1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
102 unsigned int hibernation_mode:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness = 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages;
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
197 int id, ret = -ENOMEM;
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
211 shrinker_nr_max = id + 1;
216 up_write(&shrinker_rwsem);
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
222 int id = shrinker->id;
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control *sc)
244 return !sc->target_mem_cgroup;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control *sc)
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
277 struct mem_cgroup_per_node *mn;
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
289 struct mem_cgroup_per_node *mn;
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
296 static bool global_reclaim(struct scan_control *sc)
301 static bool sane_reclaim(struct scan_control *sc)
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone *zone)
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
345 unsigned long lru_size;
348 if (!mem_cgroup_disabled())
349 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
357 if (!managed_zone(zone))
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker *shrinker)
377 unsigned int size = sizeof(*shrinker->nr_deferred);
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
399 void free_prealloced_shrinker(struct shrinker *shrinker)
401 if (!shrinker->nr_deferred)
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
411 void register_shrinker_prepared(struct shrinker *shrinker)
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
419 up_write(&shrinker_rwsem);
422 int register_shrinker(struct shrinker *shrinker)
424 int err = prealloc_shrinker(shrinker);
428 register_shrinker_prepared(shrinker);
431 EXPORT_SYMBOL(register_shrinker);
436 void unregister_shrinker(struct shrinker *shrinker)
438 if (!shrinker->nr_deferred)
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
445 kfree(shrinker->nr_deferred);
446 shrinker->nr_deferred = NULL;
448 EXPORT_SYMBOL(unregister_shrinker);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 struct shrinker *shrinker, int priority)
455 unsigned long freed = 0;
456 unsigned long long delta;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
464 long scanned = 0, next_deferred;
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
469 freeable = shrinker->count_objects(shrinker, shrinkctl);
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
484 do_div(delta, shrinker->seeks);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta = freeable / 2;
495 if (total_scan < 0) {
496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 shrinker->scan_objects, total_scan);
498 total_scan = freeable;
501 next_deferred = total_scan;
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 freeable, delta, total_scan, priority);
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
544 while (total_scan >= batch_size ||
545 total_scan >= freeable) {
547 unsigned long nr_to_scan = min(batch_size, total_scan);
549 shrinkctl->nr_to_scan = nr_to_scan;
550 shrinkctl->nr_scanned = nr_to_scan;
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
574 &shrinker->nr_deferred[nid]);
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
586 struct memcg_shrinker_map *map;
587 unsigned long ret, freed = 0;
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
593 if (!down_read_trylock(&shrinker_rwsem))
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
607 struct shrinker *shrinker;
609 shrinker = idr_find(&shrinker_idr, i);
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
612 clear_bit(i, map->map);
616 ret = do_shrink_slab(&sc, shrinker, priority);
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
632 * set_bit() do_shrink_slab()
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
639 memcg_set_shrinker_bit(memcg, nid, i);
643 if (rwsem_is_contended(&shrinker_rwsem)) {
649 up_read(&shrinker_rwsem);
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
658 #endif /* CONFIG_MEMCG_KMEM */
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
667 * Call the shrink functions to age shrinkable caches.
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
678 * Returns the number of reclaimed slab objects.
