1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
48 void f2fs_destroy_bioset(void)
50 bioset_exit(&f2fs_bioset);
53 static bool __is_cp_guaranteed(struct page *page)
55 struct address_space *mapping = page->mapping;
57 struct f2fs_sb_info *sbi;
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
70 if (f2fs_is_compressed_page(page))
72 if ((S_ISREG(inode->i_mode) &&
73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 page_private_gcing(page))
79 static enum count_type __read_io_type(struct page *page)
81 struct address_space *mapping = page_file_mapping(page);
84 struct inode *inode = mapping->host;
85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
87 if (inode->i_ino == F2FS_META_INO(sbi))
90 if (inode->i_ino == F2FS_NODE_INO(sbi))
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 STEP_DECRYPT = 1 << 0,
101 STEP_DECRYPT = 0, /* compile out the decryption-related code */
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 STEP_DECOMPRESS = 1 << 1,
106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
108 #ifdef CONFIG_FS_VERITY
109 STEP_VERITY = 1 << 2,
111 STEP_VERITY = 0, /* compile out the verity-related code */
115 struct bio_post_read_ctx {
117 struct f2fs_sb_info *sbi;
118 struct work_struct work;
119 unsigned int enabled_steps;
123 static void f2fs_finish_read_bio(struct bio *bio)
126 struct bvec_iter_all iter_all;
129 * Update and unlock the bio's pagecache pages, and put the
130 * decompression context for any compressed pages.
132 bio_for_each_segment_all(bv, bio, iter_all) {
133 struct page *page = bv->bv_page;
135 if (f2fs_is_compressed_page(page)) {
137 f2fs_end_read_compressed_page(page, true, 0);
138 f2fs_put_page_dic(page);
142 /* PG_error was set if decryption or verity failed. */
143 if (bio->bi_status || PageError(page)) {
144 ClearPageUptodate(page);
145 /* will re-read again later */
146 ClearPageError(page);
148 SetPageUptodate(page);
150 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
155 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
159 static void f2fs_verify_bio(struct work_struct *work)
161 struct bio_post_read_ctx *ctx =
162 container_of(work, struct bio_post_read_ctx, work);
163 struct bio *bio = ctx->bio;
164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
167 * fsverity_verify_bio() may call readpages() again, and while verity
168 * will be disabled for this, decryption and/or decompression may still
169 * be needed, resulting in another bio_post_read_ctx being allocated.
170 * So to prevent deadlocks we need to release the current ctx to the
171 * mempool first. This assumes that verity is the last post-read step.
173 mempool_free(ctx, bio_post_read_ctx_pool);
174 bio->bi_private = NULL;
177 * Verify the bio's pages with fs-verity. Exclude compressed pages,
178 * as those were handled separately by f2fs_end_read_compressed_page().
180 if (may_have_compressed_pages) {
182 struct bvec_iter_all iter_all;
184 bio_for_each_segment_all(bv, bio, iter_all) {
185 struct page *page = bv->bv_page;
187 if (!f2fs_is_compressed_page(page) &&
188 !PageError(page) && !fsverity_verify_page(page))
192 fsverity_verify_bio(bio);
195 f2fs_finish_read_bio(bio);
199 * If the bio's data needs to be verified with fs-verity, then enqueue the
200 * verity work for the bio. Otherwise finish the bio now.
202 * Note that to avoid deadlocks, the verity work can't be done on the
203 * decryption/decompression workqueue. This is because verifying the data pages
204 * can involve reading verity metadata pages from the file, and these verity
205 * metadata pages may be encrypted and/or compressed.
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
209 struct bio_post_read_ctx *ctx = bio->bi_private;
211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 INIT_WORK(&ctx->work, f2fs_verify_bio);
213 fsverity_enqueue_verify_work(&ctx->work);
215 f2fs_finish_read_bio(bio);
220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221 * remaining page was read by @ctx->bio.
223 * Note that a bio may span clusters (even a mix of compressed and uncompressed
224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
225 * that the bio includes at least one compressed page. The actual decompression
226 * is done on a per-cluster basis, not a per-bio basis.
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
231 struct bvec_iter_all iter_all;
232 bool all_compressed = true;
233 block_t blkaddr = ctx->fs_blkaddr;
235 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236 struct page *page = bv->bv_page;
238 /* PG_error was set if decryption failed. */
239 if (f2fs_is_compressed_page(page))
240 f2fs_end_read_compressed_page(page, PageError(page),
243 all_compressed = false;
249 * Optimization: if all the bio's pages are compressed, then scheduling
250 * the per-bio verity work is unnecessary, as verity will be fully
251 * handled at the compression cluster level.
254 ctx->enabled_steps &= ~STEP_VERITY;
257 static void f2fs_post_read_work(struct work_struct *work)
259 struct bio_post_read_ctx *ctx =
260 container_of(work, struct bio_post_read_ctx, work);
262 if (ctx->enabled_steps & STEP_DECRYPT)
263 fscrypt_decrypt_bio(ctx->bio);
265 if (ctx->enabled_steps & STEP_DECOMPRESS)
266 f2fs_handle_step_decompress(ctx);
268 f2fs_verify_and_finish_bio(ctx->bio);
271 static void f2fs_read_end_io(struct bio *bio)
273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274 struct bio_post_read_ctx *ctx;
276 iostat_update_and_unbind_ctx(bio, 0);
277 ctx = bio->bi_private;
279 if (time_to_inject(sbi, FAULT_READ_IO)) {
280 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281 bio->bi_status = BLK_STS_IOERR;
284 if (bio->bi_status) {
285 f2fs_finish_read_bio(bio);
289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290 INIT_WORK(&ctx->work, f2fs_post_read_work);
291 queue_work(ctx->sbi->post_read_wq, &ctx->work);
293 f2fs_verify_and_finish_bio(bio);
297 static void f2fs_write_end_io(struct bio *bio)
299 struct f2fs_sb_info *sbi;
300 struct bio_vec *bvec;
301 struct bvec_iter_all iter_all;
303 iostat_update_and_unbind_ctx(bio, 1);
304 sbi = bio->bi_private;
306 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308 bio->bi_status = BLK_STS_IOERR;
311 bio_for_each_segment_all(bvec, bio, iter_all) {
312 struct page *page = bvec->bv_page;
313 enum count_type type = WB_DATA_TYPE(page);
315 if (page_private_dummy(page)) {
316 clear_page_private_dummy(page);
318 mempool_free(page, sbi->write_io_dummy);
320 if (unlikely(bio->bi_status))
321 f2fs_stop_checkpoint(sbi, true);
325 fscrypt_finalize_bounce_page(&page);
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328 if (f2fs_is_compressed_page(page)) {
329 f2fs_compress_write_end_io(bio, page);
334 if (unlikely(bio->bi_status)) {
335 mapping_set_error(page->mapping, -EIO);
336 if (type == F2FS_WB_CP_DATA)
337 f2fs_stop_checkpoint(sbi, true);
340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341 page->index != nid_of_node(page));
343 dec_page_count(sbi, type);
344 if (f2fs_in_warm_node_list(sbi, page))
345 f2fs_del_fsync_node_entry(sbi, page);
346 clear_page_private_gcing(page);
347 end_page_writeback(page);
349 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350 wq_has_sleeper(&sbi->cp_wait))
351 wake_up(&sbi->cp_wait);
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357 block_t blk_addr, sector_t *sector)
359 struct block_device *bdev = sbi->sb->s_bdev;
362 if (f2fs_is_multi_device(sbi)) {
363 for (i = 0; i < sbi->s_ndevs; i++) {
364 if (FDEV(i).start_blk <= blk_addr &&
365 FDEV(i).end_blk >= blk_addr) {
366 blk_addr -= FDEV(i).start_blk;
374 *sector = SECTOR_FROM_BLOCK(blk_addr);
378 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
382 if (!f2fs_is_multi_device(sbi))
385 for (i = 0; i < sbi->s_ndevs; i++)
386 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
391 static void __attach_io_flag(struct f2fs_io_info *fio, unsigned int io_flag)
393 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
394 unsigned int fua_flag = io_flag & temp_mask;
395 unsigned int meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
398 * data/node io flag bits per temp:
399 * REQ_META | REQ_FUA |
400 * 5 | 4 | 3 | 2 | 1 | 0 |
401 * Cold | Warm | Hot | Cold | Warm | Hot |
403 if ((1 << fio->temp) & meta_flag)
404 fio->op_flags |= REQ_META;
405 if ((1 << fio->temp) & fua_flag)
406 fio->op_flags |= REQ_FUA;
409 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
411 struct f2fs_sb_info *sbi = fio->sbi;
412 struct block_device *bdev;
416 if (fio->type == DATA)
417 __attach_io_flag(fio, sbi->data_io_flag);
418 else if (fio->type == NODE)
419 __attach_io_flag(fio, sbi->node_io_flag);
421 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
422 bio = bio_alloc_bioset(bdev, npages, fio->op | fio->op_flags, GFP_NOIO,
424 bio->bi_iter.bi_sector = sector;
425 if (is_read_io(fio->op)) {
426 bio->bi_end_io = f2fs_read_end_io;
427 bio->bi_private = NULL;
429 bio->bi_end_io = f2fs_write_end_io;
430 bio->bi_private = sbi;
432 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
435 wbc_init_bio(fio->io_wbc, bio);
440 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
442 const struct f2fs_io_info *fio,
446 * The f2fs garbage collector sets ->encrypted_page when it wants to
447 * read/write raw data without encryption.
449 if (!fio || !fio->encrypted_page)
450 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
453 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
455 const struct f2fs_io_info *fio)
458 * The f2fs garbage collector sets ->encrypted_page when it wants to
459 * read/write raw data without encryption.
461 if (fio && fio->encrypted_page)
462 return !bio_has_crypt_ctx(bio);
464 return fscrypt_mergeable_bio(bio, inode, next_idx);
467 static inline void __submit_bio(struct f2fs_sb_info *sbi,
468 struct bio *bio, enum page_type type)
470 if (!is_read_io(bio_op(bio))) {
473 if (type != DATA && type != NODE)
476 if (f2fs_lfs_mode(sbi) && current->plug)
477 blk_finish_plug(current->plug);
479 if (!F2FS_IO_ALIGNED(sbi))
482 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
483 start %= F2FS_IO_SIZE(sbi);
488 /* fill dummy pages */
489 for (; start < F2FS_IO_SIZE(sbi); start++) {
491 mempool_alloc(sbi->write_io_dummy,
492 GFP_NOIO | __GFP_NOFAIL);
493 f2fs_bug_on(sbi, !page);
497 zero_user_segment(page, 0, PAGE_SIZE);
498 set_page_private_dummy(page);
500 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
504 * In the NODE case, we lose next block address chain. So, we
505 * need to do checkpoint in f2fs_sync_file.
