1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha1.h>
19 #include <crypto/sha2.h>
20 #include <crypto/aes.h>
21 #include <crypto/internal/des.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/algapi.h>
31 #include <asm/hypervisor.h>
32 #include <asm/mdesc.h>
36 #define DRV_MODULE_NAME "n2_crypto"
37 #define DRV_MODULE_VERSION "0.2"
38 #define DRV_MODULE_RELDATE "July 28, 2011"
40 static const char version[] =
41 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
44 MODULE_DESCRIPTION("Niagara2 Crypto driver");
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(DRV_MODULE_VERSION);
48 #define N2_CRA_PRIORITY 200
50 static DEFINE_MUTEX(spu_lock);
54 unsigned long qhandle;
61 struct list_head jobs;
68 struct list_head list;
72 struct spu_queue *queue;
76 static struct spu_queue **cpu_to_cwq;
77 static struct spu_queue **cpu_to_mau;
79 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81 if (q->q_type == HV_NCS_QTYPE_MAU) {
82 off += MAU_ENTRY_SIZE;
83 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
86 off += CWQ_ENTRY_SIZE;
87 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
93 struct n2_request_common {
94 struct list_head entry;
97 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
99 /* An async job request records the final tail value it used in
100 * n2_request_common->offset, test to see if that offset is in
101 * the range old_head, new_head, inclusive.
103 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
104 unsigned long old_head, unsigned long new_head)
106 if (old_head <= new_head) {
107 if (offset > old_head && offset <= new_head)
110 if (offset > old_head || offset <= new_head)
116 /* When the HEAD marker is unequal to the actual HEAD, we get
117 * a virtual device INO interrupt. We should process the
118 * completed CWQ entries and adjust the HEAD marker to clear
121 static irqreturn_t cwq_intr(int irq, void *dev_id)
123 unsigned long off, new_head, hv_ret;
124 struct spu_queue *q = dev_id;
126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
127 smp_processor_id(), q->qhandle);
131 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
134 smp_processor_id(), new_head, hv_ret);
136 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
140 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
141 if (hv_ret == HV_EOK)
144 spin_unlock(&q->lock);
149 static irqreturn_t mau_intr(int irq, void *dev_id)
151 struct spu_queue *q = dev_id;
152 unsigned long head, hv_ret;
156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
157 smp_processor_id(), q->qhandle);
159 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
162 smp_processor_id(), head, hv_ret);
164 sun4v_ncs_sethead_marker(q->qhandle, head);
166 spin_unlock(&q->lock);
171 static void *spu_queue_next(struct spu_queue *q, void *cur)
173 return q->q + spu_next_offset(q, cur - q->q);
176 static int spu_queue_num_free(struct spu_queue *q)
178 unsigned long head = q->head;
179 unsigned long tail = q->tail;
180 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
186 diff = (end - tail) + head;
188 return (diff / CWQ_ENTRY_SIZE) - 1;
191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193 int avail = spu_queue_num_free(q);
195 if (avail >= num_entries)
196 return q->q + q->tail;
201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203 unsigned long hv_ret, new_tail;
205 new_tail = spu_next_offset(q, last - q->q);
207 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
208 if (hv_ret == HV_EOK)
213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
214 int enc_type, int auth_type,
215 unsigned int hash_len,
216 bool sfas, bool sob, bool eob, bool encrypt,
219 u64 word = (len - 1) & CONTROL_LEN;
221 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
222 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
223 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225 word |= CONTROL_STORE_FINAL_AUTH_STATE;
227 word |= CONTROL_START_OF_BLOCK;
229 word |= CONTROL_END_OF_BLOCK;
231 word |= CONTROL_ENCRYPT;
233 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243 if (this_len >= 64 ||
244 qp->head != qp->tail)
250 struct n2_ahash_alg {
251 struct list_head entry;
258 struct ahash_alg alg;
261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263 struct crypto_alg *alg = tfm->__crt_alg;
264 struct ahash_alg *ahash_alg;
266 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268 return container_of(ahash_alg, struct n2_ahash_alg, alg);
272 const char *child_alg;
273 struct n2_ahash_alg derived;
276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278 struct crypto_alg *alg = tfm->__crt_alg;
279 struct ahash_alg *ahash_alg;
281 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
287 struct crypto_ahash *fallback_tfm;
290 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
293 struct n2_hash_ctx base;
295 struct crypto_shash *child_shash;
298 unsigned char hash_key[N2_HASH_KEY_MAX];
301 struct n2_hash_req_ctx {
303 struct md5_state md5;
304 struct sha1_state sha1;
