1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 size_t len, void *from, void *priv2)
20 if (should_fail_usercopy())
22 if (access_ok(iter_to, len)) {
24 instrument_copy_to_user(iter_to, from, len);
25 len = raw_copy_to_user(iter_to, from, len);
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 size_t len, void *from, void *priv2)
36 if (should_fail_usercopy())
40 res = copy_to_user_nofault(iter_to, from, len);
41 return res < 0 ? len : res;
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 size_t len, void *to, void *priv2)
50 if (should_fail_usercopy())
52 if (access_ok(iter_from, len)) {
54 instrument_copy_from_user_before(to, iter_from, len);
55 res = raw_copy_from_user(to, iter_from, len);
56 instrument_copy_from_user_after(to, iter_from, len, res);
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 size_t len, void *from, void *priv2)
65 memcpy(iter_to, from + progress, len);
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 size_t len, void *to, void *priv2)
73 memcpy(to + progress, iter_from, len);
78 * fault_in_iov_iter_readable - fault in iov iterator for reading
80 * @size: maximum length
82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83 * @size. For each iovec, fault in each page that constitutes the iovec.
85 * Returns the number of bytes not faulted in (like copy_to_user() and
88 * Always returns 0 for non-userspace iterators.
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
92 if (iter_is_ubuf(i)) {
93 size_t n = min(size, iov_iter_count(i));
94 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
96 } else if (iter_is_iovec(i)) {
97 size_t count = min(size, iov_iter_count(i));
98 const struct iovec *p;
102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 size_t len = min(count, p->iov_len - skip);
108 ret = fault_in_readable(p->iov_base + skip, len);
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
122 * @size: maximum length
124 * Faults in the iterator using get_user_pages(), i.e., without triggering
125 * hardware page faults. This is primarily useful when we already know that
126 * some or all of the pages in @i aren't in memory.
128 * Returns the number of bytes not faulted in, like copy_to_user() and
131 * Always returns 0 for non-user-space iterators.
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
135 if (iter_is_ubuf(i)) {
136 size_t n = min(size, iov_iter_count(i));
137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
139 } else if (iter_is_iovec(i)) {
140 size_t count = min(size, iov_iter_count(i));
141 const struct iovec *p;
145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 size_t len = min(count, p->iov_len - skip);
151 ret = fault_in_safe_writeable(p->iov_base + skip, len);
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 const struct iovec *iov, unsigned long nr_segs,
166 WARN_ON(direction & ~(READ | WRITE));
167 *i = (struct iov_iter) {
168 .iter_type = ITER_IOVEC,
171 .data_source = direction,
178 EXPORT_SYMBOL(iov_iter_init);
180 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
182 if (WARN_ON_ONCE(i->data_source))
184 if (user_backed_iter(i))
186 return iterate_and_advance(i, bytes, (void *)addr,
187 copy_to_user_iter, memcpy_to_iter);
189 EXPORT_SYMBOL(_copy_to_iter);
191 #ifdef CONFIG_ARCH_HAS_COPY_MC
192 static __always_inline
193 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
194 size_t len, void *from, void *priv2)
196 if (access_ok(iter_to, len)) {
198 instrument_copy_to_user(iter_to, from, len);
199 len = copy_mc_to_user(iter_to, from, len);
204 static __always_inline
205 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
206 size_t len, void *from, void *priv2)
208 return copy_mc_to_kernel(iter_to, from + progress, len);
212 * _copy_mc_to_iter - copy to iter with source memory error exception handling
213 * @addr: source kernel address
214 * @bytes: total transfer length
215 * @i: destination iterator
217 * The pmem driver deploys this for the dax operation
218 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
219 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
220 * successfully copied.
222 * The main differences between this and typical _copy_to_iter().
224 * * Typical tail/residue handling after a fault retries the copy
225 * byte-by-byte until the fault happens again. Re-triggering machine
226 * checks is potentially fatal so the implementation uses source
227 * alignment and poison alignment assumptions to avoid re-triggering
228 * hardware exceptions.
