem code to make sure SPI
1902 * memory operations do not preempt regular SPI transfers that have been queued
1903 * before the spi-mem operation.
1905 void spi_flush_queue(struct spi_controller *ctlr)
1907 if (ctlr->transfer == spi_queued_transfer)
1908 __spi_pump_messages(ctlr, false);
1911 /*-------------------------------------------------------------------------*/
1913 #if defined(CONFIG_OF)
1914 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1915 struct device_node *nc)
1920 /* Mode (clock phase/polarity/etc.) */
1921 if (of_property_read_bool(nc, "spi-cpha"))
1922 spi->mode |= SPI_CPHA;
1923 if (of_property_read_bool(nc, "spi-cpol"))
1924 spi->mode |= SPI_CPOL;
1925 if (of_property_read_bool(nc, "spi-3wire"))
1926 spi->mode |= SPI_3WIRE;
1927 if (of_property_read_bool(nc, "spi-lsb-first"))
1928 spi->mode |= SPI_LSB_FIRST;
1929 if (of_property_read_bool(nc, "spi-cs-high"))
1930 spi->mode |= SPI_CS_HIGH;
1932 /* Device DUAL/QUAD mode */
1933 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1938 spi->mode |= SPI_TX_DUAL;
1941 spi->mode |= SPI_TX_QUAD;
1944 spi->mode |= SPI_TX_OCTAL;
1947 dev_warn(&ctlr->dev,
1948 "spi-tx-bus-width %d not supported\n",
1954 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1959 spi->mode |= SPI_RX_DUAL;
1962 spi->mode |= SPI_RX_QUAD;
1965 spi->mode |= SPI_RX_OCTAL;
1968 dev_warn(&ctlr->dev,
1969 "spi-rx-bus-width %d not supported\n",
1975 if (spi_controller_is_slave(ctlr)) {
1976 if (!of_node_name_eq(nc, "slave")) {
1977 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1984 /* Device address */
1985 rc = of_property_read_u32(nc, "reg", &value);
1987 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1991 spi->chip_select = value;
1994 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1995 spi->max_speed_hz = value;
2000 static struct spi_device *
2001 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2003 struct spi_device *spi;
2006 /* Alloc an spi_device */
2007 spi = spi_alloc_device(ctlr);
2009 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2014 /* Select device driver */
2015 rc = of_modalias_node(nc, spi->modalias,
2016 sizeof(spi->modalias));
2018 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2022 rc = of_spi_parse_dt(ctlr, spi, nc);
2026 /* Store a pointer to the node in the device structure */
2028 spi->dev.of_node = nc;
2030 /* Register the new device */
2031 rc = spi_add_device(spi);
2033 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2034 goto err_of_node_put;
2047 * of_register_spi_devices() - Register child devices onto the SPI bus
2048 * @ctlr: Pointer to spi_controller device
2050 * Registers an spi_device for each child node of controller node which
2051 * represents a valid SPI slave.
2053 static void of_register_spi_devices(struct spi_controller *ctlr)
2055 struct spi_device *spi;
2056 struct device_node *nc;
2058 if (!ctlr->dev.of_node)
2061 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2062 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2064 spi = of_register_spi_device(ctlr, nc);
2066 dev_warn(&ctlr->dev,
2067 "Failed to create SPI device for %pOF\n", nc);
2068 of_node_clear_flag(nc, OF_POPULATED);
2073 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2077 struct acpi_spi_lookup {
2078 struct spi_controller *ctlr;
2086 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2087 struct acpi_spi_lookup *lookup)
2089 const union acpi_object *obj;
2091 if (!x86_apple_machine)
2094 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2095 && obj->buffer.length >= 4)
2096 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2098 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2099 && obj->buffer.length == 8)
2100 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2102 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2103 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2104 lookup->mode |= SPI_LSB_FIRST;
2106 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2107 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2108 lookup->mode |= SPI_CPOL;
2110 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2111 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2112 lookup->mode |= SPI_CPHA;
2115 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2117 struct acpi_spi_lookup *lookup = data;
2118 struct spi_controller *ctlr = lookup->ctlr;
2120 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2121 struct acpi_resource_spi_serialbus *sb;
2122 acpi_handle parent_handle;
2125 sb = &ares->data.spi_serial_bus;
2126 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2128 status = acpi_get_handle(NULL,
2129 sb->resource_source.string_ptr,
2132 if (ACPI_FAILURE(status) ||
2133 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2137 * ACPI DeviceSelection numbering is handled by the
2138 * host controller driver in Windows and can vary
2139 * from driver to driver. In Linux we always expect
2140 * 0 .. max - 1 so we need to ask the driver to
2141 * translate between the two schemes.
