2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount *shm_mnt;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 return sb->s_fs_info;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
156 static inline int shmem_reacct_size(unsigned long flags,
157 loff_t oldsize, loff_t newsize)
159 if (!(flags & VM_NORESERVE)) {
160 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
161 return security_vm_enough_memory_mm(current->mm,
162 VM_ACCT(newsize) - VM_ACCT(oldsize));
163 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
164 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
170 * ... whereas tmpfs objects are accounted incrementally as
171 * pages are allocated, in order to allow large sparse files.
172 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
173 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 static inline int shmem_acct_block(unsigned long flags)
177 return (flags & VM_NORESERVE) ?
178 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
181 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 if (flags & VM_NORESERVE)
184 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
187 static const struct super_operations shmem_ops;
188 static const struct address_space_operations shmem_aops;
189 static const struct file_operations shmem_file_operations;
190 static const struct inode_operations shmem_inode_operations;
191 static const struct inode_operations shmem_dir_inode_operations;
192 static const struct inode_operations shmem_special_inode_operations;
193 static const struct vm_operations_struct shmem_vm_ops;
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 static int shmem_reserve_inode(struct super_block *sb)
200 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 if (sbinfo->max_inodes) {
202 spin_lock(&sbinfo->stat_lock);
203 if (!sbinfo->free_inodes) {
204 spin_unlock(&sbinfo->stat_lock);
207 sbinfo->free_inodes--;
208 spin_unlock(&sbinfo->stat_lock);
213 static void shmem_free_inode(struct super_block *sb)
215 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
216 if (sbinfo->max_inodes) {
217 spin_lock(&sbinfo->stat_lock);
218 sbinfo->free_inodes++;
219 spin_unlock(&sbinfo->stat_lock);
224 * shmem_recalc_inode - recalculate the block usage of an inode
225 * @inode: inode to recalc
227 * We have to calculate the free blocks since the mm can drop
228 * undirtied hole pages behind our back.
230 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
231 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 * It has to be called with the spinlock held.
235 static void shmem_recalc_inode(struct inode *inode)
237 struct shmem_inode_info *info = SHMEM_I(inode);
240 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
243 if (sbinfo->max_blocks)
244 percpu_counter_add(&sbinfo->used_blocks, -freed);
245 info->alloced -= freed;
246 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
247 shmem_unacct_blocks(info->flags, freed);
252 * Replace item expected in radix tree by a new item, while holding tree lock.
254 static int shmem_radix_tree_replace(struct address_space *mapping,
255 pgoff_t index, void *expected, void *replacement)
260 VM_BUG_ON(!expected);
261 VM_BUG_ON(!replacement);
262 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
265 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
266 if (item != expected)
268 radix_tree_replace_slot(pslot, replacement);
273 * Sometimes, before we decide whether to proceed or to fail, we must check
274 * that an entry was not already brought back from swap by a racing thread.
276 * Checking page is not enough: by the time a SwapCache page is locked, it
277 * might be reused, and again be SwapCache, using the same swap as before.
279 static bool shmem_confirm_swap(struct address_space *mapping,
280 pgoff_t index, swp_entry_t swap)
285 item = radix_tree_lookup(&mapping->page_tree, index);
287 return item == swp_to_radix_entry(swap);
291 * Like add_to_page_cache_locked, but error if expected item has gone.
293 static int shmem_add_to_page_cache(struct page *page,
294 struct address_space *mapping,
295 pgoff_t index, void *expected)
299 VM_BUG_ON_PAGE(!PageLocked(page), page);
300 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
303 page->mapping = mapping;
306 spin_lock_irq(&mapping->tree_lock);
308 error = radix_tree_insert(&mapping->page_tree, index, page);
310 error = shmem_radix_tree_replace(mapping, index, expected,
314 __inc_zone_page_state(page, NR_FILE_PAGES);
315 __inc_zone_page_state(page, NR_SHMEM);
316 spin_unlock_irq(&mapping->tree_lock);
318 page->mapping = NULL;
319 spin_unlock_irq(&mapping->tree_lock);
326 * Like delete_from_page_cache, but substitutes swap for page.
328 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 struct address_space *mapping = page->mapping;
333 spin_lock_irq(&mapping->tree_lock);
334 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
335 page->mapping = NULL;
337 __dec_zone_page_state(page, NR_FILE_PAGES);
338 __dec_zone_page_state(page, NR_SHMEM);
339 spin_unlock_irq(&mapping->tree_lock);
345 * Remove swap entry from radix tree, free the swap and its page cache.
347 static int shmem_free_swap(struct address_space *mapping,
348 pgoff_t index, void *radswap)
352 spin_lock_irq(&mapping->tree_lock);
353 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
354 spin_unlock_irq(&mapping->tree_lock);
357 free_swap_and_cache(radix_to_swp_entry(radswap));
362 * Determine (in bytes) how many of the shmem object's pages mapped by the
363 * given offsets are swapped out.
365 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
366 * as long as the inode doesn't go away and racy results are not a problem.
368 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
369 pgoff_t start, pgoff_t end)
371 struct radix_tree_iter iter;
374 unsigned long swapped = 0;
378 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
379 if (iter.index >= end)
382 page = radix_tree_deref_slot(slot);
384 if (radix_tree_deref_retry(page)) {
385 slot = radix_tree_iter_retry(&iter);
389 if (radix_tree_exceptional_entry(page))
392 if (need_resched()) {
394 slot = radix_tree_iter_next(&iter);
400 return swapped << PAGE_SHIFT;
404 * Determine (in bytes) how many of the shmem object's pages mapped by the
405 * given vma is swapped out.
407 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
408 * as long as the inode doesn't go away and racy results are not a problem.
410 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
412 struct inode *inode = file_inode(vma->vm_file);
413 struct shmem_inode_info *info = SHMEM_I(inode);
414 struct address_space *mapping = inode->i_mapping;
415 unsigned long swapped;
417 /* Be careful as we don't hold info->lock */
418 swapped = READ_ONCE(info->swapped);
421 * The easier cases are when the shmem object has nothing in swap, or
422 * the vma maps it whole. Then we can simply use the stats that we
428 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
429 return swapped << PAGE_SHIFT;
431 /* Here comes the more involved part */
432 return shmem_partial_swap_usage(mapping,
433 linear_page_index(vma, vma->vm_start),
434 linear_page_index(vma, vma->vm_end));
438 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
440 void shmem_unlock_mapping(struct address_space *mapping)
443 pgoff_t indices[PAGEVEC_SIZE];
446 pagevec_init(&pvec, 0);
448 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
450 while (!mapping_unevictable(mapping)) {
452 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
453 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
455 pvec.nr = find_get_entries(mapping, index,
456 PAGEVEC_SIZE, pvec.pages, indices);
459 index = indices[pvec.nr - 1] + 1;
460 pagevec_remove_exceptionals(&pvec);
461 check_move_unevictable_pages(pvec.pages, pvec.nr);
462 pagevec_release(&pvec);
468 * Remove range of pages and swap entries from radix tree, and free them.