230 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
231 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
233 * Return: number of bytes copied (may be %0)
235 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
237 if (WARN_ON_ONCE(i->data_source))
239 if (user_backed_iter(i))
241 return iterate_and_advance(i, bytes, (void *)addr,
242 copy_to_user_iter_mc, memcpy_to_iter_mc);
244 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
245 #endif /* CONFIG_ARCH_HAS_COPY_MC */
247 static __always_inline
248 size_t memcpy_from_iter_mc(void *iter_from, size_t progress,
249 size_t len, void *to, void *priv2)
251 return copy_mc_to_kernel(to + progress, iter_from, len);
254 static size_t __copy_from_iter_mc(void *addr, size_t bytes, struct iov_iter *i)
256 if (unlikely(i->count < bytes))
258 if (unlikely(!bytes))
260 return iterate_bvec(i, bytes, addr, NULL, memcpy_from_iter_mc);
263 static __always_inline
264 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
266 if (unlikely(iov_iter_is_copy_mc(i)))
267 return __copy_from_iter_mc(addr, bytes, i);
268 return iterate_and_advance(i, bytes, addr,
269 copy_from_user_iter, memcpy_from_iter);
272 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
274 if (WARN_ON_ONCE(!i->data_source))
277 if (user_backed_iter(i))
279 return __copy_from_iter(addr, bytes, i);
281 EXPORT_SYMBOL(_copy_from_iter);
283 static __always_inline
284 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
285 size_t len, void *to, void *priv2)
287 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
290 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
292 if (WARN_ON_ONCE(!i->data_source))
295 return iterate_and_advance(i, bytes, addr,
296 copy_from_user_iter_nocache,
299 EXPORT_SYMBOL(_copy_from_iter_nocache);
301 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
302 static __always_inline
303 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
304 size_t len, void *to, void *priv2)
306 return __copy_from_user_flushcache(to + progress, iter_from, len);
309 static __always_inline
310 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
311 size_t len, void *to, void *priv2)
313 memcpy_flushcache(to + progress, iter_from, len);
318 * _copy_from_iter_flushcache - write destination through cpu cache
319 * @addr: destination kernel address
320 * @bytes: total transfer length
321 * @i: source iterator
323 * The pmem driver arranges for filesystem-dax to use this facility via
324 * dax_copy_from_iter() for ensuring that writes to persistent memory
325 * are flushed through the CPU cache. It is differentiated from
326 * _copy_from_iter_nocache() in that guarantees all data is flushed for
327 * all iterator types. The _copy_from_iter_nocache() only attempts to
328 * bypass the cache for the ITER_IOVEC case, and on some archs may use
329 * instructions that strand dirty-data in the cache.
331 * Return: number of bytes copied (may be %0)
333 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
335 if (WARN_ON_ONCE(!i->data_source))
338 return iterate_and_advance(i, bytes, addr,
339 copy_from_user_iter_flushcache,
340 memcpy_from_iter_flushcache);
342 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
345 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
348 size_t v = n + offset;
351 * The general case needs to access the page order in order
352 * to compute the page size.