2143 if (ctlr->fw_translate_cs) {
2144 int cs = ctlr->fw_translate_cs(ctlr,
2145 sb->device_selection);
2148 lookup->chip_select = cs;
2150 lookup->chip_select = sb->device_selection;
2153 lookup->max_speed_hz = sb->connection_speed;
2154 lookup->bits_per_word = sb->data_bit_length;
2156 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2157 lookup->mode |= SPI_CPHA;
2158 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2159 lookup->mode |= SPI_CPOL;
2160 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2161 lookup->mode |= SPI_CS_HIGH;
2163 } else if (lookup->irq < 0) {
2166 if (acpi_dev_resource_interrupt(ares, 0, &r))
2167 lookup->irq = r.start;
2170 /* Always tell the ACPI core to skip this resource */
2174 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2175 struct acpi_device *adev)
2177 acpi_handle parent_handle = NULL;
2178 struct list_head resource_list;
2179 struct acpi_spi_lookup lookup = {};
2180 struct spi_device *spi;
2183 if (acpi_bus_get_status(adev) || !adev->status.present ||
2184 acpi_device_enumerated(adev))
2190 INIT_LIST_HEAD(&resource_list);
2191 ret = acpi_dev_get_resources(adev, &resource_list,
2192 acpi_spi_add_resource, &lookup);
2193 acpi_dev_free_resource_list(&resource_list);
2196 /* found SPI in _CRS but it points to another controller */
2199 if (!lookup.max_speed_hz &&
2200 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2201 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2202 /* Apple does not use _CRS but nested devices for SPI slaves */
2203 acpi_spi_parse_apple_properties(adev, &lookup);
2206 if (!lookup.max_speed_hz)
2209 spi = spi_alloc_device(ctlr);
2211 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2212 dev_name(&adev->dev));
2213 return AE_NO_MEMORY;
2217 ACPI_COMPANION_SET(&spi->dev, adev);
2218 spi->max_speed_hz = lookup.max_speed_hz;
2219 spi->mode |= lookup.mode;
2220 spi->irq = lookup.irq;
2221 spi->bits_per_word = lookup.bits_per_word;
2222 spi->chip_select = lookup.chip_select;
2224 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2225 sizeof(spi->modalias));
2228 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2230 acpi_device_set_enumerated(adev);
2232 adev->power.flags.ignore_parent = true;
2233 if (spi_add_device(spi)) {
2234 adev->power.flags.ignore_parent = false;
2235 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2236 dev_name(&adev->dev));
2243 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2244 void *data, void **return_value)
2246 struct spi_controller *ctlr = data;
2247 struct acpi_device *adev;
2249 if (acpi_bus_get_device(handle, &adev))
2252 return acpi_register_spi_device(ctlr, adev);
2255 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2257 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2262 handle = ACPI_HANDLE(ctlr->dev.parent);
2266 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2267 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2268 acpi_spi_add_device, NULL, ctlr, NULL);
2269 if (ACPI_FAILURE(status))
2270 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2273 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2274 #endif /* CONFIG_ACPI */
2276 static void spi_controller_release(struct device *dev)
2278 struct spi_controller *ctlr;
2280 ctlr = container_of(dev, struct spi_controller, dev);
2284 static struct class spi_master_class = {
2285 .name = "spi_master",
2286 .owner = THIS_MODULE,
2287 .dev_release = spi_controller_release,
2288 .dev_groups = spi_master_groups,
2291 #ifdef CONFIG_SPI_SLAVE
2293 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2295 * @spi: device used for the current transfer
2297 int spi_slave_abort(struct spi_device *spi)
2299 struct spi_controller *ctlr = spi->controller;
2301 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2302 return ctlr->slave_abort(ctlr);
2306 EXPORT_SYMBOL_GPL(spi_slave_abort);
2308 static int match_true(struct device *dev, void *data)
2313 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2316 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2318 struct device *child;
2320 child = device_find_child(&ctlr->dev, NULL, match_true);
2321 return sprintf(buf, "%s\n",
2322 child ? to_spi_device(child)->modalias : NULL);
2325 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2326 const char *buf, size_t count)
2328 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2330 struct spi_device *spi;
2331 struct device *child;
2335 rc = sscanf(buf, "%31s", name);
2336 if (rc != 1 || !name[0])
2339 child = device_find_child(&ctlr->dev, NULL, match_true);
2341 /* Remove registered slave */
2342 device_unregister(child);
2346 if (strcmp(name, "(null)")) {
2347 /* Register new slave */
2348 spi = spi_alloc_device(ctlr);
2352 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2354 rc = spi_add_device(spi);
2364 static DEVICE_ATTR_RW(slave);
2366 static struct attribute *spi_slave_attrs[] = {
2367 &dev_attr_slave.attr,
2371 static const struct attribute_group spi_slave_group = {
2372 .attrs = spi_slave_attrs,
2375 static const struct attribute_group *spi_slave_groups[] = {
2376 &spi_controller_statistics_group,
2381 static struct class spi_slave_class = {
2382 .name = "spi_slave",
2383 .owner = THIS_MODULE,
2384 .dev_release = spi_controller_release,
2385 .dev_groups = spi_slave_groups,
2388 extern struct class spi_slave_class; /* dummy */
2392 * __spi_alloc_controller - allocate an SPI master or slave controller
2393 * @dev: the controller, possibly using the platform_bus
2394 * @size: how much zeroed driver-private data to allocate; the pointer to this
2395 * memory is in the driver_data field of the returned device, accessible
2396 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2397 * drivers granting DMA access to portions of their private data need to
2398 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2399 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2400 * slave (true) controller
2401 * Context: can sleep
2403 * This call is used only by SPI controller drivers, which are the
2404 * only ones directly touching chip registers. It's how they allocate
2405 * an spi_controller structure, prior to calling spi_register_controller().
2407 * This must be called from context that can sleep.
2409 * The caller is responsible for assigning the bus number and initializing the
2410 * controller's methods before calling spi_register_controller(); and (after
2411 * errors adding the device) calling spi_controller_put() to prevent a memory
2414 * Return: the SPI controller structure on success, else NULL.
2416 struct spi_controller *__spi_alloc_controller(struct device *dev,
2417 unsigned int size, bool slave)
2419 struct spi_controller *ctlr;
2420 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2425 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2429 device_initialize(&ctlr->dev);
2431 ctlr->num_chipselect = 1;
2432 ctlr->slave = slave;
2433 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2434 ctlr->dev.class = &spi_slave_class;
2436 ctlr->dev.class = &spi_master_class;
2437 ctlr->dev.parent = dev;
2438 pm_suspend_ignore_children(&ctlr->dev, true);
2439 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2443 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2446 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2449 struct device_node *np = ctlr->dev.of_node;
2454 nb = of_gpio_named_count(np, "cs-gpios");
2455 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2457 /* Return error only for an incorrectly formed cs-gpios property */
2458 if (nb == 0 || nb == -ENOENT)
2463 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2465 ctlr->cs_gpios = cs;
2467 if (!ctlr->cs_gpios)
2470 for (i = 0; i < ctlr->num_chipselect; i++)
2473 for (i = 0; i < nb; i++)
2474 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2479 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2486 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2487 * @ctlr: The SPI master to grab GPIO descriptors for
2489 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2492 struct gpio_desc **cs;
2493 struct device *dev = &ctlr->dev;
2494 unsigned long native_cs_mask = 0;
2495 unsigned int num_cs_gpios = 0;
2497 nb = gpiod_count(dev, "cs");
2498 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2500 /* No GPIOs at all is fine, else return the error */
2501 if (nb == 0 || nb == -ENOENT)
2506 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2510 ctlr->cs_gpiods = cs;
2512 for (i = 0; i < nb; i++) {
2514 * Most chipselects are active low, the inverted
2515 * semantics are handled by special quirks in gpiolib,
2516 * so initializing them GPIOD_OUT_LOW here means
2517 * "unasserted", in most cases this will drive the physical
2520 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2523 return PTR_ERR(cs[i]);
2527 * If we find a CS GPIO, name it after the device and
2532 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2536 gpiod_set_consumer_name(cs[i], gpioname);
2541 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2542 dev_err(dev, "Invalid native chip select %d\n", i);
2545 native_cs_mask |= BIT(i);
2548 ctlr->unused_native_cs = ffz(native_cs_mask);
2549 if (num_cs_gpios && ctlr->max_native_cs &&
2550 ctlr->unused_native_cs >= ctlr->max_native_cs) {
2551 dev_err(dev, "No unused native chip select available\n");
2558 static int spi_controller_check_ops(struct spi_controller *ctlr)
2561 * The controller may implement only the high-level SPI-memory like
2562 * operations if it does not support regular SPI transfers, and this is
2564 * If ->mem_ops is NULL, we request that at least one of the
2565 * ->transfer_xxx() method be implemented.