305 struct sha256_state sha256;
308 struct ahash_request fallback_req;
311 static int n2_hash_async_init(struct ahash_request *req)
313 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
314 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
315 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
318 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320 return crypto_ahash_init(&rctx->fallback_req);
323 static int n2_hash_async_update(struct ahash_request *req)
325 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
326 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
327 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
330 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
331 rctx->fallback_req.nbytes = req->nbytes;
332 rctx->fallback_req.src = req->src;
334 return crypto_ahash_update(&rctx->fallback_req);
337 static int n2_hash_async_final(struct ahash_request *req)
339 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
340 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
341 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
344 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
345 rctx->fallback_req.result = req->result;
347 return crypto_ahash_final(&rctx->fallback_req);
350 static int n2_hash_async_finup(struct ahash_request *req)
352 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
353 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
354 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
357 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
358 rctx->fallback_req.nbytes = req->nbytes;
359 rctx->fallback_req.src = req->src;
360 rctx->fallback_req.result = req->result;
362 return crypto_ahash_finup(&rctx->fallback_req);
365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
370 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
375 static int n2_hash_cra_init(struct crypto_tfm *tfm)
377 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
378 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
379 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
380 struct crypto_ahash *fallback_tfm;
383 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
384 CRYPTO_ALG_NEED_FALLBACK);
385 if (IS_ERR(fallback_tfm)) {
386 pr_warn("Fallback driver '%s' could not be loaded!\n",
387 fallback_driver_name);
388 err = PTR_ERR(fallback_tfm);
392 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
393 crypto_ahash_reqsize(fallback_tfm)));
395 ctx->fallback_tfm = fallback_tfm;
402 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
405 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407 crypto_free_ahash(ctx->fallback_tfm);
410 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
413 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
414 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
415 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
416 struct crypto_ahash *fallback_tfm;
417 struct crypto_shash *child_shash;
420 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
421 CRYPTO_ALG_NEED_FALLBACK);
422 if (IS_ERR(fallback_tfm)) {
423 pr_warn("Fallback driver '%s' could not be loaded!\n",
424 fallback_driver_name);
425 err = PTR_ERR(fallback_tfm);
429 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
430 if (IS_ERR(child_shash)) {
431 pr_warn("Child shash '%s' could not be loaded!\n",
433 err = PTR_ERR(child_shash);
434 goto out_free_fallback;
437 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
438 crypto_ahash_reqsize(fallback_tfm)));
440 ctx->child_shash = child_shash;
441 ctx->base.fallback_tfm = fallback_tfm;
445 crypto_free_ahash(fallback_tfm);
451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
454 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456 crypto_free_ahash(ctx->base.fallback_tfm);
457 crypto_free_shash(ctx->child_shash);
460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
463 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
464 struct crypto_shash *child_shash = ctx->child_shash;
465 struct crypto_ahash *fallback_tfm;
468 fallback_tfm = ctx->base.fallback_tfm;
469 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
473 bs = crypto_shash_blocksize(child_shash);
474 ds = crypto_shash_digestsize(child_shash);
475 BUG_ON(ds > N2_HASH_KEY_MAX);
477 err = crypto_shash_tfm_digest(child_shash, key, keylen,
482 } else if (keylen <= N2_HASH_KEY_MAX)
483 memcpy(ctx->hash_key, key, keylen);
485 ctx->hash_key_len = keylen;
490 static unsigned long wait_for_tail(struct spu_queue *qp)
492 unsigned long head, hv_ret;
495 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
496 if (hv_ret != HV_EOK) {
497 pr_err("Hypervisor error on gethead\n");
500 if (head == qp->tail) {
508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
509 struct cwq_initial_entry *ent)
511 unsigned long hv_ret = spu_queue_submit(qp, ent);
513 if (hv_ret == HV_EOK)
514 hv_ret = wait_for_tail(qp);
519 static int n2_do_async_digest(struct ahash_request *req,
520 unsigned int auth_type, unsigned int digest_size,
