1 // SPDX-License-Identifier: GPL-2.0-only
3 * Freescale Memory Controller kernel module
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
13 * 2006-2007 (c) MontaVista Software, Inc.
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/edac.h>
22 #include <linux/smp.h>
23 #include <linux/gfp.h>
25 #include <linux/of_platform.h>
26 #include <linux/of_device.h>
27 #include <linux/of_address.h>
28 #include "edac_module.h"
29 #include "fsl_ddr_edac.h"
31 #define EDAC_MOD_STR "fsl_ddr_edac"
33 static int edac_mc_idx;
35 static u32 orig_ddr_err_disable;
36 static u32 orig_ddr_err_sbe;
37 static bool little_endian;
39 static inline u32 ddr_in32(void __iomem *addr)
41 return little_endian ? ioread32(addr) : ioread32be(addr);
44 static inline void ddr_out32(void __iomem *addr, u32 value)
47 iowrite32(value, addr);
49 iowrite32be(value, addr);
52 #ifdef CONFIG_EDAC_DEBUG
53 /************************ MC SYSFS parts ***********************************/
55 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
57 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
58 struct device_attribute *mattr,
61 struct mem_ctl_info *mci = to_mci(dev);
62 struct fsl_mc_pdata *pdata = mci->pvt_info;
63 return sprintf(data, "0x%08x",
64 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
67 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
68 struct device_attribute *mattr,
71 struct mem_ctl_info *mci = to_mci(dev);
72 struct fsl_mc_pdata *pdata = mci->pvt_info;
73 return sprintf(data, "0x%08x",
74 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
77 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
78 struct device_attribute *mattr,
81 struct mem_ctl_info *mci = to_mci(dev);
82 struct fsl_mc_pdata *pdata = mci->pvt_info;
83 return sprintf(data, "0x%08x",
84 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
87 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
88 struct device_attribute *mattr,
89 const char *data, size_t count)
91 struct mem_ctl_info *mci = to_mci(dev);
92 struct fsl_mc_pdata *pdata = mci->pvt_info;
97 rc = kstrtoul(data, 0, &val);
101 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
107 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
108 struct device_attribute *mattr,
109 const char *data, size_t count)
111 struct mem_ctl_info *mci = to_mci(dev);
112 struct fsl_mc_pdata *pdata = mci->pvt_info;
116 if (isdigit(*data)) {
117 rc = kstrtoul(data, 0, &val);
121 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
127 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
128 struct device_attribute *mattr,
129 const char *data, size_t count)
131 struct mem_ctl_info *mci = to_mci(dev);
132 struct fsl_mc_pdata *pdata = mci->pvt_info;
136 if (isdigit(*data)) {
137 rc = kstrtoul(data, 0, &val);
141 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
147 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
148 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
149 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
150 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
151 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
152 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
153 #endif /* CONFIG_EDAC_DEBUG */
155 static struct attribute *fsl_ddr_dev_attrs[] = {
156 #ifdef CONFIG_EDAC_DEBUG
157 &dev_attr_inject_data_hi.attr,
158 &dev_attr_inject_data_lo.attr,
159 &dev_attr_inject_ctrl.attr,
164 ATTRIBUTE_GROUPS(fsl_ddr_dev);
166 /**************************** MC Err device ***************************/
169 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
170 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
171 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
172 * below correspond to Freescale's manuals.
174 static unsigned int ecc_table[16] = {
177 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
178 0x00ff00ff, 0x00fff0ff,
179 0x0f0f0f0f, 0x0f0fff00,
180 0x11113333, 0x7777000f,
181 0x22224444, 0x8888222f,
182 0x44448888, 0xffff4441,
183 0x8888ffff, 0x11118882,
184 0xffff1111, 0x22221114, /* Syndrome bit 0 */
188 * Calculate the correct ECC value for a 64-bit value specified by high:low
190 static u8 calculate_ecc(u32 high, u32 low)
199 for (i = 0; i < 8; i++) {
200 mask_high = ecc_table[i * 2];
201 mask_low = ecc_table[i * 2 + 1];
204 for (j = 0; j < 32; j++) {
205 if ((mask_high >> j) & 1)
206 bit_cnt ^= (high >> j) & 1;
207 if ((mask_low >> j) & 1)
208 bit_cnt ^= (low >> j) & 1;
218 * Create the syndrome code which is generated if the data line specified by
219 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
220 * User's Manual and 9-61 in the MPC8572 User's Manual.