508 set_sbi_flag(sbi, SBI_NEED_CP);
511 if (is_read_io(bio_op(bio)))
512 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
514 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
516 iostat_update_submit_ctx(bio, type);
520 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
521 struct bio *bio, enum page_type type)
523 __submit_bio(sbi, bio, type);
526 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 struct f2fs_io_info *fio = &io->fio;
533 if (is_read_io(fio->op))
534 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
538 __submit_bio(io->sbi, io->bio, fio->type);
542 static bool __has_merged_page(struct bio *bio, struct inode *inode,
543 struct page *page, nid_t ino)
545 struct bio_vec *bvec;
546 struct bvec_iter_all iter_all;
551 if (!inode && !page && !ino)
554 bio_for_each_segment_all(bvec, bio, iter_all) {
555 struct page *target = bvec->bv_page;
557 if (fscrypt_is_bounce_page(target)) {
558 target = fscrypt_pagecache_page(target);
562 if (f2fs_is_compressed_page(target)) {
563 target = f2fs_compress_control_page(target);
568 if (inode && inode == target->mapping->host)
570 if (page && page == target)
572 if (ino && ino == ino_of_node(target))
579 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
580 enum page_type type, enum temp_type temp)
582 enum page_type btype = PAGE_TYPE_OF_BIO(type);
583 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
585 f2fs_down_write(&io->io_rwsem);
587 /* change META to META_FLUSH in the checkpoint procedure */
588 if (type >= META_FLUSH) {
589 io->fio.type = META_FLUSH;
590 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
591 if (!test_opt(sbi, NOBARRIER))
592 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
594 __submit_merged_bio(io);
595 f2fs_up_write(&io->io_rwsem);
598 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
599 struct inode *inode, struct page *page,
600 nid_t ino, enum page_type type, bool force)
605 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
607 enum page_type btype = PAGE_TYPE_OF_BIO(type);
608 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
610 f2fs_down_read(&io->io_rwsem);
611 ret = __has_merged_page(io->bio, inode, page, ino);
612 f2fs_up_read(&io->io_rwsem);
615 __f2fs_submit_merged_write(sbi, type, temp);
617 /* TODO: use HOT temp only for meta pages now. */
623 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
625 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
628 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
629 struct inode *inode, struct page *page,
630 nid_t ino, enum page_type type)
632 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
635 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
637 f2fs_submit_merged_write(sbi, DATA);
638 f2fs_submit_merged_write(sbi, NODE);
639 f2fs_submit_merged_write(sbi, META);
643 * Fill the locked page with data located in the block address.
644 * A caller needs to unlock the page on failure.
646 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
649 struct page *page = fio->encrypted_page ?
650 fio->encrypted_page : fio->page;
652 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
653 fio->is_por ? META_POR : (__is_meta_io(fio) ?
654 META_GENERIC : DATA_GENERIC_ENHANCE)))
655 return -EFSCORRUPTED;
657 trace_f2fs_submit_page_bio(page, fio);
659 /* Allocate a new bio */
660 bio = __bio_alloc(fio, 1);
662 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
663 fio->page->index, fio, GFP_NOIO);
665 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
670 if (fio->io_wbc && !is_read_io(fio->op))
671 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
673 inc_page_count(fio->sbi, is_read_io(fio->op) ?
674 __read_io_type(page): WB_DATA_TYPE(fio->page));
676 __submit_bio(fio->sbi, bio, fio->type);
680 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
681 block_t last_blkaddr, block_t cur_blkaddr)
683 if (unlikely(sbi->max_io_bytes &&
684 bio->bi_iter.bi_size >= sbi->max_io_bytes))
686 if (last_blkaddr + 1 != cur_blkaddr)
688 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
691 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
692 struct f2fs_io_info *fio)
694 if (io->fio.op != fio->op)
696 return io->fio.op_flags == fio->op_flags;
699 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
700 struct f2fs_bio_info *io,
701 struct f2fs_io_info *fio,
702 block_t last_blkaddr,
705 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
706 unsigned int filled_blocks =
707 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
708 unsigned int io_size = F2FS_IO_SIZE(sbi);
709 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
711 /* IOs in bio is aligned and left space of vectors is not enough */
712 if (!(filled_blocks % io_size) && left_vecs < io_size)
715 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
717 return io_type_is_mergeable(io, fio);
720 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
721 struct page *page, enum temp_type temp)
723 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
724 struct bio_entry *be;
726 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
730 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
733 f2fs_down_write(&io->bio_list_lock);
734 list_add_tail(&be->list, &io->bio_list);
735 f2fs_up_write(&io->bio_list_lock);
738 static void del_bio_entry(struct bio_entry *be)
741 kmem_cache_free(bio_entry_slab, be);
744 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
747 struct f2fs_sb_info *sbi = fio->sbi;
752 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
753 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
754 struct list_head *head = &io->bio_list;
755 struct bio_entry *be;
757 f2fs_down_write(&io->bio_list_lock);
758 list_for_each_entry(be, head, list) {
764 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
767 if (f2fs_crypt_mergeable_bio(*bio,
768 fio->page->mapping->host,
769 fio->page->index, fio) &&
770 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
776 /* page can't be merged into bio; submit the bio */
778 __submit_bio(sbi, *bio, DATA);
781 f2fs_up_write(&io->bio_list_lock);
792 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
793 struct bio **bio, struct page *page)
797 struct bio *target = bio ? *bio : NULL;
799 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
800 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
801 struct list_head *head = &io->bio_list;
802 struct bio_entry *be;
804 if (list_empty(head))
807 f2fs_down_read(&io->bio_list_lock);
808 list_for_each_entry(be, head, list) {
810 found = (target == be->bio);
812 found = __has_merged_page(be->bio, NULL,
817 f2fs_up_read(&io->bio_list_lock);
824 f2fs_down_write(&io->bio_list_lock);
825 list_for_each_entry(be, head, list) {
827 found = (target == be->bio);
829 found = __has_merged_page(be->bio, NULL,
837 f2fs_up_write(&io->bio_list_lock);
841 __submit_bio(sbi, target, DATA);
848 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
850 struct bio *bio = *fio->bio;
851 struct page *page = fio->encrypted_page ?
852 fio->encrypted_page : fio->page;
854 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
855 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
856 return -EFSCORRUPTED;
858 trace_f2fs_submit_page_bio(page, fio);
860 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
862 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
865 bio = __bio_alloc(fio, BIO_MAX_VECS);
866 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
867 fio->page->index, fio, GFP_NOIO);
869 add_bio_entry(fio->sbi, bio, page, fio->temp);
871 if (add_ipu_page(fio, &bio, page))
876 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
878 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
880 *fio->last_block = fio->new_blkaddr;
886 void f2fs_submit_page_write(struct f2fs_io_info *fio)
888 struct f2fs_sb_info *sbi = fio->sbi;
889 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
890 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
891 struct page *bio_page;
893 f2fs_bug_on(sbi, is_read_io(fio->op));
895 f2fs_down_write(&io->io_rwsem);
898 spin_lock(&io->io_lock);
899 if (list_empty(&io->io_list)) {
900 spin_unlock(&io->io_lock);
903 fio = list_first_entry(&io->io_list,
904 struct f2fs_io_info, list);
905 list_del(&fio->list);
906 spin_unlock(&io->io_lock);
909 verify_fio_blkaddr(fio);
911 if (fio->encrypted_page)
912 bio_page = fio->encrypted_page;
913 else if (fio->compressed_page)
914 bio_page = fio->compressed_page;
916 bio_page = fio->page;
918 /* set submitted = true as a return value */
919 fio->submitted = true;
921 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
924 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
926 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
927 bio_page->index, fio)))
928 __submit_merged_bio(io);
930 if (io->bio == NULL) {
931 if (F2FS_IO_ALIGNED(sbi) &&
932 (fio->type == DATA || fio->type == NODE) &&
933 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
934 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
938 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
939 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
940 bio_page->index, fio, GFP_NOIO);
944 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
945 __submit_merged_bio(io);
950 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
952 io->last_block_in_bio = fio->new_blkaddr;
954 trace_f2fs_submit_page_write(fio->page, fio);
959 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
960 !f2fs_is_checkpoint_ready(sbi))
961 __submit_merged_bio(io);
962 f2fs_up_write(&io->io_rwsem);
965 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
966 unsigned nr_pages, unsigned op_flag,
967 pgoff_t first_idx, bool for_write)
969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
971 struct bio_post_read_ctx *ctx = NULL;
972 unsigned int post_read_steps = 0;
974 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
976 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
977 REQ_OP_READ | op_flag,
978 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
980 return ERR_PTR(-ENOMEM);
981 bio->bi_iter.bi_sector = sector;
982 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
983 bio->bi_end_io = f2fs_read_end_io;
985 if (fscrypt_inode_uses_fs_layer_crypto(inode))
986 post_read_steps |= STEP_DECRYPT;
988 if (f2fs_need_verity(inode, first_idx))
989 post_read_steps |= STEP_VERITY;
992 * STEP_DECOMPRESS is handled specially, since a compressed file might
993 * contain both compressed and uncompressed clusters. We'll allocate a
994 * bio_post_read_ctx if the file is compressed, but the caller is
995 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
998 if (post_read_steps || f2fs_compressed_file(inode)) {
999 /* Due to the mempool, this never fails. */
1000 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1003 ctx->enabled_steps = post_read_steps;
1004 ctx->fs_blkaddr = blkaddr;
1005 bio->bi_private = ctx;
1007 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1012 /* This can handle encryption stuffs */
1013 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1014 block_t blkaddr, int op_flags, bool for_write)
1016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1020 page->index, for_write);
1022 return PTR_ERR(bio);
1024 /* wait for GCed page writeback via META_MAPPING */
1025 f2fs_wait_on_block_writeback(inode, blkaddr);
1027 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1031 ClearPageError(page);
1032 inc_page_count(sbi, F2FS_RD_DATA);
1033 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1034 __submit_bio(sbi, bio, DATA);
1038 static void __set_data_blkaddr(struct dnode_of_data *dn)
1040 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1044 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1045 base = get_extra_isize(dn->inode);
1047 /* Get physical address of data block */
1048 addr_array = blkaddr_in_node(rn);
1049 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1053 * Lock ordering for the change of data block address:
1056 * update block addresses in the node page
1058 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1060 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1061 __set_data_blkaddr(dn);
1062 if (set_page_dirty(dn->node_page))
1063 dn->node_changed = true;
1066 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1068 dn->data_blkaddr = blkaddr;
1069 f2fs_set_data_blkaddr(dn);
1070 f2fs_update_extent_cache(dn);
1073 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1074 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1076 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1082 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1084 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1087 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1088 dn->ofs_in_node, count);
1090 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1092 for (; count > 0; dn->ofs_in_node++) {
1093 block_t blkaddr = f2fs_data_blkaddr(dn);
1095 if (blkaddr == NULL_ADDR) {
1096 dn->data_blkaddr = NEW_ADDR;
1097 __set_data_blkaddr(dn);
1102 if (set_page_dirty(dn->node_page))
1103 dn->node_changed = true;
1107 /* Should keep dn->ofs_in_node unchanged */
1108 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1110 unsigned int ofs_in_node = dn->ofs_in_node;
1113 ret = f2fs_reserve_new_blocks(dn, 1);
1114 dn->ofs_in_node = ofs_in_node;
1118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1120 bool need_put = dn->inode_page ? false : true;
1123 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1127 if (dn->data_blkaddr == NULL_ADDR)
1128 err = f2fs_reserve_new_block(dn);
1129 if (err || need_put)
1134 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1136 struct extent_info ei = {0, };
1137 struct inode *inode = dn->inode;
1139 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1140 dn->data_blkaddr = ei.blk + index - ei.fofs;
1144 return f2fs_reserve_block(dn, index);
1147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1148 int op_flags, bool for_write)
1150 struct address_space *mapping = inode->i_mapping;
1151 struct dnode_of_data dn;
1153 struct extent_info ei = {0, };
1156 page = f2fs_grab_cache_page(mapping, index, for_write);
1158 return ERR_PTR(-ENOMEM);
1160 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1161 dn.data_blkaddr = ei.blk + index - ei.fofs;
1162 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1163 DATA_GENERIC_ENHANCE_READ)) {
1164 err = -EFSCORRUPTED;
1170 set_new_dnode(&dn, inode, NULL, NULL, 0);
1171 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1174 f2fs_put_dnode(&dn);
1176 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1180 if (dn.data_blkaddr != NEW_ADDR &&
1181 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1183 DATA_GENERIC_ENHANCE)) {
1184 err = -EFSCORRUPTED;
1188 if (PageUptodate(page)) {
1194 * A new dentry page is allocated but not able to be written, since its
1195 * new inode page couldn't be allocated due to -ENOSPC.