521 unsigned int result_size, void *hash_loc,
522 unsigned long auth_key, unsigned int auth_key_len)
524 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
525 struct cwq_initial_entry *ent;
526 struct crypto_hash_walk walk;
527 struct spu_queue *qp;
532 /* The total effective length of the operation may not
535 if (unlikely(req->nbytes > (1 << 16))) {
536 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
537 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
540 rctx->fallback_req.base.flags =
541 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
542 rctx->fallback_req.nbytes = req->nbytes;
543 rctx->fallback_req.src = req->src;
544 rctx->fallback_req.result = req->result;
546 return crypto_ahash_digest(&rctx->fallback_req);
549 nbytes = crypto_hash_walk_first(req, &walk);
552 qp = cpu_to_cwq[cpu];
556 spin_lock_irqsave(&qp->lock, flags);
558 /* XXX can do better, improve this later by doing a by-hand scatterlist
561 ent = qp->q + qp->tail;
563 ent->control = control_word_base(nbytes, auth_key_len, 0,
564 auth_type, digest_size,
565 false, true, false, false,
568 ent->src_addr = __pa(walk.data);
569 ent->auth_key_addr = auth_key;
570 ent->auth_iv_addr = __pa(hash_loc);
571 ent->final_auth_state_addr = 0UL;
572 ent->enc_key_addr = 0UL;
573 ent->enc_iv_addr = 0UL;
574 ent->dest_addr = __pa(hash_loc);
576 nbytes = crypto_hash_walk_done(&walk, 0);
578 ent = spu_queue_next(qp, ent);
580 ent->control = (nbytes - 1);
581 ent->src_addr = __pa(walk.data);
582 ent->auth_key_addr = 0UL;
583 ent->auth_iv_addr = 0UL;
584 ent->final_auth_state_addr = 0UL;
585 ent->enc_key_addr = 0UL;
586 ent->enc_iv_addr = 0UL;
587 ent->dest_addr = 0UL;
589 nbytes = crypto_hash_walk_done(&walk, 0);
591 ent->control |= CONTROL_END_OF_BLOCK;
593 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
598 spin_unlock_irqrestore(&qp->lock, flags);
601 memcpy(req->result, hash_loc, result_size);
608 static int n2_hash_async_digest(struct ahash_request *req)
610 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
611 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 ds = n2alg->digest_size;
615 if (unlikely(req->nbytes == 0)) {
616 memcpy(req->result, n2alg->hash_zero, ds);
619 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621 return n2_do_async_digest(req, n2alg->auth_type,
622 n2alg->hw_op_hashsz, ds,
626 static int n2_hmac_async_digest(struct ahash_request *req)
628 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
631 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 ds = n2alg->derived.digest_size;
635 if (unlikely(req->nbytes == 0) ||
636 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
637 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
638 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
641 rctx->fallback_req.base.flags =
642 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
643 rctx->fallback_req.nbytes = req->nbytes;
644 rctx->fallback_req.src = req->src;
645 rctx->fallback_req.result = req->result;
647 return crypto_ahash_digest(&rctx->fallback_req);
649 memcpy(&rctx->u, n2alg->derived.hash_init,
650 n2alg->derived.hw_op_hashsz);
652 return n2_do_async_digest(req, n2alg->derived.hmac_type,
653 n2alg->derived.hw_op_hashsz, ds,
655 __pa(&ctx->hash_key),
659 struct n2_skcipher_context {
663 u8 aes[AES_MAX_KEY_SIZE];
664 u8 des[DES_KEY_SIZE];
665 u8 des3[3 * DES_KEY_SIZE];
669 #define N2_CHUNK_ARR_LEN 16
671 struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
683 struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
690 /* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
700 * 0xe --> 0xa --> 0x8
702 * is a valid length sequence, whereas:
704 * 0xe --> 0xb --> 0x7
706 * is not a valid sequence.
709 struct n2_skcipher_alg {
710 struct list_head entry;
712 struct skcipher_alg skcipher;
715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
722 struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
762 err = verify_skcipher_des_key(skcipher, key);
766 ctx->enc_type = n2alg->enc_type;
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
781 err = verify_skcipher_des3_key(skcipher, key);
785 ctx->enc_type = n2alg->enc_type;
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794 int this_len = nbytes;
796 this_len -= (nbytes & (block_size - 1));
797 return this_len > (1 << 16) ? (1 << 16) : this_len;
800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
801 struct n2_crypto_chunk *cp,
802 struct spu_queue *qp, bool encrypt)
804 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
805 struct cwq_initial_entry *ent;
809 ent = spu_queue_alloc(qp, cp->arr_len);
811 pr_info("queue_alloc() of %d fails\n",
816 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818 ent->control = control_word_base(cp->arr[0].src_len,
819 0, ctx->enc_type, 0, 0,
820 false, true, false, encrypt,
822 (in_place ? OPCODE_INPLACE_BIT : 0));
823 ent->src_addr = cp->arr[0].src_paddr;
824 ent->auth_key_addr = 0UL;
825 ent->auth_iv_addr = 0UL;
826 ent->final_auth_state_addr = 0UL;
827 ent->enc_key_addr = __pa(&ctx->key);