353 * However, we mostly deal with order-0 pages and thus can
354 * avoid a possible cache line miss for requests that fit all
357 if (n <= v && v <= PAGE_SIZE)
360 head = compound_head(page);
361 v += (page - head) << PAGE_SHIFT;
363 if (WARN_ON(n > v || v > page_size(head)))
368 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
372 if (!page_copy_sane(page, offset, bytes))
374 if (WARN_ON_ONCE(i->data_source))
376 page += offset / PAGE_SIZE; // first subpage
379 void *kaddr = kmap_local_page(page);
380 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
381 n = _copy_to_iter(kaddr + offset, n, i);
388 if (offset == PAGE_SIZE) {
395 EXPORT_SYMBOL(copy_page_to_iter);
397 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
402 if (!page_copy_sane(page, offset, bytes))
404 if (WARN_ON_ONCE(i->data_source))
406 page += offset / PAGE_SIZE; // first subpage
409 void *kaddr = kmap_local_page(page);
410 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
412 n = iterate_and_advance(i, n, kaddr + offset,
413 copy_to_user_iter_nofault,
421 if (offset == PAGE_SIZE) {
428 EXPORT_SYMBOL(copy_page_to_iter_nofault);
430 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
434 if (!page_copy_sane(page, offset, bytes))
436 page += offset / PAGE_SIZE; // first subpage
439 void *kaddr = kmap_local_page(page);
440 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
441 n = _copy_from_iter(kaddr + offset, n, i);
448 if (offset == PAGE_SIZE) {
455 EXPORT_SYMBOL(copy_page_from_iter);
457 static __always_inline
458 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
459 size_t len, void *priv, void *priv2)
461 return clear_user(iter_to, len);
464 static __always_inline
465 size_t zero_to_iter(void *iter_to, size_t progress,
466 size_t len, void *priv, void *priv2)
468 memset(iter_to, 0, len);
472 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
474 return iterate_and_advance(i, bytes, NULL,
475 zero_to_user_iter, zero_to_iter);
477 EXPORT_SYMBOL(iov_iter_zero);
479 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
480 size_t bytes, struct iov_iter *i)
482 size_t n, copied = 0;
484 if (!page_copy_sane(page, offset, bytes))
486 if (WARN_ON_ONCE(!i->data_source))
493 if (PageHighMem(page)) {
494 page += offset / PAGE_SIZE;
496 n = min_t(size_t, n, PAGE_SIZE - offset);
499 p = kmap_atomic(page) + offset;
500 n = __copy_from_iter(p, n, i);
504 } while (PageHighMem(page) && copied != bytes && n > 0);
508 EXPORT_SYMBOL(copy_page_from_iter_atomic);
510 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
512 const struct bio_vec *bvec, *end;
518 size += i->iov_offset;
520 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
521 if (likely(size < bvec->bv_len))
523 size -= bvec->bv_len;
525 i->iov_offset = size;
526 i->nr_segs -= bvec - i->bvec;
530 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
532 const struct iovec *iov, *end;
538 size += i->iov_offset; // from beginning of current segment
539 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
540 if (likely(size < iov->iov_len))
542 size -= iov->iov_len;
544 i->iov_offset = size;
545 i->nr_segs -= iov - iter_iov(i);
549 void iov_iter_advance(struct iov_iter *i, size_t size)
551 if (unlikely(i->count < size))
553 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
554 i->iov_offset += size;
556 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
557 /* iovec and kvec have identical layouts */
558 iov_iter_iovec_advance(i, size);
559 } else if (iov_iter_is_bvec(i)) {
560 iov_iter_bvec_advance(i, size);
561 } else if (iov_iter_is_discard(i)) {
565 EXPORT_SYMBOL(iov_iter_advance);
567 void iov_iter_revert(struct iov_iter *i, size_t unroll)
571 if (WARN_ON(unroll > MAX_RW_COUNT))
574 if (unlikely(iov_iter_is_discard(i)))
576 if (unroll <= i->iov_offset) {
577 i->iov_offset -= unroll;
580 unroll -= i->iov_offset;
581 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
582 BUG(); /* We should never go beyond the start of the specified
583 * range since we might then be straying into pages that
586 } else if (iov_iter_is_bvec(i)) {
587 const struct bio_vec *bvec = i->bvec;
589 size_t n = (--bvec)->bv_len;
593 i->iov_offset = n - unroll;
598 } else { /* same logics for iovec and kvec */
599 const struct iovec *iov = iter_iov(i);
601 size_t n = (--iov)->iov_len;
605 i->iov_offset = n - unroll;
612 EXPORT_SYMBOL(iov_iter_revert);
615 * Return the count of just the current iov_iter segment.
617 size_t iov_iter_single_seg_count(const struct iov_iter *i)
619 if (i->nr_segs > 1) {
620 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
621 return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
622 if (iov_iter_is_bvec(i))
623 return min(i->count, i->bvec->bv_len - i->iov_offset);
627 EXPORT_SYMBOL(iov_iter_single_seg_count);
629 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
630 const struct kvec *kvec, unsigned long nr_segs,
633 WARN_ON(direction & ~(READ | WRITE));
634 *i = (struct iov_iter){
635 .iter_type = ITER_KVEC,
637 .data_source = direction,
644 EXPORT_SYMBOL(iov_iter_kvec);
646 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
647 const struct bio_vec *bvec, unsigned long nr_segs,
650 WARN_ON(direction & ~(READ | WRITE));
651 *i = (struct iov_iter){
652 .iter_type = ITER_BVEC,
654 .data_source = direction,
661 EXPORT_SYMBOL(iov_iter_bvec);
664 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
665 * @i: The iterator to initialise.
