]> Git Repo - linux.git/blob - virt/kvm/arm/arm.c
net: bcmgenet: move NAPI initialization to ring initialization
[linux.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <[email protected]>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117
118         if (type)
119                 return -EINVAL;
120
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135
136         kvm_vgic_early_init(kvm);
137
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187
188         kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332
333         kvm_arm_reset_debug_ptr(vcpu);
334
335         return kvm_vgic_vcpu_init(vcpu);
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356         kvm_arm_set_running_vcpu(vcpu);
357
358         kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364
365         vcpu->cpu = -1;
366
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373         vcpu->arch.power_off = true;
374         kvm_make_request(KVM_REQ_SLEEP, vcpu);
375         kvm_vcpu_kick(vcpu);
376 }
377
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379                                     struct kvm_mp_state *mp_state)
380 {
381         if (vcpu->arch.power_off)
382                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383         else
384                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385
386         return 0;
387 }
388
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         switch (mp_state->mp_state) {
393         case KVM_MP_STATE_RUNNABLE:
394                 vcpu->arch.power_off = false;
395                 break;
396         case KVM_MP_STATE_STOPPED:
397                 vcpu_power_off(vcpu);
398                 break;
399         default:
400                 return -EINVAL;
401         }
402
403         return 0;
404 }
405
406 /**
407  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408  * @v:          The VCPU pointer
409  *
410  * If the guest CPU is not waiting for interrupts or an interrupt line is
411  * asserted, the CPU is by definition runnable.
412  */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416                 && !v->arch.power_off && !v->arch.pause);
417 }
418
419 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
420 {
421         return vcpu_mode_priv(vcpu);
422 }
423
424 /* Just ensure a guest exit from a particular CPU */
425 static void exit_vm_noop(void *info)
426 {
427 }
428
429 void force_vm_exit(const cpumask_t *mask)
430 {
431         preempt_disable();
432         smp_call_function_many(mask, exit_vm_noop, NULL, true);
433         preempt_enable();
434 }
435
436 /**
437  * need_new_vmid_gen - check that the VMID is still valid
438  * @kvm: The VM's VMID to check
439  *
440  * return true if there is a new generation of VMIDs being used
441  *
442  * The hardware supports only 256 values with the value zero reserved for the
443  * host, so we check if an assigned value belongs to a previous generation,
444  * which which requires us to assign a new value. If we're the first to use a
445  * VMID for the new generation, we must flush necessary caches and TLBs on all
446  * CPUs.
447  */
448 static bool need_new_vmid_gen(struct kvm *kvm)
449 {
450         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
451 }
452
453 /**
454  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
455  * @kvm The guest that we are about to run
456  *
457  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
458  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
459  * caches and TLBs.
460  */
461 static void update_vttbr(struct kvm *kvm)
462 {
463         phys_addr_t pgd_phys;
464         u64 vmid;
465
466         if (!need_new_vmid_gen(kvm))
467                 return;
468
469         spin_lock(&kvm_vmid_lock);
470
471         /*
472          * We need to re-check the vmid_gen here to ensure that if another vcpu
473          * already allocated a valid vmid for this vm, then this vcpu should
474          * use the same vmid.
475          */
476         if (!need_new_vmid_gen(kvm)) {
477                 spin_unlock(&kvm_vmid_lock);
478                 return;
479         }
480
481         /* First user of a new VMID generation? */
482         if (unlikely(kvm_next_vmid == 0)) {
483                 atomic64_inc(&kvm_vmid_gen);
484                 kvm_next_vmid = 1;
485
486                 /*
487                  * On SMP we know no other CPUs can use this CPU's or each
488                  * other's VMID after force_vm_exit returns since the
489                  * kvm_vmid_lock blocks them from reentry to the guest.
490                  */
491                 force_vm_exit(cpu_all_mask);
492                 /*
493                  * Now broadcast TLB + ICACHE invalidation over the inner
494                  * shareable domain to make sure all data structures are
495                  * clean.