828 ent->enc_iv_addr = cp->iv_paddr;
829 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831 for (i = 1; i < cp->arr_len; i++) {
832 ent = spu_queue_next(qp, ent);
834 ent->control = cp->arr[i].src_len - 1;
835 ent->src_addr = cp->arr[i].src_paddr;
836 ent->auth_key_addr = 0UL;
837 ent->auth_iv_addr = 0UL;
838 ent->final_auth_state_addr = 0UL;
839 ent->enc_key_addr = 0UL;
840 ent->enc_iv_addr = 0UL;
841 ent->dest_addr = 0UL;
843 ent->control |= CONTROL_END_OF_BLOCK;
845 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
848 static int n2_compute_chunks(struct skcipher_request *req)
850 struct n2_request_context *rctx = skcipher_request_ctx(req);
851 struct skcipher_walk *walk = &rctx->walk;
852 struct n2_crypto_chunk *chunk;
853 unsigned long dest_prev;
854 unsigned int tot_len;
858 err = skcipher_walk_async(walk, req);
862 INIT_LIST_HEAD(&rctx->chunk_list);
864 chunk = &rctx->chunk;
865 INIT_LIST_HEAD(&chunk->entry);
867 chunk->iv_paddr = 0UL;
869 chunk->dest_paddr = 0UL;
871 prev_in_place = false;
875 while ((nbytes = walk->nbytes) != 0) {
876 unsigned long dest_paddr, src_paddr;
880 src_paddr = (page_to_phys(walk->src.phys.page) +
881 walk->src.phys.offset);
882 dest_paddr = (page_to_phys(walk->dst.phys.page) +
883 walk->dst.phys.offset);
884 in_place = (src_paddr == dest_paddr);
885 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887 if (chunk->arr_len != 0) {
888 if (in_place != prev_in_place ||
890 dest_paddr != dest_prev) ||
891 chunk->arr_len == N2_CHUNK_ARR_LEN ||
892 tot_len + this_len > (1 << 16)) {
893 chunk->dest_final = dest_prev;
894 list_add_tail(&chunk->entry,
896 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
901 INIT_LIST_HEAD(&chunk->entry);
904 if (chunk->arr_len == 0) {
905 chunk->dest_paddr = dest_paddr;
908 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
909 chunk->arr[chunk->arr_len].src_len = this_len;
912 dest_prev = dest_paddr + this_len;
913 prev_in_place = in_place;
916 err = skcipher_walk_done(walk, nbytes - this_len);
920 if (!err && chunk->arr_len != 0) {
921 chunk->dest_final = dest_prev;
922 list_add_tail(&chunk->entry, &rctx->chunk_list);
928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930 struct n2_request_context *rctx = skcipher_request_ctx(req);
931 struct n2_crypto_chunk *c, *tmp;
934 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938 if (unlikely(c != &rctx->chunk))
944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946 struct n2_request_context *rctx = skcipher_request_ctx(req);
947 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
948 int err = n2_compute_chunks(req);
949 struct n2_crypto_chunk *c, *tmp;
950 unsigned long flags, hv_ret;
951 struct spu_queue *qp;
956 qp = cpu_to_cwq[get_cpu()];
961 spin_lock_irqsave(&qp->lock, flags);
963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
968 if (unlikely(c != &rctx->chunk))
972 hv_ret = wait_for_tail(qp);
973 if (hv_ret != HV_EOK)
977 spin_unlock_irqrestore(&qp->lock, flags);
982 n2_chunk_complete(req, NULL);
986 static int n2_encrypt_ecb(struct skcipher_request *req)
988 return n2_do_ecb(req, true);
991 static int n2_decrypt_ecb(struct skcipher_request *req)
993 return n2_do_ecb(req, false);
996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998 struct n2_request_context *rctx = skcipher_request_ctx(req);
999 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000 unsigned long flags, hv_ret, iv_paddr;
1001 int err = n2_compute_chunks(req);
1002 struct n2_crypto_chunk *c, *tmp;
1003 struct spu_queue *qp;
1004 void *final_iv_addr;
1006 final_iv_addr = NULL;
1011 qp = cpu_to_cwq[get_cpu()];
1016 spin_lock_irqsave(&qp->lock, flags);
1019 iv_paddr = __pa(rctx->walk.iv);
1020 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022 c->iv_paddr = iv_paddr;
1023 err = __n2_crypt_chunk(tfm, c, qp, true);
1026 iv_paddr = c->dest_final - rctx->walk.blocksize;
1027 list_del(&c->entry);
1028 if (unlikely(c != &rctx->chunk))
1031 final_iv_addr = __va(iv_paddr);
1033 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035 if (c == &rctx->chunk) {
1036 iv_paddr = __pa(rctx->walk.iv);
1038 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039 tmp->arr[tmp->arr_len-1].src_len -
1040 rctx->walk.blocksize);
1042 if (!final_iv_addr) {
1045 pa = (c->arr[c->arr_len-1].src_paddr +
1046 c->arr[c->arr_len-1].src_len -
1047 rctx->walk.blocksize);
1048 final_iv_addr = rctx->temp_iv;
1049 memcpy(rctx->temp_iv, __va(pa),
1050 rctx->walk.blocksize);
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, false);
1056 list_del(&c->entry);
1057 if (unlikely(c != &rctx->chunk))
1062 hv_ret = wait_for_tail(qp);
1063 if (hv_ret != HV_EOK)
1067 spin_unlock_irqrestore(&qp->lock, flags);
1072 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1076 static int n2_encrypt_chaining(struct skcipher_request *req)
1078 return n2_do_chaining(req, true);
1081 static int n2_decrypt_chaining(struct skcipher_request *req)
1083 return n2_do_chaining(req, false);