666 * @direction: The direction of the transfer.
667 * @xarray: The xarray to access.
668 * @start: The start file position.
669 * @count: The size of the I/O buffer in bytes.
671 * Set up an I/O iterator to either draw data out of the pages attached to an
672 * inode or to inject data into those pages. The pages *must* be prevented
673 * from evaporation, either by taking a ref on them or locking them by the
676 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
677 struct xarray *xarray, loff_t start, size_t count)
679 BUG_ON(direction & ~1);
680 *i = (struct iov_iter) {
681 .iter_type = ITER_XARRAY,
683 .data_source = direction,
685 .xarray_start = start,
690 EXPORT_SYMBOL(iov_iter_xarray);
693 * iov_iter_discard - Initialise an I/O iterator that discards data
694 * @i: The iterator to initialise.
695 * @direction: The direction of the transfer.
696 * @count: The size of the I/O buffer in bytes.
698 * Set up an I/O iterator that just discards everything that's written to it.
699 * It's only available as a READ iterator.
701 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
703 BUG_ON(direction != READ);
704 *i = (struct iov_iter){
705 .iter_type = ITER_DISCARD,
707 .data_source = false,
712 EXPORT_SYMBOL(iov_iter_discard);
714 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
717 size_t size = i->count;
718 size_t skip = i->iov_offset;
721 for (k = 0; k < i->nr_segs; k++, skip = 0) {
722 const struct iovec *iov = iter_iov(i) + k;
723 size_t len = iov->iov_len - skip;
729 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
739 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
742 size_t size = i->count;
743 unsigned skip = i->iov_offset;
746 for (k = 0; k < i->nr_segs; k++, skip = 0) {
747 size_t len = i->bvec[k].bv_len - skip;
753 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
764 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
765 * are aligned to the parameters.
767 * @i: &struct iov_iter to restore
768 * @addr_mask: bit mask to check against the iov element's addresses
769 * @len_mask: bit mask to check against the iov element's lengths
771 * Return: false if any addresses or lengths intersect with the provided masks
773 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
776 if (likely(iter_is_ubuf(i))) {
777 if (i->count & len_mask)
779 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
784 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
785 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
787 if (iov_iter_is_bvec(i))
788 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
790 if (iov_iter_is_xarray(i)) {
791 if (i->count & len_mask)
793 if ((i->xarray_start + i->iov_offset) & addr_mask)
799 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
801 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
803 unsigned long res = 0;
804 size_t size = i->count;
805 size_t skip = i->iov_offset;
808 for (k = 0; k < i->nr_segs; k++, skip = 0) {
809 const struct iovec *iov = iter_iov(i) + k;
810 size_t len = iov->iov_len - skip;
812 res |= (unsigned long)iov->iov_base + skip;
824 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
827 size_t size = i->count;
828 unsigned skip = i->iov_offset;
831 for (k = 0; k < i->nr_segs; k++, skip = 0) {
832 size_t len = i->bvec[k].bv_len - skip;
833 res |= (unsigned long)i->bvec[k].bv_offset + skip;
844 unsigned long iov_iter_alignment(const struct iov_iter *i)
846 if (likely(iter_is_ubuf(i))) {
847 size_t size = i->count;
849 return ((unsigned long)i->ubuf + i->iov_offset) | size;
853 /* iovec and kvec have identical layouts */
854 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
855 return iov_iter_alignment_iovec(i);
857 if (iov_iter_is_bvec(i))
858 return iov_iter_alignment_bvec(i);
860 if (iov_iter_is_xarray(i))
861 return (i->xarray_start + i->iov_offset) | i->count;
865 EXPORT_SYMBOL(iov_iter_alignment);
867 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
869 unsigned long res = 0;
871 size_t size = i->count;
877 if (WARN_ON(!iter_is_iovec(i)))
880 for (k = 0; k < i->nr_segs; k++) {
881 const struct iovec *iov = iter_iov(i) + k;
883 unsigned long base = (unsigned long)iov->iov_base;
884 if (v) // if not the first one
885 res |= base | v; // this start | previous end
886 v = base + iov->iov_len;
887 if (size <= iov->iov_len)
889 size -= iov->iov_len;
894 EXPORT_SYMBOL(iov_iter_gap_alignment);