496                  */
497                 kvm_call_hyp(__kvm_flush_vm_context);
498         }
499
500         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
501         kvm->arch.vmid = kvm_next_vmid;
502         kvm_next_vmid++;
503         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
504
505         /* update vttbr to be used with the new vmid */
506         pgd_phys = virt_to_phys(kvm->arch.pgd);
507         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
508         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
509         kvm->arch.vttbr = pgd_phys | vmid;
510
511         spin_unlock(&kvm_vmid_lock);
512 }
513
514 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
515 {
516         struct kvm *kvm = vcpu->kvm;
517         int ret = 0;
518
519         if (likely(vcpu->arch.has_run_once))
520                 return 0;
521
522         vcpu->arch.has_run_once = true;
523
524         /*
525          * Map the VGIC hardware resources before running a vcpu the first
526          * time on this VM.
527          */
528         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
529                 ret = kvm_vgic_map_resources(kvm);
530                 if (ret)
531                         return ret;
532         }
533
534         ret = kvm_timer_enable(vcpu);
535         if (ret)
536                 return ret;
537
538         ret = kvm_arm_pmu_v3_enable(vcpu);
539
540         return ret;
541 }
542
543 bool kvm_arch_intc_initialized(struct kvm *kvm)
544 {
545         return vgic_initialized(kvm);
546 }
547
548 void kvm_arm_halt_guest(struct kvm *kvm)
549 {
550         int i;
551         struct kvm_vcpu *vcpu;
552
553         kvm_for_each_vcpu(i, vcpu, kvm)
554                 vcpu->arch.pause = true;
555         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
556 }
557
558 void kvm_arm_resume_guest(struct kvm *kvm)
559 {
560         int i;
561         struct kvm_vcpu *vcpu;
562
563         kvm_for_each_vcpu(i, vcpu, kvm) {
564                 vcpu->arch.pause = false;
565                 swake_up(kvm_arch_vcpu_wq(vcpu));
566         }
567 }
568
569 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
570 {
571         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572
573         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574                                        (!vcpu->arch.pause)));
575
576         if (vcpu->arch.power_off || vcpu->arch.pause) {
577                 /* Awaken to handle a signal, request we sleep again later. */
578                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
579         }
580 }
581
582 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
583 {
584         return vcpu->arch.target >= 0;
585 }
586
587 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
588 {
589         if (kvm_request_pending(vcpu)) {
590                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
591                         vcpu_req_sleep(vcpu);
592
593                 /*
594                  * Clear IRQ_PENDING requests that were made to guarantee
595                  * that a VCPU sees new virtual interrupts.
596                  */
597                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
598         }
599 }
600
601 /**
602  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
603  * @vcpu:       The VCPU pointer
604  * @run:        The kvm_run structure pointer used for userspace state exchange
605  *
606  * This function is called through the VCPU_RUN ioctl called from user space. It
607  * will execute VM code in a loop until the time slice for the process is used
608  * or some emulation is needed from user space in which case the function will
609  * return with return value 0 and with the kvm_run structure filled in with the
610  * required data for the requested emulation.
611  */
612 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
613 {
614         int ret;
615         sigset_t sigsaved;
616
617         if (unlikely(!kvm_vcpu_initialized(vcpu)))
618                 return -ENOEXEC;
619
620         ret = kvm_vcpu_first_run_init(vcpu);
621         if (ret)
622                 return ret;
623
624         if (run->exit_reason == KVM_EXIT_MMIO) {
625                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
626                 if (ret)
627                         return ret;
628         }
629
630         if (run->immediate_exit)
631                 return -EINTR;
632
633         if (vcpu->sigset_active)
634                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
635
636         ret = 1;
637         run->exit_reason = KVM_EXIT_UNKNOWN;
638         while (ret > 0) {
639                 /*
640                  * Check conditions before entering the guest
641                  */
642                 cond_resched();
643
644                 update_vttbr(vcpu->kvm);
645
646                 check_vcpu_requests(vcpu);
647
648                 /*
649                  * Preparing the interrupts to be injected also
650                  * involves poking the GIC, which must be done in a
651                  * non-preemptible context.