2567 if (ctlr->mem_ops) {
2568 if (!ctlr->mem_ops->exec_op)
2570 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2571 !ctlr->transfer_one_message) {
2579 * spi_register_controller - register SPI master or slave controller
2580 * @ctlr: initialized master, originally from spi_alloc_master() or
2582 * Context: can sleep
2584 * SPI controllers connect to their drivers using some non-SPI bus,
2585 * such as the platform bus. The final stage of probe() in that code
2586 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2588 * SPI controllers use board specific (often SOC specific) bus numbers,
2589 * and board-specific addressing for SPI devices combines those numbers
2590 * with chip select numbers. Since SPI does not directly support dynamic
2591 * device identification, boards need configuration tables telling which
2592 * chip is at which address.
2594 * This must be called from context that can sleep. It returns zero on
2595 * success, else a negative error code (dropping the controller's refcount).
2596 * After a successful return, the caller is responsible for calling
2597 * spi_unregister_controller().
2599 * Return: zero on success, else a negative error code.
2601 int spi_register_controller(struct spi_controller *ctlr)
2603 struct device *dev = ctlr->dev.parent;
2604 struct boardinfo *bi;
2606 int id, first_dynamic;
2612 * Make sure all necessary hooks are implemented before registering
2613 * the SPI controller.
2615 status = spi_controller_check_ops(ctlr);
2619 if (ctlr->bus_num >= 0) {
2620 /* devices with a fixed bus num must check-in with the num */
2621 mutex_lock(&board_lock);
2622 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2623 ctlr->bus_num + 1, GFP_KERNEL);
2624 mutex_unlock(&board_lock);
2625 if (WARN(id < 0, "couldn't get idr"))
2626 return id == -ENOSPC ? -EBUSY : id;
2628 } else if (ctlr->dev.of_node) {
2629 /* allocate dynamic bus number using Linux idr */
2630 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2633 mutex_lock(&board_lock);
2634 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2635 ctlr->bus_num + 1, GFP_KERNEL);
2636 mutex_unlock(&board_lock);
2637 if (WARN(id < 0, "couldn't get idr"))
2638 return id == -ENOSPC ? -EBUSY : id;
2641 if (ctlr->bus_num < 0) {
2642 first_dynamic = of_alias_get_highest_id("spi");
2643 if (first_dynamic < 0)
2648 mutex_lock(&board_lock);
2649 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2651 mutex_unlock(&board_lock);
2652 if (WARN(id < 0, "couldn't get idr"))
2656 INIT_LIST_HEAD(&ctlr->queue);
2657 spin_lock_init(&ctlr->queue_lock);
2658 spin_lock_init(&ctlr->bus_lock_spinlock);
2659 mutex_init(&ctlr->bus_lock_mutex);
2660 mutex_init(&ctlr->io_mutex);
2661 ctlr->bus_lock_flag = 0;
2662 init_completion(&ctlr->xfer_completion);
2663 if (!ctlr->max_dma_len)
2664 ctlr->max_dma_len = INT_MAX;
2666 /* register the device, then userspace will see it.
2667 * registration fails if the bus ID is in use.
2669 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2671 if (!spi_controller_is_slave(ctlr)) {
2672 if (ctlr->use_gpio_descriptors) {
2673 status = spi_get_gpio_descs(ctlr);
2677 * A controller using GPIO descriptors always
2678 * supports SPI_CS_HIGH if need be.
2680 ctlr->mode_bits |= SPI_CS_HIGH;
2682 /* Legacy code path for GPIOs from DT */
2683 status = of_spi_get_gpio_numbers(ctlr);
2690 * Even if it's just one always-selected device, there must
2691 * be at least one chipselect.
2693 if (!ctlr->num_chipselect) {
2698 status = device_add(&ctlr->dev);
2701 dev_dbg(dev, "registered %s %s\n",
2702 spi_controller_is_slave(ctlr) ? "slave" : "master",
2703 dev_name(&ctlr->dev));
2706 * If we're using a queued driver, start the queue. Note that we don't
2707 * need the queueing logic if the driver is only supporting high-level
2708 * memory operations.
2710 if (ctlr->transfer) {
2711 dev_info(dev, "controller is unqueued, this is deprecated\n");
2712 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2713 status = spi_controller_initialize_queue(ctlr);
2715 device_del(&ctlr->dev);
2719 /* add statistics */
2720 spin_lock_init(&ctlr->statistics.lock);
2722 mutex_lock(&board_lock);
2723 list_add_tail(&ctlr->list, &spi_controller_list);
2724 list_for_each_entry(bi, &board_list, list)
2725 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2726 mutex_unlock(&board_lock);
2728 /* Register devices from the device tree and ACPI */
2729 of_register_spi_devices(ctlr);
2730 acpi_register_spi_devices(ctlr);
2734 mutex_lock(&board_lock);
2735 idr_remove(&spi_master_idr, ctlr->bus_num);
2736 mutex_unlock(&board_lock);
2739 EXPORT_SYMBOL_GPL(spi_register_controller);
2741 static void devm_spi_unregister(struct device *dev, void *res)
2743 spi_unregister_controller(*(struct spi_controller **)res);
2747 * devm_spi_register_controller - register managed SPI master or slave
2749 * @dev: device managing SPI controller
2750 * @ctlr: initialized controller, originally from spi_alloc_master() or
2752 * Context: can sleep
2754 * Register a SPI device as with spi_register_controller() which will
2755 * automatically be unregistered and freed.
2757 * Return: zero on success, else a negative error code.
2759 int devm_spi_register_controller(struct device *dev,
2760 struct spi_controller *ctlr)
2762 struct spi_controller **ptr;
2765 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2769 ret = spi_register_controller(ctlr);
2772 devres_add(dev, ptr);
2779 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2781 static int __unregister(struct device *dev, void *null)
2783 spi_unregister_device(to_spi_device(dev));
2788 * spi_unregister_controller - unregister SPI master or slave controller
2789 * @ctlr: the controller being unregistered
2790 * Context: can sleep
2792 * This call is used only by SPI controller drivers, which are the
2793 * only ones directly touching chip registers.
2795 * This must be called from context that can sleep.
2797 * Note that this function also drops a reference to the controller.