896 static int want_pages_array(struct page ***res, size_t size,
897 size_t start, unsigned int maxpages)
899 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
901 if (count > maxpages)
903 WARN_ON(!count); // caller should've prevented that
905 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
912 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
913 pgoff_t index, unsigned int nr_pages)
915 XA_STATE(xas, xa, index);
917 unsigned int ret = 0;
920 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
921 if (xas_retry(&xas, page))
924 /* Has the page moved or been split? */
925 if (unlikely(page != xas_reload(&xas))) {
930 pages[ret] = find_subpage(page, xas.xa_index);
931 get_page(pages[ret]);
932 if (++ret == nr_pages)
939 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
940 struct page ***pages, size_t maxsize,
941 unsigned maxpages, size_t *_start_offset)
943 unsigned nr, offset, count;
947 pos = i->xarray_start + i->iov_offset;
948 index = pos >> PAGE_SHIFT;
949 offset = pos & ~PAGE_MASK;
950 *_start_offset = offset;
952 count = want_pages_array(pages, maxsize, offset, maxpages);
955 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
959 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
960 i->iov_offset += maxsize;
965 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
966 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
972 return (unsigned long)i->ubuf + i->iov_offset;
974 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
975 const struct iovec *iov = iter_iov(i) + k;
976 size_t len = iov->iov_len - skip;
982 return (unsigned long)iov->iov_base + skip;
984 BUG(); // if it had been empty, we wouldn't get called
987 /* must be done on non-empty ITER_BVEC one */
988 static struct page *first_bvec_segment(const struct iov_iter *i,
989 size_t *size, size_t *start)
992 size_t skip = i->iov_offset, len;
994 len = i->bvec->bv_len - skip;
997 skip += i->bvec->bv_offset;
998 page = i->bvec->bv_page + skip / PAGE_SIZE;
999 *start = skip % PAGE_SIZE;
1003 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1004 struct page ***pages, size_t maxsize,
1005 unsigned int maxpages, size_t *start)
1007 unsigned int n, gup_flags = 0;
1009 if (maxsize > i->count)
1013 if (maxsize > MAX_RW_COUNT)
1014 maxsize = MAX_RW_COUNT;
1016 if (likely(user_backed_iter(i))) {
1020 if (iov_iter_rw(i) != WRITE)
1021 gup_flags |= FOLL_WRITE;
1023 gup_flags |= FOLL_NOFAULT;
1025 addr = first_iovec_segment(i, &maxsize);
1026 *start = addr % PAGE_SIZE;
1028 n = want_pages_array(pages, maxsize, *start, maxpages);
1031 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1032 if (unlikely(res <= 0))
1034 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1035 iov_iter_advance(i, maxsize);
1038 if (iov_iter_is_bvec(i)) {
1042 page = first_bvec_segment(i, &maxsize, start);
1043 n = want_pages_array(pages, maxsize, *start, maxpages);
1047 for (int k = 0; k < n; k++)
1048 get_page(p[k] = page + k);
1049 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1050 i->count -= maxsize;
1051 i->iov_offset += maxsize;
1052 if (i->iov_offset == i->bvec->bv_len) {
1059 if (iov_iter_is_xarray(i))
1060 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1064 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1065 size_t maxsize, unsigned maxpages, size_t *start)
1071 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1073 EXPORT_SYMBOL(iov_iter_get_pages2);
1075 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1076 struct page ***pages, size_t maxsize, size_t *start)
1082 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1089 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1091 static int iov_npages(const struct iov_iter *i, int maxpages)
1093 size_t skip = i->iov_offset, size = i->count;
1094 const struct iovec *p;
1097 for (p = iter_iov(i); size; skip = 0, p++) {
1098 unsigned offs = offset_in_page(p->iov_base + skip);
1099 size_t len = min(p->iov_len - skip, size);
1103 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1104 if (unlikely(npages > maxpages))
1111 static int bvec_npages(const struct iov_iter *i, int maxpages)
1113 size_t skip = i->iov_offset, size = i->count;
1114 const struct bio_vec *p;
1117 for (p = i->bvec; size; skip = 0, p++) {
1118 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1119 size_t len = min(p->bv_len - skip, size);