1196 * In such the case, its blkaddr can be remained as NEW_ADDR.
1197 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1198 * f2fs_init_inode_metadata.
1200 if (dn.data_blkaddr == NEW_ADDR) {
1201 zero_user_segment(page, 0, PAGE_SIZE);
1202 if (!PageUptodate(page))
1203 SetPageUptodate(page);
1208 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1209 op_flags, for_write);
1215 f2fs_put_page(page, 1);
1216 return ERR_PTR(err);
1219 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1221 struct address_space *mapping = inode->i_mapping;
1224 page = find_get_page(mapping, index);
1225 if (page && PageUptodate(page))
1227 f2fs_put_page(page, 0);
1229 page = f2fs_get_read_data_page(inode, index, 0, false);
1233 if (PageUptodate(page))
1236 wait_on_page_locked(page);
1237 if (unlikely(!PageUptodate(page))) {
1238 f2fs_put_page(page, 0);
1239 return ERR_PTR(-EIO);
1245 * If it tries to access a hole, return an error.
1246 * Because, the callers, functions in dir.c and GC, should be able to know
1247 * whether this page exists or not.
1249 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1252 struct address_space *mapping = inode->i_mapping;
1255 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1259 /* wait for read completion */
1261 if (unlikely(page->mapping != mapping)) {
1262 f2fs_put_page(page, 1);
1265 if (unlikely(!PageUptodate(page))) {
1266 f2fs_put_page(page, 1);
1267 return ERR_PTR(-EIO);
1273 * Caller ensures that this data page is never allocated.
1274 * A new zero-filled data page is allocated in the page cache.
1276 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1278 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1279 * ipage should be released by this function.
1281 struct page *f2fs_get_new_data_page(struct inode *inode,
1282 struct page *ipage, pgoff_t index, bool new_i_size)
1284 struct address_space *mapping = inode->i_mapping;
1286 struct dnode_of_data dn;
1289 page = f2fs_grab_cache_page(mapping, index, true);
1292 * before exiting, we should make sure ipage will be released
1293 * if any error occur.
1295 f2fs_put_page(ipage, 1);
1296 return ERR_PTR(-ENOMEM);
1299 set_new_dnode(&dn, inode, ipage, NULL, 0);
1300 err = f2fs_reserve_block(&dn, index);
1302 f2fs_put_page(page, 1);
1303 return ERR_PTR(err);
1306 f2fs_put_dnode(&dn);
1308 if (PageUptodate(page))
1311 if (dn.data_blkaddr == NEW_ADDR) {
1312 zero_user_segment(page, 0, PAGE_SIZE);
1313 if (!PageUptodate(page))
1314 SetPageUptodate(page);
1316 f2fs_put_page(page, 1);
1318 /* if ipage exists, blkaddr should be NEW_ADDR */
1319 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1320 page = f2fs_get_lock_data_page(inode, index, true);
1325 if (new_i_size && i_size_read(inode) <
1326 ((loff_t)(index + 1) << PAGE_SHIFT))
1327 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1331 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1333 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1334 struct f2fs_summary sum;
1335 struct node_info ni;
1336 block_t old_blkaddr;
1340 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1343 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1347 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1348 if (dn->data_blkaddr != NULL_ADDR)
1351 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1355 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1356 old_blkaddr = dn->data_blkaddr;
1357 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1358 &sum, seg_type, NULL);
1359 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1360 invalidate_mapping_pages(META_MAPPING(sbi),
1361 old_blkaddr, old_blkaddr);
1362 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1364 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1368 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1370 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1372 f2fs_down_read(&sbi->node_change);
1374 f2fs_up_read(&sbi->node_change);
1379 f2fs_unlock_op(sbi);
1384 * f2fs_map_blocks() tries to find or build mapping relationship which
1385 * maps continuous logical blocks to physical blocks, and return such
1386 * info via f2fs_map_blocks structure.
1388 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1389 int create, int flag)
1391 unsigned int maxblocks = map->m_len;
1392 struct dnode_of_data dn;
1393 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1394 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1395 pgoff_t pgofs, end_offset, end;
1396 int err = 0, ofs = 1;
1397 unsigned int ofs_in_node, last_ofs_in_node;
1399 struct extent_info ei = {0, };
1401 unsigned int start_pgofs;
1407 map->m_bdev = inode->i_sb->s_bdev;
1408 map->m_multidev_dio =
1409 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1414 /* it only supports block size == page size */
1415 pgofs = (pgoff_t)map->m_lblk;
1416 end = pgofs + maxblocks;
1418 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1419 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1423 map->m_pblk = ei.blk + pgofs - ei.fofs;
1424 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1425 map->m_flags = F2FS_MAP_MAPPED;
1426 if (map->m_next_extent)
1427 *map->m_next_extent = pgofs + map->m_len;
1429 /* for hardware encryption, but to avoid potential issue in future */
1430 if (flag == F2FS_GET_BLOCK_DIO)
1431 f2fs_wait_on_block_writeback_range(inode,
1432 map->m_pblk, map->m_len);
1434 if (map->m_multidev_dio) {
1435 block_t blk_addr = map->m_pblk;
1437 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1439 map->m_bdev = FDEV(bidx).bdev;
1440 map->m_pblk -= FDEV(bidx).start_blk;
1441 map->m_len = min(map->m_len,
1442 FDEV(bidx).end_blk + 1 - map->m_pblk);
1444 if (map->m_may_create)
1445 f2fs_update_device_state(sbi, inode->i_ino,
1446 blk_addr, map->m_len);
1452 if (map->m_may_create)
1453 f2fs_do_map_lock(sbi, flag, true);
1455 /* When reading holes, we need its node page */
1456 set_new_dnode(&dn, inode, NULL, NULL, 0);
1457 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1459 if (flag == F2FS_GET_BLOCK_BMAP)
1462 if (err == -ENOENT) {
1464 * There is one exceptional case that read_node_page()
1465 * may return -ENOENT due to filesystem has been
1466 * shutdown or cp_error, so force to convert error
1467 * number to EIO for such case.