652                  */
653                 preempt_disable();
654
655                 kvm_pmu_flush_hwstate(vcpu);
656
657                 kvm_timer_flush_hwstate(vcpu);
658                 kvm_vgic_flush_hwstate(vcpu);
659
660                 local_irq_disable();
661
662                 /*
663                  * If we have a singal pending, or need to notify a userspace
664                  * irqchip about timer or PMU level changes, then we exit (and
665                  * update the timer level state in kvm_timer_update_run
666                  * below).
667                  */
668                 if (signal_pending(current) ||
669                     kvm_timer_should_notify_user(vcpu) ||
670                     kvm_pmu_should_notify_user(vcpu)) {
671                         ret = -EINTR;
672                         run->exit_reason = KVM_EXIT_INTR;
673                 }
674
675                 /*
676                  * Ensure we set mode to IN_GUEST_MODE after we disable
677                  * interrupts and before the final VCPU requests check.
678                  * See the comment in kvm_vcpu_exiting_guest_mode() and
679                  * Documentation/virtual/kvm/vcpu-requests.rst
680                  */
681                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
682
683                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
684                     kvm_request_pending(vcpu)) {
685                         vcpu->mode = OUTSIDE_GUEST_MODE;
686                         local_irq_enable();
687                         kvm_pmu_sync_hwstate(vcpu);
688                         kvm_timer_sync_hwstate(vcpu);
689                         kvm_vgic_sync_hwstate(vcpu);
690                         preempt_enable();
691                         continue;
692                 }
693
694                 kvm_arm_setup_debug(vcpu);
695
696                 /**************************************************************
697                  * Enter the guest
698                  */
699                 trace_kvm_entry(*vcpu_pc(vcpu));
700                 guest_enter_irqoff();
701
702                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
703
704                 vcpu->mode = OUTSIDE_GUEST_MODE;
705                 vcpu->stat.exits++;
706                 /*
707                  * Back from guest
708                  *************************************************************/
709
710                 kvm_arm_clear_debug(vcpu);
711
712                 /*
713                  * We may have taken a host interrupt in HYP mode (ie
714                  * while executing the guest). This interrupt is still
715                  * pending, as we haven't serviced it yet!
716                  *
717                  * We're now back in SVC mode, with interrupts
718                  * disabled.  Enabling the interrupts now will have
719                  * the effect of taking the interrupt again, in SVC
720                  * mode this time.
721                  */
722                 local_irq_enable();
723
724                 /*
725                  * We do local_irq_enable() before calling guest_exit() so
726                  * that if a timer interrupt hits while running the guest we
727                  * account that tick as being spent in the guest.  We enable
728                  * preemption after calling guest_exit() so that if we get
729                  * preempted we make sure ticks after that is not counted as
730                  * guest time.
731                  */
732                 guest_exit();
733                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
734
735                 /*
736                  * We must sync the PMU and timer state before the vgic state so
737                  * that the vgic can properly sample the updated state of the
738                  * interrupt line.
739                  */
740                 kvm_pmu_sync_hwstate(vcpu);
741                 kvm_timer_sync_hwstate(vcpu);
742
743                 kvm_vgic_sync_hwstate(vcpu);
744
745                 preempt_enable();
746
747                 ret = handle_exit(vcpu, run, ret);
748         }
749
750         /* Tell userspace about in-kernel device output levels */
751         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
752                 kvm_timer_update_run(vcpu);
753                 kvm_pmu_update_run(vcpu);
754         }
755
756         if (vcpu->sigset_active)
757                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
758         return ret;
759 }
760
761 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
762 {
763         int bit_index;
764         bool set;
765         unsigned long *ptr;
766
767         if (number == KVM_ARM_IRQ_CPU_IRQ)
768                 bit_index = __ffs(HCR_VI);
769         else /* KVM_ARM_IRQ_CPU_FIQ */
770                 bit_index = __ffs(HCR_VF);
771
772         ptr = (unsigned long *)&vcpu->arch.irq_lines;
773         if (level)
774                 set = test_and_set_bit(bit_index, ptr);
775         else
776                 set = test_and_clear_bit(bit_index, ptr);
777
778         /*
779          * If we didn't change anything, no need to wake up or kick other CPUs
780          */
781         if (set == level)
782                 return 0;
783
784         /*
785          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
786          * trigger a world-switch round on the running physical CPU to set the
787          * virtual IRQ/FIQ fields in the HCR appropriately.