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
684 unsigned long ret, freed = 0;
685 struct shrinker *shrinker;
687 if (!mem_cgroup_is_root(memcg))
688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
690 if (!down_read_trylock(&shrinker_rwsem))
693 list_for_each_entry(shrinker, &shrinker_list, list) {
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
709 if (rwsem_is_contended(&shrinker_rwsem)) {
715 up_read(&shrinker_rwsem);
721 void drop_slab_node(int nid)
726 struct mem_cgroup *memcg = NULL;
729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
740 for_each_online_node(nid)
744 static inline int is_page_cache_freeable(struct page *page)
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
758 if (current->flags & PF_SWAPWRITE)
760 if (!inode_write_congested(inode))
762 if (inode_to_bdi(inode) == current->backing_dev_info)
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
776 * We're allowed to run sleeping lock_page() here because we know the caller has
779 static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
788 /* possible outcome of pageout() */
790 /* failed to write page out, page is locked */
792 /* move page to the active list, page is locked */
794 /* page has been sent to the disk successfully, page is unlocked */
796 /* page is clean and locked */
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 struct scan_control *sc)
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
823 if (!is_page_cache_freeable(page))
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
830 if (page_has_private(page)) {
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
833 pr_info("%s: orphaned page\n", __func__);
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
841 if (!may_write_to_inode(mapping->host, sc))
844 if (clear_page_dirty_for_io(page)) {
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
850 .range_end = LLONG_MAX,
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
857 handle_write_error(mapping, page, res);
858 if (res == AOP_WRITEPAGE_ACTIVATE) {
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
867 trace_mm_vmscan_writepage(page);
868 inc_node_page_state(page, NR_VMSCAN_WRITE);
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
888 xa_lock_irqsave(&mapping->i_pages, flags);
890 * The non racy check for a busy page.
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
897 * get_user_pages(&page);
898 * [user mapping goes away]
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
903 * !page_count(page) [good, discard it]
905 * [oops, our write_to data is lost]
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
918 if (!page_ref_freeze(page, refcount))
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page))) {
922 page_ref_unfreeze(page, refcount);
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
928 mem_cgroup_swapout(page, swap);
929 __delete_from_swap_cache(page, swap);
930 xa_unlock_irqrestore(&mapping->i_pages, flags);
931 put_swap_page(page, swap);
933 void (*freepage)(struct page *);
936 freepage = mapping->a_ops->freepage;
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
953 if (reclaimed && page_is_file_cache(page) &&
954 !mapping_exiting(mapping) && !dax_mapping(mapping))
955 shadow = workingset_eviction(page);
956 __delete_from_page_cache(page, shadow);
957 xa_unlock_irqrestore(&mapping->i_pages, flags);
959 if (freepage != NULL)
966 xa_unlock_irqrestore(&mapping->i_pages, flags);
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
976 int remove_mapping(struct address_space *mapping, struct page *page)
978 if (__remove_mapping(mapping, page, false)) {
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
984 page_ref_unfreeze(page, 1);
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
997 * lru_lock must not be held, interrupts must be enabled.
999 void putback_lru_page(struct page *page)
1001 lru_cache_add(page);
1002 put_page(page); /* drop ref from isolate */
1005 enum page_references {
1007 PAGEREF_RECLAIM_CLEAN,
1012 static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1015 int referenced_ptes, referenced_page;
1016 unsigned long vm_flags;
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1020 referenced_page = TestClearPageReferenced(page);
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1029 if (referenced_ptes) {
1030 if (PageSwapBacked(page))
1031 return PAGEREF_ACTIVATE;
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1046 SetPageReferenced(page);
1048 if (referenced_page || referenced_ptes > 1)
1049 return PAGEREF_ACTIVATE;
1052 * Activate file-backed executable pages after first usage.
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1057 return PAGEREF_KEEP;
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page && !PageSwapBacked(page))
1062 return PAGEREF_RECLAIM_CLEAN;
1064 return PAGEREF_RECLAIM;
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1071 struct address_space *mapping;
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1098 * shrink_page_list() returns the number of reclaimed pages
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 struct pglist_data *pgdat,
1102 struct scan_control *sc,
1103 enum ttu_flags ttu_flags,
1104 struct reclaim_stat *stat,
1107 LIST_HEAD(ret_pages);
1108 LIST_HEAD(free_pages);
1109 unsigned nr_reclaimed = 0;
1110 unsigned pgactivate = 0;
1112 memset(stat, 0, sizeof(*stat));
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 bool dirty, writeback;
1124 page = lru_to_page(page_list);
1125 list_del(&page->lru);
1127 if (!trylock_page(page))
1130 VM_BUG_ON_PAGE(PageActive(page), page);
1134 if (unlikely(!page_evictable(page)))
1135 goto activate_locked;
1137 if (!sc->may_unmap && page_mapped(page))
1140 /* Double the slab pressure for mapped and swapcache pages */
1141 if ((page_mapped(page) || PageSwapCache(page)) &&
1142 !(PageAnon(page) && !PageSwapBacked(page)))
1145 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1146 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1149 * The number of dirty pages determines if a node is marked
1150 * reclaim_congested which affects wait_iff_congested. kswapd
1151 * will stall and start writing pages if the tail of the LRU
1152 * is all dirty unqueued pages.