1469 if (map->m_may_create &&
1470 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1471 f2fs_cp_error(sbi))) {
1477 if (map->m_next_pgofs)
1478 *map->m_next_pgofs =
1479 f2fs_get_next_page_offset(&dn, pgofs);
1480 if (map->m_next_extent)
1481 *map->m_next_extent =
1482 f2fs_get_next_page_offset(&dn, pgofs);
1487 start_pgofs = pgofs;
1489 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1490 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1493 blkaddr = f2fs_data_blkaddr(&dn);
1495 if (__is_valid_data_blkaddr(blkaddr) &&
1496 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1497 err = -EFSCORRUPTED;
1501 if (__is_valid_data_blkaddr(blkaddr)) {
1502 /* use out-place-update for driect IO under LFS mode */
1503 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1504 map->m_may_create) {
1505 err = __allocate_data_block(&dn, map->m_seg_type);
1508 blkaddr = dn.data_blkaddr;
1509 set_inode_flag(inode, FI_APPEND_WRITE);
1513 if (unlikely(f2fs_cp_error(sbi))) {
1517 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1518 if (blkaddr == NULL_ADDR) {
1520 last_ofs_in_node = dn.ofs_in_node;
1523 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1524 flag != F2FS_GET_BLOCK_DIO);
1525 err = __allocate_data_block(&dn,
1528 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1529 file_need_truncate(inode);
1530 set_inode_flag(inode, FI_APPEND_WRITE);
1535 map->m_flags |= F2FS_MAP_NEW;
1536 blkaddr = dn.data_blkaddr;
1538 if (f2fs_compressed_file(inode) &&
1539 f2fs_sanity_check_cluster(&dn) &&
1540 (flag != F2FS_GET_BLOCK_FIEMAP ||
1541 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1542 err = -EFSCORRUPTED;
1545 if (flag == F2FS_GET_BLOCK_BMAP) {
1549 if (flag == F2FS_GET_BLOCK_PRECACHE)
1551 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1552 blkaddr == NULL_ADDR) {
1553 if (map->m_next_pgofs)
1554 *map->m_next_pgofs = pgofs + 1;
1557 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1558 /* for defragment case */
1559 if (map->m_next_pgofs)
1560 *map->m_next_pgofs = pgofs + 1;
1566 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1569 if (map->m_multidev_dio)
1570 bidx = f2fs_target_device_index(sbi, blkaddr);
1572 if (map->m_len == 0) {
1573 /* preallocated unwritten block should be mapped for fiemap. */
1574 if (blkaddr == NEW_ADDR)
1575 map->m_flags |= F2FS_MAP_UNWRITTEN;
1576 map->m_flags |= F2FS_MAP_MAPPED;
1578 map->m_pblk = blkaddr;
1581 if (map->m_multidev_dio)
1582 map->m_bdev = FDEV(bidx).bdev;
1583 } else if ((map->m_pblk != NEW_ADDR &&
1584 blkaddr == (map->m_pblk + ofs)) ||
1585 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1586 flag == F2FS_GET_BLOCK_PRE_DIO) {
1587 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1599 /* preallocate blocks in batch for one dnode page */
1600 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1601 (pgofs == end || dn.ofs_in_node == end_offset)) {
1603 dn.ofs_in_node = ofs_in_node;
1604 err = f2fs_reserve_new_blocks(&dn, prealloc);
1608 map->m_len += dn.ofs_in_node - ofs_in_node;
1609 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1613 dn.ofs_in_node = end_offset;
1618 else if (dn.ofs_in_node < end_offset)
1621 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1622 if (map->m_flags & F2FS_MAP_MAPPED) {
1623 unsigned int ofs = start_pgofs - map->m_lblk;
1625 f2fs_update_extent_cache_range(&dn,
1626 start_pgofs, map->m_pblk + ofs,
1631 f2fs_put_dnode(&dn);
1633 if (map->m_may_create) {
1634 f2fs_do_map_lock(sbi, flag, false);
1635 f2fs_balance_fs(sbi, dn.node_changed);
1641 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1643 * for hardware encryption, but to avoid potential issue
1646 f2fs_wait_on_block_writeback_range(inode,
1647 map->m_pblk, map->m_len);
1648 invalidate_mapping_pages(META_MAPPING(sbi),
1649 map->m_pblk, map->m_pblk);
1651 if (map->m_multidev_dio) {
1652 block_t blk_addr = map->m_pblk;
1654 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1656 map->m_bdev = FDEV(bidx).bdev;
1657 map->m_pblk -= FDEV(bidx).start_blk;
1659 if (map->m_may_create)
1660 f2fs_update_device_state(sbi, inode->i_ino,
1661 blk_addr, map->m_len);
1663 f2fs_bug_on(sbi, blk_addr + map->m_len >
1664 FDEV(bidx).end_blk + 1);
1668 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1669 if (map->m_flags & F2FS_MAP_MAPPED) {
1670 unsigned int ofs = start_pgofs - map->m_lblk;
1672 f2fs_update_extent_cache_range(&dn,
1673 start_pgofs, map->m_pblk + ofs,
1676 if (map->m_next_extent)
1677 *map->m_next_extent = pgofs + 1;
1679 f2fs_put_dnode(&dn);
1681 if (map->m_may_create) {
1682 f2fs_do_map_lock(sbi, flag, false);
1683 f2fs_balance_fs(sbi, dn.node_changed);
1686 trace_f2fs_map_blocks(inode, map, create, flag, err);
1690 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1692 struct f2fs_map_blocks map;
1696 if (pos + len > i_size_read(inode))
1699 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1700 map.m_next_pgofs = NULL;
1701 map.m_next_extent = NULL;
1702 map.m_seg_type = NO_CHECK_TYPE;
1703 map.m_may_create = false;
1704 last_lblk = F2FS_BLK_ALIGN(pos + len);
1706 while (map.m_lblk < last_lblk) {
1707 map.m_len = last_lblk - map.m_lblk;
1708 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1709 if (err || map.m_len == 0)
1711 map.m_lblk += map.m_len;
1716 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1718 return (bytes >> inode->i_blkbits);
1721 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1723 return (blks << inode->i_blkbits);
1726 static int f2fs_xattr_fiemap(struct inode *inode,
1727 struct fiemap_extent_info *fieinfo)
1729 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1731 struct node_info ni;
1732 __u64 phys = 0, len;
1734 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1737 if (f2fs_has_inline_xattr(inode)) {
1740 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1741 inode->i_ino, false);
1745 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1747 f2fs_put_page(page, 1);
1751 phys = blks_to_bytes(inode, ni.blk_addr);
1752 offset = offsetof(struct f2fs_inode, i_addr) +
1753 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1754 get_inline_xattr_addrs(inode));
1757 len = inline_xattr_size(inode);
1759 f2fs_put_page(page, 1);
1761 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1764 flags |= FIEMAP_EXTENT_LAST;
1766 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1767 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1768 if (err || err == 1)
1773 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1777 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1779 f2fs_put_page(page, 1);
1783 phys = blks_to_bytes(inode, ni.blk_addr);
1784 len = inode->i_sb->s_blocksize;
1786 f2fs_put_page(page, 1);
1788 flags = FIEMAP_EXTENT_LAST;
1792 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1793 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1796 return (err < 0 ? err : 0);
1799 static loff_t max_inode_blocks(struct inode *inode)
1801 loff_t result = ADDRS_PER_INODE(inode);
1802 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1804 /* two direct node blocks */
1805 result += (leaf_count * 2);
1807 /* two indirect node blocks */
1808 leaf_count *= NIDS_PER_BLOCK;
1809 result += (leaf_count * 2);
1811 /* one double indirect node block */
1812 leaf_count *= NIDS_PER_BLOCK;
1813 result += leaf_count;
1818 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1821 struct f2fs_map_blocks map;
1822 sector_t start_blk, last_blk;
1824 u64 logical = 0, phys = 0, size = 0;
1827 bool compr_cluster = false, compr_appended;
1828 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1829 unsigned int count_in_cluster = 0;
1832 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1833 ret = f2fs_precache_extents(inode);
1838 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1844 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1845 if (start > maxbytes) {
1850 if (len > maxbytes || (maxbytes - len) < start)
1851 len = maxbytes - start;
1853 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1854 ret = f2fs_xattr_fiemap(inode, fieinfo);
1858 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1859 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1864 if (bytes_to_blks(inode, len) == 0)
1865 len = blks_to_bytes(inode, 1);
1867 start_blk = bytes_to_blks(inode, start);
1868 last_blk = bytes_to_blks(inode, start + len - 1);
1871 memset(&map, 0, sizeof(map));
1872 map.m_lblk = start_blk;
1873 map.m_len = bytes_to_blks(inode, len);
1874 map.m_next_pgofs = &next_pgofs;
1875 map.m_seg_type = NO_CHECK_TYPE;
1877 if (compr_cluster) {
1879 map.m_len = cluster_size - count_in_cluster;
1882 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1887 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1888 start_blk = next_pgofs;
1890 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1891 max_inode_blocks(inode)))
1894 flags |= FIEMAP_EXTENT_LAST;
1897 compr_appended = false;
1898 /* In a case of compressed cluster, append this to the last extent */
1899 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1900 !(map.m_flags & F2FS_MAP_FLAGS))) {
1901 compr_appended = true;
1906 flags |= FIEMAP_EXTENT_MERGED;
1907 if (IS_ENCRYPTED(inode))
1908 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1910 ret = fiemap_fill_next_extent(fieinfo, logical,
1912 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1918 if (start_blk > last_blk)
1922 if (map.m_pblk == COMPRESS_ADDR) {
1923 compr_cluster = true;
1924 count_in_cluster = 1;
1925 } else if (compr_appended) {
1926 unsigned int appended_blks = cluster_size -
1927 count_in_cluster + 1;
1928 size += blks_to_bytes(inode, appended_blks);
1929 start_blk += appended_blks;
1930 compr_cluster = false;
1932 logical = blks_to_bytes(inode, start_blk);
1933 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1934 blks_to_bytes(inode, map.m_pblk) : 0;
1935 size = blks_to_bytes(inode, map.m_len);
1938 if (compr_cluster) {
1939 flags = FIEMAP_EXTENT_ENCODED;
1940 count_in_cluster += map.m_len;
1941 if (count_in_cluster == cluster_size) {
1942 compr_cluster = false;
1943 size += blks_to_bytes(inode, 1);
1945 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1946 flags = FIEMAP_EXTENT_UNWRITTEN;
1949 start_blk += bytes_to_blks(inode, size);
1954 if (fatal_signal_pending(current))
1962 inode_unlock(inode);
1966 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1968 if (IS_ENABLED(CONFIG_FS_VERITY) &&
1969 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1970 return inode->i_sb->s_maxbytes;
1972 return i_size_read(inode);
1975 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1977 struct f2fs_map_blocks *map,
1978 struct bio **bio_ret,
1979 sector_t *last_block_in_bio,
1982 struct bio *bio = *bio_ret;
1983 const unsigned blocksize = blks_to_bytes(inode, 1);
1984 sector_t block_in_file;
1985 sector_t last_block;
1986 sector_t last_block_in_file;
1990 block_in_file = (sector_t)page_index(page);
1991 last_block = block_in_file + nr_pages;
1992 last_block_in_file = bytes_to_blks(inode,
1993 f2fs_readpage_limit(inode) + blocksize - 1);
1994 if (last_block > last_block_in_file)
1995 last_block = last_block_in_file;
1997 /* just zeroing out page which is beyond EOF */
1998 if (block_in_file >= last_block)
2001 * Map blocks using the previous result first.
2003 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2004 block_in_file > map->m_lblk &&
2005 block_in_file < (map->m_lblk + map->m_len))
2009 * Then do more f2fs_map_blocks() calls until we are
2010 * done with this page.
2012 map->m_lblk = block_in_file;
2013 map->m_len = last_block - block_in_file;
2015 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2019 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2020 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2021 SetPageMappedToDisk(page);
2023 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2024 DATA_GENERIC_ENHANCE_READ)) {
2025 ret = -EFSCORRUPTED;
2030 zero_user_segment(page, 0, PAGE_SIZE);
2031 if (f2fs_need_verity(inode, page->index) &&
2032 !fsverity_verify_page(page)) {
2036 if (!PageUptodate(page))
2037 SetPageUptodate(page);
2043 * This page will go to BIO. Do we need to send this
2046 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2047 *last_block_in_bio, block_nr) ||
2048 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2050 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2054 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2055 is_readahead ? REQ_RAHEAD : 0, page->index,
2065 * If the page is under writeback, we need to wait for
2066 * its completion to see the correct decrypted data.