788          */
789         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
790         kvm_vcpu_kick(vcpu);
791
792         return 0;
793 }
794
795 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
796                           bool line_status)
797 {
798         u32 irq = irq_level->irq;
799         unsigned int irq_type, vcpu_idx, irq_num;
800         int nrcpus = atomic_read(&kvm->online_vcpus);
801         struct kvm_vcpu *vcpu = NULL;
802         bool level = irq_level->level;
803
804         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
805         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
806         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
807
808         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
809
810         switch (irq_type) {
811         case KVM_ARM_IRQ_TYPE_CPU:
812                 if (irqchip_in_kernel(kvm))
813                         return -ENXIO;
814
815                 if (vcpu_idx >= nrcpus)
816                         return -EINVAL;
817
818                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
819                 if (!vcpu)
820                         return -EINVAL;
821
822                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
823                         return -EINVAL;
824
825                 return vcpu_interrupt_line(vcpu, irq_num, level);
826         case KVM_ARM_IRQ_TYPE_PPI:
827                 if (!irqchip_in_kernel(kvm))
828                         return -ENXIO;
829
830                 if (vcpu_idx >= nrcpus)
831                         return -EINVAL;
832
833                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
834                 if (!vcpu)
835                         return -EINVAL;
836
837                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
838                         return -EINVAL;
839
840                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
841         case KVM_ARM_IRQ_TYPE_SPI:
842                 if (!irqchip_in_kernel(kvm))
843                         return -ENXIO;
844
845                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
846                         return -EINVAL;
847
848                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
849         }
850
851         return -EINVAL;
852 }
853
854 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
855                                const struct kvm_vcpu_init *init)
856 {
857         unsigned int i;
858         int phys_target = kvm_target_cpu();
859
860         if (init->target != phys_target)
861                 return -EINVAL;
862
863         /*
864          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
865          * use the same target.
866          */
867         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
868                 return -EINVAL;
869
870         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
871         for (i = 0; i < sizeof(init->features) * 8; i++) {
872                 bool set = (init->features[i / 32] & (1 << (i % 32)));
873
874                 if (set && i >= KVM_VCPU_MAX_FEATURES)
875                         return -ENOENT;
876
877                 /*
878                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
879                  * use the same feature set.
880                  */
881                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
882                     test_bit(i, vcpu->arch.features) != set)
883                         return -EINVAL;
884
885                 if (set)
886                         set_bit(i, vcpu->arch.features);
887         }
888
889         vcpu->arch.target = phys_target;
890
891         /* Now we know what it is, we can reset it. */
892         return kvm_reset_vcpu(vcpu);
893 }
894
895
896 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
897                                          struct kvm_vcpu_init *init)
898 {
899         int ret;
900
901         ret = kvm_vcpu_set_target(vcpu, init);
902         if (ret)
903                 return ret;
904
905         /*
906          * Ensure a rebooted VM will fault in RAM pages and detect if the
907          * guest MMU is turned off and flush the caches as needed.
908          */
909         if (vcpu->arch.has_run_once)
910                 stage2_unmap_vm(vcpu->kvm);
911
912         vcpu_reset_hcr(vcpu);
913
914         /*
915          * Handle the "start in power-off" case.