1122 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1123 if (unlikely(npages > maxpages))
1129 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1131 if (unlikely(!i->count))
1133 if (likely(iter_is_ubuf(i))) {
1134 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1135 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1136 return min(npages, maxpages);
1138 /* iovec and kvec have identical layouts */
1139 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1140 return iov_npages(i, maxpages);
1141 if (iov_iter_is_bvec(i))
1142 return bvec_npages(i, maxpages);
1143 if (iov_iter_is_xarray(i)) {
1144 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1145 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1146 return min(npages, maxpages);
1150 EXPORT_SYMBOL(iov_iter_npages);
1152 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1155 if (iov_iter_is_bvec(new))
1156 return new->bvec = kmemdup(new->bvec,
1157 new->nr_segs * sizeof(struct bio_vec),
1159 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1160 /* iovec and kvec have identical layout */
1161 return new->__iov = kmemdup(new->__iov,
1162 new->nr_segs * sizeof(struct iovec),
1166 EXPORT_SYMBOL(dup_iter);
1168 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1169 const struct iovec __user *uvec, unsigned long nr_segs)
1171 const struct compat_iovec __user *uiov =
1172 (const struct compat_iovec __user *)uvec;
1173 int ret = -EFAULT, i;
1175 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1178 for (i = 0; i < nr_segs; i++) {
1182 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1183 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1185 /* check for compat_size_t not fitting in compat_ssize_t .. */
1190 iov[i].iov_base = compat_ptr(buf);
1191 iov[i].iov_len = len;
1200 static __noclone int copy_iovec_from_user(struct iovec *iov,
1201 const struct iovec __user *uiov, unsigned long nr_segs)
1205 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1212 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1213 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1215 /* check for size_t not fitting in ssize_t .. */
1216 if (unlikely(len < 0)) {
1220 iov->iov_base = buf;
1224 } while (--nr_segs);
1232 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1233 unsigned long nr_segs, unsigned long fast_segs,
1234 struct iovec *fast_iov, bool compat)
1236 struct iovec *iov = fast_iov;
1240 * SuS says "The readv() function *may* fail if the iovcnt argument was
1241 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1242 * traditionally returned zero for zero segments, so...
1246 if (nr_segs > UIO_MAXIOV)
1247 return ERR_PTR(-EINVAL);
1248 if (nr_segs > fast_segs) {
1249 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1251 return ERR_PTR(-ENOMEM);
1254 if (unlikely(compat))
1255 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1257 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1259 if (iov != fast_iov)
1261 return ERR_PTR(ret);
1268 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1270 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1271 struct iovec **iovp, struct iov_iter *i,
1274 struct iovec *iov = *iovp;
1278 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1280 ret = copy_iovec_from_user(iov, uvec, 1);
1284 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1291 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1292 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1293 struct iov_iter *i, bool compat)
1295 ssize_t total_len = 0;
1300 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1302 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1305 return PTR_ERR(iov);
1309 * According to the Single Unix Specification we should return EINVAL if
1310 * an element length is < 0 when cast to ssize_t or if the total length
1311 * would overflow the ssize_t return value of the system call.
1313 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1316 for (seg = 0; seg < nr_segs; seg++) {
1317 ssize_t len = (ssize_t)iov[seg].iov_len;
1319 if (!access_ok(iov[seg].iov_base, len)) {
1326 if (len > MAX_RW_COUNT - total_len) {
1327 len = MAX_RW_COUNT - total_len;
1328 iov[seg].iov_len = len;
1333 iov_iter_init(i, type, iov, nr_segs, total_len);
1342 * import_iovec() - Copy an array of &struct iovec from userspace
1343 * into the kernel, check that it is valid, and initialize a new
1344 * &struct iov_iter iterator to access it.