2068 f2fs_wait_on_block_writeback(inode, block_nr);
2070 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2071 goto submit_and_realloc;
2073 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2074 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2075 ClearPageError(page);
2076 *last_block_in_bio = block_nr;
2083 #ifdef CONFIG_F2FS_FS_COMPRESSION
2084 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2085 unsigned nr_pages, sector_t *last_block_in_bio,
2086 bool is_readahead, bool for_write)
2088 struct dnode_of_data dn;
2089 struct inode *inode = cc->inode;
2090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2091 struct bio *bio = *bio_ret;
2092 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2093 sector_t last_block_in_file;
2094 const unsigned blocksize = blks_to_bytes(inode, 1);
2095 struct decompress_io_ctx *dic = NULL;
2096 struct extent_info ei = {0, };
2097 bool from_dnode = true;
2101 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2103 last_block_in_file = bytes_to_blks(inode,
2104 f2fs_readpage_limit(inode) + blocksize - 1);
2106 /* get rid of pages beyond EOF */
2107 for (i = 0; i < cc->cluster_size; i++) {
2108 struct page *page = cc->rpages[i];
2112 if ((sector_t)page->index >= last_block_in_file) {
2113 zero_user_segment(page, 0, PAGE_SIZE);
2114 if (!PageUptodate(page))
2115 SetPageUptodate(page);
2116 } else if (!PageUptodate(page)) {
2122 cc->rpages[i] = NULL;
2126 /* we are done since all pages are beyond EOF */
2127 if (f2fs_cluster_is_empty(cc))
2130 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2134 goto skip_reading_dnode;
2136 set_new_dnode(&dn, inode, NULL, NULL, 0);
2137 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2141 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2144 for (i = 1; i < cc->cluster_size; i++) {
2147 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2148 dn.ofs_in_node + i) :
2151 if (!__is_valid_data_blkaddr(blkaddr))
2154 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2160 if (!from_dnode && i >= ei.c_len)
2164 /* nothing to decompress */
2165 if (cc->nr_cpages == 0) {
2170 dic = f2fs_alloc_dic(cc);
2176 for (i = 0; i < cc->nr_cpages; i++) {
2177 struct page *page = dic->cpages[i];
2179 struct bio_post_read_ctx *ctx;
2181 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2182 dn.ofs_in_node + i + 1) :
2185 f2fs_wait_on_block_writeback(inode, blkaddr);
2187 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2188 if (atomic_dec_and_test(&dic->remaining_pages))
2189 f2fs_decompress_cluster(dic);
2193 if (bio && (!page_is_mergeable(sbi, bio,
2194 *last_block_in_bio, blkaddr) ||
2195 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2197 __submit_bio(sbi, bio, DATA);
2202 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2203 is_readahead ? REQ_RAHEAD : 0,
2204 page->index, for_write);
2207 f2fs_decompress_end_io(dic, ret);
2208 f2fs_put_dnode(&dn);
2214 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2215 goto submit_and_realloc;
2217 ctx = get_post_read_ctx(bio);
2218 ctx->enabled_steps |= STEP_DECOMPRESS;
2219 refcount_inc(&dic->refcnt);
2221 inc_page_count(sbi, F2FS_RD_DATA);
2222 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2223 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2224 ClearPageError(page);
2225 *last_block_in_bio = blkaddr;
2229 f2fs_put_dnode(&dn);
2236 f2fs_put_dnode(&dn);
2238 for (i = 0; i < cc->cluster_size; i++) {
2239 if (cc->rpages[i]) {
2240 ClearPageUptodate(cc->rpages[i]);
2241 ClearPageError(cc->rpages[i]);
2242 unlock_page(cc->rpages[i]);
2251 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2252 * Major change was from block_size == page_size in f2fs by default.
2254 static int f2fs_mpage_readpages(struct inode *inode,
2255 struct readahead_control *rac, struct page *page)
2257 struct bio *bio = NULL;
2258 sector_t last_block_in_bio = 0;
2259 struct f2fs_map_blocks map;
2260 #ifdef CONFIG_F2FS_FS_COMPRESSION
2261 struct compress_ctx cc = {
2263 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2264 .cluster_size = F2FS_I(inode)->i_cluster_size,
2265 .cluster_idx = NULL_CLUSTER,
2271 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2273 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2274 unsigned max_nr_pages = nr_pages;
2281 map.m_next_pgofs = NULL;
2282 map.m_next_extent = NULL;
2283 map.m_seg_type = NO_CHECK_TYPE;
2284 map.m_may_create = false;
2286 for (; nr_pages; nr_pages--) {
2288 page = readahead_page(rac);
2289 prefetchw(&page->flags);
2292 #ifdef CONFIG_F2FS_FS_COMPRESSION
2293 if (f2fs_compressed_file(inode)) {
2294 /* there are remained comressed pages, submit them */
2295 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2296 ret = f2fs_read_multi_pages(&cc, &bio,
2299 rac != NULL, false);
2300 f2fs_destroy_compress_ctx(&cc, false);
2302 goto set_error_page;
2304 if (cc.cluster_idx == NULL_CLUSTER) {
2305 if (nc_cluster_idx ==
2306 page->index >> cc.log_cluster_size) {
2307 goto read_single_page;
2310 ret = f2fs_is_compressed_cluster(inode, page->index);
2312 goto set_error_page;
2315 page->index >> cc.log_cluster_size;
2316 goto read_single_page;
2319 nc_cluster_idx = NULL_CLUSTER;
2321 ret = f2fs_init_compress_ctx(&cc);
2323 goto set_error_page;
2325 f2fs_compress_ctx_add_page(&cc, page);
2332 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2333 &bio, &last_block_in_bio, rac);
2335 #ifdef CONFIG_F2FS_FS_COMPRESSION
2339 zero_user_segment(page, 0, PAGE_SIZE);
2342 #ifdef CONFIG_F2FS_FS_COMPRESSION
2348 #ifdef CONFIG_F2FS_FS_COMPRESSION
2349 if (f2fs_compressed_file(inode)) {
2351 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2352 ret = f2fs_read_multi_pages(&cc, &bio,
2355 rac != NULL, false);
2356 f2fs_destroy_compress_ctx(&cc, false);
2362 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2366 static int f2fs_read_data_page(struct file *file, struct page *page)
2368 struct inode *inode = page_file_mapping(page)->host;
2371 trace_f2fs_readpage(page, DATA);
2373 if (!f2fs_is_compress_backend_ready(inode)) {
2378 /* If the file has inline data, try to read it directly */
2379 if (f2fs_has_inline_data(inode))
2380 ret = f2fs_read_inline_data(inode, page);
2382 ret = f2fs_mpage_readpages(inode, NULL, page);
2386 static void f2fs_readahead(struct readahead_control *rac)
2388 struct inode *inode = rac->mapping->host;
2390 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2392 if (!f2fs_is_compress_backend_ready(inode))
2395 /* If the file has inline data, skip readpages */
2396 if (f2fs_has_inline_data(inode))
2399 f2fs_mpage_readpages(inode, rac, NULL);
2402 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2404 struct inode *inode = fio->page->mapping->host;
2405 struct page *mpage, *page;
2406 gfp_t gfp_flags = GFP_NOFS;
2408 if (!f2fs_encrypted_file(inode))
2411 page = fio->compressed_page ? fio->compressed_page : fio->page;
2413 /* wait for GCed page writeback via META_MAPPING */
2414 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2416 if (fscrypt_inode_uses_inline_crypto(inode))
2420 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2421 PAGE_SIZE, 0, gfp_flags);
2422 if (IS_ERR(fio->encrypted_page)) {
2423 /* flush pending IOs and wait for a while in the ENOMEM case */
2424 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2425 f2fs_flush_merged_writes(fio->sbi);
2426 memalloc_retry_wait(GFP_NOFS);
2427 gfp_flags |= __GFP_NOFAIL;
2430 return PTR_ERR(fio->encrypted_page);
2433 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2435 if (PageUptodate(mpage))
2436 memcpy(page_address(mpage),
2437 page_address(fio->encrypted_page), PAGE_SIZE);
2438 f2fs_put_page(mpage, 1);
2443 static inline bool check_inplace_update_policy(struct inode *inode,
2444 struct f2fs_io_info *fio)
2446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2447 unsigned int policy = SM_I(sbi)->ipu_policy;
2449 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2450 is_inode_flag_set(inode, FI_OPU_WRITE))
2452 if (policy & (0x1 << F2FS_IPU_FORCE))
2454 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2456 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2457 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2459 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2460 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2464 * IPU for rewrite async pages
2466 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2467 fio && fio->op == REQ_OP_WRITE &&
2468 !(fio->op_flags & REQ_SYNC) &&
2469 !IS_ENCRYPTED(inode))
2472 /* this is only set during fdatasync */
2473 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2474 is_inode_flag_set(inode, FI_NEED_IPU))
2477 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2478 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2484 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2486 /* swap file is migrating in aligned write mode */
2487 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2490 if (f2fs_is_pinned_file(inode))
2493 /* if this is cold file, we should overwrite to avoid fragmentation */
2494 if (file_is_cold(inode))
2497 return check_inplace_update_policy(inode, fio);
2500 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2502 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2504 /* The below cases were checked when setting it. */
2505 if (f2fs_is_pinned_file(inode))
2507 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2509 if (f2fs_lfs_mode(sbi))
2511 if (S_ISDIR(inode->i_mode))
2513 if (IS_NOQUOTA(inode))
2515 if (f2fs_is_atomic_file(inode))
2518 /* swap file is migrating in aligned write mode */
2519 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2522 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2526 if (page_private_gcing(fio->page))
2528 if (page_private_dummy(fio->page))
2530 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2531 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2537 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2539 struct inode *inode = fio->page->mapping->host;
2541 if (f2fs_should_update_outplace(inode, fio))
2544 return f2fs_should_update_inplace(inode, fio);
2547 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2549 struct page *page = fio->page;
2550 struct inode *inode = page->mapping->host;
2551 struct dnode_of_data dn;
2552 struct extent_info ei = {0, };
2553 struct node_info ni;
2554 bool ipu_force = false;
2557 set_new_dnode(&dn, inode, NULL, NULL, 0);
2558 if (need_inplace_update(fio) &&
2559 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2560 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2562 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2563 DATA_GENERIC_ENHANCE))
2564 return -EFSCORRUPTED;
2567 fio->need_lock = LOCK_DONE;
2571 /* Deadlock due to between page->lock and f2fs_lock_op */
2572 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2575 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2579 fio->old_blkaddr = dn.data_blkaddr;
2581 /* This page is already truncated */
2582 if (fio->old_blkaddr == NULL_ADDR) {
2583 ClearPageUptodate(page);
2584 clear_page_private_gcing(page);
2588 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2589 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2590 DATA_GENERIC_ENHANCE)) {
2591 err = -EFSCORRUPTED;
2595 * If current allocation needs SSR,
2596 * it had better in-place writes for updated data.