916          */
917         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
918                 vcpu_power_off(vcpu);
919         else
920                 vcpu->arch.power_off = false;
921
922         return 0;
923 }
924
925 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
926                                  struct kvm_device_attr *attr)
927 {
928         int ret = -ENXIO;
929
930         switch (attr->group) {
931         default:
932                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
933                 break;
934         }
935
936         return ret;
937 }
938
939 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
940                                  struct kvm_device_attr *attr)
941 {
942         int ret = -ENXIO;
943
944         switch (attr->group) {
945         default:
946                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
947                 break;
948         }
949
950         return ret;
951 }
952
953 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
954                                  struct kvm_device_attr *attr)
955 {
956         int ret = -ENXIO;
957
958         switch (attr->group) {
959         default:
960                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
961                 break;
962         }
963
964         return ret;
965 }
966
967 long kvm_arch_vcpu_ioctl(struct file *filp,
968                          unsigned int ioctl, unsigned long arg)
969 {
970         struct kvm_vcpu *vcpu = filp->private_data;
971         void __user *argp = (void __user *)arg;
972         struct kvm_device_attr attr;
973
974         switch (ioctl) {
975         case KVM_ARM_VCPU_INIT: {
976                 struct kvm_vcpu_init init;
977
978                 if (copy_from_user(&init, argp, sizeof(init)))
979                         return -EFAULT;
980
981                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
982         }
983         case KVM_SET_ONE_REG:
984         case KVM_GET_ONE_REG: {
985                 struct kvm_one_reg reg;
986
987                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
988                         return -ENOEXEC;
989
990                 if (copy_from_user(&reg, argp, sizeof(reg)))
991                         return -EFAULT;
992                 if (ioctl == KVM_SET_ONE_REG)
993                         return kvm_arm_set_reg(vcpu, &reg);
994                 else
995                         return kvm_arm_get_reg(vcpu, &reg);
996         }
997         case KVM_GET_REG_LIST: {
998                 struct kvm_reg_list __user *user_list = argp;
999                 struct kvm_reg_list reg_list;
1000                 unsigned n;
1001
1002                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1003                         return -ENOEXEC;
1004
1005                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1006                         return -EFAULT;
1007                 n = reg_list.n;
1008                 reg_list.n = kvm_arm_num_regs(vcpu);
1009                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1010                         return -EFAULT;
1011                 if (n < reg_list.n)
1012                         return -E2BIG;
1013                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1014         }
1015         case KVM_SET_DEVICE_ATTR: {
1016                 if (copy_from_user(&attr, argp, sizeof(attr)))
1017                         return -EFAULT;
1018                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1019         }
1020         case KVM_GET_DEVICE_ATTR: {
1021                 if (copy_from_user(&attr, argp, sizeof(attr)))
1022                         return -EFAULT;
1023                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1024         }
1025         case KVM_HAS_DEVICE_ATTR: {
1026                 if (copy_from_user(&attr, argp, sizeof(attr)))
1027                         return -EFAULT;
1028                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1029         }
1030         default:
1031                 return -EINVAL;
1032         }
1033 }
1034
1035 /**
1036  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1037  * @kvm: kvm instance
1038  * @log: slot id and address to which we copy the log
1039  *
1040  * Steps 1-4 below provide general overview of dirty page logging. See
1041  * kvm_get_dirty_log_protect() function description for additional details.
1042  *
1043  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1044  * always flush the TLB (step 4) even if previous step failed  and the dirty
1045  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1046  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1047  * writes will be marked dirty for next log read.
1048  *
1049  *   1. Take a snapshot of the bit and clear it if needed.
1050  *   2. Write protect the corresponding page.
1051  *   3. Copy the snapshot to the userspace.
1052  *   4. Flush TLB's if needed.