2799 void spi_unregister_controller(struct spi_controller *ctlr)
2801 struct spi_controller *found;
2802 int id = ctlr->bus_num;
2804 /* Prevent addition of new devices, unregister existing ones */
2805 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2806 mutex_lock(&spi_add_lock);
2808 device_for_each_child(&ctlr->dev, NULL, __unregister);
2810 /* First make sure that this controller was ever added */
2811 mutex_lock(&board_lock);
2812 found = idr_find(&spi_master_idr, id);
2813 mutex_unlock(&board_lock);
2815 if (spi_destroy_queue(ctlr))
2816 dev_err(&ctlr->dev, "queue remove failed\n");
2818 mutex_lock(&board_lock);
2819 list_del(&ctlr->list);
2820 mutex_unlock(&board_lock);
2822 device_unregister(&ctlr->dev);
2824 mutex_lock(&board_lock);
2826 idr_remove(&spi_master_idr, id);
2827 mutex_unlock(&board_lock);
2829 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2830 mutex_unlock(&spi_add_lock);
2832 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2834 int spi_controller_suspend(struct spi_controller *ctlr)
2838 /* Basically no-ops for non-queued controllers */
2842 ret = spi_stop_queue(ctlr);
2844 dev_err(&ctlr->dev, "queue stop failed\n");
2848 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2850 int spi_controller_resume(struct spi_controller *ctlr)
2857 ret = spi_start_queue(ctlr);
2859 dev_err(&ctlr->dev, "queue restart failed\n");
2863 EXPORT_SYMBOL_GPL(spi_controller_resume);
2865 static int __spi_controller_match(struct device *dev, const void *data)
2867 struct spi_controller *ctlr;
2868 const u16 *bus_num = data;
2870 ctlr = container_of(dev, struct spi_controller, dev);
2871 return ctlr->bus_num == *bus_num;
2875 * spi_busnum_to_master - look up master associated with bus_num
2876 * @bus_num: the master's bus number
2877 * Context: can sleep
2879 * This call may be used with devices that are registered after
2880 * arch init time. It returns a refcounted pointer to the relevant
2881 * spi_controller (which the caller must release), or NULL if there is
2882 * no such master registered.
2884 * Return: the SPI master structure on success, else NULL.
2886 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2889 struct spi_controller *ctlr = NULL;
2891 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2892 __spi_controller_match);
2894 ctlr = container_of(dev, struct spi_controller, dev);
2895 /* reference got in class_find_device */
2898 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2900 /*-------------------------------------------------------------------------*/
2902 /* Core methods for SPI resource management */
2905 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2906 * during the processing of a spi_message while using
2908 * @spi: the spi device for which we allocate memory
2909 * @release: the release code to execute for this resource
2910 * @size: size to alloc and return
2911 * @gfp: GFP allocation flags
2913 * Return: the pointer to the allocated data
2915 * This may get enhanced in the future to allocate from a memory pool
2916 * of the @spi_device or @spi_controller to avoid repeated allocations.
2918 void *spi_res_alloc(struct spi_device *spi,
2919 spi_res_release_t release,
2920 size_t size, gfp_t gfp)
2922 struct spi_res *sres;
2924 sres = kzalloc(sizeof(*sres) + size, gfp);
2928 INIT_LIST_HEAD(&sres->entry);
2929 sres->release = release;
2933 EXPORT_SYMBOL_GPL(spi_res_alloc);
2936 * spi_res_free - free an spi resource
2937 * @res: pointer to the custom data of a resource
2940 void spi_res_free(void *res)
2942 struct spi_res *sres = container_of(res, struct spi_res, data);
2947 WARN_ON(!list_empty(&sres->entry));
2950 EXPORT_SYMBOL_GPL(spi_res_free);
2953 * spi_res_add - add a spi_res to the spi_message
2954 * @message: the spi message
2955 * @res: the spi_resource
2957 void spi_res_add(struct spi_message *message, void *res)
2959 struct spi_res *sres = container_of(res, struct spi_res, data);
2961 WARN_ON(!list_empty(&sres->entry));
2962 list_add_tail(&sres->entry, &message->resources);
2964 EXPORT_SYMBOL_GPL(spi_res_add);
2967 * spi_res_release - release all spi resources for this message
2968 * @ctlr: the @spi_controller
2969 * @message: the @spi_message
2971 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2973 struct spi_res *res, *tmp;
2975 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2977 res->release(ctlr, message, res->data);
2979 list_del(&res->entry);
2984 EXPORT_SYMBOL_GPL(spi_res_release);
2986 /*-------------------------------------------------------------------------*/
2988 /* Core methods for spi_message alterations */
2990 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2991 struct spi_message *msg,
2994 struct spi_replaced_transfers *rxfer = res;
2997 /* call extra callback if requested */
2999 rxfer->release(ctlr, msg, res);
3001 /* insert replaced transfers back into the message */
3002 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3004 /* remove the formerly inserted entries */
3005 for (i = 0; i < rxfer->inserted; i++)
3006 list_del(&rxfer->inserted_transfers[i].transfer_list);
3010 * spi_replace_transfers - replace transfers with several transfers
3011 * and register change with spi_message.resources
3012 * @msg: the spi_message we work upon
3013 * @xfer_first: the first spi_transfer we want to replace
3014 * @remove: number of transfers to remove
3015 * @insert: the number of transfers we want to insert instead
3016 * @release: extra release code necessary in some circumstances
3017 * @extradatasize: extra data to allocate (with alignment guarantees
3018 * of struct @spi_transfer)
3021 * Returns: pointer to @spi_replaced_transfers,
3022 * PTR_ERR(...) in case of errors.
3024 struct spi_replaced_transfers *spi_replace_transfers(
3025 struct spi_message *msg,
3026 struct spi_transfer *xfer_first,
3029 spi_replaced_release_t release,
3030 size_t extradatasize,
3033 struct spi_replaced_transfers *rxfer;
3034 struct spi_transfer *xfer;
3037 /* allocate the structure using spi_res */
3038 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3039 struct_size(rxfer, inserted_transfers, insert)
3043 return ERR_PTR(-ENOMEM);
3045 /* the release code to invoke before running the generic release */
3046 rxfer->release = release;
3048 /* assign extradata */
3051 &rxfer->inserted_transfers[insert];
3053 /* init the replaced_transfers list */
3054 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3056 /* assign the list_entry after which we should reinsert
3057 * the @replaced_transfers - it may be spi_message.messages!
