1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2014 Facebook. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
15 * Used to keep track the roots and number of refs each root has for a given
16 * bytenr. This just tracks the number of direct references, no shared
26 * These are meant to represent what should exist in the extent tree, these can
27 * be used to verify the extent tree is consistent as these should all match
28 * what the extent tree says.
42 * Whenever we add/remove a reference we record the action. The action maps
43 * back to the delayed ref action. We hold the ref we are changing in the
44 * action so we can account for the history properly, and we record the root we
45 * were called with since it could be different from ref_root. We also store
46 * stack traces because that's how I roll.
52 struct list_head list;
53 unsigned long trace[MAX_TRACE];
54 unsigned int trace_len;
58 * One of these for every block we reference, it holds the roots and references
59 * to it as well as all of the ref actions that have occurred to it. We never
60 * free it until we unmount the file system in order to make sure re-allocations
61 * are happening properly.
72 struct list_head actions;
75 static struct block_entry *insert_block_entry(struct rb_root *root,
76 struct block_entry *be)
78 struct rb_node **p = &root->rb_node;
79 struct rb_node *parent_node = NULL;
80 struct block_entry *entry;
84 entry = rb_entry(parent_node, struct block_entry, node);
85 if (entry->bytenr > be->bytenr)
87 else if (entry->bytenr < be->bytenr)
93 rb_link_node(&be->node, parent_node, p);
94 rb_insert_color(&be->node, root);
98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
101 struct block_entry *entry = NULL;
105 entry = rb_entry(n, struct block_entry, node);
106 if (entry->bytenr < bytenr)
108 else if (entry->bytenr > bytenr)
116 static struct root_entry *insert_root_entry(struct rb_root *root,
117 struct root_entry *re)
119 struct rb_node **p = &root->rb_node;
120 struct rb_node *parent_node = NULL;
121 struct root_entry *entry;
125 entry = rb_entry(parent_node, struct root_entry, node);
126 if (entry->root_objectid > re->root_objectid)
128 else if (entry->root_objectid < re->root_objectid)
134 rb_link_node(&re->node, parent_node, p);
135 rb_insert_color(&re->node, root);
140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
142 if (ref1->root_objectid < ref2->root_objectid)
144 if (ref1->root_objectid > ref2->root_objectid)
146 if (ref1->parent < ref2->parent)
148 if (ref1->parent > ref2->parent)
150 if (ref1->owner < ref2->owner)
152 if (ref1->owner > ref2->owner)
154 if (ref1->offset < ref2->offset)
156 if (ref1->offset > ref2->offset)
161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162 struct ref_entry *ref)
164 struct rb_node **p = &root->rb_node;
165 struct rb_node *parent_node = NULL;
166 struct ref_entry *entry;
171 entry = rb_entry(parent_node, struct ref_entry, node);
172 cmp = comp_refs(entry, ref);
181 rb_link_node(&ref->node, parent_node, p);
182 rb_insert_color(&ref->node, root);
187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
190 struct root_entry *entry = NULL;
194 entry = rb_entry(n, struct root_entry, node);
195 if (entry->root_objectid < objectid)
197 else if (entry->root_objectid > objectid)
205 #ifdef CONFIG_STACKTRACE
206 static void __save_stack_trace(struct ref_action *ra)
208 struct stack_trace stack_trace;
210 stack_trace.max_entries = MAX_TRACE;
211 stack_trace.nr_entries = 0;
212 stack_trace.entries = ra->trace;
213 stack_trace.skip = 2;
214 save_stack_trace(&stack_trace);
215 ra->trace_len = stack_trace.nr_entries;
218 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
219 struct ref_action *ra)
221 struct stack_trace trace;
223 if (ra->trace_len == 0) {
224 btrfs_err(fs_info, " ref-verify: no stacktrace");
227 trace.nr_entries = ra->trace_len;
228 trace.entries = ra->trace;
229 print_stack_trace(&trace, 2);
232 static void inline __save_stack_trace(struct ref_action *ra)
236 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
237 struct ref_action *ra)
239 btrfs_err(fs_info, " ref-verify: no stacktrace support");
243 static void free_block_entry(struct block_entry *be)
245 struct root_entry *re;
246 struct ref_entry *ref;
247 struct ref_action *ra;
250 while ((n = rb_first(&be->roots))) {
251 re = rb_entry(n, struct root_entry, node);
252 rb_erase(&re->node, &be->roots);