469 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
471 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
474 struct address_space *mapping = inode->i_mapping;
475 struct shmem_inode_info *info = SHMEM_I(inode);
476 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
477 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
478 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
479 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
481 pgoff_t indices[PAGEVEC_SIZE];
482 long nr_swaps_freed = 0;
487 end = -1; /* unsigned, so actually very big */
489 pagevec_init(&pvec, 0);
491 while (index < end) {
492 pvec.nr = find_get_entries(mapping, index,
493 min(end - index, (pgoff_t)PAGEVEC_SIZE),
494 pvec.pages, indices);
497 for (i = 0; i < pagevec_count(&pvec); i++) {
498 struct page *page = pvec.pages[i];
504 if (radix_tree_exceptional_entry(page)) {
507 nr_swaps_freed += !shmem_free_swap(mapping,
512 if (!trylock_page(page))
514 if (!unfalloc || !PageUptodate(page)) {
515 if (page->mapping == mapping) {
516 VM_BUG_ON_PAGE(PageWriteback(page), page);
517 truncate_inode_page(mapping, page);
522 pagevec_remove_exceptionals(&pvec);
523 pagevec_release(&pvec);
529 struct page *page = NULL;
530 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
532 unsigned int top = PAGE_SIZE;
537 zero_user_segment(page, partial_start, top);
538 set_page_dirty(page);
544 struct page *page = NULL;
545 shmem_getpage(inode, end, &page, SGP_READ, NULL);
547 zero_user_segment(page, 0, partial_end);
548 set_page_dirty(page);
557 while (index < end) {
560 pvec.nr = find_get_entries(mapping, index,
561 min(end - index, (pgoff_t)PAGEVEC_SIZE),
562 pvec.pages, indices);
564 /* If all gone or hole-punch or unfalloc, we're done */
565 if (index == start || end != -1)
567 /* But if truncating, restart to make sure all gone */
571 for (i = 0; i < pagevec_count(&pvec); i++) {
572 struct page *page = pvec.pages[i];
578 if (radix_tree_exceptional_entry(page)) {
581 if (shmem_free_swap(mapping, index, page)) {
582 /* Swap was replaced by page: retry */
591 if (!unfalloc || !PageUptodate(page)) {
592 if (page->mapping == mapping) {
593 VM_BUG_ON_PAGE(PageWriteback(page), page);
594 truncate_inode_page(mapping, page);
596 /* Page was replaced by swap: retry */
604 pagevec_remove_exceptionals(&pvec);
605 pagevec_release(&pvec);
609 spin_lock(&info->lock);
610 info->swapped -= nr_swaps_freed;
611 shmem_recalc_inode(inode);
612 spin_unlock(&info->lock);
615 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
617 shmem_undo_range(inode, lstart, lend, false);
618 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
620 EXPORT_SYMBOL_GPL(shmem_truncate_range);
622 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
625 struct inode *inode = dentry->d_inode;
626 struct shmem_inode_info *info = SHMEM_I(inode);
628 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
629 spin_lock(&info->lock);
630 shmem_recalc_inode(inode);
631 spin_unlock(&info->lock);
633 generic_fillattr(inode, stat);
637 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
639 struct inode *inode = d_inode(dentry);
640 struct shmem_inode_info *info = SHMEM_I(inode);
643 error = inode_change_ok(inode, attr);
647 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
648 loff_t oldsize = inode->i_size;
649 loff_t newsize = attr->ia_size;
651 /* protected by i_mutex */
652 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
653 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
656 if (newsize != oldsize) {
657 error = shmem_reacct_size(SHMEM_I(inode)->flags,
661 i_size_write(inode, newsize);
662 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
664 if (newsize <= oldsize) {
665 loff_t holebegin = round_up(newsize, PAGE_SIZE);
666 if (oldsize > holebegin)
667 unmap_mapping_range(inode->i_mapping,
670 shmem_truncate_range(inode,
671 newsize, (loff_t)-1);
672 /* unmap again to remove racily COWed private pages */
673 if (oldsize > holebegin)
674 unmap_mapping_range(inode->i_mapping,
679 setattr_copy(inode, attr);
680 if (attr->ia_valid & ATTR_MODE)
681 error = posix_acl_chmod(inode, inode->i_mode);
685 static void shmem_evict_inode(struct inode *inode)
687 struct shmem_inode_info *info = SHMEM_I(inode);
689 if (inode->i_mapping->a_ops == &shmem_aops) {
690 shmem_unacct_size(info->flags, inode->i_size);
692 shmem_truncate_range(inode, 0, (loff_t)-1);
693 if (!list_empty(&info->swaplist)) {
694 mutex_lock(&shmem_swaplist_mutex);
695 list_del_init(&info->swaplist);
696 mutex_unlock(&shmem_swaplist_mutex);
700 simple_xattrs_free(&info->xattrs);
701 WARN_ON(inode->i_blocks);
702 shmem_free_inode(inode->i_sb);
707 * If swap found in inode, free it and move page from swapcache to filecache.
709 static int shmem_unuse_inode(struct shmem_inode_info *info,
710 swp_entry_t swap, struct page **pagep)
712 struct address_space *mapping = info->vfs_inode.i_mapping;
718 radswap = swp_to_radix_entry(swap);
719 index = radix_tree_locate_item(&mapping->page_tree, radswap);
721 return -EAGAIN; /* tell shmem_unuse we found nothing */
724 * Move _head_ to start search for next from here.
725 * But be careful: shmem_evict_inode checks list_empty without taking
726 * mutex, and there's an instant in list_move_tail when info->swaplist
727 * would appear empty, if it were the only one on shmem_swaplist.
729 if (shmem_swaplist.next != &info->swaplist)
730 list_move_tail(&shmem_swaplist, &info->swaplist);
732 gfp = mapping_gfp_mask(mapping);
733 if (shmem_should_replace_page(*pagep, gfp)) {
734 mutex_unlock(&shmem_swaplist_mutex);
735 error = shmem_replace_page(pagep, gfp, info, index);
736 mutex_lock(&shmem_swaplist_mutex);
738 * We needed to drop mutex to make that restrictive page
739 * allocation, but the inode might have been freed while we
740 * dropped it: although a racing shmem_evict_inode() cannot
741 * complete without emptying the radix_tree, our page lock
742 * on this swapcache page is not enough to prevent that -
743 * free_swap_and_cache() of our swap entry will only
744 * trylock_page(), removing swap from radix_tree whatever.
746 * We must not proceed to shmem_add_to_page_cache() if the
747 * inode has been freed, but of course we cannot rely on
748 * inode or mapping or info to check that. However, we can
749 * safely check if our swap entry is still in use (and here
750 * it can't have got reused for another page): if it's still
751 * in use, then the inode cannot have been freed yet, and we
752 * can safely proceed (if it's no longer in use, that tells
753 * nothing about the inode, but we don't need to unuse swap).
755 if (!page_swapcount(*pagep))
760 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
761 * but also to hold up shmem_evict_inode(): so inode cannot be freed
762 * beneath us (pagelock doesn't help until the page is in pagecache).
765 error = shmem_add_to_page_cache(*pagep, mapping, index,
767 if (error != -ENOMEM) {
769 * Truncation and eviction use free_swap_and_cache(), which
770 * only does trylock page: if we raced, best clean up here.
772 delete_from_swap_cache(*pagep);
773 set_page_dirty(*pagep);
775 spin_lock(&info->lock);
777 spin_unlock(&info->lock);
785 * Search through swapped inodes to find and replace swap by page.
787 int shmem_unuse(swp_entry_t swap, struct page *page)
789 struct list_head *this, *next;
790 struct shmem_inode_info *info;
791 struct mem_cgroup *memcg;
795 * There's a faint possibility that swap page was replaced before
796 * caller locked it: caller will come back later with the right page.
798 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
802 * Charge page using GFP_KERNEL while we can wait, before taking
803 * the shmem_swaplist_mutex which might hold up shmem_writepage().
804 * Charged back to the user (not to caller) when swap account is used.
806 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
810 /* No radix_tree_preload: swap entry keeps a place for page in tree */
813 mutex_lock(&shmem_swaplist_mutex);
814 list_for_each_safe(this, next, &shmem_swaplist) {
815 info = list_entry(this, struct shmem_inode_info, swaplist);
817 error = shmem_unuse_inode(info, swap, &page);
819 list_del_init(&info->swaplist);
821 if (error != -EAGAIN)
823 /* found nothing in this: move on to search the next */
825 mutex_unlock(&shmem_swaplist_mutex);
828 if (error != -ENOMEM)
830 mem_cgroup_cancel_charge(page, memcg, false);
832 mem_cgroup_commit_charge(page, memcg, true, false);
840 * Move the page from the page cache to the swap cache.
842 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
844 struct shmem_inode_info *info;
845 struct address_space *mapping;
850 BUG_ON(!PageLocked(page));
851 mapping = page->mapping;
853 inode = mapping->host;
854 info = SHMEM_I(inode);
855 if (info->flags & VM_LOCKED)
857 if (!total_swap_pages)
861 * Our capabilities prevent regular writeback or sync from ever calling
862 * shmem_writepage; but a stacking filesystem might use ->writepage of
863 * its underlying filesystem, in which case tmpfs should write out to
864 * swap only in response to memory pressure, and not for the writeback
867 if (!wbc->for_reclaim) {
868 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
873 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
874 * value into swapfile.c, the only way we can correctly account for a
875 * fallocated page arriving here is now to initialize it and write it.
877 * That's okay for a page already fallocated earlier, but if we have
878 * not yet completed the fallocation, then (a) we want to keep track
879 * of this page in case we have to undo it, and (b) it may not be a
880 * good idea to continue anyway, once we're pushing into swap. So
881 * reactivate the page, and let shmem_fallocate() quit when too many.
883 if (!PageUptodate(page)) {
884 if (inode->i_private) {
885 struct shmem_falloc *shmem_falloc;
886 spin_lock(&inode->i_lock);
887 shmem_falloc = inode->i_private;
889 !shmem_falloc->waitq &&
890 index >= shmem_falloc->start &&
891 index < shmem_falloc->next)
892 shmem_falloc->nr_unswapped++;
895 spin_unlock(&inode->i_lock);
899 clear_highpage(page);
900 flush_dcache_page(page);
901 SetPageUptodate(page);
904 swap = get_swap_page();
908 if (mem_cgroup_try_charge_swap(page, swap))
912 * Add inode to shmem_unuse()'s list of swapped-out inodes,
913 * if it's not already there. Do it now before the page is
914 * moved to swap cache, when its pagelock no longer protects
915 * the inode from eviction. But don't unlock the mutex until
916 * we've incremented swapped, because shmem_unuse_inode() will
917 * prune a !swapped inode from the swaplist under this mutex.