3059 rxfer->replaced_after = xfer_first->transfer_list.prev;
3061 /* remove the requested number of transfers */
3062 for (i = 0; i < remove; i++) {
3063 /* if the entry after replaced_after it is msg->transfers
3064 * then we have been requested to remove more transfers
3065 * than are in the list
3067 if (rxfer->replaced_after->next == &msg->transfers) {
3068 dev_err(&msg->spi->dev,
3069 "requested to remove more spi_transfers than are available\n");
3070 /* insert replaced transfers back into the message */
3071 list_splice(&rxfer->replaced_transfers,
3072 rxfer->replaced_after);
3074 /* free the spi_replace_transfer structure */
3075 spi_res_free(rxfer);
3077 /* and return with an error */
3078 return ERR_PTR(-EINVAL);
3081 /* remove the entry after replaced_after from list of
3082 * transfers and add it to list of replaced_transfers
3084 list_move_tail(rxfer->replaced_after->next,
3085 &rxfer->replaced_transfers);
3088 /* create copy of the given xfer with identical settings
3089 * based on the first transfer to get removed
3091 for (i = 0; i < insert; i++) {
3092 /* we need to run in reverse order */
3093 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3095 /* copy all spi_transfer data */
3096 memcpy(xfer, xfer_first, sizeof(*xfer));
3099 list_add(&xfer->transfer_list, rxfer->replaced_after);
3101 /* clear cs_change and delay for all but the last */
3103 xfer->cs_change = false;
3104 xfer->delay_usecs = 0;
3105 xfer->delay.value = 0;
3109 /* set up inserted */
3110 rxfer->inserted = insert;
3112 /* and register it with spi_res/spi_message */
3113 spi_res_add(msg, rxfer);
3117 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3119 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3120 struct spi_message *msg,
3121 struct spi_transfer **xferp,
3125 struct spi_transfer *xfer = *xferp, *xfers;
3126 struct spi_replaced_transfers *srt;
3130 /* calculate how many we have to replace */
3131 count = DIV_ROUND_UP(xfer->len, maxsize);
3133 /* create replacement */
3134 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3136 return PTR_ERR(srt);
3137 xfers = srt->inserted_transfers;
3139 /* now handle each of those newly inserted spi_transfers
3140 * note that the replacements spi_transfers all are preset
3141 * to the same values as *xferp, so tx_buf, rx_buf and len
3142 * are all identical (as well as most others)
3143 * so we just have to fix up len and the pointers.
3145 * this also includes support for the depreciated
3146 * spi_message.is_dma_mapped interface
3149 /* the first transfer just needs the length modified, so we
3150 * run it outside the loop
3152 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3154 /* all the others need rx_buf/tx_buf also set */
3155 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3156 /* update rx_buf, tx_buf and dma */
3157 if (xfers[i].rx_buf)
3158 xfers[i].rx_buf += offset;
3159 if (xfers[i].rx_dma)
3160 xfers[i].rx_dma += offset;
3161 if (xfers[i].tx_buf)
3162 xfers[i].tx_buf += offset;
3163 if (xfers[i].tx_dma)
3164 xfers[i].tx_dma += offset;
3167 xfers[i].len = min(maxsize, xfers[i].len - offset);
3170 /* we set up xferp to the last entry we have inserted,
3171 * so that we skip those already split transfers
3173 *xferp = &xfers[count - 1];
3175 /* increment statistics counters */
3176 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3177 transfers_split_maxsize);
3178 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3179 transfers_split_maxsize);
3185 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3186 * when an individual transfer exceeds a
3188 * @ctlr: the @spi_controller for this transfer
3189 * @msg: the @spi_message to transform
3190 * @maxsize: the maximum when to apply this
3191 * @gfp: GFP allocation flags
3193 * Return: status of transformation
3195 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3196 struct spi_message *msg,
3200 struct spi_transfer *xfer;
3203 /* iterate over the transfer_list,
3204 * but note that xfer is advanced to the last transfer inserted
3205 * to avoid checking sizes again unnecessarily (also xfer does
3206 * potentiall belong to a different list by the time the
3207 * replacement has happened
3209 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3210 if (xfer->len > maxsize) {
3211 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3220 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3222 /*-------------------------------------------------------------------------*/
3224 /* Core methods for SPI controller protocol drivers. Some of the
3225 * other core methods are currently defined as inline functions.
3228 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3231 if (ctlr->bits_per_word_mask) {
3232 /* Only 32 bits fit in the mask */
3233 if (bits_per_word > 32)
3235 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3243 * spi_setup - setup SPI mode and clock rate
3244 * @spi: the device whose settings are being modified
3245 * Context: can sleep, and no requests are queued to the device
3247 * SPI protocol drivers may need to update the transfer mode if the
3248 * device doesn't work with its default. They may likewise need
3249 * to update clock rates or word sizes from initial values. This function
3250 * changes those settings, and must be called from a context that can sleep.
3251 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3252 * effect the next time the device is selected and data is transferred to
3253 * or from it. When this function returns, the spi device is deselected.
3255 * Note that this call will fail if the protocol driver specifies an option
3256 * that the underlying controller or its driver does not support. For
3257 * example, not all hardware supports wire transfers using nine bit words,
3258 * LSB-first wire encoding, or active-high chipselects.
3260 * Return: zero on success, else a negative error code.
3262 int spi_setup(struct spi_device *spi)
3264 unsigned bad_bits, ugly_bits;
3267 /* check mode to prevent that DUAL and QUAD set at the same time
3269 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3270 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3272 "setup: can not select dual and quad at the same time\n");
3275 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3277 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3278 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3279 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3281 /* help drivers fail *cleanly* when they need options
3282 * that aren't supported with their current controller
3283 * SPI_CS_WORD has a fallback software implementation,
3284 * so it is ignored here.
3286 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3287 /* nothing prevents from working with active-high CS in case if it
3288 * is driven by GPIO.