1346 * @type: One of %READ or %WRITE.
1347 * @uvec: Pointer to the userspace array.
1348 * @nr_segs: Number of elements in userspace array.
1349 * @fast_segs: Number of elements in @iov.
1350 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1351 * on-stack) kernel array.
1352 * @i: Pointer to iterator that will be initialized on success.
1354 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1355 * then this function places %NULL in *@iov on return. Otherwise, a new
1356 * array will be allocated and the result placed in *@iov. This means that
1357 * the caller may call kfree() on *@iov regardless of whether the small
1358 * on-stack array was used or not (and regardless of whether this function
1359 * returns an error or not).
1361 * Return: Negative error code on error, bytes imported on success
1363 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1364 unsigned nr_segs, unsigned fast_segs,
1365 struct iovec **iovp, struct iov_iter *i)
1367 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1368 in_compat_syscall());
1370 EXPORT_SYMBOL(import_iovec);
1372 int import_single_range(int rw, void __user *buf, size_t len,
1373 struct iovec *iov, struct iov_iter *i)
1375 if (len > MAX_RW_COUNT)
1377 if (unlikely(!access_ok(buf, len)))
1380 iov_iter_ubuf(i, rw, buf, len);
1383 EXPORT_SYMBOL(import_single_range);
1385 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1387 if (len > MAX_RW_COUNT)
1389 if (unlikely(!access_ok(buf, len)))
1392 iov_iter_ubuf(i, rw, buf, len);
1395 EXPORT_SYMBOL_GPL(import_ubuf);
1398 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1399 * iov_iter_save_state() was called.
1401 * @i: &struct iov_iter to restore
1402 * @state: state to restore from
1404 * Used after iov_iter_save_state() to bring restore @i, if operations may
1407 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1409 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1411 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1412 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1414 i->iov_offset = state->iov_offset;
1415 i->count = state->count;
1416 if (iter_is_ubuf(i))
1419 * For the *vec iters, nr_segs + iov is constant - if we increment
1420 * the vec, then we also decrement the nr_segs count. Hence we don't
1421 * need to track both of these, just one is enough and we can deduct
1422 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1423 * size, so we can just increment the iov pointer as they are unionzed.
1424 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1425 * not. Be safe and handle it separately.
1427 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1428 if (iov_iter_is_bvec(i))
1429 i->bvec -= state->nr_segs - i->nr_segs;
1431 i->__iov -= state->nr_segs - i->nr_segs;
1432 i->nr_segs = state->nr_segs;
1436 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1437 * get references on the pages, nor does it get a pin on them.
1439 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1440 struct page ***pages, size_t maxsize,
1441 unsigned int maxpages,
1442 iov_iter_extraction_t extraction_flags,
1445 struct page *page, **p;
1446 unsigned int nr = 0, offset;
1447 loff_t pos = i->xarray_start + i->iov_offset;
1448 pgoff_t index = pos >> PAGE_SHIFT;
1449 XA_STATE(xas, i->xarray, index);
1451 offset = pos & ~PAGE_MASK;
1454 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1460 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1461 if (xas_retry(&xas, page))
1464 /* Has the page moved or been split? */
1465 if (unlikely(page != xas_reload(&xas))) {
1470 p[nr++] = find_subpage(page, xas.xa_index);
1476 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1477 iov_iter_advance(i, maxsize);
1482 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1483 * not get references on the pages, nor does it get a pin on them.
1485 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1486 struct page ***pages, size_t maxsize,
1487 unsigned int maxpages,
1488 iov_iter_extraction_t extraction_flags,
1491 struct page **p, *page;
1492 size_t skip = i->iov_offset, offset, size;
1496 if (i->nr_segs == 0)
1498 size = min(maxsize, i->bvec->bv_len - skip);
1507 skip += i->bvec->bv_offset;
1508 page = i->bvec->bv_page + skip / PAGE_SIZE;
1509 offset = skip % PAGE_SIZE;
1512 maxpages = want_pages_array(pages, size, offset, maxpages);
1516 for (k = 0; k < maxpages; k++)
1519 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1520 iov_iter_advance(i, size);
1525 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1526 * This does not get references on the pages, nor does it get a pin on them.