1053  */
1054 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1055 {
1056         bool is_dirty = false;
1057         int r;
1058
1059         mutex_lock(&kvm->slots_lock);
1060
1061         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1062
1063         if (is_dirty)
1064                 kvm_flush_remote_tlbs(kvm);
1065
1066         mutex_unlock(&kvm->slots_lock);
1067         return r;
1068 }
1069
1070 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1071                                         struct kvm_arm_device_addr *dev_addr)
1072 {
1073         unsigned long dev_id, type;
1074
1075         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1076                 KVM_ARM_DEVICE_ID_SHIFT;
1077         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1078                 KVM_ARM_DEVICE_TYPE_SHIFT;
1079
1080         switch (dev_id) {
1081         case KVM_ARM_DEVICE_VGIC_V2:
1082                 if (!vgic_present)
1083                         return -ENXIO;
1084                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1085         default:
1086                 return -ENODEV;
1087         }
1088 }
1089
1090 long kvm_arch_vm_ioctl(struct file *filp,
1091                        unsigned int ioctl, unsigned long arg)
1092 {
1093         struct kvm *kvm = filp->private_data;
1094         void __user *argp = (void __user *)arg;
1095
1096         switch (ioctl) {
1097         case KVM_CREATE_IRQCHIP: {
1098                 int ret;
1099                 if (!vgic_present)
1100                         return -ENXIO;
1101                 mutex_lock(&kvm->lock);
1102                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1103                 mutex_unlock(&kvm->lock);
1104                 return ret;
1105         }
1106         case KVM_ARM_SET_DEVICE_ADDR: {
1107                 struct kvm_arm_device_addr dev_addr;
1108
1109                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1110                         return -EFAULT;
1111                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1112         }
1113         case KVM_ARM_PREFERRED_TARGET: {
1114                 int err;
1115                 struct kvm_vcpu_init init;
1116
1117                 err = kvm_vcpu_preferred_target(&init);
1118                 if (err)
1119                         return err;
1120
1121                 if (copy_to_user(argp, &init, sizeof(init)))
1122                         return -EFAULT;
1123
1124                 return 0;
1125         }
1126         default:
1127                 return -EINVAL;
1128         }
1129 }
1130
1131 static void cpu_init_hyp_mode(void *dummy)
1132 {
1133         phys_addr_t pgd_ptr;
1134         unsigned long hyp_stack_ptr;
1135         unsigned long stack_page;
1136         unsigned long vector_ptr;
1137
1138         /* Switch from the HYP stub to our own HYP init vector */
1139         __hyp_set_vectors(kvm_get_idmap_vector());
1140
1141         pgd_ptr = kvm_mmu_get_httbr();
1142         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1143         hyp_stack_ptr = stack_page + PAGE_SIZE;
1144         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1145
1146         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1147         __cpu_init_stage2();
1148
1149         kvm_arm_init_debug();
1150 }
1151
1152 static void cpu_hyp_reset(void)
1153 {
1154         if (!is_kernel_in_hyp_mode())
1155                 __hyp_reset_vectors();
1156 }
1157
1158 static void cpu_hyp_reinit(void)
1159 {
1160         cpu_hyp_reset();
1161
1162         if (is_kernel_in_hyp_mode()) {
1163                 /*
1164                  * __cpu_init_stage2() is safe to call even if the PM
1165                  * event was cancelled before the CPU was reset.
1166                  */
1167                 __cpu_init_stage2();
1168                 kvm_timer_init_vhe();
1169         } else {
1170                 cpu_init_hyp_mode(NULL);
1171         }
1172
1173         if (vgic_present)
1174                 kvm_vgic_init_cpu_hardware();
1175 }
1176
1177 static void _kvm_arch_hardware_enable(void *discard)
1178 {
1179         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1180                 cpu_hyp_reinit();
1181                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1182         }
1183 }
1184
1185 int kvm_arch_hardware_enable(void)
1186 {
1187         _kvm_arch_hardware_enable(NULL);
1188         return 0;
1189 }
1190
1191 static void _kvm_arch_hardware_disable(void *discard)
1192 {
1193         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1194                 cpu_hyp_reset();
1195                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1196         }
1197 }
1198
1199 void kvm_arch_hardware_disable(void)
1200 {
1201         _kvm_arch_hardware_disable(NULL);
1202 }
1203
1204 #ifdef CONFIG_CPU_PM
1205 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1206                                     unsigned long cmd,
1207                                     void *v)
1208 {
1209         /*
1210          * kvm_arm_hardware_enabled is left with its old value over
1211          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1212          * re-enable hyp.