3290 if (gpio_is_valid(spi->cs_gpio))
3291 bad_bits &= ~SPI_CS_HIGH;
3292 ugly_bits = bad_bits &
3293 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3294 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3297 "setup: ignoring unsupported mode bits %x\n",
3299 spi->mode &= ~ugly_bits;
3300 bad_bits &= ~ugly_bits;
3303 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3308 if (!spi->bits_per_word)
3309 spi->bits_per_word = 8;
3311 status = __spi_validate_bits_per_word(spi->controller,
3312 spi->bits_per_word);
3316 if (!spi->max_speed_hz)
3317 spi->max_speed_hz = spi->controller->max_speed_hz;
3319 if (spi->controller->setup)
3320 status = spi->controller->setup(spi);
3322 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3323 status = pm_runtime_get_sync(spi->controller->dev.parent);
3325 pm_runtime_put_noidle(spi->controller->dev.parent);
3326 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3332 * We do not want to return positive value from pm_runtime_get,
3333 * there are many instances of devices calling spi_setup() and
3334 * checking for a non-zero return value instead of a negative
3339 spi_set_cs(spi, false);
3340 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3341 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3343 spi_set_cs(spi, false);
3346 if (spi->rt && !spi->controller->rt) {
3347 spi->controller->rt = true;
3348 spi_set_thread_rt(spi->controller);
3351 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3352 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3353 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3354 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3355 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3356 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3357 spi->bits_per_word, spi->max_speed_hz,
3362 EXPORT_SYMBOL_GPL(spi_setup);
3365 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3366 * @spi: the device that requires specific CS timing configuration
3367 * @setup: CS setup time specified via @spi_delay
3368 * @hold: CS hold time specified via @spi_delay
3369 * @inactive: CS inactive delay between transfers specified via @spi_delay
3371 * Return: zero on success, else a negative error code.
3373 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3374 struct spi_delay *hold, struct spi_delay *inactive)
3378 if (spi->controller->set_cs_timing)
3379 return spi->controller->set_cs_timing(spi, setup, hold,
3382 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3383 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3384 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3386 "Clock-cycle delays for CS not supported in SW mode\n");
3390 len = sizeof(struct spi_delay);
3392 /* copy delays to controller */
3394 memcpy(&spi->controller->cs_setup, setup, len);
3396 memset(&spi->controller->cs_setup, 0, len);
3399 memcpy(&spi->controller->cs_hold, hold, len);
3401 memset(&spi->controller->cs_hold, 0, len);
3404 memcpy(&spi->controller->cs_inactive, inactive, len);
3406 memset(&spi->controller->cs_inactive, 0, len);
3410 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3412 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3413 struct spi_device *spi)
3417 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3421 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3425 if (delay1 < delay2)
3426 memcpy(&xfer->word_delay, &spi->word_delay,
3427 sizeof(xfer->word_delay));
3432 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3434 struct spi_controller *ctlr = spi->controller;
3435 struct spi_transfer *xfer;
3438 if (list_empty(&message->transfers))
3441 /* If an SPI controller does not support toggling the CS line on each
3442 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3443 * for the CS line, we can emulate the CS-per-word hardware function by
3444 * splitting transfers into one-word transfers and ensuring that
3445 * cs_change is set for each transfer.
3447 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3449 gpio_is_valid(spi->cs_gpio))) {
3453 maxsize = (spi->bits_per_word + 7) / 8;
3455 /* spi_split_transfers_maxsize() requires message->spi */
3458 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3463 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3464 /* don't change cs_change on the last entry in the list */
3465 if (list_is_last(&xfer->transfer_list, &message->transfers))
3467 xfer->cs_change = 1;
3471 /* Half-duplex links include original MicroWire, and ones with
3472 * only one data pin like SPI_3WIRE (switches direction) or where
3473 * either MOSI or MISO is missing. They can also be caused by
3474 * software limitations.
3476 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3477 (spi->mode & SPI_3WIRE)) {
3478 unsigned flags = ctlr->flags;
3480 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3481 if (xfer->rx_buf && xfer->tx_buf)
3483 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3485 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3491 * Set transfer bits_per_word and max speed as spi device default if
3492 * it is not set for this transfer.
3493 * Set transfer tx_nbits and rx_nbits as single transfer default
3494 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3495 * Ensure transfer word_delay is at least as long as that required by
3498 message->frame_length = 0;
3499 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3500 xfer->effective_speed_hz = 0;
3501 message->frame_length += xfer->len;
3502 if (!xfer->bits_per_word)
3503 xfer->bits_per_word = spi->bits_per_word;
3505 if (!xfer->speed_hz)
3506 xfer->speed_hz = spi->max_speed_hz;
3508 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3509 xfer->speed_hz = ctlr->max_speed_hz;
3511 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3515 * SPI transfer length should be multiple of SPI word size
3516 * where SPI word size should be power-of-two multiple
3518 if (xfer->bits_per_word <= 8)
3520 else if (xfer->bits_per_word <= 16)
3525 /* No partial transfers accepted */
3526 if (xfer->len % w_size)
3529 if (xfer->speed_hz && ctlr->min_speed_hz &&
3530 xfer->speed_hz < ctlr->min_speed_hz)
3533 if (xfer->tx_buf && !xfer->tx_nbits)
3534 xfer->tx_nbits = SPI_NBITS_SINGLE;
3535 if (xfer->rx_buf && !xfer->rx_nbits)
3536 xfer->rx_nbits = SPI_NBITS_SINGLE;
3537 /* check transfer tx/rx_nbits:
3538 * 1. check the value matches one of single, dual and quad
3539 * 2. check tx/rx_nbits match the mode in spi_device
3542 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3543 xfer->tx_nbits != SPI_NBITS_DUAL &&
3544 xfer->tx_nbits != SPI_NBITS_QUAD)
3546 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3547 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3549 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3550 !(spi->mode & SPI_TX_QUAD))
3553 /* check transfer rx_nbits */
3555 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3556 xfer->rx_nbits != SPI_NBITS_DUAL &&
3557 xfer->rx_nbits != SPI_NBITS_QUAD)
3559 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3560 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3562 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3563 !(spi->mode & SPI_RX_QUAD))
3567 if (_spi_xfer_word_delay_update(xfer, spi))
3571 message->status = -EINPROGRESS;
3576 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3578 struct spi_controller *ctlr = spi->controller;
3579 struct spi_transfer *xfer;
3582 * Some controllers do not support doing regular SPI transfers. Return
3583 * ENOTSUPP when this is the case.
3585 if (!ctlr->transfer)
3590 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3591 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3593 trace_spi_message_submit(message);
3595 if (!ctlr->ptp_sts_supported) {
3596 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3597 xfer->ptp_sts_word_pre = 0;
3598 ptp_read_system_prets(xfer->ptp_sts);
3602 return ctlr->transfer(spi, message);
3606 * spi_async - asynchronous SPI transfer
3607 * @spi: device with which data will be exchanged
3608 * @message: describes the data transfers, including completion callback
3609 * Context: any (irqs may be blocked, etc)
3611 * This call may be used in_irq and other contexts which can't sleep,
3612 * as well as from task contexts which can sleep.
3614 * The completion callback is invoked in a context which can't sleep.
3615 * Before that invocation, the value of message->status is undefined.
3616 * When the callback is issued, message->status holds either zero (to
3617 * indicate complete success) or a negative error code. After that
3618 * callback returns, the driver which issued the transfer request may
3619 * deallocate the associated memory; it's no longer in use by any SPI
3620 * core or controller driver code.