1154 page_check_dirty_writeback(page, &dirty, &writeback);
1155 if (dirty || writeback)
1158 if (dirty && !writeback)
1159 stat->nr_unqueued_dirty++;
1162 * Treat this page as congested if the underlying BDI is or if
1163 * pages are cycling through the LRU so quickly that the
1164 * pages marked for immediate reclaim are making it to the
1165 * end of the LRU a second time.
1167 mapping = page_mapping(page);
1168 if (((dirty || writeback) && mapping &&
1169 inode_write_congested(mapping->host)) ||
1170 (writeback && PageReclaim(page)))
1171 stat->nr_congested++;
1174 * If a page at the tail of the LRU is under writeback, there
1175 * are three cases to consider.
1177 * 1) If reclaim is encountering an excessive number of pages
1178 * under writeback and this page is both under writeback and
1179 * PageReclaim then it indicates that pages are being queued
1180 * for IO but are being recycled through the LRU before the
1181 * IO can complete. Waiting on the page itself risks an
1182 * indefinite stall if it is impossible to writeback the
1183 * page due to IO error or disconnected storage so instead
1184 * note that the LRU is being scanned too quickly and the
1185 * caller can stall after page list has been processed.
1187 * 2) Global or new memcg reclaim encounters a page that is
1188 * not marked for immediate reclaim, or the caller does not
1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 * not to fs). In this case mark the page for immediate
1191 * reclaim and continue scanning.
1193 * Require may_enter_fs because we would wait on fs, which
1194 * may not have submitted IO yet. And the loop driver might
1195 * enter reclaim, and deadlock if it waits on a page for
1196 * which it is needed to do the write (loop masks off
1197 * __GFP_IO|__GFP_FS for this reason); but more thought
1198 * would probably show more reasons.
1200 * 3) Legacy memcg encounters a page that is already marked
1201 * PageReclaim. memcg does not have any dirty pages
1202 * throttling so we could easily OOM just because too many
1203 * pages are in writeback and there is nothing else to
1204 * reclaim. Wait for the writeback to complete.
1206 * In cases 1) and 2) we activate the pages to get them out of
1207 * the way while we continue scanning for clean pages on the
1208 * inactive list and refilling from the active list. The
1209 * observation here is that waiting for disk writes is more
1210 * expensive than potentially causing reloads down the line.
1211 * Since they're marked for immediate reclaim, they won't put
1212 * memory pressure on the cache working set any longer than it
1213 * takes to write them to disk.
1215 if (PageWriteback(page)) {
1217 if (current_is_kswapd() &&
1218 PageReclaim(page) &&
1219 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 stat->nr_immediate++;
1221 goto activate_locked;
1224 } else if (sane_reclaim(sc) ||
1225 !PageReclaim(page) || !may_enter_fs) {
1227 * This is slightly racy - end_page_writeback()
1228 * might have just cleared PageReclaim, then
1229 * setting PageReclaim here end up interpreted
1230 * as PageReadahead - but that does not matter
1231 * enough to care. What we do want is for this
1232 * page to have PageReclaim set next time memcg
1233 * reclaim reaches the tests above, so it will
1234 * then wait_on_page_writeback() to avoid OOM;
1235 * and it's also appropriate in global reclaim.
1237 SetPageReclaim(page);
1238 stat->nr_writeback++;
1239 goto activate_locked;
1244 wait_on_page_writeback(page);
1245 /* then go back and try same page again */
1246 list_add_tail(&page->lru, page_list);
1252 references = page_check_references(page, sc);
1254 switch (references) {
1255 case PAGEREF_ACTIVATE:
1256 goto activate_locked;
1258 stat->nr_ref_keep++;
1260 case PAGEREF_RECLAIM:
1261 case PAGEREF_RECLAIM_CLEAN:
1262 ; /* try to reclaim the page below */
1266 * Anonymous process memory has backing store?