2599 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2600 need_inplace_update(fio))) {
2601 err = f2fs_encrypt_one_page(fio);
2605 set_page_writeback(page);
2606 ClearPageError(page);
2607 f2fs_put_dnode(&dn);
2608 if (fio->need_lock == LOCK_REQ)
2609 f2fs_unlock_op(fio->sbi);
2610 err = f2fs_inplace_write_data(fio);
2612 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2613 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2614 if (PageWriteback(page))
2615 end_page_writeback(page);
2617 set_inode_flag(inode, FI_UPDATE_WRITE);
2619 trace_f2fs_do_write_data_page(fio->page, IPU);
2623 if (fio->need_lock == LOCK_RETRY) {
2624 if (!f2fs_trylock_op(fio->sbi)) {
2628 fio->need_lock = LOCK_REQ;
2631 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2635 fio->version = ni.version;
2637 err = f2fs_encrypt_one_page(fio);
2641 set_page_writeback(page);
2642 ClearPageError(page);
2644 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2645 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2647 /* LFS mode write path */
2648 f2fs_outplace_write_data(&dn, fio);
2649 trace_f2fs_do_write_data_page(page, OPU);
2650 set_inode_flag(inode, FI_APPEND_WRITE);
2651 if (page->index == 0)
2652 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2654 f2fs_put_dnode(&dn);
2656 if (fio->need_lock == LOCK_REQ)
2657 f2fs_unlock_op(fio->sbi);
2661 int f2fs_write_single_data_page(struct page *page, int *submitted,
2663 sector_t *last_block,
2664 struct writeback_control *wbc,
2665 enum iostat_type io_type,
2669 struct inode *inode = page->mapping->host;
2670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2671 loff_t i_size = i_size_read(inode);
2672 const pgoff_t end_index = ((unsigned long long)i_size)
2674 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2675 unsigned offset = 0;
2676 bool need_balance_fs = false;
2678 struct f2fs_io_info fio = {
2680 .ino = inode->i_ino,
2683 .op_flags = wbc_to_write_flags(wbc),
2684 .old_blkaddr = NULL_ADDR,
2686 .encrypted_page = NULL,
2688 .compr_blocks = compr_blocks,
2689 .need_lock = LOCK_RETRY,
2693 .last_block = last_block,
2696 trace_f2fs_writepage(page, DATA);
2698 /* we should bypass data pages to proceed the kworkder jobs */
2699 if (unlikely(f2fs_cp_error(sbi))) {
2700 mapping_set_error(page->mapping, -EIO);
2702 * don't drop any dirty dentry pages for keeping lastest
2703 * directory structure.
2705 if (S_ISDIR(inode->i_mode))
2710 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2713 if (page->index < end_index ||
2714 f2fs_verity_in_progress(inode) ||
2719 * If the offset is out-of-range of file size,
2720 * this page does not have to be written to disk.
2722 offset = i_size & (PAGE_SIZE - 1);
2723 if ((page->index >= end_index + 1) || !offset)
2726 zero_user_segment(page, offset, PAGE_SIZE);
2728 if (f2fs_is_drop_cache(inode))
2730 /* we should not write 0'th page having journal header */
2731 if (f2fs_is_volatile_file(inode) && (!page->index ||
2732 (!wbc->for_reclaim &&
2733 f2fs_available_free_memory(sbi, BASE_CHECK))))
2736 /* Dentry/quota blocks are controlled by checkpoint */
2737 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2739 * We need to wait for node_write to avoid block allocation during
2740 * checkpoint. This can only happen to quota writes which can cause
2741 * the below discard race condition.
2743 if (IS_NOQUOTA(inode))
2744 f2fs_down_read(&sbi->node_write);
2746 fio.need_lock = LOCK_DONE;
2747 err = f2fs_do_write_data_page(&fio);
2749 if (IS_NOQUOTA(inode))
2750 f2fs_up_read(&sbi->node_write);
2755 if (!wbc->for_reclaim)
2756 need_balance_fs = true;
2757 else if (has_not_enough_free_secs(sbi, 0, 0))
2760 set_inode_flag(inode, FI_HOT_DATA);
2763 if (f2fs_has_inline_data(inode)) {
2764 err = f2fs_write_inline_data(inode, page);
2769 if (err == -EAGAIN) {
2770 err = f2fs_do_write_data_page(&fio);
2771 if (err == -EAGAIN) {
2772 fio.need_lock = LOCK_REQ;
2773 err = f2fs_do_write_data_page(&fio);
2778 file_set_keep_isize(inode);
2780 spin_lock(&F2FS_I(inode)->i_size_lock);
2781 if (F2FS_I(inode)->last_disk_size < psize)
2782 F2FS_I(inode)->last_disk_size = psize;
2783 spin_unlock(&F2FS_I(inode)->i_size_lock);
2787 if (err && err != -ENOENT)
2791 inode_dec_dirty_pages(inode);
2793 ClearPageUptodate(page);
2794 clear_page_private_gcing(page);
2797 if (wbc->for_reclaim) {
2798 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2799 clear_inode_flag(inode, FI_HOT_DATA);
2800 f2fs_remove_dirty_inode(inode);
2804 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2805 !F2FS_I(inode)->cp_task && allow_balance)
2806 f2fs_balance_fs(sbi, need_balance_fs);
2808 if (unlikely(f2fs_cp_error(sbi))) {
2809 f2fs_submit_merged_write(sbi, DATA);
2810 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2815 *submitted = fio.submitted ? 1 : 0;
2820 redirty_page_for_writepage(wbc, page);
2822 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2823 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2824 * file_write_and_wait_range() will see EIO error, which is critical
2825 * to return value of fsync() followed by atomic_write failure to user.
2827 if (!err || wbc->for_reclaim)
2828 return AOP_WRITEPAGE_ACTIVATE;
2833 static int f2fs_write_data_page(struct page *page,
2834 struct writeback_control *wbc)
2836 #ifdef CONFIG_F2FS_FS_COMPRESSION
2837 struct inode *inode = page->mapping->host;
2839 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2842 if (f2fs_compressed_file(inode)) {
2843 if (f2fs_is_compressed_cluster(inode, page->index)) {
2844 redirty_page_for_writepage(wbc, page);
2845 return AOP_WRITEPAGE_ACTIVATE;
2851 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2852 wbc, FS_DATA_IO, 0, true);
2856 * This function was copied from write_cche_pages from mm/page-writeback.c.
2857 * The major change is making write step of cold data page separately from
2858 * warm/hot data page.
2860 static int f2fs_write_cache_pages(struct address_space *mapping,
2861 struct writeback_control *wbc,
2862 enum iostat_type io_type)
2865 int done = 0, retry = 0;
2866 struct pagevec pvec;
2867 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2868 struct bio *bio = NULL;
2869 sector_t last_block;
2870 #ifdef CONFIG_F2FS_FS_COMPRESSION
2871 struct inode *inode = mapping->host;
2872 struct compress_ctx cc = {
2874 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2875 .cluster_size = F2FS_I(inode)->i_cluster_size,
2876 .cluster_idx = NULL_CLUSTER,
2880 .valid_nr_cpages = 0,
2883 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2889 pgoff_t end; /* Inclusive */
2891 int range_whole = 0;
2897 pagevec_init(&pvec);
2899 if (get_dirty_pages(mapping->host) <=
2900 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2901 set_inode_flag(mapping->host, FI_HOT_DATA);
2903 clear_inode_flag(mapping->host, FI_HOT_DATA);
2905 if (wbc->range_cyclic) {
2906 index = mapping->writeback_index; /* prev offset */
2909 index = wbc->range_start >> PAGE_SHIFT;
2910 end = wbc->range_end >> PAGE_SHIFT;
2911 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2914 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2915 tag = PAGECACHE_TAG_TOWRITE;
2917 tag = PAGECACHE_TAG_DIRTY;
2920 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2921 tag_pages_for_writeback(mapping, index, end);
2923 while (!done && !retry && (index <= end)) {
2924 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2929 for (i = 0; i < nr_pages; i++) {
2930 struct page *page = pvec.pages[i];
2934 #ifdef CONFIG_F2FS_FS_COMPRESSION
2935 if (f2fs_compressed_file(inode)) {
2936 void *fsdata = NULL;
2940 ret = f2fs_init_compress_ctx(&cc);
2946 if (!f2fs_cluster_can_merge_page(&cc,
2948 ret = f2fs_write_multi_pages(&cc,
2949 &submitted, wbc, io_type);
2955 if (unlikely(f2fs_cp_error(sbi)))
2958 if (!f2fs_cluster_is_empty(&cc))
2961 ret2 = f2fs_prepare_compress_overwrite(
2963 page->index, &fsdata);
2969 (!f2fs_compress_write_end(inode,
2970 fsdata, page->index, 1) ||
2971 !f2fs_all_cluster_page_loaded(&cc,
2972 &pvec, i, nr_pages))) {
2978 /* give a priority to WB_SYNC threads */
2979 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2980 wbc->sync_mode == WB_SYNC_NONE) {
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2987 done_index = page->index;
2991 if (unlikely(page->mapping != mapping)) {
2997 if (!PageDirty(page)) {
2998 /* someone wrote it for us */
2999 goto continue_unlock;
3002 if (PageWriteback(page)) {
3003 if (wbc->sync_mode != WB_SYNC_NONE)
3004 f2fs_wait_on_page_writeback(page,
3007 goto continue_unlock;
3010 if (!clear_page_dirty_for_io(page))
3011 goto continue_unlock;
3013 #ifdef CONFIG_F2FS_FS_COMPRESSION
3014 if (f2fs_compressed_file(inode)) {
3016 f2fs_compress_ctx_add_page(&cc, page);
3020 ret = f2fs_write_single_data_page(page, &submitted,
3021 &bio, &last_block, wbc, io_type,
3023 if (ret == AOP_WRITEPAGE_ACTIVATE)
3025 #ifdef CONFIG_F2FS_FS_COMPRESSION
3028 nwritten += submitted;
3029 wbc->nr_to_write -= submitted;
3031 if (unlikely(ret)) {
3033 * keep nr_to_write, since vfs uses this to
3034 * get # of written pages.
3036 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3039 } else if (ret == -EAGAIN) {
3041 if (wbc->sync_mode == WB_SYNC_ALL) {
3042 f2fs_io_schedule_timeout(
3043 DEFAULT_IO_TIMEOUT);
3048 done_index = page->index + 1;
3053 if (wbc->nr_to_write <= 0 &&
3054 wbc->sync_mode == WB_SYNC_NONE) {
3062 pagevec_release(&pvec);
3065 #ifdef CONFIG_F2FS_FS_COMPRESSION
3066 /* flush remained pages in compress cluster */
3067 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3068 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3069 nwritten += submitted;
3070 wbc->nr_to_write -= submitted;
3076 if (f2fs_compressed_file(inode))
3077 f2fs_destroy_compress_ctx(&cc, false);
3084 if (wbc->range_cyclic && !done)
3086 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3087 mapping->writeback_index = done_index;
3090 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3092 /* submit cached bio of IPU write */
3094 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3099 static inline bool __should_serialize_io(struct inode *inode,
3100 struct writeback_control *wbc)
3102 /* to avoid deadlock in path of data flush */
3103 if (F2FS_I(inode)->cp_task)
3106 if (!S_ISREG(inode->i_mode))
3108 if (IS_NOQUOTA(inode))
3111 if (f2fs_need_compress_data(inode))
3113 if (wbc->sync_mode != WB_SYNC_ALL)
3115 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3120 static int __f2fs_write_data_pages(struct address_space *mapping,
3121 struct writeback_control *wbc,
3122 enum iostat_type io_type)
3124 struct inode *inode = mapping->host;
3125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3126 struct blk_plug plug;
3128 bool locked = false;
3130 /* deal with chardevs and other special file */
3131 if (!mapping->a_ops->writepage)
3134 /* skip writing if there is no dirty page in this inode */
3135 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3138 /* during POR, we don't need to trigger writepage at all. */
3139 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3142 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3143 wbc->sync_mode == WB_SYNC_NONE &&
3144 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3145 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3148 /* skip writing in file defragment preparing stage */
3149 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3152 trace_f2fs_writepages(mapping->host, wbc, DATA);
3154 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3155 if (wbc->sync_mode == WB_SYNC_ALL)
3156 atomic_inc(&sbi->wb_sync_req[DATA]);
3157 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3158 /* to avoid potential deadlock */
3160 blk_finish_plug(current->plug);
3164 if (__should_serialize_io(inode, wbc)) {
3165 mutex_lock(&sbi->writepages);
3169 blk_start_plug(&plug);
3170 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3171 blk_finish_plug(&plug);
3174 mutex_unlock(&sbi->writepages);
3176 if (wbc->sync_mode == WB_SYNC_ALL)
3177 atomic_dec(&sbi->wb_sync_req[DATA]);
3179 * if some pages were truncated, we cannot guarantee its mapping->host
3180 * to detect pending bios.