3622 * Note that although all messages to a spi_device are handled in
3623 * FIFO order, messages may go to different devices in other orders.
3624 * Some device might be higher priority, or have various "hard" access
3625 * time requirements, for example.
3627 * On detection of any fault during the transfer, processing of
3628 * the entire message is aborted, and the device is deselected.
3629 * Until returning from the associated message completion callback,
3630 * no other spi_message queued to that device will be processed.
3631 * (This rule applies equally to all the synchronous transfer calls,
3632 * which are wrappers around this core asynchronous primitive.)
3634 * Return: zero on success, else a negative error code.
3636 int spi_async(struct spi_device *spi, struct spi_message *message)
3638 struct spi_controller *ctlr = spi->controller;
3640 unsigned long flags;
3642 ret = __spi_validate(spi, message);
3646 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3648 if (ctlr->bus_lock_flag)
3651 ret = __spi_async(spi, message);
3653 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3657 EXPORT_SYMBOL_GPL(spi_async);
3660 * spi_async_locked - version of spi_async with exclusive bus usage
3661 * @spi: device with which data will be exchanged
3662 * @message: describes the data transfers, including completion callback
3663 * Context: any (irqs may be blocked, etc)
3665 * This call may be used in_irq and other contexts which can't sleep,
3666 * as well as from task contexts which can sleep.
3668 * The completion callback is invoked in a context which can't sleep.
3669 * Before that invocation, the value of message->status is undefined.
3670 * When the callback is issued, message->status holds either zero (to
3671 * indicate complete success) or a negative error code. After that
3672 * callback returns, the driver which issued the transfer request may
3673 * deallocate the associated memory; it's no longer in use by any SPI
3674 * core or controller driver code.
3676 * Note that although all messages to a spi_device are handled in
3677 * FIFO order, messages may go to different devices in other orders.
3678 * Some device might be higher priority, or have various "hard" access
3679 * time requirements, for example.
3681 * On detection of any fault during the transfer, processing of
3682 * the entire message is aborted, and the device is deselected.
3683 * Until returning from the associated message completion callback,
3684 * no other spi_message queued to that device will be processed.
3685 * (This rule applies equally to all the synchronous transfer calls,
3686 * which are wrappers around this core asynchronous primitive.)
3688 * Return: zero on success, else a negative error code.
3690 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3692 struct spi_controller *ctlr = spi->controller;
3694 unsigned long flags;
3696 ret = __spi_validate(spi, message);
3700 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3702 ret = __spi_async(spi, message);
3704 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3709 EXPORT_SYMBOL_GPL(spi_async_locked);
3711 /*-------------------------------------------------------------------------*/
3713 /* Utility methods for SPI protocol drivers, layered on
3714 * top of the core. Some other utility methods are defined as
3718 static void spi_complete(void *arg)
3723 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3725 DECLARE_COMPLETION_ONSTACK(done);
3727 struct spi_controller *ctlr = spi->controller;
3728 unsigned long flags;
3730 status = __spi_validate(spi, message);
3734 message->complete = spi_complete;
3735 message->context = &done;
3738 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3739 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3741 /* If we're not using the legacy transfer method then we will
3742 * try to transfer in the calling context so special case.
3743 * This code would be less tricky if we could remove the
3744 * support for driver implemented message queues.
3746 if (ctlr->transfer == spi_queued_transfer) {
3747 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3749 trace_spi_message_submit(message);
3751 status = __spi_queued_transfer(spi, message, false);
3753 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3755 status = spi_async_locked(spi, message);
3759 /* Push out the messages in the calling context if we
3762 if (ctlr->transfer == spi_queued_transfer) {
3763 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3764 spi_sync_immediate);
3765 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3766 spi_sync_immediate);
3767 __spi_pump_messages(ctlr, false);
3770 wait_for_completion(&done);
3771 status = message->status;
3773 message->context = NULL;
3778 * spi_sync - blocking/synchronous SPI data transfers
3779 * @spi: device with which data will be exchanged
3780 * @message: describes the data transfers
3781 * Context: can sleep
3783 * This call may only be used from a context that may sleep. The sleep
3784 * is non-interruptible, and has no timeout. Low-overhead controller
3785 * drivers may DMA directly into and out of the message buffers.
3787 * Note that the SPI device's chip select is active during the message,
3788 * and then is normally disabled between messages. Drivers for some
3789 * frequently-used devices may want to minimize costs of selecting a chip,
3790 * by leaving it selected in anticipation that the next message will go
3791 * to the same chip. (That may increase power usage.)
3793 * Also, the caller is guaranteeing that the memory associated with the
3794 * message will not be freed before this call returns.
3796 * Return: zero on success, else a negative error code.
3798 int spi_sync(struct spi_device *spi, struct spi_message *message)
3802 mutex_lock(&spi->controller->bus_lock_mutex);
3803 ret = __spi_sync(spi, message);
3804 mutex_unlock(&spi->controller->bus_lock_mutex);
3808 EXPORT_SYMBOL_GPL(spi_sync);
3811 * spi_sync_locked - version of spi_sync with exclusive bus usage
3812 * @spi: device with which data will be exchanged
3813 * @message: describes the data transfers
3814 * Context: can sleep
3816 * This call may only be used from a context that may sleep. The sleep
3817 * is non-interruptible, and has no timeout. Low-overhead controller
3818 * drivers may DMA directly into and out of the message buffers.
3820 * This call should be used by drivers that require exclusive access to the
3821 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3822 * be released by a spi_bus_unlock call when the exclusive access is over.
3824 * Return: zero on success, else a negative error code.
3826 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3828 return __spi_sync(spi, message);
3830 EXPORT_SYMBOL_GPL(spi_sync_locked);
3833 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3834 * @ctlr: SPI bus master that should be locked for exclusive bus access
3835 * Context: can sleep
3837 * This call may only be used from a context that may sleep. The sleep
3838 * is non-interruptible, and has no timeout.
3840 * This call should be used by drivers that require exclusive access to the
3841 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3842 * exclusive access is over. Data transfer must be done by spi_sync_locked
3843 * and spi_async_locked calls when the SPI bus lock is held.
3845 * Return: always zero.
3847 int spi_bus_lock(struct spi_controller *ctlr)
3849 unsigned long flags;
3851 mutex_lock(&ctlr->bus_lock_mutex);
3853 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3854 ctlr->bus_lock_flag = 1;
3855 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3857 /* mutex remains locked until spi_bus_unlock is called */
3861 EXPORT_SYMBOL_GPL(spi_bus_lock);
3864 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3865 * @ctlr: SPI bus master that was locked for exclusive bus access
3866 * Context: can sleep
3868 * This call may only be used from a context that may sleep. The sleep
3869 * is non-interruptible, and has no timeout.