1086 struct n2_skcipher_tmpl {
1088 const char *drv_name;
1091 struct skcipher_alg skcipher;
1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095 /* DES: ECB CBC and CFB are supported */
1096 { .name = "ecb(des)",
1097 .drv_name = "ecb-des",
1098 .block_size = DES_BLOCK_SIZE,
1099 .enc_type = (ENC_TYPE_ALG_DES |
1100 ENC_TYPE_CHAINING_ECB),
1102 .min_keysize = DES_KEY_SIZE,
1103 .max_keysize = DES_KEY_SIZE,
1104 .setkey = n2_des_setkey,
1105 .encrypt = n2_encrypt_ecb,
1106 .decrypt = n2_decrypt_ecb,
1109 { .name = "cbc(des)",
1110 .drv_name = "cbc-des",
1111 .block_size = DES_BLOCK_SIZE,
1112 .enc_type = (ENC_TYPE_ALG_DES |
1113 ENC_TYPE_CHAINING_CBC),
1115 .ivsize = DES_BLOCK_SIZE,
1116 .min_keysize = DES_KEY_SIZE,
1117 .max_keysize = DES_KEY_SIZE,
1118 .setkey = n2_des_setkey,
1119 .encrypt = n2_encrypt_chaining,
1120 .decrypt = n2_decrypt_chaining,
1123 { .name = "cfb(des)",
1124 .drv_name = "cfb-des",
1125 .block_size = DES_BLOCK_SIZE,
1126 .enc_type = (ENC_TYPE_ALG_DES |
1127 ENC_TYPE_CHAINING_CFB),
1129 .min_keysize = DES_KEY_SIZE,
1130 .max_keysize = DES_KEY_SIZE,
1131 .setkey = n2_des_setkey,
1132 .encrypt = n2_encrypt_chaining,
1133 .decrypt = n2_decrypt_chaining,
1137 /* 3DES: ECB CBC and CFB are supported */
1138 { .name = "ecb(des3_ede)",
1139 .drv_name = "ecb-3des",
1140 .block_size = DES_BLOCK_SIZE,
1141 .enc_type = (ENC_TYPE_ALG_3DES |
1142 ENC_TYPE_CHAINING_ECB),
1144 .min_keysize = 3 * DES_KEY_SIZE,
1145 .max_keysize = 3 * DES_KEY_SIZE,
1146 .setkey = n2_3des_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1151 { .name = "cbc(des3_ede)",
1152 .drv_name = "cbc-3des",
1153 .block_size = DES_BLOCK_SIZE,
1154 .enc_type = (ENC_TYPE_ALG_3DES |
1155 ENC_TYPE_CHAINING_CBC),
1157 .ivsize = DES_BLOCK_SIZE,
1158 .min_keysize = 3 * DES_KEY_SIZE,
1159 .max_keysize = 3 * DES_KEY_SIZE,
1160 .setkey = n2_3des_setkey,
1161 .encrypt = n2_encrypt_chaining,
1162 .decrypt = n2_decrypt_chaining,
1165 { .name = "cfb(des3_ede)",
1166 .drv_name = "cfb-3des",
1167 .block_size = DES_BLOCK_SIZE,
1168 .enc_type = (ENC_TYPE_ALG_3DES |
1169 ENC_TYPE_CHAINING_CFB),
1171 .min_keysize = 3 * DES_KEY_SIZE,
1172 .max_keysize = 3 * DES_KEY_SIZE,
1173 .setkey = n2_3des_setkey,
1174 .encrypt = n2_encrypt_chaining,
1175 .decrypt = n2_decrypt_chaining,
1178 /* AES: ECB CBC and CTR are supported */
1179 { .name = "ecb(aes)",
1180 .drv_name = "ecb-aes",
1181 .block_size = AES_BLOCK_SIZE,
1182 .enc_type = (ENC_TYPE_ALG_AES128 |
1183 ENC_TYPE_CHAINING_ECB),
1185 .min_keysize = AES_MIN_KEY_SIZE,
1186 .max_keysize = AES_MAX_KEY_SIZE,
1187 .setkey = n2_aes_setkey,
1188 .encrypt = n2_encrypt_ecb,
1189 .decrypt = n2_decrypt_ecb,
1192 { .name = "cbc(aes)",
1193 .drv_name = "cbc-aes",
1194 .block_size = AES_BLOCK_SIZE,
1195 .enc_type = (ENC_TYPE_ALG_AES128 |
1196 ENC_TYPE_CHAINING_CBC),
1198 .ivsize = AES_BLOCK_SIZE,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .setkey = n2_aes_setkey,
1202 .encrypt = n2_encrypt_chaining,
1203 .decrypt = n2_decrypt_chaining,
1206 { .name = "ctr(aes)",
1207 .drv_name = "ctr-aes",
1208 .block_size = AES_BLOCK_SIZE,
1209 .enc_type = (ENC_TYPE_ALG_AES128 |
1210 ENC_TYPE_CHAINING_COUNTER),
1212 .ivsize = AES_BLOCK_SIZE,
1213 .min_keysize = AES_MIN_KEY_SIZE,
1214 .max_keysize = AES_MAX_KEY_SIZE,
1215 .setkey = n2_aes_setkey,
1216 .encrypt = n2_encrypt_chaining,
1217 .decrypt = n2_encrypt_chaining,
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1224 static LIST_HEAD(skcipher_algs);
1226 struct n2_hash_tmpl {
1228 const u8 *hash_zero;
1229 const u8 *hash_init;
1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238 cpu_to_le32(MD5_H0),
1239 cpu_to_le32(MD5_H1),
1240 cpu_to_le32(MD5_H2),
1241 cpu_to_le32(MD5_H3),
1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1255 static const struct n2_hash_tmpl hash_tmpls[] = {
1257 .hash_zero = md5_zero_message_hash,
1258 .hash_init = (u8 *)n2_md5_init,
1259 .auth_type = AUTH_TYPE_MD5,
1260 .hmac_type = AUTH_TYPE_HMAC_MD5,
1261 .hw_op_hashsz = MD5_DIGEST_SIZE,
1262 .digest_size = MD5_DIGEST_SIZE,
1263 .block_size = MD5_HMAC_BLOCK_SIZE },
1265 .hash_zero = sha1_zero_message_hash,
1266 .hash_init = (u8 *)n2_sha1_init,
1267 .auth_type = AUTH_TYPE_SHA1,
1268 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1269 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1270 .digest_size = SHA1_DIGEST_SIZE,
1271 .block_size = SHA1_BLOCK_SIZE },
1273 .hash_zero = sha256_zero_message_hash,
1274 .hash_init = (u8 *)n2_sha256_init,
1275 .auth_type = AUTH_TYPE_SHA256,
1276 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1277 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1278 .digest_size = SHA256_DIGEST_SIZE,
1279 .block_size = SHA256_BLOCK_SIZE },
1281 .hash_zero = sha224_zero_message_hash,
1282 .hash_init = (u8 *)n2_sha224_init,
1283 .auth_type = AUTH_TYPE_SHA256,
1284 .hmac_type = AUTH_TYPE_RESERVED,
1285 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1286 .digest_size = SHA224_DIGEST_SIZE,
1287 .block_size = SHA224_BLOCK_SIZE },