222 static u8 syndrome_from_bit(unsigned int bit) {
227 * Cycle through the upper or lower 32-bit portion of each value in
228 * ecc_table depending on if 'bit' is in the upper or lower half of
231 for (i = bit < 32; i < 16; i += 2)
232 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
238 * Decode data and ecc syndrome to determine what went wrong
239 * Note: This can only decode single-bit errors
241 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
242 int *bad_data_bit, int *bad_ecc_bit)
251 * Calculate the ECC of the captured data and XOR it with the captured
252 * ECC to find an ECC syndrome value we can search for
254 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
256 /* Check if a data line is stuck... */
257 for (i = 0; i < 64; i++) {
258 if (syndrome == syndrome_from_bit(i)) {
264 /* If data is correct, check ECC bits for errors... */
265 for (i = 0; i < 8; i++) {
266 if ((syndrome >> i) & 0x1) {
273 #define make64(high, low) (((u64)(high) << 32) | (low))
275 static void fsl_mc_check(struct mem_ctl_info *mci)
277 struct fsl_mc_pdata *pdata = mci->pvt_info;
278 struct csrow_info *csrow;
290 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
294 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
297 /* no more processing if not ECC bit errors */
298 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
299 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
303 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
305 /* Mask off appropriate bits of syndrome based on bus width */
306 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
307 DSC_DBW_MASK) ? 32 : 64;
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
315 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
316 pfn = err_addr >> PAGE_SHIFT;
318 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
319 csrow = mci->csrows[row_index];
320 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
324 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
325 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
328 * Analyze single-bit errors on 64-bit wide buses
329 * TODO: Add support for 32-bit wide buses
331 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
332 sbe_ecc_decode(cap_high, cap_low, syndrome,
333 &bad_data_bit, &bad_ecc_bit);
335 if (bad_data_bit != -1)
336 fsl_mc_printk(mci, KERN_ERR,
337 "Faulty Data bit: %d\n", bad_data_bit);
338 if (bad_ecc_bit != -1)
339 fsl_mc_printk(mci, KERN_ERR,
340 "Faulty ECC bit: %d\n", bad_ecc_bit);
342 fsl_mc_printk(mci, KERN_ERR,
343 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
344 cap_high ^ (1 << (bad_data_bit - 32)),
345 cap_low ^ (1 << bad_data_bit),
346 syndrome ^ (1 << bad_ecc_bit));
349 fsl_mc_printk(mci, KERN_ERR,
350 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
351 cap_high, cap_low, syndrome);
352 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
353 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
355 /* we are out of range */
356 if (row_index == mci->nr_csrows)
357 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
359 if (err_detect & DDR_EDE_SBE)
360 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
361 pfn, err_addr & ~PAGE_MASK, syndrome,
365 if (err_detect & DDR_EDE_MBE)
366 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
367 pfn, err_addr & ~PAGE_MASK, syndrome,
371 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
374 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
376 struct mem_ctl_info *mci = dev_id;
377 struct fsl_mc_pdata *pdata = mci->pvt_info;
380 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
389 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
391 struct fsl_mc_pdata *pdata = mci->pvt_info;
392 struct csrow_info *csrow;
393 struct dimm_info *dimm;
400 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
402 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
403 if (sdram_ctl & DSC_RD_EN) {
441 for (index = 0; index < mci->nr_csrows; index++) {
445 csrow = mci->csrows[index];
446 dimm = csrow->channels[0]->dimm;
448 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
449 (index * FSL_MC_CS_BNDS_OFS));