1213          */
1214         switch (cmd) {
1215         case CPU_PM_ENTER:
1216                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1217                         /*
1218                          * don't update kvm_arm_hardware_enabled here
1219                          * so that the hardware will be re-enabled
1220                          * when we resume. See below.
1221                          */
1222                         cpu_hyp_reset();
1223
1224                 return NOTIFY_OK;
1225         case CPU_PM_EXIT:
1226                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1227                         /* The hardware was enabled before suspend. */
1228                         cpu_hyp_reinit();
1229
1230                 return NOTIFY_OK;
1231
1232         default:
1233                 return NOTIFY_DONE;
1234         }
1235 }
1236
1237 static struct notifier_block hyp_init_cpu_pm_nb = {
1238         .notifier_call = hyp_init_cpu_pm_notifier,
1239 };
1240
1241 static void __init hyp_cpu_pm_init(void)
1242 {
1243         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1244 }
1245 static void __init hyp_cpu_pm_exit(void)
1246 {
1247         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1248 }
1249 #else
1250 static inline void hyp_cpu_pm_init(void)
1251 {
1252 }
1253 static inline void hyp_cpu_pm_exit(void)
1254 {
1255 }
1256 #endif
1257
1258 static void teardown_common_resources(void)
1259 {
1260         free_percpu(kvm_host_cpu_state);
1261 }
1262
1263 static int init_common_resources(void)
1264 {
1265         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1266         if (!kvm_host_cpu_state) {
1267                 kvm_err("Cannot allocate host CPU state\n");
1268                 return -ENOMEM;
1269         }
1270
1271         /* set size of VMID supported by CPU */
1272         kvm_vmid_bits = kvm_get_vmid_bits();
1273         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1274
1275         return 0;
1276 }
1277
1278 static int init_subsystems(void)
1279 {
1280         int err = 0;
1281
1282         /*
1283          * Enable hardware so that subsystem initialisation can access EL2.
1284          */
1285         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1286
1287         /*
1288          * Register CPU lower-power notifier
1289          */
1290         hyp_cpu_pm_init();
1291
1292         /*
1293          * Init HYP view of VGIC
1294          */
1295         err = kvm_vgic_hyp_init();
1296         switch (err) {
1297         case 0:
1298                 vgic_present = true;
1299                 break;
1300         case -ENODEV:
1301         case -ENXIO:
1302                 vgic_present = false;
1303                 err = 0;
1304                 break;
1305         default:
1306                 goto out;
1307         }
1308
1309         /*
1310          * Init HYP architected timer support
1311          */
1312         err = kvm_timer_hyp_init();
1313         if (err)
1314                 goto out;
1315
1316         kvm_perf_init();
1317         kvm_coproc_table_init();
1318
1319 out:
1320         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1321
1322         return err;
1323 }
1324
1325 static void teardown_hyp_mode(void)
1326 {
1327         int cpu;
1328
1329         if (is_kernel_in_hyp_mode())
1330                 return;
1331
1332         free_hyp_pgds();
1333         for_each_possible_cpu(cpu)
1334                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1335         hyp_cpu_pm_exit();
1336 }
1337
1338 static int init_vhe_mode(void)
1339 {
1340         kvm_info("VHE mode initialized successfully\n");
1341         return 0;
1342 }
1343
1344 /**
1345  * Inits Hyp-mode on all online CPUs
1346  */
1347 static int init_hyp_mode(void)
1348 {
1349         int cpu;
1350         int err = 0;
1351
1352         /*
1353          * Allocate Hyp PGD and setup Hyp identity mapping
1354          */
1355         err = kvm_mmu_init();
1356         if (err)
1357                 goto out_err;
1358
1359         /*
1360          * Allocate stack pages for Hypervisor-mode
1361          */
1362         for_each_possible_cpu(cpu) {
1363                 unsigned long stack_page;
1364
1365                 stack_page = __get_free_page(GFP_KERNEL);
1366                 if (!stack_page) {
1367                         err = -ENOMEM;