919 mutex_lock(&shmem_swaplist_mutex);
920 if (list_empty(&info->swaplist))
921 list_add_tail(&info->swaplist, &shmem_swaplist);
923 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
924 spin_lock(&info->lock);
925 shmem_recalc_inode(inode);
927 spin_unlock(&info->lock);
929 swap_shmem_alloc(swap);
930 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
932 mutex_unlock(&shmem_swaplist_mutex);
933 BUG_ON(page_mapped(page));
934 swap_writepage(page, wbc);
938 mutex_unlock(&shmem_swaplist_mutex);
940 swapcache_free(swap);
942 set_page_dirty(page);
943 if (wbc->for_reclaim)
944 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
949 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
950 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 if (!mpol || mpol->mode == MPOL_DEFAULT)
955 return; /* show nothing */
957 mpol_to_str(buffer, sizeof(buffer), mpol);
959 seq_printf(seq, ",mpol=%s", buffer);
962 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
964 struct mempolicy *mpol = NULL;
966 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
969 spin_unlock(&sbinfo->stat_lock);
973 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
974 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
981 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
983 #define vm_policy vm_private_data
986 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
987 struct shmem_inode_info *info, pgoff_t index)
989 struct vm_area_struct pvma;
992 /* Create a pseudo vma that just contains the policy */
994 /* Bias interleave by inode number to distribute better across nodes */
995 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
997 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
999 page = swapin_readahead(swap, gfp, &pvma, 0);
1001 /* Drop reference taken by mpol_shared_policy_lookup() */
1002 mpol_cond_put(pvma.vm_policy);
1007 static struct page *shmem_alloc_page(gfp_t gfp,
1008 struct shmem_inode_info *info, pgoff_t index)
1010 struct vm_area_struct pvma;
1013 /* Create a pseudo vma that just contains the policy */
1015 /* Bias interleave by inode number to distribute better across nodes */
1016 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1018 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1020 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1022 __SetPageLocked(page);
1023 __SetPageSwapBacked(page);
1026 /* Drop reference taken by mpol_shared_policy_lookup() */
1027 mpol_cond_put(pvma.vm_policy);
1033 * When a page is moved from swapcache to shmem filecache (either by the
1034 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1035 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1036 * ignorance of the mapping it belongs to. If that mapping has special
1037 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1038 * we may need to copy to a suitable page before moving to filecache.
1040 * In a future release, this may well be extended to respect cpuset and
1041 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1042 * but for now it is a simple matter of zone.
1044 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1046 return page_zonenum(page) > gfp_zone(gfp);
1049 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1050 struct shmem_inode_info *info, pgoff_t index)
1052 struct page *oldpage, *newpage;
1053 struct address_space *swap_mapping;
1058 swap_index = page_private(oldpage);
1059 swap_mapping = page_mapping(oldpage);
1062 * We have arrived here because our zones are constrained, so don't
1063 * limit chance of success by further cpuset and node constraints.
1065 gfp &= ~GFP_CONSTRAINT_MASK;
1066 newpage = shmem_alloc_page(gfp, info, index);
1071 copy_highpage(newpage, oldpage);
1072 flush_dcache_page(newpage);
1074 SetPageUptodate(newpage);
1075 set_page_private(newpage, swap_index);
1076 SetPageSwapCache(newpage);
1079 * Our caller will very soon move newpage out of swapcache, but it's
1080 * a nice clean interface for us to replace oldpage by newpage there.
1082 spin_lock_irq(&swap_mapping->tree_lock);
1083 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1086 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1087 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1089 spin_unlock_irq(&swap_mapping->tree_lock);
1091 if (unlikely(error)) {
1093 * Is this possible? I think not, now that our callers check
1094 * both PageSwapCache and page_private after getting page lock;
1095 * but be defensive. Reverse old to newpage for clear and free.
1099 mem_cgroup_migrate(oldpage, newpage);
1100 lru_cache_add_anon(newpage);
1104 ClearPageSwapCache(oldpage);
1105 set_page_private(oldpage, 0);
1107 unlock_page(oldpage);
1114 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1116 * If we allocate a new one we do not mark it dirty. That's up to the
1117 * vm. If we swap it in we mark it dirty since we also free the swap
1118 * entry since a page cannot live in both the swap and page cache
1120 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1121 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1123 struct address_space *mapping = inode->i_mapping;
1124 struct shmem_inode_info *info;
1125 struct shmem_sb_info *sbinfo;
1126 struct mem_cgroup *memcg;
1133 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1137 page = find_lock_entry(mapping, index);
1138 if (radix_tree_exceptional_entry(page)) {
1139 swap = radix_to_swp_entry(page);
1143 if (sgp <= SGP_CACHE &&
1144 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1149 if (page && sgp == SGP_WRITE)
1150 mark_page_accessed(page);
1152 /* fallocated page? */
1153 if (page && !PageUptodate(page)) {
1154 if (sgp != SGP_READ)
1160 if (page || (sgp == SGP_READ && !swap.val)) {
1166 * Fast cache lookup did not find it:
1167 * bring it back from swap or allocate.
1169 info = SHMEM_I(inode);
1170 sbinfo = SHMEM_SB(inode->i_sb);
1173 /* Look it up and read it in.. */
1174 page = lookup_swap_cache(swap);
1176 /* here we actually do the io */
1178 *fault_type |= VM_FAULT_MAJOR;
1179 page = shmem_swapin(swap, gfp, info, index);
1186 /* We have to do this with page locked to prevent races */
1188 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1189 !shmem_confirm_swap(mapping, index, swap)) {
1190 error = -EEXIST; /* try again */
1193 if (!PageUptodate(page)) {
1197 wait_on_page_writeback(page);
1199 if (shmem_should_replace_page(page, gfp)) {
1200 error = shmem_replace_page(&page, gfp, info, index);
1205 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1208 error = shmem_add_to_page_cache(page, mapping, index,
1209 swp_to_radix_entry(swap));
1211 * We already confirmed swap under page lock, and make
1212 * no memory allocation here, so usually no possibility
1213 * of error; but free_swap_and_cache() only trylocks a
1214 * page, so it is just possible that the entry has been
1215 * truncated or holepunched since swap was confirmed.
1216 * shmem_undo_range() will have done some of the
1217 * unaccounting, now delete_from_swap_cache() will do
1219 * Reset swap.val? No, leave it so "failed" goes back to
1220 * "repeat": reading a hole and writing should succeed.
1223 mem_cgroup_cancel_charge(page, memcg, false);
1224 delete_from_swap_cache(page);
1230 mem_cgroup_commit_charge(page, memcg, true, false);
1232 spin_lock(&info->lock);
1234 shmem_recalc_inode(inode);
1235 spin_unlock(&info->lock);
1237 if (sgp == SGP_WRITE)
1238 mark_page_accessed(page);
1240 delete_from_swap_cache(page);
1241 set_page_dirty(page);
1245 if (shmem_acct_block(info->flags)) {
1249 if (sbinfo->max_blocks) {
1250 if (percpu_counter_compare(&sbinfo->used_blocks,
1251 sbinfo->max_blocks) >= 0) {
1255 percpu_counter_inc(&sbinfo->used_blocks);
1258 page = shmem_alloc_page(gfp, info, index);
1263 if (sgp == SGP_WRITE)
1264 __SetPageReferenced(page);
1266 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1270 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1272 error = shmem_add_to_page_cache(page, mapping, index,
1274 radix_tree_preload_end();
1277 mem_cgroup_cancel_charge(page, memcg, false);
1280 mem_cgroup_commit_charge(page, memcg, false, false);
1281 lru_cache_add_anon(page);
1283 spin_lock(&info->lock);
1285 inode->i_blocks += BLOCKS_PER_PAGE;
1286 shmem_recalc_inode(inode);
1287 spin_unlock(&info->lock);
1291 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1293 if (sgp == SGP_FALLOC)
1297 * Let SGP_WRITE caller clear ends if write does not fill page;
1298 * but SGP_FALLOC on a page fallocated earlier must initialize
1299 * it now, lest undo on failure cancel our earlier guarantee.
1301 if (sgp != SGP_WRITE) {
1302 clear_highpage(page);
1303 flush_dcache_page(page);
1304 SetPageUptodate(page);
1308 /* Perhaps the file has been truncated since we checked */
1309 if (sgp <= SGP_CACHE &&
1310 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1312 ClearPageDirty(page);
1313 delete_from_page_cache(page);
1314 spin_lock(&info->lock);
1315 shmem_recalc_inode(inode);
1316 spin_unlock(&info->lock);
1328 if (sbinfo->max_blocks)
1329 percpu_counter_add(&sbinfo->used_blocks, -1);
1331 shmem_unacct_blocks(info->flags, 1);
1333 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1340 if (error == -ENOSPC && !once++) {
1341 info = SHMEM_I(inode);
1342 spin_lock(&info->lock);
1343 shmem_recalc_inode(inode);
1344 spin_unlock(&info->lock);
1347 if (error == -EEXIST) /* from above or from radix_tree_insert */
1352 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1354 struct inode *inode = file_inode(vma->vm_file);
1356 int ret = VM_FAULT_LOCKED;
1359 * Trinity finds that probing a hole which tmpfs is punching can
1360 * prevent the hole-punch from ever completing: which in turn
1361 * locks writers out with its hold on i_mutex. So refrain from
1362 * faulting pages into the hole while it's being punched. Although
1363 * shmem_undo_range() does remove the additions, it may be unable to
1364 * keep up, as each new page needs its own unmap_mapping_range() call,
1365 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1367 * It does not matter if we sometimes reach this check just before the
1368 * hole-punch begins, so that one fault then races with the punch:
1369 * we just need to make racing faults a rare case.
1371 * The implementation below would be much simpler if we just used a
1372 * standard mutex or completion: but we cannot take i_mutex in fault,
1373 * and bloating every shmem inode for this unlikely case would be sad.