3871 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3874 * Return: always zero.
3876 int spi_bus_unlock(struct spi_controller *ctlr)
3878 ctlr->bus_lock_flag = 0;
3880 mutex_unlock(&ctlr->bus_lock_mutex);
3884 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3886 /* portable code must never pass more than 32 bytes */
3887 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3892 * spi_write_then_read - SPI synchronous write followed by read
3893 * @spi: device with which data will be exchanged
3894 * @txbuf: data to be written (need not be dma-safe)
3895 * @n_tx: size of txbuf, in bytes
3896 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3897 * @n_rx: size of rxbuf, in bytes
3898 * Context: can sleep
3900 * This performs a half duplex MicroWire style transaction with the
3901 * device, sending txbuf and then reading rxbuf. The return value
3902 * is zero for success, else a negative errno status code.
3903 * This call may only be used from a context that may sleep.
3905 * Parameters to this routine are always copied using a small buffer.
3906 * Performance-sensitive or bulk transfer code should instead use
3907 * spi_{async,sync}() calls with dma-safe buffers.
3909 * Return: zero on success, else a negative error code.
3911 int spi_write_then_read(struct spi_device *spi,
3912 const void *txbuf, unsigned n_tx,
3913 void *rxbuf, unsigned n_rx)
3915 static DEFINE_MUTEX(lock);
3918 struct spi_message message;
3919 struct spi_transfer x[2];
3922 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3923 * copying here, (as a pure convenience thing), but we can
3924 * keep heap costs out of the hot path unless someone else is
3925 * using the pre-allocated buffer or the transfer is too large.
3927 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3928 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3929 GFP_KERNEL | GFP_DMA);
3936 spi_message_init(&message);
3937 memset(x, 0, sizeof(x));
3940 spi_message_add_tail(&x[0], &message);
3944 spi_message_add_tail(&x[1], &message);
3947 memcpy(local_buf, txbuf, n_tx);
3948 x[0].tx_buf = local_buf;
3949 x[1].rx_buf = local_buf + n_tx;
3952 status = spi_sync(spi, &message);
3954 memcpy(rxbuf, x[1].rx_buf, n_rx);
3956 if (x[0].tx_buf == buf)
3957 mutex_unlock(&lock);
3963 EXPORT_SYMBOL_GPL(spi_write_then_read);
3965 /*-------------------------------------------------------------------------*/
3967 #if IS_ENABLED(CONFIG_OF)
3968 /* must call put_device() when done with returned spi_device device */
3969 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3971 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3973 return dev ? to_spi_device(dev) : NULL;
3975 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3976 #endif /* IS_ENABLED(CONFIG_OF) */
3978 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3979 /* the spi controllers are not using spi_bus, so we find it with another way */
3980 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3984 dev = class_find_device_by_of_node(&spi_master_class, node);
3985 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3986 dev = class_find_device_by_of_node(&spi_slave_class, node);
3990 /* reference got in class_find_device */
3991 return container_of(dev, struct spi_controller, dev);
3994 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3997 struct of_reconfig_data *rd = arg;
3998 struct spi_controller *ctlr;
3999 struct spi_device *spi;
4001 switch (of_reconfig_get_state_change(action, arg)) {
4002 case OF_RECONFIG_CHANGE_ADD:
4003 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4005 return NOTIFY_OK; /* not for us */
4007 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4008 put_device(&ctlr->dev);
4012 spi = of_register_spi_device(ctlr, rd->dn);
4013 put_device(&ctlr->dev);
4016 pr_err("%s: failed to create for '%pOF'\n",
4018 of_node_clear_flag(rd->dn, OF_POPULATED);
4019 return notifier_from_errno(PTR_ERR(spi));
4023 case OF_RECONFIG_CHANGE_REMOVE:
4024 /* already depopulated? */
4025 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4028 /* find our device by node */
4029 spi = of_find_spi_device_by_node(rd->dn);
4031 return NOTIFY_OK; /* no? not meant for us */
4033 /* unregister takes one ref away */
4034 spi_unregister_device(spi);
4036 /* and put the reference of the find */
4037 put_device(&spi->dev);
4044 static struct notifier_block spi_of_notifier = {
4045 .notifier_call = of_spi_notify,
4047 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4048 extern struct notifier_block spi_of_notifier;
4049 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4051 #if IS_ENABLED(CONFIG_ACPI)
4052 static int spi_acpi_controller_match(struct device *dev, const void *data)
4054 return ACPI_COMPANION(dev->parent) == data;
4057 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4061 dev = class_find_device(&spi_master_class, NULL, adev,
4062 spi_acpi_controller_match);
4063 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4064 dev = class_find_device(&spi_slave_class, NULL, adev,
4065 spi_acpi_controller_match);
4069 return container_of(dev, struct spi_controller, dev);
4072 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4076 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4077 return to_spi_device(dev);
4080 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4083 struct acpi_device *adev = arg;
4084 struct spi_controller *ctlr;
4085 struct spi_device *spi;
4088 case ACPI_RECONFIG_DEVICE_ADD:
4089 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4093 acpi_register_spi_device(ctlr, adev);
4094 put_device(&ctlr->dev);
4096 case ACPI_RECONFIG_DEVICE_REMOVE:
4097 if (!acpi_device_enumerated(adev))
4100 spi = acpi_spi_find_device_by_adev(adev);
4104 spi_unregister_device(spi);
4105 put_device(&spi->dev);
4112 static struct notifier_block spi_acpi_notifier = {
4113 .notifier_call = acpi_spi_notify,
4116 extern struct notifier_block spi_acpi_notifier;
4119 static int __init spi_init(void)
4123 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4129 status = bus_register(&spi_bus_type);
4133 status = class_register(&spi_master_class);
4137 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4138 status = class_register(&spi_slave_class);
4143 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4144 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4145 if (IS_ENABLED(CONFIG_ACPI))
4146 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4151 class_unregister(&spi_master_class);
4153 bus_unregister(&spi_bus_type);
4161 /* board_info is normally registered in arch_initcall(),
4162 * but even essential drivers wait till later
4164 * REVISIT only boardinfo really needs static linking. the rest (device and
4165 * driver registration) _could_ be dynamically linked (modular) ... costs
4166 * include needing to have boardinfo data structures be much more public.
4168 postcore_initcall(spi_init);