1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1291 static LIST_HEAD(ahash_algs);
1292 static LIST_HEAD(hmac_algs);
1294 static int algs_registered;
1296 static void __n2_unregister_algs(void)
1298 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1299 struct n2_ahash_alg *alg, *alg_tmp;
1300 struct n2_hmac_alg *hmac, *hmac_tmp;
1302 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1303 crypto_unregister_skcipher(&skcipher->skcipher);
1304 list_del(&skcipher->entry);
1307 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1308 crypto_unregister_ahash(&hmac->derived.alg);
1309 list_del(&hmac->derived.entry);
1312 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1313 crypto_unregister_ahash(&alg->alg);
1314 list_del(&alg->entry);
1319 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1321 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1327 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1328 struct skcipher_alg *alg;
1335 *alg = tmpl->skcipher;
1337 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1338 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1339 alg->base.cra_priority = N2_CRA_PRIORITY;
1340 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1341 CRYPTO_ALG_ALLOCATES_MEMORY;
1342 alg->base.cra_blocksize = tmpl->block_size;
1343 p->enc_type = tmpl->enc_type;
1344 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1345 alg->base.cra_module = THIS_MODULE;
1346 alg->init = n2_skcipher_init_tfm;
1348 list_add(&p->entry, &skcipher_algs);
1349 err = crypto_register_skcipher(alg);
1351 pr_err("%s alg registration failed\n", alg->base.cra_name);
1352 list_del(&p->entry);
1355 pr_info("%s alg registered\n", alg->base.cra_name);
1360 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1362 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1363 struct ahash_alg *ahash;
1364 struct crypto_alg *base;
1370 p->child_alg = n2ahash->alg.halg.base.cra_name;
1371 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1372 INIT_LIST_HEAD(&p->derived.entry);
1374 ahash = &p->derived.alg;
1375 ahash->digest = n2_hmac_async_digest;
1376 ahash->setkey = n2_hmac_async_setkey;
1378 base = &ahash->halg.base;
1379 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1380 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1382 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1383 base->cra_init = n2_hmac_cra_init;
1384 base->cra_exit = n2_hmac_cra_exit;
1386 list_add(&p->derived.entry, &hmac_algs);
1387 err = crypto_register_ahash(ahash);
1389 pr_err("%s alg registration failed\n", base->cra_name);
1390 list_del(&p->derived.entry);
1393 pr_info("%s alg registered\n", base->cra_name);
1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1400 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1401 struct hash_alg_common *halg;
1402 struct crypto_alg *base;
1403 struct ahash_alg *ahash;
1409 p->hash_zero = tmpl->hash_zero;
1410 p->hash_init = tmpl->hash_init;
1411 p->auth_type = tmpl->auth_type;
1412 p->hmac_type = tmpl->hmac_type;
1413 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1414 p->digest_size = tmpl->digest_size;
1417 ahash->init = n2_hash_async_init;
1418 ahash->update = n2_hash_async_update;
1419 ahash->final = n2_hash_async_final;
1420 ahash->finup = n2_hash_async_finup;
1421 ahash->digest = n2_hash_async_digest;
1422 ahash->export = n2_hash_async_noexport;
1423 ahash->import = n2_hash_async_noimport;
1425 halg = &ahash->halg;
1426 halg->digestsize = tmpl->digest_size;
1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1431 base->cra_priority = N2_CRA_PRIORITY;
1432 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1433 CRYPTO_ALG_NEED_FALLBACK;
1434 base->cra_blocksize = tmpl->block_size;
1435 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1436 base->cra_module = THIS_MODULE;
1437 base->cra_init = n2_hash_cra_init;
1438 base->cra_exit = n2_hash_cra_exit;
1440 list_add(&p->entry, &ahash_algs);
1441 err = crypto_register_ahash(ahash);
1443 pr_err("%s alg registration failed\n", base->cra_name);
1444 list_del(&p->entry);
1447 pr_info("%s alg registered\n", base->cra_name);
1449 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1450 err = __n2_register_one_hmac(p);
1454 static int n2_register_algs(void)
1458 mutex_lock(&spu_lock);
1459 if (algs_registered++)
1462 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1463 err = __n2_register_one_ahash(&hash_tmpls[i]);
1465 __n2_unregister_algs();
1469 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1470 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1472 __n2_unregister_algs();
1478 mutex_unlock(&spu_lock);
1482 static void n2_unregister_algs(void)
1484 mutex_lock(&spu_lock);
1485 if (!--algs_registered)
1486 __n2_unregister_algs();
1487 mutex_unlock(&spu_lock);
1490 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1491 * a devino. This isn't very useful to us because all of the
1492 * interrupts listed in the device_node have been translated to
1493 * Linux virtual IRQ cookie numbers.