1375 if (unlikely(inode->i_private)) {
1376 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1381 shmem_falloc->waitq &&
1382 vmf->pgoff >= shmem_falloc->start &&
1383 vmf->pgoff < shmem_falloc->next) {
1384 wait_queue_head_t *shmem_falloc_waitq;
1385 DEFINE_WAIT(shmem_fault_wait);
1387 ret = VM_FAULT_NOPAGE;
1388 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1389 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1390 /* It's polite to up mmap_sem if we can */
1391 up_read(&vma->vm_mm->mmap_sem);
1392 ret = VM_FAULT_RETRY;
1395 shmem_falloc_waitq = shmem_falloc->waitq;
1396 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1397 TASK_UNINTERRUPTIBLE);
1398 spin_unlock(&inode->i_lock);
1402 * shmem_falloc_waitq points into the shmem_fallocate()
1403 * stack of the hole-punching task: shmem_falloc_waitq
1404 * is usually invalid by the time we reach here, but
1405 * finish_wait() does not dereference it in that case;
1406 * though i_lock needed lest racing with wake_up_all().
1408 spin_lock(&inode->i_lock);
1409 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1410 spin_unlock(&inode->i_lock);
1413 spin_unlock(&inode->i_lock);
1416 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1418 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1420 if (ret & VM_FAULT_MAJOR) {
1421 count_vm_event(PGMAJFAULT);
1422 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1428 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1430 struct inode *inode = file_inode(vma->vm_file);
1431 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1434 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1437 struct inode *inode = file_inode(vma->vm_file);
1440 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1441 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1445 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1447 struct inode *inode = file_inode(file);
1448 struct shmem_inode_info *info = SHMEM_I(inode);
1449 int retval = -ENOMEM;
1451 spin_lock(&info->lock);
1452 if (lock && !(info->flags & VM_LOCKED)) {
1453 if (!user_shm_lock(inode->i_size, user))
1455 info->flags |= VM_LOCKED;
1456 mapping_set_unevictable(file->f_mapping);
1458 if (!lock && (info->flags & VM_LOCKED) && user) {
1459 user_shm_unlock(inode->i_size, user);
1460 info->flags &= ~VM_LOCKED;
1461 mapping_clear_unevictable(file->f_mapping);
1466 spin_unlock(&info->lock);
1470 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1472 file_accessed(file);
1473 vma->vm_ops = &shmem_vm_ops;
1477 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1478 umode_t mode, dev_t dev, unsigned long flags)
1480 struct inode *inode;
1481 struct shmem_inode_info *info;
1482 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1484 if (shmem_reserve_inode(sb))
1487 inode = new_inode(sb);
1489 inode->i_ino = get_next_ino();
1490 inode_init_owner(inode, dir, mode);
1491 inode->i_blocks = 0;
1492 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1493 inode->i_generation = get_seconds();
1494 info = SHMEM_I(inode);
1495 memset(info, 0, (char *)inode - (char *)info);
1496 spin_lock_init(&info->lock);
1497 info->seals = F_SEAL_SEAL;
1498 info->flags = flags & VM_NORESERVE;
1499 INIT_LIST_HEAD(&info->swaplist);
1500 simple_xattrs_init(&info->xattrs);
1501 cache_no_acl(inode);
1503 switch (mode & S_IFMT) {
1505 inode->i_op = &shmem_special_inode_operations;
1506 init_special_inode(inode, mode, dev);
1509 inode->i_mapping->a_ops = &shmem_aops;
1510 inode->i_op = &shmem_inode_operations;
1511 inode->i_fop = &shmem_file_operations;
1512 mpol_shared_policy_init(&info->policy,
1513 shmem_get_sbmpol(sbinfo));
1517 /* Some things misbehave if size == 0 on a directory */
1518 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1519 inode->i_op = &shmem_dir_inode_operations;
1520 inode->i_fop = &simple_dir_operations;
1524 * Must not load anything in the rbtree,
1525 * mpol_free_shared_policy will not be called.
1527 mpol_shared_policy_init(&info->policy, NULL);
1531 shmem_free_inode(sb);
1535 bool shmem_mapping(struct address_space *mapping)
1540 return mapping->host->i_sb->s_op == &shmem_ops;
1544 static const struct inode_operations shmem_symlink_inode_operations;
1545 static const struct inode_operations shmem_short_symlink_operations;
1547 #ifdef CONFIG_TMPFS_XATTR
1548 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1550 #define shmem_initxattrs NULL
1554 shmem_write_begin(struct file *file, struct address_space *mapping,
1555 loff_t pos, unsigned len, unsigned flags,
1556 struct page **pagep, void **fsdata)
1558 struct inode *inode = mapping->host;
1559 struct shmem_inode_info *info = SHMEM_I(inode);
1560 pgoff_t index = pos >> PAGE_SHIFT;
1562 /* i_mutex is held by caller */
1563 if (unlikely(info->seals)) {
1564 if (info->seals & F_SEAL_WRITE)
1566 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1570 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1574 shmem_write_end(struct file *file, struct address_space *mapping,
1575 loff_t pos, unsigned len, unsigned copied,
1576 struct page *page, void *fsdata)
1578 struct inode *inode = mapping->host;
1580 if (pos + copied > inode->i_size)
1581 i_size_write(inode, pos + copied);
1583 if (!PageUptodate(page)) {
1584 if (copied < PAGE_SIZE) {
1585 unsigned from = pos & (PAGE_SIZE - 1);
1586 zero_user_segments(page, 0, from,
1587 from + copied, PAGE_SIZE);
1589 SetPageUptodate(page);
1591 set_page_dirty(page);
1598 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1600 struct file *file = iocb->ki_filp;
1601 struct inode *inode = file_inode(file);
1602 struct address_space *mapping = inode->i_mapping;
1604 unsigned long offset;
1605 enum sgp_type sgp = SGP_READ;
1608 loff_t *ppos = &iocb->ki_pos;
1611 * Might this read be for a stacking filesystem? Then when reading
1612 * holes of a sparse file, we actually need to allocate those pages,
1613 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1615 if (!iter_is_iovec(to))
1618 index = *ppos >> PAGE_SHIFT;
1619 offset = *ppos & ~PAGE_MASK;
1622 struct page *page = NULL;
1624 unsigned long nr, ret;
1625 loff_t i_size = i_size_read(inode);
1627 end_index = i_size >> PAGE_SHIFT;
1628 if (index > end_index)
1630 if (index == end_index) {
1631 nr = i_size & ~PAGE_MASK;
1636 error = shmem_getpage(inode, index, &page, sgp, NULL);
1638 if (error == -EINVAL)
1643 if (sgp == SGP_CACHE)
1644 set_page_dirty(page);
1649 * We must evaluate after, since reads (unlike writes)
1650 * are called without i_mutex protection against truncate
1653 i_size = i_size_read(inode);
1654 end_index = i_size >> PAGE_SHIFT;
1655 if (index == end_index) {
1656 nr = i_size & ~PAGE_MASK;
1667 * If users can be writing to this page using arbitrary
1668 * virtual addresses, take care about potential aliasing
1669 * before reading the page on the kernel side.
1671 if (mapping_writably_mapped(mapping))
1672 flush_dcache_page(page);
1674 * Mark the page accessed if we read the beginning.
1677 mark_page_accessed(page);
1679 page = ZERO_PAGE(0);
1684 * Ok, we have the page, and it's up-to-date, so
1685 * now we can copy it to user space...