451 start = (cs_bnds & 0xffff0000) >> 16;
452 end = (cs_bnds & 0x0000ffff);
455 continue; /* not populated */
457 start <<= (24 - PAGE_SHIFT);
458 end <<= (24 - PAGE_SHIFT);
459 end |= (1 << (24 - PAGE_SHIFT)) - 1;
461 csrow->first_page = start;
462 csrow->last_page = end;
464 dimm->nr_pages = end + 1 - start;
467 dimm->dtype = DEV_UNKNOWN;
468 if (sdram_ctl & DSC_X32_EN)
469 dimm->dtype = DEV_X32;
470 dimm->edac_mode = EDAC_SECDED;
474 int fsl_mc_err_probe(struct platform_device *op)
476 struct mem_ctl_info *mci;
477 struct edac_mc_layer layers[2];
478 struct fsl_mc_pdata *pdata;
483 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
486 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
488 layers[0].is_virt_csrow = true;
489 layers[1].type = EDAC_MC_LAYER_CHANNEL;
491 layers[1].is_virt_csrow = false;
492 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
495 devres_release_group(&op->dev, fsl_mc_err_probe);
499 pdata = mci->pvt_info;
500 pdata->name = "fsl_mc_err";
501 mci->pdev = &op->dev;
502 pdata->edac_idx = edac_mc_idx++;
503 dev_set_drvdata(mci->pdev, mci);
504 mci->ctl_name = pdata->name;
505 mci->dev_name = pdata->name;
508 * Get the endianness of DDR controller registers.
509 * Default is big endian.
511 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
513 res = of_address_to_resource(op->dev.of_node, 0, &r);
515 pr_err("%s: Unable to get resource for MC err regs\n",
520 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
522 pr_err("%s: Error while requesting mem region\n",
528 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
529 if (!pdata->mc_vbase) {
530 pr_err("%s: Unable to setup MC err regs\n", __func__);
535 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
536 if (!(sdram_ctl & DSC_ECC_EN)) {
538 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
543 edac_dbg(3, "init mci\n");
544 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
545 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
546 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
547 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
548 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
549 mci->edac_cap = EDAC_FLAG_SECDED;
550 mci->mod_name = EDAC_MOD_STR;
552 if (edac_op_state == EDAC_OPSTATE_POLL)
553 mci->edac_check = fsl_mc_check;
555 mci->ctl_page_to_phys = NULL;
557 mci->scrub_mode = SCRUB_SW_SRC;
559 fsl_ddr_init_csrows(mci);
561 /* store the original error disable bits */
562 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
563 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
565 /* clear all error bits */
566 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
568 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
570 edac_dbg(3, "failed edac_mc_add_mc()\n");
574 if (edac_op_state == EDAC_OPSTATE_INT) {
575 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
576 DDR_EIE_MBEE | DDR_EIE_SBEE);
578 /* store the original error management threshold */
579 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
580 FSL_MC_ERR_SBE) & 0xff0000;
582 /* set threshold to 1 error per interrupt */
583 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
585 /* register interrupts */
586 pdata->irq = platform_get_irq(op, 0);
587 res = devm_request_irq(&op->dev, pdata->irq,
590 "[EDAC] MC err", mci);
592 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
593 __func__, pdata->irq);
598 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
602 devres_remove_group(&op->dev, fsl_mc_err_probe);
603 edac_dbg(3, "success\n");
604 pr_info(EDAC_MOD_STR " MC err registered\n");
609 edac_mc_del_mc(&op->dev);
611 devres_release_group(&op->dev, fsl_mc_err_probe);
616 int fsl_mc_err_remove(struct platform_device *op)
618 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
619 struct fsl_mc_pdata *pdata = mci->pvt_info;
623 if (edac_op_state == EDAC_OPSTATE_INT) {
624 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
627 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
628 orig_ddr_err_disable);
629 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
631 edac_mc_del_mc(&op->dev);