1528 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1529 struct page ***pages, size_t maxsize,
1530 unsigned int maxpages,
1531 iov_iter_extraction_t extraction_flags,
1534 struct page **p, *page;
1536 size_t skip = i->iov_offset, offset, len, size;
1540 if (i->nr_segs == 0)
1542 size = min(maxsize, i->kvec->iov_len - skip);
1551 kaddr = i->kvec->iov_base + skip;
1552 offset = (unsigned long)kaddr & ~PAGE_MASK;
1555 maxpages = want_pages_array(pages, size, offset, maxpages);
1561 len = offset + size;
1562 for (k = 0; k < maxpages; k++) {
1563 size_t seg = min_t(size_t, len, PAGE_SIZE);
1565 if (is_vmalloc_or_module_addr(kaddr))
1566 page = vmalloc_to_page(kaddr);
1568 page = virt_to_page(kaddr);
1575 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1576 iov_iter_advance(i, size);
1581 * Extract a list of contiguous pages from a user iterator and get a pin on
1582 * each of them. This should only be used if the iterator is user-backed
1585 * It does not get refs on the pages, but the pages must be unpinned by the
1586 * caller once the transfer is complete.
1588 * This is safe to be used where background IO/DMA *is* going to be modifying
1589 * the buffer; using a pin rather than a ref makes forces fork() to give the
1590 * child a copy of the page.
1592 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1593 struct page ***pages,
1595 unsigned int maxpages,
1596 iov_iter_extraction_t extraction_flags,
1600 unsigned int gup_flags = 0;
1604 if (i->data_source == ITER_DEST)
1605 gup_flags |= FOLL_WRITE;
1606 if (extraction_flags & ITER_ALLOW_P2PDMA)
1607 gup_flags |= FOLL_PCI_P2PDMA;
1609 gup_flags |= FOLL_NOFAULT;
1611 addr = first_iovec_segment(i, &maxsize);
1612 *offset0 = offset = addr % PAGE_SIZE;
1614 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1617 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1618 if (unlikely(res <= 0))
1620 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1621 iov_iter_advance(i, maxsize);
1626 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1627 * @i: The iterator to extract from
1628 * @pages: Where to return the list of pages
1629 * @maxsize: The maximum amount of iterator to extract
1630 * @maxpages: The maximum size of the list of pages
1631 * @extraction_flags: Flags to qualify request
1632 * @offset0: Where to return the starting offset into (*@pages)[0]
1634 * Extract a list of contiguous pages from the current point of the iterator,
1635 * advancing the iterator. The maximum number of pages and the maximum amount
1636 * of page contents can be set.
1638 * If *@pages is NULL, a page list will be allocated to the required size and
1639 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1640 * that the caller allocated a page list at least @maxpages in size and this
1641 * will be filled in.
1643 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1644 * be allowed on the pages extracted.
1646 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1647 * should be performed.
1649 * Extra refs or pins on the pages may be obtained as follows:
1651 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1652 * added to the pages, but refs will not be taken.
1653 * iov_iter_extract_will_pin() will return true.
1655 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1656 * merely listed; no extra refs or pins are obtained.
1657 * iov_iter_extract_will_pin() will return 0.
1661 * (*) Use with ITER_DISCARD is not supported as that has no content.
1663 * On success, the function sets *@pages to the new pagelist, if allocated, and
1664 * sets *offset0 to the offset into the first page.
1666 * It may also return -ENOMEM and -EFAULT.
1668 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1669 struct page ***pages,
1671 unsigned int maxpages,
1672 iov_iter_extraction_t extraction_flags,
1675 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1679 if (likely(user_backed_iter(i)))
1680 return iov_iter_extract_user_pages(i, pages, maxsize,
1681 maxpages, extraction_flags,
1683 if (iov_iter_is_kvec(i))
1684 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1685 maxpages, extraction_flags,
1687 if (iov_iter_is_bvec(i))
1688 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1689 maxpages, extraction_flags,
1691 if (iov_iter_is_xarray(i))
1692 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1693 maxpages, extraction_flags,
1697 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);