1687 ret = copy_page_to_iter(page, offset, nr, to);
1690 index += offset >> PAGE_SHIFT;
1691 offset &= ~PAGE_MASK;
1694 if (!iov_iter_count(to))
1703 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1704 file_accessed(file);
1705 return retval ? retval : error;
1708 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1709 struct pipe_inode_info *pipe, size_t len,
1712 struct address_space *mapping = in->f_mapping;
1713 struct inode *inode = mapping->host;
1714 unsigned int loff, nr_pages, req_pages;
1715 struct page *pages[PIPE_DEF_BUFFERS];
1716 struct partial_page partial[PIPE_DEF_BUFFERS];
1718 pgoff_t index, end_index;
1721 struct splice_pipe_desc spd = {
1724 .nr_pages_max = PIPE_DEF_BUFFERS,
1726 .ops = &page_cache_pipe_buf_ops,
1727 .spd_release = spd_release_page,
1730 isize = i_size_read(inode);
1731 if (unlikely(*ppos >= isize))
1734 left = isize - *ppos;
1735 if (unlikely(left < len))
1738 if (splice_grow_spd(pipe, &spd))
1741 index = *ppos >> PAGE_SHIFT;
1742 loff = *ppos & ~PAGE_MASK;
1743 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1744 nr_pages = min(req_pages, spd.nr_pages_max);
1746 spd.nr_pages = find_get_pages_contig(mapping, index,
1747 nr_pages, spd.pages);
1748 index += spd.nr_pages;
1751 while (spd.nr_pages < nr_pages) {
1752 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1756 spd.pages[spd.nr_pages++] = page;
1760 index = *ppos >> PAGE_SHIFT;
1761 nr_pages = spd.nr_pages;
1764 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1765 unsigned int this_len;
1770 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1771 page = spd.pages[page_nr];
1773 if (!PageUptodate(page) || page->mapping != mapping) {
1774 error = shmem_getpage(inode, index, &page,
1779 put_page(spd.pages[page_nr]);
1780 spd.pages[page_nr] = page;
1783 isize = i_size_read(inode);
1784 end_index = (isize - 1) >> PAGE_SHIFT;
1785 if (unlikely(!isize || index > end_index))
1788 if (end_index == index) {
1791 plen = ((isize - 1) & ~PAGE_MASK) + 1;
1795 this_len = min(this_len, plen - loff);
1799 spd.partial[page_nr].offset = loff;
1800 spd.partial[page_nr].len = this_len;
1807 while (page_nr < nr_pages)
1808 put_page(spd.pages[page_nr++]);
1811 error = splice_to_pipe(pipe, &spd);
1813 splice_shrink_spd(&spd);
1823 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1825 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1826 pgoff_t index, pgoff_t end, int whence)
1829 struct pagevec pvec;
1830 pgoff_t indices[PAGEVEC_SIZE];
1834 pagevec_init(&pvec, 0);
1835 pvec.nr = 1; /* start small: we may be there already */
1837 pvec.nr = find_get_entries(mapping, index,
1838 pvec.nr, pvec.pages, indices);
1840 if (whence == SEEK_DATA)
1844 for (i = 0; i < pvec.nr; i++, index++) {
1845 if (index < indices[i]) {
1846 if (whence == SEEK_HOLE) {
1852 page = pvec.pages[i];
1853 if (page && !radix_tree_exceptional_entry(page)) {
1854 if (!PageUptodate(page))
1858 (page && whence == SEEK_DATA) ||
1859 (!page && whence == SEEK_HOLE)) {
1864 pagevec_remove_exceptionals(&pvec);
1865 pagevec_release(&pvec);
1866 pvec.nr = PAGEVEC_SIZE;
1872 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1874 struct address_space *mapping = file->f_mapping;
1875 struct inode *inode = mapping->host;
1879 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1880 return generic_file_llseek_size(file, offset, whence,
1881 MAX_LFS_FILESIZE, i_size_read(inode));
1883 /* We're holding i_mutex so we can access i_size directly */
1887 else if (offset >= inode->i_size)
1890 start = offset >> PAGE_SHIFT;
1891 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1892 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1893 new_offset <<= PAGE_SHIFT;
1894 if (new_offset > offset) {
1895 if (new_offset < inode->i_size)
1896 offset = new_offset;
1897 else if (whence == SEEK_DATA)
1900 offset = inode->i_size;
1905 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1906 inode_unlock(inode);
1911 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1912 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1914 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1915 #define LAST_SCAN 4 /* about 150ms max */
1917 static void shmem_tag_pins(struct address_space *mapping)
1919 struct radix_tree_iter iter;
1928 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1929 page = radix_tree_deref_slot(slot);
1930 if (!page || radix_tree_exception(page)) {
1931 if (radix_tree_deref_retry(page)) {
1932 slot = radix_tree_iter_retry(&iter);
1935 } else if (page_count(page) - page_mapcount(page) > 1) {
1936 spin_lock_irq(&mapping->tree_lock);
1937 radix_tree_tag_set(&mapping->page_tree, iter.index,
1939 spin_unlock_irq(&mapping->tree_lock);
1942 if (need_resched()) {
1944 slot = radix_tree_iter_next(&iter);
1951 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1952 * via get_user_pages(), drivers might have some pending I/O without any active
1953 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1954 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1955 * them to be dropped.
1956 * The caller must guarantee that no new user will acquire writable references
1957 * to those pages to avoid races.
1959 static int shmem_wait_for_pins(struct address_space *mapping)
1961 struct radix_tree_iter iter;
1967 shmem_tag_pins(mapping);
1970 for (scan = 0; scan <= LAST_SCAN; scan++) {
1971 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1975 lru_add_drain_all();
1976 else if (schedule_timeout_killable((HZ << scan) / 200))
1981 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1982 start, SHMEM_TAG_PINNED) {
1984 page = radix_tree_deref_slot(slot);
1985 if (radix_tree_exception(page)) {
1986 if (radix_tree_deref_retry(page)) {
1987 slot = radix_tree_iter_retry(&iter);
1995 page_count(page) - page_mapcount(page) != 1) {
1996 if (scan < LAST_SCAN)
1997 goto continue_resched;
2000 * On the last scan, we clean up all those tags
2001 * we inserted; but make a note that we still
2002 * found pages pinned.
2007 spin_lock_irq(&mapping->tree_lock);
2008 radix_tree_tag_clear(&mapping->page_tree,
2009 iter.index, SHMEM_TAG_PINNED);
2010 spin_unlock_irq(&mapping->tree_lock);
2012 if (need_resched()) {
2014 slot = radix_tree_iter_next(&iter);
2023 #define F_ALL_SEALS (F_SEAL_SEAL | \
2028 int shmem_add_seals(struct file *file, unsigned int seals)
2030 struct inode *inode = file_inode(file);
2031 struct shmem_inode_info *info = SHMEM_I(inode);
2036 * Sealing allows multiple parties to share a shmem-file but restrict
2037 * access to a specific subset of file operations. Seals can only be
2038 * added, but never removed. This way, mutually untrusted parties can
2039 * share common memory regions with a well-defined policy. A malicious
2040 * peer can thus never perform unwanted operations on a shared object.
2042 * Seals are only supported on special shmem-files and always affect
2043 * the whole underlying inode. Once a seal is set, it may prevent some
2044 * kinds of access to the file. Currently, the following seals are
2046 * SEAL_SEAL: Prevent further seals from being set on this file
2047 * SEAL_SHRINK: Prevent the file from shrinking
2048 * SEAL_GROW: Prevent the file from growing
2049 * SEAL_WRITE: Prevent write access to the file
2051 * As we don't require any trust relationship between two parties, we
2052 * must prevent seals from being removed. Therefore, sealing a file
2053 * only adds a given set of seals to the file, it never touches
2054 * existing seals. Furthermore, the "setting seals"-operation can be
2055 * sealed itself, which basically prevents any further seal from being
2058 * Semantics of sealing are only defined on volatile files. Only
2059 * anonymous shmem files support sealing. More importantly, seals are
2060 * never written to disk. Therefore, there's no plan to support it on
2064 if (file->f_op != &shmem_file_operations)
2066 if (!(file->f_mode & FMODE_WRITE))
2068 if (seals & ~(unsigned int)F_ALL_SEALS)
2073 if (info->seals & F_SEAL_SEAL) {
2078 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2079 error = mapping_deny_writable(file->f_mapping);
2083 error = shmem_wait_for_pins(file->f_mapping);
2085 mapping_allow_writable(file->f_mapping);
2090 info->seals |= seals;
2094 inode_unlock(inode);
2097 EXPORT_SYMBOL_GPL(shmem_add_seals);
2099 int shmem_get_seals(struct file *file)
2101 if (file->f_op != &shmem_file_operations)
2104 return SHMEM_I(file_inode(file))->seals;
2106 EXPORT_SYMBOL_GPL(shmem_get_seals);
2108 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2114 /* disallow upper 32bit */
2118 error = shmem_add_seals(file, arg);
2121 error = shmem_get_seals(file);
2131 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2134 struct inode *inode = file_inode(file);
2135 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2136 struct shmem_inode_info *info = SHMEM_I(inode);
2137 struct shmem_falloc shmem_falloc;
2138 pgoff_t start, index, end;
2141 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2146 if (mode & FALLOC_FL_PUNCH_HOLE) {
2147 struct address_space *mapping = file->f_mapping;
2148 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2149 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2150 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2152 /* protected by i_mutex */
2153 if (info->seals & F_SEAL_WRITE) {
2158 shmem_falloc.waitq = &shmem_falloc_waitq;
2159 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2160 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2161 spin_lock(&inode->i_lock);
2162 inode->i_private = &shmem_falloc;
2163 spin_unlock(&inode->i_lock);
2165 if ((u64)unmap_end > (u64)unmap_start)
2166 unmap_mapping_range(mapping, unmap_start,
2167 1 + unmap_end - unmap_start, 0);
2168 shmem_truncate_range(inode, offset, offset + len - 1);
2169 /* No need to unmap again: hole-punching leaves COWed pages */
2171 spin_lock(&inode->i_lock);
2172 inode->i_private = NULL;
2173 wake_up_all(&shmem_falloc_waitq);
2174 spin_unlock(&inode->i_lock);
2179 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2180 error = inode_newsize_ok(inode, offset + len);
2184 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2189 start = offset >> PAGE_SHIFT;
2190 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2191 /* Try to avoid a swapstorm if len is impossible to satisfy */
2192 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2197 shmem_falloc.waitq = NULL;
2198 shmem_falloc.start = start;
2199 shmem_falloc.next = start;
2200 shmem_falloc.nr_falloced = 0;
2201 shmem_falloc.nr_unswapped = 0;
2202 spin_lock(&inode->i_lock);
2203 inode->i_private = &shmem_falloc;
2204 spin_unlock(&inode->i_lock);
2206 for (index = start; index < end; index++) {
2210 * Good, the fallocate(2) manpage permits EINTR: we may have
2211 * been interrupted because we are using up too much memory.
2213 if (signal_pending(current))
2215 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2218 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2221 /* Remove the !PageUptodate pages we added */
2222 shmem_undo_range(inode,
2223 (loff_t)start << PAGE_SHIFT,
2224 (loff_t)index << PAGE_SHIFT, true);
2229 * Inform shmem_writepage() how far we have reached.