1495 * So we have to back-translate, going through the 'intr' and 'ino'
1496 * property tables of the n2cp MDESC node, matching it with the OF
1497 * 'interrupts' property entries, in order to to figure out which
1498 * devino goes to which already-translated IRQ.
1500 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1501 unsigned long dev_ino)
1503 const unsigned int *dev_intrs;
1507 for (i = 0; i < ip->num_intrs; i++) {
1508 if (ip->ino_table[i].ino == dev_ino)
1511 if (i == ip->num_intrs)
1514 intr = ip->ino_table[i].intr;
1516 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1520 for (i = 0; i < dev->archdata.num_irqs; i++) {
1521 if (dev_intrs[i] == intr)
1528 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1529 const char *irq_name, struct spu_queue *p,
1530 irq_handler_t handler)
1535 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1539 index = find_devino_index(dev, ip, p->devino);
1543 p->irq = dev->archdata.irqs[index];
1545 sprintf(p->irq_name, "%s-%d", irq_name, index);
1547 return request_irq(p->irq, handler, 0, p->irq_name, p);
1550 static struct kmem_cache *queue_cache[2];
1552 static void *new_queue(unsigned long q_type)
1554 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1557 static void free_queue(void *p, unsigned long q_type)
1559 kmem_cache_free(queue_cache[q_type - 1], p);
1562 static int queue_cache_init(void)
1564 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1565 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1566 kmem_cache_create("mau_queue",
1569 MAU_ENTRY_SIZE, 0, NULL);
1570 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1573 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1574 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1575 kmem_cache_create("cwq_queue",
1578 CWQ_ENTRY_SIZE, 0, NULL);
1579 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1580 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1581 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1587 static void queue_cache_destroy(void)
1589 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1590 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1591 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1592 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1595 static long spu_queue_register_workfn(void *arg)
1597 struct spu_qreg *qr = arg;
1598 struct spu_queue *p = qr->queue;
1599 unsigned long q_type = qr->type;
1600 unsigned long hv_ret;
1602 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1603 CWQ_NUM_ENTRIES, &p->qhandle);
1605 sun4v_ncs_sethead_marker(p->qhandle, 0);
1607 return hv_ret ? -EINVAL : 0;
1610 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1612 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1613 struct spu_qreg qr = { .queue = p, .type = q_type };
1615 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1618 static int spu_queue_setup(struct spu_queue *p)
1622 p->q = new_queue(p->q_type);
1626 err = spu_queue_register(p, p->q_type);
1628 free_queue(p->q, p->q_type);
1635 static void spu_queue_destroy(struct spu_queue *p)
1637 unsigned long hv_ret;
1642 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1645 free_queue(p->q, p->q_type);
1648 static void spu_list_destroy(struct list_head *list)
1650 struct spu_queue *p, *n;
1652 list_for_each_entry_safe(p, n, list, list) {
1655 for (i = 0; i < NR_CPUS; i++) {
1656 if (cpu_to_cwq[i] == p)
1657 cpu_to_cwq[i] = NULL;
1661 free_irq(p->irq, p);
1664 spu_queue_destroy(p);
1670 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1671 * gathering cpu membership information.
1673 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1674 struct platform_device *dev,
1675 u64 node, struct spu_queue *p,
1676 struct spu_queue **table)
1680 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1681 u64 tgt = mdesc_arc_target(mdesc, arc);
1682 const char *name = mdesc_node_name(mdesc, tgt);
1685 if (strcmp(name, "cpu"))
1687 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1688 if (table[*id] != NULL) {
1689 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1693 cpumask_set_cpu(*id, &p->sharing);
1699 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1700 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1701 struct platform_device *dev, struct mdesc_handle *mdesc,
1702 u64 node, const char *iname, unsigned long q_type,
1703 irq_handler_t handler, struct spu_queue **table)
1705 struct spu_queue *p;
1708 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1710 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1715 cpumask_clear(&p->sharing);
1716 spin_lock_init(&p->lock);
1718 INIT_LIST_HEAD(&p->jobs);
1719 list_add(&p->list, list);
1721 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1725 err = spu_queue_setup(p);
1729 return spu_map_ino(dev, ip, iname, p, handler);
1732 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1733 struct spu_mdesc_info *ip, struct list_head *list,
1734 const char *exec_name, unsigned long q_type,
1735 irq_handler_t handler, struct spu_queue **table)
1740 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1743 type = mdesc_get_property(mdesc, node, "type", NULL);
1744 if (!type || strcmp(type, exec_name))
1747 err = handle_exec_unit(ip, list, dev, mdesc, node,
1748 exec_name, q_type, handler, table);
1750 spu_list_destroy(list);
1758 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1759 struct spu_mdesc_info *ip)
1765 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1767 printk("NO 'ino'\n");
1771 ip->num_intrs = ino_len / sizeof(u64);
1772 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1778 for (i = 0; i < ip->num_intrs; i++) {
1779 struct ino_blob *b = &ip->ino_table[i];
1787 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1788 struct platform_device *dev,