256 while((n = rb_first(&be->refs))) {
257 ref = rb_entry(n, struct ref_entry, node);
258 rb_erase(&ref->node, &be->refs);
262 while (!list_empty(&be->actions)) {
263 ra = list_first_entry(&be->actions, struct ref_action,
271 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
275 struct block_entry *be = NULL, *exist;
276 struct root_entry *re = NULL;
278 re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
279 be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
283 return ERR_PTR(-ENOMEM);
288 re->root_objectid = root_objectid;
291 spin_lock(&fs_info->ref_verify_lock);
292 exist = insert_block_entry(&fs_info->block_tree, be);
295 struct root_entry *exist_re;
297 exist_re = insert_root_entry(&exist->roots, re);
310 INIT_LIST_HEAD(&be->actions);
312 insert_root_entry(&be->roots, re);
318 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
319 u64 parent, u64 bytenr, int level)
321 struct block_entry *be;
322 struct root_entry *re;
323 struct ref_entry *ref = NULL, *exist;
325 ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
330 ref->root_objectid = 0;
332 ref->root_objectid = ref_root;
333 ref->parent = parent;
338 be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
349 re = lookup_root_entry(&be->roots, ref_root);
353 exist = insert_ref_entry(&be->refs, ref);
358 spin_unlock(&fs_info->ref_verify_lock);
363 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
364 u64 parent, u32 num_refs, u64 bytenr,
367 struct block_entry *be;
368 struct ref_entry *ref;
370 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
373 be = add_block_entry(fs_info, bytenr, num_bytes, 0);
378 be->num_refs += num_refs;
380 ref->parent = parent;
381 ref->num_refs = num_refs;
382 if (insert_ref_entry(&be->refs, ref)) {
383 spin_unlock(&fs_info->ref_verify_lock);
384 btrfs_err(fs_info, "existing shared ref when reading from disk?");
388 spin_unlock(&fs_info->ref_verify_lock);
392 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
393 struct extent_buffer *leaf,
394 struct btrfs_extent_data_ref *dref,
395 u64 bytenr, u64 num_bytes)
397 struct block_entry *be;
398 struct ref_entry *ref;
399 struct root_entry *re;
400 u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
401 u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
402 u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
403 u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
405 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
408 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
413 be->num_refs += num_refs;
417 ref->root_objectid = ref_root;
418 ref->offset = offset;
419 ref->num_refs = num_refs;
420 if (insert_ref_entry(&be->refs, ref)) {
421 spin_unlock(&fs_info->ref_verify_lock);
422 btrfs_err(fs_info, "existing ref when reading from disk?");
427 re = lookup_root_entry(&be->roots, ref_root);
429 spin_unlock(&fs_info->ref_verify_lock);
430 btrfs_err(fs_info, "missing root in new block entry?");
433 re->num_refs += num_refs;
434 spin_unlock(&fs_info->ref_verify_lock);
438 static int process_extent_item(struct btrfs_fs_info *fs_info,
439 struct btrfs_path *path, struct btrfs_key *key,
440 int slot, int *tree_block_level)
442 struct btrfs_extent_item *ei;
443 struct btrfs_extent_inline_ref *iref;
444 struct btrfs_extent_data_ref *dref;
445 struct btrfs_shared_data_ref *sref;
446 struct extent_buffer *leaf = path->nodes[0];
447 u32 item_size = btrfs_item_size_nr(leaf, slot);
448 unsigned long end, ptr;
449 u64 offset, flags, count;
452 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
453 flags = btrfs_extent_flags(leaf, ei);
455 if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
456 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
457 struct btrfs_tree_block_info *info;
459 info = (struct btrfs_tree_block_info *)(ei + 1);
460 *tree_block_level = btrfs_tree_block_level(leaf, info);
461 iref = (struct btrfs_extent_inline_ref *)(info + 1);
463 if (key->type == BTRFS_METADATA_ITEM_KEY)
464 *tree_block_level = key->offset;
465 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
468 ptr = (unsigned long)iref;
469 end = (unsigned long)ei + item_size;
471 iref = (struct btrfs_extent_inline_ref *)ptr;
472 type = btrfs_extent_inline_ref_type(leaf, iref);
473 offset = btrfs_extent_inline_ref_offset(leaf, iref);
475 case BTRFS_TREE_BLOCK_REF_KEY:
476 ret = add_tree_block(fs_info, offset, 0, key->objectid,
479 case BTRFS_SHARED_BLOCK_REF_KEY:
480 ret = add_tree_block(fs_info, 0, offset, key->objectid,
483 case BTRFS_EXTENT_DATA_REF_KEY:
484 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
485 ret = add_extent_data_ref(fs_info, leaf, dref,
486 key->objectid, key->offset);
488 case BTRFS_SHARED_DATA_REF_KEY:
489 sref = (struct btrfs_shared_data_ref *)(iref + 1);
490 count = btrfs_shared_data_ref_count(leaf, sref);
491 ret = add_shared_data_ref(fs_info, offset, count,
492 key->objectid, key->offset);
495 btrfs_err(fs_info, "invalid key type in iref");
501 ptr += btrfs_extent_inline_ref_size(type);
506 static int process_leaf(struct btrfs_root *root,
507 struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
509 struct btrfs_fs_info *fs_info = root->fs_info;
510 struct extent_buffer *leaf = path->nodes[0];
511 struct btrfs_extent_data_ref *dref;
512 struct btrfs_shared_data_ref *sref;
514 int i = 0, tree_block_level = 0, ret;
515 struct btrfs_key key;
516 int nritems = btrfs_header_nritems(leaf);
518 for (i = 0; i < nritems; i++) {
519 btrfs_item_key_to_cpu(leaf, &key, i);
521 case BTRFS_EXTENT_ITEM_KEY:
522 *num_bytes = key.offset;
523 case BTRFS_METADATA_ITEM_KEY:
524 *bytenr = key.objectid;
525 ret = process_extent_item(fs_info, path, &key, i,
528 case BTRFS_TREE_BLOCK_REF_KEY:
529 ret = add_tree_block(fs_info, key.offset, 0,
530 key.objectid, tree_block_level);
532 case BTRFS_SHARED_BLOCK_REF_KEY:
533 ret = add_tree_block(fs_info, 0, key.offset,
534 key.objectid, tree_block_level);
536 case BTRFS_EXTENT_DATA_REF_KEY:
537 dref = btrfs_item_ptr(leaf, i,
538 struct btrfs_extent_data_ref);
539 ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
542 case BTRFS_SHARED_DATA_REF_KEY:
543 sref = btrfs_item_ptr(leaf, i,
544 struct btrfs_shared_data_ref);
545 count = btrfs_shared_data_ref_count(leaf, sref);
546 ret = add_shared_data_ref(fs_info, key.offset, count,
547 *bytenr, *num_bytes);
558 /* Walk down to the leaf from the given level */
559 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
560 int level, u64 *bytenr, u64 *num_bytes)
562 struct btrfs_fs_info *fs_info = root->fs_info;
563 struct extent_buffer *eb;
564 u64 block_bytenr, gen;
569 struct btrfs_key first_key;
571 block_bytenr = btrfs_node_blockptr(path->nodes[level],
573 gen = btrfs_node_ptr_generation(path->nodes[level],
575 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
577 eb = read_tree_block(fs_info, block_bytenr, gen,
578 level - 1, &first_key);
581 if (!extent_buffer_uptodate(eb)) {
582 free_extent_buffer(eb);
585 btrfs_tree_read_lock(eb);
586 btrfs_set_lock_blocking_read(eb);
587 path->nodes[level-1] = eb;
588 path->slots[level-1] = 0;
589 path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
591 ret = process_leaf(root, path, bytenr, num_bytes);
600 /* Walk up to the next node that needs to be processed */
601 static int walk_up_tree(struct btrfs_path *path, int *level)
605 for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
611 btrfs_header_nritems(path->nodes[l])) {
616 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
617 free_extent_buffer(path->nodes[l]);
618 path->nodes[l] = NULL;
626 static void dump_ref_action(struct btrfs_fs_info *fs_info,
627 struct ref_action *ra)
630 " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
631 ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
632 ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
633 __print_stack_trace(fs_info, ra);
637 * Dumps all the information from the block entry to printk, it's going to be
640 static void dump_block_entry(struct btrfs_fs_info *fs_info,
641 struct block_entry *be)
643 struct ref_entry *ref;
644 struct root_entry *re;
645 struct ref_action *ra;
649 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
650 be->bytenr, be->len, be->num_refs, be->metadata,
653 for (n = rb_first(&be->refs); n; n = rb_next(n)) {
654 ref = rb_entry(n, struct ref_entry, node);
656 " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
657 ref->root_objectid, ref->parent, ref->owner,
658 ref->offset, ref->num_refs);
661 for (n = rb_first(&be->roots); n; n = rb_next(n)) {
662 re = rb_entry(n, struct root_entry, node);
663 btrfs_err(fs_info, " root entry %llu, num_refs %llu",
664 re->root_objectid, re->num_refs);
667 list_for_each_entry(ra, &be->actions, list)
668 dump_ref_action(fs_info, ra);
672 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
673 * @root: the root we are making this modification from.