2230 * No need for lock or barrier: we have the page lock.
2232 shmem_falloc.next++;
2233 if (!PageUptodate(page))
2234 shmem_falloc.nr_falloced++;
2237 * If !PageUptodate, leave it that way so that freeable pages
2238 * can be recognized if we need to rollback on error later.
2239 * But set_page_dirty so that memory pressure will swap rather
2240 * than free the pages we are allocating (and SGP_CACHE pages
2241 * might still be clean: we now need to mark those dirty too).
2243 set_page_dirty(page);
2249 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2250 i_size_write(inode, offset + len);
2251 inode->i_ctime = CURRENT_TIME;
2253 spin_lock(&inode->i_lock);
2254 inode->i_private = NULL;
2255 spin_unlock(&inode->i_lock);
2257 inode_unlock(inode);
2261 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2263 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2265 buf->f_type = TMPFS_MAGIC;
2266 buf->f_bsize = PAGE_SIZE;
2267 buf->f_namelen = NAME_MAX;
2268 if (sbinfo->max_blocks) {
2269 buf->f_blocks = sbinfo->max_blocks;
2271 buf->f_bfree = sbinfo->max_blocks -
2272 percpu_counter_sum(&sbinfo->used_blocks);
2274 if (sbinfo->max_inodes) {
2275 buf->f_files = sbinfo->max_inodes;
2276 buf->f_ffree = sbinfo->free_inodes;
2278 /* else leave those fields 0 like simple_statfs */
2283 * File creation. Allocate an inode, and we're done..
2286 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2288 struct inode *inode;
2289 int error = -ENOSPC;
2291 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2293 error = simple_acl_create(dir, inode);
2296 error = security_inode_init_security(inode, dir,
2298 shmem_initxattrs, NULL);
2299 if (error && error != -EOPNOTSUPP)
2303 dir->i_size += BOGO_DIRENT_SIZE;
2304 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2305 d_instantiate(dentry, inode);
2306 dget(dentry); /* Extra count - pin the dentry in core */
2315 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2317 struct inode *inode;
2318 int error = -ENOSPC;
2320 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2322 error = security_inode_init_security(inode, dir,
2324 shmem_initxattrs, NULL);
2325 if (error && error != -EOPNOTSUPP)
2327 error = simple_acl_create(dir, inode);
2330 d_tmpfile(dentry, inode);
2338 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2342 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2348 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2351 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2357 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2359 struct inode *inode = d_inode(old_dentry);
2363 * No ordinary (disk based) filesystem counts links as inodes;
2364 * but each new link needs a new dentry, pinning lowmem, and
2365 * tmpfs dentries cannot be pruned until they are unlinked.
2367 ret = shmem_reserve_inode(inode->i_sb);
2371 dir->i_size += BOGO_DIRENT_SIZE;
2372 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2374 ihold(inode); /* New dentry reference */
2375 dget(dentry); /* Extra pinning count for the created dentry */
2376 d_instantiate(dentry, inode);
2381 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2383 struct inode *inode = d_inode(dentry);
2385 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2386 shmem_free_inode(inode->i_sb);
2388 dir->i_size -= BOGO_DIRENT_SIZE;
2389 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2391 dput(dentry); /* Undo the count from "create" - this does all the work */
2395 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2397 if (!simple_empty(dentry))
2400 drop_nlink(d_inode(dentry));
2402 return shmem_unlink(dir, dentry);
2405 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2407 bool old_is_dir = d_is_dir(old_dentry);
2408 bool new_is_dir = d_is_dir(new_dentry);
2410 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2412 drop_nlink(old_dir);
2415 drop_nlink(new_dir);
2419 old_dir->i_ctime = old_dir->i_mtime =
2420 new_dir->i_ctime = new_dir->i_mtime =
2421 d_inode(old_dentry)->i_ctime =
2422 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2427 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2429 struct dentry *whiteout;
2432 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2436 error = shmem_mknod(old_dir, whiteout,
2437 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2443 * Cheat and hash the whiteout while the old dentry is still in
2444 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2446 * d_lookup() will consistently find one of them at this point,
2447 * not sure which one, but that isn't even important.
2454 * The VFS layer already does all the dentry stuff for rename,
2455 * we just have to decrement the usage count for the target if
2456 * it exists so that the VFS layer correctly free's it when it
2459 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2461 struct inode *inode = d_inode(old_dentry);
2462 int they_are_dirs = S_ISDIR(inode->i_mode);
2464 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2467 if (flags & RENAME_EXCHANGE)
2468 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2470 if (!simple_empty(new_dentry))
2473 if (flags & RENAME_WHITEOUT) {
2476 error = shmem_whiteout(old_dir, old_dentry);
2481 if (d_really_is_positive(new_dentry)) {
2482 (void) shmem_unlink(new_dir, new_dentry);
2483 if (they_are_dirs) {
2484 drop_nlink(d_inode(new_dentry));
2485 drop_nlink(old_dir);
2487 } else if (they_are_dirs) {
2488 drop_nlink(old_dir);
2492 old_dir->i_size -= BOGO_DIRENT_SIZE;
2493 new_dir->i_size += BOGO_DIRENT_SIZE;
2494 old_dir->i_ctime = old_dir->i_mtime =
2495 new_dir->i_ctime = new_dir->i_mtime =
2496 inode->i_ctime = CURRENT_TIME;
2500 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2504 struct inode *inode;
2506 struct shmem_inode_info *info;
2508 len = strlen(symname) + 1;
2509 if (len > PAGE_SIZE)
2510 return -ENAMETOOLONG;
2512 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2516 error = security_inode_init_security(inode, dir, &dentry->d_name,
2517 shmem_initxattrs, NULL);
2519 if (error != -EOPNOTSUPP) {
2526 info = SHMEM_I(inode);
2527 inode->i_size = len-1;
2528 if (len <= SHORT_SYMLINK_LEN) {
2529 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2530 if (!inode->i_link) {
2534 inode->i_op = &shmem_short_symlink_operations;
2536 inode_nohighmem(inode);
2537 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2542 inode->i_mapping->a_ops = &shmem_aops;
2543 inode->i_op = &shmem_symlink_inode_operations;
2544 memcpy(page_address(page), symname, len);
2545 SetPageUptodate(page);
2546 set_page_dirty(page);
2550 dir->i_size += BOGO_DIRENT_SIZE;
2551 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2552 d_instantiate(dentry, inode);
2557 static void shmem_put_link(void *arg)
2559 mark_page_accessed(arg);
2563 static const char *shmem_get_link(struct dentry *dentry,
2564 struct inode *inode,
2565 struct delayed_call *done)
2567 struct page *page = NULL;
2570 page = find_get_page(inode->i_mapping, 0);
2572 return ERR_PTR(-ECHILD);
2573 if (!PageUptodate(page)) {
2575 return ERR_PTR(-ECHILD);
2578 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2580 return ERR_PTR(error);
2583 set_delayed_call(done, shmem_put_link, page);
2584 return page_address(page);
2587 #ifdef CONFIG_TMPFS_XATTR
2589 * Superblocks without xattr inode operations may get some security.* xattr
2590 * support from the LSM "for free". As soon as we have any other xattrs
2591 * like ACLs, we also need to implement the security.* handlers at
2592 * filesystem level, though.
2596 * Callback for security_inode_init_security() for acquiring xattrs.