3183 f2fs_remove_dirty_inode(inode);
3187 wbc->pages_skipped += get_dirty_pages(inode);
3188 trace_f2fs_writepages(mapping->host, wbc, DATA);
3192 static int f2fs_write_data_pages(struct address_space *mapping,
3193 struct writeback_control *wbc)
3195 struct inode *inode = mapping->host;
3197 return __f2fs_write_data_pages(mapping, wbc,
3198 F2FS_I(inode)->cp_task == current ?
3199 FS_CP_DATA_IO : FS_DATA_IO);
3202 void f2fs_write_failed(struct inode *inode, loff_t to)
3204 loff_t i_size = i_size_read(inode);
3206 if (IS_NOQUOTA(inode))
3209 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3210 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3211 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3212 filemap_invalidate_lock(inode->i_mapping);
3214 truncate_pagecache(inode, i_size);
3215 f2fs_truncate_blocks(inode, i_size, true);
3217 filemap_invalidate_unlock(inode->i_mapping);
3218 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3222 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3223 struct page *page, loff_t pos, unsigned len,
3224 block_t *blk_addr, bool *node_changed)
3226 struct inode *inode = page->mapping->host;
3227 pgoff_t index = page->index;
3228 struct dnode_of_data dn;
3230 bool locked = false;
3231 struct extent_info ei = {0, };
3236 * If a whole page is being written and we already preallocated all the
3237 * blocks, then there is no need to get a block address now.
3239 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3242 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3243 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3244 flag = F2FS_GET_BLOCK_DEFAULT;
3246 flag = F2FS_GET_BLOCK_PRE_AIO;
3248 if (f2fs_has_inline_data(inode) ||
3249 (pos & PAGE_MASK) >= i_size_read(inode)) {
3250 f2fs_do_map_lock(sbi, flag, true);
3255 /* check inline_data */
3256 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3257 if (IS_ERR(ipage)) {
3258 err = PTR_ERR(ipage);
3262 set_new_dnode(&dn, inode, ipage, ipage, 0);
3264 if (f2fs_has_inline_data(inode)) {
3265 if (pos + len <= MAX_INLINE_DATA(inode)) {
3266 f2fs_do_read_inline_data(page, ipage);
3267 set_inode_flag(inode, FI_DATA_EXIST);
3269 set_page_private_inline(ipage);
3271 err = f2fs_convert_inline_page(&dn, page);
3274 if (dn.data_blkaddr == NULL_ADDR)
3275 err = f2fs_get_block(&dn, index);
3277 } else if (locked) {
3278 err = f2fs_get_block(&dn, index);
3280 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3281 dn.data_blkaddr = ei.blk + index - ei.fofs;
3284 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3285 if (err || dn.data_blkaddr == NULL_ADDR) {
3286 f2fs_put_dnode(&dn);
3287 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3289 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3296 /* convert_inline_page can make node_changed */
3297 *blk_addr = dn.data_blkaddr;
3298 *node_changed = dn.node_changed;
3300 f2fs_put_dnode(&dn);
3303 f2fs_do_map_lock(sbi, flag, false);
3307 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3308 loff_t pos, unsigned len, unsigned flags,
3309 struct page **pagep, void **fsdata)
3311 struct inode *inode = mapping->host;
3312 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3313 struct page *page = NULL;
3314 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3315 bool need_balance = false, drop_atomic = false;
3316 block_t blkaddr = NULL_ADDR;
3319 trace_f2fs_write_begin(inode, pos, len, flags);
3321 if (!f2fs_is_checkpoint_ready(sbi)) {
3326 if ((f2fs_is_atomic_file(inode) &&
3327 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3328 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3335 * We should check this at this moment to avoid deadlock on inode page
3336 * and #0 page. The locking rule for inline_data conversion should be:
3337 * lock_page(page #0) -> lock_page(inode_page)
3340 err = f2fs_convert_inline_inode(inode);
3345 #ifdef CONFIG_F2FS_FS_COMPRESSION
3346 if (f2fs_compressed_file(inode)) {
3351 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3354 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3367 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3368 * wait_for_stable_page. Will wait that below with our IO control.
3370 page = f2fs_pagecache_get_page(mapping, index,
3371 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3377 /* TODO: cluster can be compressed due to race with .writepage */
3381 err = prepare_write_begin(sbi, page, pos, len,
3382 &blkaddr, &need_balance);
3386 if (need_balance && !IS_NOQUOTA(inode) &&
3387 has_not_enough_free_secs(sbi, 0, 0)) {
3389 f2fs_balance_fs(sbi, true);
3391 if (page->mapping != mapping) {
3392 /* The page got truncated from under us */
3393 f2fs_put_page(page, 1);
3398 f2fs_wait_on_page_writeback(page, DATA, false, true);
3400 if (len == PAGE_SIZE || PageUptodate(page))
3403 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3404 !f2fs_verity_in_progress(inode)) {
3405 zero_user_segment(page, len, PAGE_SIZE);
3409 if (blkaddr == NEW_ADDR) {
3410 zero_user_segment(page, 0, PAGE_SIZE);
3411 SetPageUptodate(page);
3413 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3414 DATA_GENERIC_ENHANCE_READ)) {
3415 err = -EFSCORRUPTED;
3418 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3423 if (unlikely(page->mapping != mapping)) {
3424 f2fs_put_page(page, 1);
3427 if (unlikely(!PageUptodate(page))) {
3435 f2fs_put_page(page, 1);
3436 f2fs_write_failed(inode, pos + len);
3438 f2fs_drop_inmem_pages_all(sbi, false);
3442 static int f2fs_write_end(struct file *file,
3443 struct address_space *mapping,
3444 loff_t pos, unsigned len, unsigned copied,
3445 struct page *page, void *fsdata)
3447 struct inode *inode = page->mapping->host;
3449 trace_f2fs_write_end(inode, pos, len, copied);
3452 * This should be come from len == PAGE_SIZE, and we expect copied
3453 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3454 * let generic_perform_write() try to copy data again through copied=0.
3456 if (!PageUptodate(page)) {
3457 if (unlikely(copied != len))
3460 SetPageUptodate(page);
3463 #ifdef CONFIG_F2FS_FS_COMPRESSION
3464 /* overwrite compressed file */
3465 if (f2fs_compressed_file(inode) && fsdata) {
3466 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3467 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3469 if (pos + copied > i_size_read(inode) &&
3470 !f2fs_verity_in_progress(inode))
3471 f2fs_i_size_write(inode, pos + copied);
3479 set_page_dirty(page);
3481 if (pos + copied > i_size_read(inode) &&
3482 !f2fs_verity_in_progress(inode))
3483 f2fs_i_size_write(inode, pos + copied);
3485 f2fs_put_page(page, 1);
3486 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3490 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3492 struct inode *inode = folio->mapping->host;
3493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3495 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3496 (offset || length != folio_size(folio)))
3499 if (folio_test_dirty(folio)) {
3500 if (inode->i_ino == F2FS_META_INO(sbi)) {
3501 dec_page_count(sbi, F2FS_DIRTY_META);
3502 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3503 dec_page_count(sbi, F2FS_DIRTY_NODES);
3505 inode_dec_dirty_pages(inode);
3506 f2fs_remove_dirty_inode(inode);
3510 clear_page_private_gcing(&folio->page);
3512 if (test_opt(sbi, COMPRESS_CACHE) &&
3513 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3514 clear_page_private_data(&folio->page);
3516 if (page_private_atomic(&folio->page))
3517 return f2fs_drop_inmem_page(inode, &folio->page);
3519 folio_detach_private(folio);
3522 int f2fs_release_page(struct page *page, gfp_t wait)
3524 /* If this is dirty page, keep PagePrivate */
3525 if (PageDirty(page))
3528 /* This is atomic written page, keep Private */
3529 if (page_private_atomic(page))
3532 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3533 struct inode *inode = page->mapping->host;
3535 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode)))
3536 clear_page_private_data(page);
3539 clear_page_private_gcing(page);
3541 detach_page_private(page);
3542 set_page_private(page, 0);
3546 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3547 struct folio *folio)
3549 struct inode *inode = mapping->host;
3551 trace_f2fs_set_page_dirty(&folio->page, DATA);
3553 if (!folio_test_uptodate(folio))
3554 folio_mark_uptodate(folio);
3555 BUG_ON(folio_test_swapcache(folio));
3557 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3558 if (!page_private_atomic(&folio->page)) {
3559 f2fs_register_inmem_page(inode, &folio->page);
3563 * Previously, this page has been registered, we just
3569 if (!folio_test_dirty(folio)) {
3570 filemap_dirty_folio(mapping, folio);
3571 f2fs_update_dirty_folio(inode, folio);
3578 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3580 #ifdef CONFIG_F2FS_FS_COMPRESSION
3581 struct dnode_of_data dn;
3582 sector_t start_idx, blknr = 0;
3585 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3587 set_new_dnode(&dn, inode, NULL, NULL, 0);
3588 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3592 if (dn.data_blkaddr != COMPRESS_ADDR) {
3593 dn.ofs_in_node += block - start_idx;
3594 blknr = f2fs_data_blkaddr(&dn);
3595 if (!__is_valid_data_blkaddr(blknr))
3599 f2fs_put_dnode(&dn);
3607 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3609 struct inode *inode = mapping->host;
3612 if (f2fs_has_inline_data(inode))
3615 /* make sure allocating whole blocks */
3616 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3617 filemap_write_and_wait(mapping);
3619 /* Block number less than F2FS MAX BLOCKS */
3620 if (unlikely(block >= max_file_blocks(inode)))
3623 if (f2fs_compressed_file(inode)) {
3624 blknr = f2fs_bmap_compress(inode, block);
3626 struct f2fs_map_blocks map;
3628 memset(&map, 0, sizeof(map));
3631 map.m_next_pgofs = NULL;
3632 map.m_seg_type = NO_CHECK_TYPE;
3634 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3638 trace_f2fs_bmap(inode, block, blknr);
3642 #ifdef CONFIG_MIGRATION