674 * @bytenr: the bytenr we are modifying.
675 * @num_bytes: number of bytes.
676 * @parent: the parent bytenr.
677 * @ref_root: the original root owner of the bytenr.
678 * @owner: level in the case of metadata, inode in the case of data.
679 * @offset: 0 for metadata, file offset for data.
680 * @action: the action that we are doing, this is the same as the delayed ref
683 * This will add an action item to the given bytenr and do sanity checks to make
684 * sure we haven't messed something up. If we are making a new allocation and
685 * this block entry has history we will delete all previous actions as long as
686 * our sanity checks pass as they are no longer needed.
688 int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
689 u64 parent, u64 ref_root, u64 owner, u64 offset,
692 struct btrfs_fs_info *fs_info = root->fs_info;
693 struct ref_entry *ref = NULL, *exist;
694 struct ref_action *ra = NULL;
695 struct block_entry *be = NULL;
696 struct root_entry *re = NULL;
698 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
700 if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
703 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
704 ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
713 ref->parent = parent;
715 ref->root_objectid = ref_root;
717 ref->offset = offset;
719 ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
721 memcpy(&ra->ref, ref, sizeof(struct ref_entry));
723 * Save the extra info from the delayed ref in the ref action to make it
724 * easier to figure out what is happening. The real ref's we add to the
725 * ref tree need to reflect what we save on disk so it matches any
726 * on-disk refs we pre-loaded.
728 ra->ref.owner = owner;
729 ra->ref.offset = offset;
730 ra->ref.root_objectid = ref_root;
731 __save_stack_trace(ra);
733 INIT_LIST_HEAD(&ra->list);
735 ra->root = root->root_key.objectid;
738 * This is an allocation, preallocate the block_entry in case we haven't
742 if (action == BTRFS_ADD_DELAYED_EXTENT) {
744 * For subvol_create we'll just pass in whatever the parent root
745 * is and the new root objectid, so let's not treat the passed
746 * in root as if it really has a ref for this bytenr.
748 be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
758 if (be->num_refs != 1) {
760 "re-allocated a block that still has references to it!");
761 dump_block_entry(fs_info, be);
762 dump_ref_action(fs_info, ra);
766 while (!list_empty(&be->actions)) {
767 struct ref_action *tmp;
769 tmp = list_first_entry(&be->actions, struct ref_action,
771 list_del(&tmp->list);
775 struct root_entry *tmp;
778 re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
786 * This is the root that is modifying us, so it's the
787 * one we want to lookup below when we modify the
790 ref_root = root->root_key.objectid;
791 re->root_objectid = root->root_key.objectid;
795 spin_lock(&root->fs_info->ref_verify_lock);
796 be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
799 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
800 action, (unsigned long long)bytenr,
801 (unsigned long long)num_bytes);
802 dump_ref_action(fs_info, ra);
809 tmp = insert_root_entry(&be->roots, re);
817 exist = insert_ref_entry(&be->refs, ref);
819 if (action == BTRFS_DROP_DELAYED_REF) {
820 if (exist->num_refs == 0) {
822 "dropping a ref for a existing root that doesn't have a ref on the block");
823 dump_block_entry(fs_info, be);
824 dump_ref_action(fs_info, ra);
829 if (exist->num_refs == 0) {
830 rb_erase(&exist->node, &be->refs);
833 } else if (!be->metadata) {
837 "attempting to add another ref for an existing ref on a tree block");
838 dump_block_entry(fs_info, be);
839 dump_ref_action(fs_info, ra);
845 if (action == BTRFS_DROP_DELAYED_REF) {
847 "dropping a ref for a root that doesn't have a ref on the block");
848 dump_block_entry(fs_info, be);
849 dump_ref_action(fs_info, ra);
855 if (!parent && !re) {
856 re = lookup_root_entry(&be->roots, ref_root);
859 * This shouldn't happen because we will add our re
860 * above when we lookup the be with !parent, but just in
861 * case catch this case so we don't panic because I
862 * didn't think of some other corner case.