2598 static int shmem_initxattrs(struct inode *inode,
2599 const struct xattr *xattr_array,
2602 struct shmem_inode_info *info = SHMEM_I(inode);
2603 const struct xattr *xattr;
2604 struct simple_xattr *new_xattr;
2607 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2608 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2612 len = strlen(xattr->name) + 1;
2613 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2615 if (!new_xattr->name) {
2620 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2621 XATTR_SECURITY_PREFIX_LEN);
2622 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2625 simple_xattr_list_add(&info->xattrs, new_xattr);
2631 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2632 struct dentry *unused, struct inode *inode,
2633 const char *name, void *buffer, size_t size)
2635 struct shmem_inode_info *info = SHMEM_I(inode);
2637 name = xattr_full_name(handler, name);
2638 return simple_xattr_get(&info->xattrs, name, buffer, size);
2641 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2642 struct dentry *dentry, const char *name,
2643 const void *value, size_t size, int flags)
2645 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2647 name = xattr_full_name(handler, name);
2648 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2651 static const struct xattr_handler shmem_security_xattr_handler = {
2652 .prefix = XATTR_SECURITY_PREFIX,
2653 .get = shmem_xattr_handler_get,
2654 .set = shmem_xattr_handler_set,
2657 static const struct xattr_handler shmem_trusted_xattr_handler = {
2658 .prefix = XATTR_TRUSTED_PREFIX,
2659 .get = shmem_xattr_handler_get,
2660 .set = shmem_xattr_handler_set,
2663 static const struct xattr_handler *shmem_xattr_handlers[] = {
2664 #ifdef CONFIG_TMPFS_POSIX_ACL
2665 &posix_acl_access_xattr_handler,
2666 &posix_acl_default_xattr_handler,
2668 &shmem_security_xattr_handler,
2669 &shmem_trusted_xattr_handler,
2673 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2675 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2676 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2678 #endif /* CONFIG_TMPFS_XATTR */
2680 static const struct inode_operations shmem_short_symlink_operations = {
2681 .readlink = generic_readlink,
2682 .get_link = simple_get_link,
2683 #ifdef CONFIG_TMPFS_XATTR
2684 .setxattr = generic_setxattr,
2685 .getxattr = generic_getxattr,
2686 .listxattr = shmem_listxattr,
2687 .removexattr = generic_removexattr,
2691 static const struct inode_operations shmem_symlink_inode_operations = {
2692 .readlink = generic_readlink,
2693 .get_link = shmem_get_link,
2694 #ifdef CONFIG_TMPFS_XATTR
2695 .setxattr = generic_setxattr,
2696 .getxattr = generic_getxattr,
2697 .listxattr = shmem_listxattr,
2698 .removexattr = generic_removexattr,
2702 static struct dentry *shmem_get_parent(struct dentry *child)
2704 return ERR_PTR(-ESTALE);
2707 static int shmem_match(struct inode *ino, void *vfh)
2711 inum = (inum << 32) | fh[1];
2712 return ino->i_ino == inum && fh[0] == ino->i_generation;
2715 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2716 struct fid *fid, int fh_len, int fh_type)
2718 struct inode *inode;
2719 struct dentry *dentry = NULL;
2726 inum = (inum << 32) | fid->raw[1];
2728 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2729 shmem_match, fid->raw);
2731 dentry = d_find_alias(inode);
2738 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2739 struct inode *parent)
2743 return FILEID_INVALID;
2746 if (inode_unhashed(inode)) {
2747 /* Unfortunately insert_inode_hash is not idempotent,
2748 * so as we hash inodes here rather than at creation
2749 * time, we need a lock to ensure we only try
2752 static DEFINE_SPINLOCK(lock);
2754 if (inode_unhashed(inode))
2755 __insert_inode_hash(inode,
2756 inode->i_ino + inode->i_generation);
2760 fh[0] = inode->i_generation;
2761 fh[1] = inode->i_ino;
2762 fh[2] = ((__u64)inode->i_ino) >> 32;
2768 static const struct export_operations shmem_export_ops = {
2769 .get_parent = shmem_get_parent,
2770 .encode_fh = shmem_encode_fh,
2771 .fh_to_dentry = shmem_fh_to_dentry,
2774 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2777 char *this_char, *value, *rest;
2778 struct mempolicy *mpol = NULL;
2782 while (options != NULL) {
2783 this_char = options;
2786 * NUL-terminate this option: unfortunately,
2787 * mount options form a comma-separated list,
2788 * but mpol's nodelist may also contain commas.
2790 options = strchr(options, ',');
2791 if (options == NULL)
2794 if (!isdigit(*options)) {
2801 if ((value = strchr(this_char,'=')) != NULL) {
2804 pr_err("tmpfs: No value for mount option '%s'\n",
2809 if (!strcmp(this_char,"size")) {
2810 unsigned long long size;
2811 size = memparse(value,&rest);
2813 size <<= PAGE_SHIFT;
2814 size *= totalram_pages;
2820 sbinfo->max_blocks =
2821 DIV_ROUND_UP(size, PAGE_SIZE);
2822 } else if (!strcmp(this_char,"nr_blocks")) {
2823 sbinfo->max_blocks = memparse(value, &rest);
2826 } else if (!strcmp(this_char,"nr_inodes")) {
2827 sbinfo->max_inodes = memparse(value, &rest);
2830 } else if (!strcmp(this_char,"mode")) {
2833 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2836 } else if (!strcmp(this_char,"uid")) {
2839 uid = simple_strtoul(value, &rest, 0);
2842 sbinfo->uid = make_kuid(current_user_ns(), uid);
2843 if (!uid_valid(sbinfo->uid))
2845 } else if (!strcmp(this_char,"gid")) {
2848 gid = simple_strtoul(value, &rest, 0);
2851 sbinfo->gid = make_kgid(current_user_ns(), gid);
2852 if (!gid_valid(sbinfo->gid))
2854 } else if (!strcmp(this_char,"mpol")) {
2857 if (mpol_parse_str(value, &mpol))
2860 pr_err("tmpfs: Bad mount option %s\n", this_char);
2864 sbinfo->mpol = mpol;
2868 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2876 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2878 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2879 struct shmem_sb_info config = *sbinfo;
2880 unsigned long inodes;
2881 int error = -EINVAL;
2884 if (shmem_parse_options(data, &config, true))
2887 spin_lock(&sbinfo->stat_lock);
2888 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2889 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2891 if (config.max_inodes < inodes)
2894 * Those tests disallow limited->unlimited while any are in use;
2895 * but we must separately disallow unlimited->limited, because
2896 * in that case we have no record of how much is already in use.
2898 if (config.max_blocks && !sbinfo->max_blocks)
2900 if (config.max_inodes && !sbinfo->max_inodes)
2904 sbinfo->max_blocks = config.max_blocks;
2905 sbinfo->max_inodes = config.max_inodes;
2906 sbinfo->free_inodes = config.max_inodes - inodes;
2909 * Preserve previous mempolicy unless mpol remount option was specified.
2912 mpol_put(sbinfo->mpol);
2913 sbinfo->mpol = config.mpol; /* transfers initial ref */
2916 spin_unlock(&sbinfo->stat_lock);
2920 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2922 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2924 if (sbinfo->max_blocks != shmem_default_max_blocks())
2925 seq_printf(seq, ",size=%luk",
2926 sbinfo->max_blocks << (PAGE_SHIFT - 10));
2927 if (sbinfo->max_inodes != shmem_default_max_inodes())
2928 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2929 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2930 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2931 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2932 seq_printf(seq, ",uid=%u",
2933 from_kuid_munged(&init_user_ns, sbinfo->uid));
2934 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2935 seq_printf(seq, ",gid=%u",
2936 from_kgid_munged(&init_user_ns, sbinfo->gid));
2937 shmem_show_mpol(seq, sbinfo->mpol);
2941 #define MFD_NAME_PREFIX "memfd:"
2942 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2943 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2945 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2947 SYSCALL_DEFINE2(memfd_create,
2948 const char __user *, uname,
2949 unsigned int, flags)
2951 struct shmem_inode_info *info;
2957 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2960 /* length includes terminating zero */
2961 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2964 if (len > MFD_NAME_MAX_LEN + 1)
2967 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2971 strcpy(name, MFD_NAME_PREFIX);
2972 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2977 /* terminating-zero may have changed after strnlen_user() returned */
2978 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2983 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2989 file = shmem_file_setup(name, 0, VM_NORESERVE);
2991 error = PTR_ERR(file);
2994 info = SHMEM_I(file_inode(file));
2995 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2996 file->f_flags |= O_RDWR | O_LARGEFILE;
2997 if (flags & MFD_ALLOW_SEALING)
2998 info->seals &= ~F_SEAL_SEAL;
3000 fd_install(fd, file);
3011 #endif /* CONFIG_TMPFS */
3013 static void shmem_put_super(struct super_block *sb)
3015 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3017 percpu_counter_destroy(&sbinfo->used_blocks);
3018 mpol_put(sbinfo->mpol);
3020 sb->s_fs_info = NULL;
3023 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3025 struct inode *inode;
3026 struct shmem_sb_info *sbinfo;
3029 /* Round up to L1_CACHE_BYTES to resist false sharing */
3030 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3031 L1_CACHE_BYTES), GFP_KERNEL);
3035 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3036 sbinfo->uid = current_fsuid();
3037 sbinfo->gid = current_fsgid();
3038 sb->s_fs_info = sbinfo;
3042 * Per default we only allow half of the physical ram per
3043 * tmpfs instance, limiting inodes to one per page of lowmem;
3044 * but the internal instance is left unlimited.