1789 struct spu_mdesc_info *ip,
1790 const char *node_name)
1792 const unsigned int *reg;
1795 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1799 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1803 name = mdesc_get_property(mdesc, node, "name", NULL);
1804 if (!name || strcmp(name, node_name))
1806 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1807 if (!chdl || (*chdl != *reg))
1809 ip->cfg_handle = *chdl;
1810 return get_irq_props(mdesc, node, ip);
1816 static unsigned long n2_spu_hvapi_major;
1817 static unsigned long n2_spu_hvapi_minor;
1819 static int n2_spu_hvapi_register(void)
1823 n2_spu_hvapi_major = 2;
1824 n2_spu_hvapi_minor = 0;
1826 err = sun4v_hvapi_register(HV_GRP_NCS,
1828 &n2_spu_hvapi_minor);
1831 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1833 n2_spu_hvapi_minor);
1838 static void n2_spu_hvapi_unregister(void)
1840 sun4v_hvapi_unregister(HV_GRP_NCS);
1843 static int global_ref;
1845 static int grab_global_resources(void)
1849 mutex_lock(&spu_lock);
1854 err = n2_spu_hvapi_register();
1858 err = queue_cache_init();
1860 goto out_hvapi_release;
1863 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1866 goto out_queue_cache_destroy;
1868 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1871 goto out_free_cwq_table;
1878 mutex_unlock(&spu_lock);
1885 out_queue_cache_destroy:
1886 queue_cache_destroy();
1889 n2_spu_hvapi_unregister();
1893 static void release_global_resources(void)
1895 mutex_lock(&spu_lock);
1896 if (!--global_ref) {
1903 queue_cache_destroy();
1904 n2_spu_hvapi_unregister();
1906 mutex_unlock(&spu_lock);
1909 static struct n2_crypto *alloc_n2cp(void)
1911 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1914 INIT_LIST_HEAD(&np->cwq_list);
1919 static void free_n2cp(struct n2_crypto *np)
1921 kfree(np->cwq_info.ino_table);
1922 np->cwq_info.ino_table = NULL;
1927 static void n2_spu_driver_version(void)
1929 static int n2_spu_version_printed;
1931 if (n2_spu_version_printed++ == 0)
1932 pr_info("%s", version);
1935 static int n2_crypto_probe(struct platform_device *dev)
1937 struct mdesc_handle *mdesc;
1938 struct n2_crypto *np;
1941 n2_spu_driver_version();
1943 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1947 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1952 err = grab_global_resources();
1954 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1959 mdesc = mdesc_grab();
1962 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1965 goto out_free_global;
1967 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1969 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1971 mdesc_release(mdesc);
1972 goto out_free_global;
1975 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1976 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1978 mdesc_release(mdesc);
1981 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1983 goto out_free_global;
1986 err = n2_register_algs();
1988 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1990 goto out_free_spu_list;
1993 dev_set_drvdata(&dev->dev, np);
1998 spu_list_destroy(&np->cwq_list);
2001 release_global_resources();
2009 static int n2_crypto_remove(struct platform_device *dev)
2011 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2013 n2_unregister_algs();
2015 spu_list_destroy(&np->cwq_list);
2017 release_global_resources();
2024 static struct n2_mau *alloc_ncp(void)
2026 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2029 INIT_LIST_HEAD(&mp->mau_list);
2034 static void free_ncp(struct n2_mau *mp)
2036 kfree(mp->mau_info.ino_table);
2037 mp->mau_info.ino_table = NULL;
2042 static int n2_mau_probe(struct platform_device *dev)
2044 struct mdesc_handle *mdesc;
2048 n2_spu_driver_version();
2050 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2054 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2059 err = grab_global_resources();
2061 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2066 mdesc = mdesc_grab();
2069 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2072 goto out_free_global;
2075 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2077 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2079 mdesc_release(mdesc);
2080 goto out_free_global;
2083 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2084 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2086 mdesc_release(mdesc);
2089 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2091 goto out_free_global;
2094 dev_set_drvdata(&dev->dev, mp);
2099 release_global_resources();
2107 static int n2_mau_remove(struct platform_device *dev)
2109 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2111 spu_list_destroy(&mp->mau_list);
2113 release_global_resources();
2120 static const struct of_device_id n2_crypto_match[] = {
2123 .compatible = "SUNW,n2-cwq",
2127 .compatible = "SUNW,vf-cwq",
2131 .compatible = "SUNW,kt-cwq",
2136 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2138 static struct platform_driver n2_crypto_driver = {
2141 .of_match_table = n2_crypto_match,
2143 .probe = n2_crypto_probe,
2144 .remove = n2_crypto_remove,
2147 static const struct of_device_id n2_mau_match[] = {
2150 .compatible = "SUNW,n2-mau",
2154 .compatible = "SUNW,vf-mau",
2158 .compatible = "SUNW,kt-mau",
2163 MODULE_DEVICE_TABLE(of, n2_mau_match);
2165 static struct platform_driver n2_mau_driver = {
2168 .of_match_table = n2_mau_match,
2170 .probe = n2_mau_probe,
2171 .remove = n2_mau_remove,
2174 static struct platform_driver * const drivers[] = {
2179 static int __init n2_init(void)
2181 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2184 static void __exit n2_exit(void)
2186 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2189 module_init(n2_init);
2190 module_exit(n2_exit);