1368                         goto out_err;
1369                 }
1370
1371                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1372         }
1373
1374         /*
1375          * Map the Hyp-code called directly from the host
1376          */
1377         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1378                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1379         if (err) {
1380                 kvm_err("Cannot map world-switch code\n");
1381                 goto out_err;
1382         }
1383
1384         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1385                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1386         if (err) {
1387                 kvm_err("Cannot map rodata section\n");
1388                 goto out_err;
1389         }
1390
1391         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1392                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1393         if (err) {
1394                 kvm_err("Cannot map bss section\n");
1395                 goto out_err;
1396         }
1397
1398         /*
1399          * Map the Hyp stack pages
1400          */
1401         for_each_possible_cpu(cpu) {
1402                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1403                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1404                                           PAGE_HYP);
1405
1406                 if (err) {
1407                         kvm_err("Cannot map hyp stack\n");
1408                         goto out_err;
1409                 }
1410         }
1411
1412         for_each_possible_cpu(cpu) {
1413                 kvm_cpu_context_t *cpu_ctxt;
1414
1415                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1416                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1417
1418                 if (err) {
1419                         kvm_err("Cannot map host CPU state: %d\n", err);
1420                         goto out_err;
1421                 }
1422         }
1423
1424         kvm_info("Hyp mode initialized successfully\n");
1425
1426         return 0;
1427
1428 out_err:
1429         teardown_hyp_mode();
1430         kvm_err("error initializing Hyp mode: %d\n", err);
1431         return err;
1432 }
1433
1434 static void check_kvm_target_cpu(void *ret)
1435 {
1436         *(int *)ret = kvm_target_cpu();
1437 }
1438
1439 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1440 {
1441         struct kvm_vcpu *vcpu;
1442         int i;
1443
1444         mpidr &= MPIDR_HWID_BITMASK;
1445         kvm_for_each_vcpu(i, vcpu, kvm) {
1446                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1447                         return vcpu;
1448         }
1449         return NULL;
1450 }
1451
1452 /**
1453  * Initialize Hyp-mode and memory mappings on all CPUs.
1454  */
1455 int kvm_arch_init(void *opaque)
1456 {
1457         int err;
1458         int ret, cpu;
1459
1460         if (!is_hyp_mode_available()) {
1461                 kvm_err("HYP mode not available\n");
1462                 return -ENODEV;
1463         }
1464
1465         for_each_online_cpu(cpu) {
1466                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1467                 if (ret < 0) {
1468                         kvm_err("Error, CPU %d not supported!\n", cpu);
1469                         return -ENODEV;
1470                 }
1471         }
1472
1473         err = init_common_resources();
1474         if (err)
1475                 return err;
1476
1477         if (is_kernel_in_hyp_mode())
1478                 err = init_vhe_mode();
1479         else
1480                 err = init_hyp_mode();
1481         if (err)
1482                 goto out_err;
1483
1484         err = init_subsystems();
1485         if (err)
1486                 goto out_hyp;
1487
1488         return 0;
1489
1490 out_hyp:
1491         teardown_hyp_mode();
1492 out_err:
1493         teardown_common_resources();
1494         return err;
1495 }
1496
1497 /* NOP: Compiling as a module not supported */
1498 void kvm_arch_exit(void)
1499 {
1500         kvm_perf_teardown();
1501 }
1502
1503 static int arm_init(void)
1504 {
1505         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1506         return rc;
1507 }
1508
1509 module_init(arm_init);
This page took 0.118743 seconds and 4 git commands to generate.