3046 if (!(sb->s_flags & MS_KERNMOUNT)) {
3047 sbinfo->max_blocks = shmem_default_max_blocks();
3048 sbinfo->max_inodes = shmem_default_max_inodes();
3049 if (shmem_parse_options(data, sbinfo, false)) {
3054 sb->s_flags |= MS_NOUSER;
3056 sb->s_export_op = &shmem_export_ops;
3057 sb->s_flags |= MS_NOSEC;
3059 sb->s_flags |= MS_NOUSER;
3062 spin_lock_init(&sbinfo->stat_lock);
3063 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3065 sbinfo->free_inodes = sbinfo->max_inodes;
3067 sb->s_maxbytes = MAX_LFS_FILESIZE;
3068 sb->s_blocksize = PAGE_SIZE;
3069 sb->s_blocksize_bits = PAGE_SHIFT;
3070 sb->s_magic = TMPFS_MAGIC;
3071 sb->s_op = &shmem_ops;
3072 sb->s_time_gran = 1;
3073 #ifdef CONFIG_TMPFS_XATTR
3074 sb->s_xattr = shmem_xattr_handlers;
3076 #ifdef CONFIG_TMPFS_POSIX_ACL
3077 sb->s_flags |= MS_POSIXACL;
3080 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3083 inode->i_uid = sbinfo->uid;
3084 inode->i_gid = sbinfo->gid;
3085 sb->s_root = d_make_root(inode);
3091 shmem_put_super(sb);
3095 static struct kmem_cache *shmem_inode_cachep;
3097 static struct inode *shmem_alloc_inode(struct super_block *sb)
3099 struct shmem_inode_info *info;
3100 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3103 return &info->vfs_inode;
3106 static void shmem_destroy_callback(struct rcu_head *head)
3108 struct inode *inode = container_of(head, struct inode, i_rcu);
3109 if (S_ISLNK(inode->i_mode))
3110 kfree(inode->i_link);
3111 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3114 static void shmem_destroy_inode(struct inode *inode)
3116 if (S_ISREG(inode->i_mode))
3117 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3118 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3121 static void shmem_init_inode(void *foo)
3123 struct shmem_inode_info *info = foo;
3124 inode_init_once(&info->vfs_inode);
3127 static int shmem_init_inodecache(void)
3129 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3130 sizeof(struct shmem_inode_info),
3131 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3135 static void shmem_destroy_inodecache(void)
3137 kmem_cache_destroy(shmem_inode_cachep);
3140 static const struct address_space_operations shmem_aops = {
3141 .writepage = shmem_writepage,
3142 .set_page_dirty = __set_page_dirty_no_writeback,
3144 .write_begin = shmem_write_begin,
3145 .write_end = shmem_write_end,
3147 #ifdef CONFIG_MIGRATION
3148 .migratepage = migrate_page,
3150 .error_remove_page = generic_error_remove_page,
3153 static const struct file_operations shmem_file_operations = {
3156 .llseek = shmem_file_llseek,
3157 .read_iter = shmem_file_read_iter,
3158 .write_iter = generic_file_write_iter,
3159 .fsync = noop_fsync,
3160 .splice_read = shmem_file_splice_read,
3161 .splice_write = iter_file_splice_write,
3162 .fallocate = shmem_fallocate,
3166 static const struct inode_operations shmem_inode_operations = {
3167 .getattr = shmem_getattr,
3168 .setattr = shmem_setattr,
3169 #ifdef CONFIG_TMPFS_XATTR
3170 .setxattr = generic_setxattr,
3171 .getxattr = generic_getxattr,
3172 .listxattr = shmem_listxattr,
3173 .removexattr = generic_removexattr,
3174 .set_acl = simple_set_acl,
3178 static const struct inode_operations shmem_dir_inode_operations = {
3180 .create = shmem_create,
3181 .lookup = simple_lookup,
3183 .unlink = shmem_unlink,
3184 .symlink = shmem_symlink,
3185 .mkdir = shmem_mkdir,
3186 .rmdir = shmem_rmdir,
3187 .mknod = shmem_mknod,
3188 .rename2 = shmem_rename2,
3189 .tmpfile = shmem_tmpfile,
3191 #ifdef CONFIG_TMPFS_XATTR
3192 .setxattr = generic_setxattr,
3193 .getxattr = generic_getxattr,
3194 .listxattr = shmem_listxattr,
3195 .removexattr = generic_removexattr,
3197 #ifdef CONFIG_TMPFS_POSIX_ACL
3198 .setattr = shmem_setattr,
3199 .set_acl = simple_set_acl,
3203 static const struct inode_operations shmem_special_inode_operations = {
3204 #ifdef CONFIG_TMPFS_XATTR
3205 .setxattr = generic_setxattr,
3206 .getxattr = generic_getxattr,
3207 .listxattr = shmem_listxattr,
3208 .removexattr = generic_removexattr,
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211 .setattr = shmem_setattr,
3212 .set_acl = simple_set_acl,
3216 static const struct super_operations shmem_ops = {
3217 .alloc_inode = shmem_alloc_inode,
3218 .destroy_inode = shmem_destroy_inode,
3220 .statfs = shmem_statfs,
3221 .remount_fs = shmem_remount_fs,
3222 .show_options = shmem_show_options,
3224 .evict_inode = shmem_evict_inode,
3225 .drop_inode = generic_delete_inode,
3226 .put_super = shmem_put_super,
3229 static const struct vm_operations_struct shmem_vm_ops = {
3230 .fault = shmem_fault,
3231 .map_pages = filemap_map_pages,
3233 .set_policy = shmem_set_policy,
3234 .get_policy = shmem_get_policy,
3238 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3239 int flags, const char *dev_name, void *data)
3241 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3244 static struct file_system_type shmem_fs_type = {
3245 .owner = THIS_MODULE,
3247 .mount = shmem_mount,
3248 .kill_sb = kill_litter_super,
3249 .fs_flags = FS_USERNS_MOUNT,
3252 int __init shmem_init(void)
3256 /* If rootfs called this, don't re-init */
3257 if (shmem_inode_cachep)
3260 error = shmem_init_inodecache();
3264 error = register_filesystem(&shmem_fs_type);
3266 pr_err("Could not register tmpfs\n");
3270 shm_mnt = kern_mount(&shmem_fs_type);
3271 if (IS_ERR(shm_mnt)) {
3272 error = PTR_ERR(shm_mnt);
3273 pr_err("Could not kern_mount tmpfs\n");
3279 unregister_filesystem(&shmem_fs_type);
3281 shmem_destroy_inodecache();
3283 shm_mnt = ERR_PTR(error);
3287 #else /* !CONFIG_SHMEM */
3290 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3292 * This is intended for small system where the benefits of the full
3293 * shmem code (swap-backed and resource-limited) are outweighed by
3294 * their complexity. On systems without swap this code should be
3295 * effectively equivalent, but much lighter weight.
3298 static struct file_system_type shmem_fs_type = {
3300 .mount = ramfs_mount,
3301 .kill_sb = kill_litter_super,
3302 .fs_flags = FS_USERNS_MOUNT,
3305 int __init shmem_init(void)
3307 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3309 shm_mnt = kern_mount(&shmem_fs_type);
3310 BUG_ON(IS_ERR(shm_mnt));
3315 int shmem_unuse(swp_entry_t swap, struct page *page)
3320 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3325 void shmem_unlock_mapping(struct address_space *mapping)
3329 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3331 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3333 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3335 #define shmem_vm_ops generic_file_vm_ops
3336 #define shmem_file_operations ramfs_file_operations
3337 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3338 #define shmem_acct_size(flags, size) 0
3339 #define shmem_unacct_size(flags, size) do {} while (0)
3341 #endif /* CONFIG_SHMEM */
3345 static struct dentry_operations anon_ops = {
3346 .d_dname = simple_dname
3349 static struct file *__shmem_file_setup(const char *name, loff_t size,
3350 unsigned long flags, unsigned int i_flags)
3353 struct inode *inode;
3355 struct super_block *sb;
3358 if (IS_ERR(shm_mnt))
3359 return ERR_CAST(shm_mnt);
3361 if (size < 0 || size > MAX_LFS_FILESIZE)
3362 return ERR_PTR(-EINVAL);
3364 if (shmem_acct_size(flags, size))
3365 return ERR_PTR(-ENOMEM);
3367 res = ERR_PTR(-ENOMEM);
3369 this.len = strlen(name);
3370 this.hash = 0; /* will go */
3371 sb = shm_mnt->mnt_sb;
3372 path.mnt = mntget(shm_mnt);
3373 path.dentry = d_alloc_pseudo(sb, &this);
3376 d_set_d_op(path.dentry, &anon_ops);
3378 res = ERR_PTR(-ENOSPC);
3379 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3383 inode->i_flags |= i_flags;
3384 d_instantiate(path.dentry, inode);
3385 inode->i_size = size;
3386 clear_nlink(inode); /* It is unlinked */
3387 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3391 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3392 &shmem_file_operations);
3399 shmem_unacct_size(flags, size);
3406 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3407 * kernel internal. There will be NO LSM permission checks against the
3408 * underlying inode. So users of this interface must do LSM checks at a
3409 * higher layer. The users are the big_key and shm implementations. LSM
3410 * checks are provided at the key or shm level rather than the inode.
3411 * @name: name for dentry (to be seen in /proc/<pid>/maps
3412 * @size: size to be set for the file
3413 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3415 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3417 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3421 * shmem_file_setup - get an unlinked file living in tmpfs
3422 * @name: name for dentry (to be seen in /proc/<pid>/maps
3423 * @size: size to be set for the file
3424 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3426 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3428 return __shmem_file_setup(name, size, flags, 0);
3430 EXPORT_SYMBOL_GPL(shmem_file_setup);
3433 * shmem_zero_setup - setup a shared anonymous mapping
3434 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3436 int shmem_zero_setup(struct vm_area_struct *vma)
3439 loff_t size = vma->vm_end - vma->vm_start;
3442 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3443 * between XFS directory reading and selinux: since this file is only
3444 * accessible to the user through its mapping, use S_PRIVATE flag to
3445 * bypass file security, in the same way as shmem_kernel_file_setup().
3447 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3449 return PTR_ERR(file);
3453 vma->vm_file = file;
3454 vma->vm_ops = &shmem_vm_ops;
3459 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3460 * @mapping: the page's address_space
3461 * @index: the page index
3462 * @gfp: the page allocator flags to use if allocating
3464 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3465 * with any new page allocations done using the specified allocation flags.
3466 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3467 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3468 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3470 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3471 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3473 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3474 pgoff_t index, gfp_t gfp)
3477 struct inode *inode = mapping->host;
3481 BUG_ON(mapping->a_ops != &shmem_aops);
3482 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3484 page = ERR_PTR(error);
3490 * The tiny !SHMEM case uses ramfs without swap
3492 return read_cache_page_gfp(mapping, index, gfp);
3495 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);