864 btrfs_err(fs_info, "failed to find root %llu for %llu",
865 root->root_key.objectid, be->bytenr);
866 dump_block_entry(fs_info, be);
867 dump_ref_action(fs_info, ra);
872 if (action == BTRFS_DROP_DELAYED_REF) {
876 } else if (action == BTRFS_ADD_DELAYED_REF) {
881 list_add_tail(&ra->list, &be->actions);
884 spin_unlock(&root->fs_info->ref_verify_lock);
887 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
891 /* Free up the ref cache */
892 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
894 struct block_entry *be;
897 if (!btrfs_test_opt(fs_info, REF_VERIFY))
900 spin_lock(&fs_info->ref_verify_lock);
901 while ((n = rb_first(&fs_info->block_tree))) {
902 be = rb_entry(n, struct block_entry, node);
903 rb_erase(&be->node, &fs_info->block_tree);
904 free_block_entry(be);
905 cond_resched_lock(&fs_info->ref_verify_lock);
907 spin_unlock(&fs_info->ref_verify_lock);
910 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
913 struct block_entry *be = NULL, *entry;
916 if (!btrfs_test_opt(fs_info, REF_VERIFY))
919 spin_lock(&fs_info->ref_verify_lock);
920 n = fs_info->block_tree.rb_node;
922 entry = rb_entry(n, struct block_entry, node);
923 if (entry->bytenr < start) {
925 } else if (entry->bytenr > start) {
931 /* We want to get as close to start as possible */
933 (entry->bytenr < start && be->bytenr > start) ||
934 (entry->bytenr < start && entry->bytenr > be->bytenr))
939 * Could have an empty block group, maybe have something to check for
940 * this case to verify we were actually empty?
943 spin_unlock(&fs_info->ref_verify_lock);
949 be = rb_entry(n, struct block_entry, node);
951 if (be->bytenr < start && be->bytenr + be->len > start) {
953 "block entry overlaps a block group [%llu,%llu]!",
955 dump_block_entry(fs_info, be);
958 if (be->bytenr < start)
960 if (be->bytenr >= start + len)
962 if (be->bytenr + be->len > start + len) {
964 "block entry overlaps a block group [%llu,%llu]!",
966 dump_block_entry(fs_info, be);
968 rb_erase(&be->node, &fs_info->block_tree);
969 free_block_entry(be);
971 spin_unlock(&fs_info->ref_verify_lock);
974 /* Walk down all roots and build the ref tree, meant to be called at mount */
975 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
977 struct btrfs_path *path;
978 struct extent_buffer *eb;
979 u64 bytenr = 0, num_bytes = 0;
982 if (!btrfs_test_opt(fs_info, REF_VERIFY))
985 path = btrfs_alloc_path();
989 eb = btrfs_read_lock_root_node(fs_info->extent_root);
990 btrfs_set_lock_blocking_read(eb);
991 level = btrfs_header_level(eb);
992 path->nodes[level] = eb;
993 path->slots[level] = 0;
994 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
998 * We have to keep track of the bytenr/num_bytes we last hit
999 * because we could have run out of space for an inline ref, and
1000 * would have had to added a ref key item which may appear on a
1001 * different leaf from the original extent item.
1003 ret = walk_down_tree(fs_info->extent_root, path, level,
1004 &bytenr, &num_bytes);
1007 ret = walk_up_tree(path, &level);
1016 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1017 btrfs_free_ref_cache(fs_info);
1019 btrfs_free_path(path);