3643 #include <linux/migrate.h>
3645 int f2fs_migrate_page(struct address_space *mapping,
3646 struct page *newpage, struct page *page, enum migrate_mode mode)
3648 int rc, extra_count;
3649 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3650 bool atomic_written = page_private_atomic(page);
3652 BUG_ON(PageWriteback(page));
3654 /* migrating an atomic written page is safe with the inmem_lock hold */
3655 if (atomic_written) {
3656 if (mode != MIGRATE_SYNC)
3658 if (!mutex_trylock(&fi->inmem_lock))
3662 /* one extra reference was held for atomic_write page */
3663 extra_count = atomic_written ? 1 : 0;
3664 rc = migrate_page_move_mapping(mapping, newpage,
3666 if (rc != MIGRATEPAGE_SUCCESS) {
3668 mutex_unlock(&fi->inmem_lock);
3672 if (atomic_written) {
3673 struct inmem_pages *cur;
3675 list_for_each_entry(cur, &fi->inmem_pages, list)
3676 if (cur->page == page) {
3677 cur->page = newpage;
3680 mutex_unlock(&fi->inmem_lock);
3685 /* guarantee to start from no stale private field */
3686 set_page_private(newpage, 0);
3687 if (PagePrivate(page)) {
3688 set_page_private(newpage, page_private(page));
3689 SetPagePrivate(newpage);
3692 set_page_private(page, 0);
3693 ClearPagePrivate(page);
3697 if (mode != MIGRATE_SYNC_NO_COPY)
3698 migrate_page_copy(newpage, page);
3700 migrate_page_states(newpage, page);
3702 return MIGRATEPAGE_SUCCESS;
3707 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3708 unsigned int blkcnt)
3710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3711 unsigned int blkofs;
3712 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3713 unsigned int secidx = start_blk / blk_per_sec;
3714 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3717 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3718 filemap_invalidate_lock(inode->i_mapping);
3720 set_inode_flag(inode, FI_ALIGNED_WRITE);
3721 set_inode_flag(inode, FI_OPU_WRITE);
3723 for (; secidx < end_sec; secidx++) {
3724 f2fs_down_write(&sbi->pin_sem);
3727 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3728 f2fs_unlock_op(sbi);
3730 set_inode_flag(inode, FI_SKIP_WRITES);
3732 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3734 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3736 page = f2fs_get_lock_data_page(inode, blkidx, true);
3738 f2fs_up_write(&sbi->pin_sem);
3739 ret = PTR_ERR(page);
3743 set_page_dirty(page);
3744 f2fs_put_page(page, 1);
3747 clear_inode_flag(inode, FI_SKIP_WRITES);
3749 ret = filemap_fdatawrite(inode->i_mapping);
3751 f2fs_up_write(&sbi->pin_sem);
3758 clear_inode_flag(inode, FI_SKIP_WRITES);
3759 clear_inode_flag(inode, FI_OPU_WRITE);
3760 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3762 filemap_invalidate_unlock(inode->i_mapping);
3763 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3768 static int check_swap_activate(struct swap_info_struct *sis,
3769 struct file *swap_file, sector_t *span)
3771 struct address_space *mapping = swap_file->f_mapping;
3772 struct inode *inode = mapping->host;
3773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3774 sector_t cur_lblock;
3775 sector_t last_lblock;
3777 sector_t lowest_pblock = -1;
3778 sector_t highest_pblock = 0;
3780 unsigned long nr_pblocks;
3781 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3782 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3783 unsigned int not_aligned = 0;
3787 * Map all the blocks into the extent list. This code doesn't try
3791 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3793 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3794 struct f2fs_map_blocks map;
3798 memset(&map, 0, sizeof(map));
3799 map.m_lblk = cur_lblock;
3800 map.m_len = last_lblock - cur_lblock;
3801 map.m_next_pgofs = NULL;
3802 map.m_next_extent = NULL;
3803 map.m_seg_type = NO_CHECK_TYPE;
3804 map.m_may_create = false;
3806 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3811 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3812 f2fs_err(sbi, "Swapfile has holes");
3817 pblock = map.m_pblk;
3818 nr_pblocks = map.m_len;
3820 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3821 nr_pblocks & sec_blks_mask) {
3824 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3825 if (cur_lblock + nr_pblocks > sis->max)
3826 nr_pblocks -= blks_per_sec;
3829 /* this extent is last one */
3830 nr_pblocks = map.m_len;
3831 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3835 ret = f2fs_migrate_blocks(inode, cur_lblock,
3842 if (cur_lblock + nr_pblocks >= sis->max)
3843 nr_pblocks = sis->max - cur_lblock;
3845 if (cur_lblock) { /* exclude the header page */
3846 if (pblock < lowest_pblock)
3847 lowest_pblock = pblock;
3848 if (pblock + nr_pblocks - 1 > highest_pblock)
3849 highest_pblock = pblock + nr_pblocks - 1;
3853 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3855 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3859 cur_lblock += nr_pblocks;
3862 *span = 1 + highest_pblock - lowest_pblock;
3863 if (cur_lblock == 0)
3864 cur_lblock = 1; /* force Empty message */
3865 sis->max = cur_lblock;
3866 sis->pages = cur_lblock - 1;
3867 sis->highest_bit = cur_lblock - 1;
3870 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3871 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3875 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3878 struct inode *inode = file_inode(file);
3881 if (!S_ISREG(inode->i_mode))
3884 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3887 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3888 f2fs_err(F2FS_I_SB(inode),
3889 "Swapfile not supported in LFS mode");
3893 ret = f2fs_convert_inline_inode(inode);
3897 if (!f2fs_disable_compressed_file(inode))
3900 f2fs_precache_extents(inode);
3902 ret = check_swap_activate(sis, file, span);
3906 set_inode_flag(inode, FI_PIN_FILE);
3907 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3911 static void f2fs_swap_deactivate(struct file *file)
3913 struct inode *inode = file_inode(file);
3915 clear_inode_flag(inode, FI_PIN_FILE);
3918 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3924 static void f2fs_swap_deactivate(struct file *file)
3929 const struct address_space_operations f2fs_dblock_aops = {
3930 .readpage = f2fs_read_data_page,
3931 .readahead = f2fs_readahead,
3932 .writepage = f2fs_write_data_page,
3933 .writepages = f2fs_write_data_pages,
3934 .write_begin = f2fs_write_begin,
3935 .write_end = f2fs_write_end,
3936 .dirty_folio = f2fs_dirty_data_folio,
3937 .invalidate_folio = f2fs_invalidate_folio,
3938 .releasepage = f2fs_release_page,
3939 .direct_IO = noop_direct_IO,
3941 .swap_activate = f2fs_swap_activate,
3942 .swap_deactivate = f2fs_swap_deactivate,
3943 #ifdef CONFIG_MIGRATION
3944 .migratepage = f2fs_migrate_page,
3948 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3950 struct address_space *mapping = page_mapping(page);
3951 unsigned long flags;
3953 xa_lock_irqsave(&mapping->i_pages, flags);
3954 __xa_clear_mark(&mapping->i_pages, page_index(page),
3955 PAGECACHE_TAG_DIRTY);
3956 xa_unlock_irqrestore(&mapping->i_pages, flags);
3959 int __init f2fs_init_post_read_processing(void)
3961 bio_post_read_ctx_cache =
3962 kmem_cache_create("f2fs_bio_post_read_ctx",
3963 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3964 if (!bio_post_read_ctx_cache)
3966 bio_post_read_ctx_pool =
3967 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3968 bio_post_read_ctx_cache);
3969 if (!bio_post_read_ctx_pool)
3970 goto fail_free_cache;
3974 kmem_cache_destroy(bio_post_read_ctx_cache);
3979 void f2fs_destroy_post_read_processing(void)
3981 mempool_destroy(bio_post_read_ctx_pool);
3982 kmem_cache_destroy(bio_post_read_ctx_cache);
3985 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3987 if (!f2fs_sb_has_encrypt(sbi) &&
3988 !f2fs_sb_has_verity(sbi) &&
3989 !f2fs_sb_has_compression(sbi))
3992 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3993 WQ_UNBOUND | WQ_HIGHPRI,
3995 if (!sbi->post_read_wq)
4000 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4002 if (sbi->post_read_wq)
4003 destroy_workqueue(sbi->post_read_wq);
4006 int __init f2fs_init_bio_entry_cache(void)
4008 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4009 sizeof(struct bio_entry));
4010 if (!bio_entry_slab)
4015 void f2fs_destroy_bio_entry_cache(void)
4017 kmem_cache_destroy(bio_entry_slab);
4020 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4021 unsigned int flags, struct iomap *iomap,
4022 struct iomap *srcmap)
4024 struct f2fs_map_blocks map = {};
4025 pgoff_t next_pgofs = 0;
4028 map.m_lblk = bytes_to_blks(inode, offset);
4029 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4030 map.m_next_pgofs = &next_pgofs;
4031 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4032 if (flags & IOMAP_WRITE)
4033 map.m_may_create = true;
4035 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4036 F2FS_GET_BLOCK_DIO);
4040 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4043 * When inline encryption is enabled, sometimes I/O to an encrypted file
4044 * has to be broken up to guarantee DUN contiguity. Handle this by
4045 * limiting the length of the mapping returned.
4047 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4049 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4050 iomap->length = blks_to_bytes(inode, map.m_len);
4051 if (map.m_flags & F2FS_MAP_MAPPED) {
4052 iomap->type = IOMAP_MAPPED;
4053 iomap->flags |= IOMAP_F_MERGED;
4055 iomap->type = IOMAP_UNWRITTEN;
4057 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4060 iomap->bdev = map.m_bdev;
4061 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4063 iomap->length = blks_to_bytes(inode, next_pgofs) -
4065 iomap->type = IOMAP_HOLE;
4066 iomap->addr = IOMAP_NULL_ADDR;
4069 if (map.m_flags & F2FS_MAP_NEW)
4070 iomap->flags |= IOMAP_F_NEW;
4071 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4072 offset + length > i_size_read(inode))
4073 iomap->flags |= IOMAP_F_DIRTY;
4078 const struct iomap_ops f2fs_iomap_ops = {
4079 .iomap_begin = f2fs_iomap_begin,