1267 * Try to allocate it some swap space here.
1268 * Lazyfree page could be freed directly
1270 if (PageAnon(page) && PageSwapBacked(page)) {
1271 if (!PageSwapCache(page)) {
1272 if (!(sc->gfp_mask & __GFP_IO))
1274 if (PageTransHuge(page)) {
1275 /* cannot split THP, skip it */
1276 if (!can_split_huge_page(page, NULL))
1277 goto activate_locked;
1279 * Split pages without a PMD map right
1280 * away. Chances are some or all of the
1281 * tail pages can be freed without IO.
1283 if (!compound_mapcount(page) &&
1284 split_huge_page_to_list(page,
1286 goto activate_locked;
1288 if (!add_to_swap(page)) {
1289 if (!PageTransHuge(page))
1290 goto activate_locked;
1291 /* Fallback to swap normal pages */
1292 if (split_huge_page_to_list(page,
1294 goto activate_locked;
1295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1296 count_vm_event(THP_SWPOUT_FALLBACK);
1298 if (!add_to_swap(page))
1299 goto activate_locked;
1304 /* Adding to swap updated mapping */
1305 mapping = page_mapping(page);
1307 } else if (unlikely(PageTransHuge(page))) {
1308 /* Split file THP */
1309 if (split_huge_page_to_list(page, page_list))
1314 * The page is mapped into the page tables of one or more
1315 * processes. Try to unmap it here.
1317 if (page_mapped(page)) {
1318 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1320 if (unlikely(PageTransHuge(page)))
1321 flags |= TTU_SPLIT_HUGE_PMD;
1322 if (!try_to_unmap(page, flags)) {
1323 stat->nr_unmap_fail++;
1324 goto activate_locked;
1328 if (PageDirty(page)) {
1330 * Only kswapd can writeback filesystem pages
1331 * to avoid risk of stack overflow. But avoid
1332 * injecting inefficient single-page IO into
1333 * flusher writeback as much as possible: only
1334 * write pages when we've encountered many
1335 * dirty pages, and when we've already scanned
1336 * the rest of the LRU for clean pages and see
1337 * the same dirty pages again (PageReclaim).
1339 if (page_is_file_cache(page) &&
1340 (!current_is_kswapd() || !PageReclaim(page) ||
1341 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1343 * Immediately reclaim when written back.
1344 * Similar in principal to deactivate_page()
1345 * except we already have the page isolated
1346 * and know it's dirty
1348 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 SetPageReclaim(page);
1351 goto activate_locked;
1354 if (references == PAGEREF_RECLAIM_CLEAN)
1358 if (!sc->may_writepage)
1362 * Page is dirty. Flush the TLB if a writable entry
1363 * potentially exists to avoid CPU writes after IO
1364 * starts and then write it out here.
1366 try_to_unmap_flush_dirty();
1367 switch (pageout(page, mapping, sc)) {
1371 goto activate_locked;
1373 if (PageWriteback(page))
1375 if (PageDirty(page))
1379 * A synchronous write - probably a ramdisk. Go
1380 * ahead and try to reclaim the page.
1382 if (!trylock_page(page))
1384 if (PageDirty(page) || PageWriteback(page))
1386 mapping = page_mapping(page);
1388 ; /* try to free the page below */
1393 * If the page has buffers, try to free the buffer mappings
1394 * associated with this page. If we succeed we try to free
1397 * We do this even if the page is PageDirty().
1398 * try_to_release_page() does not perform I/O, but it is
1399 * possible for a page to have PageDirty set, but it is actually
1400 * clean (all its buffers are clean). This happens if the
1401 * buffers were written out directly, with submit_bh(). ext3
1402 * will do this, as well as the blockdev mapping.
1403 * try_to_release_page() will discover that cleanness and will
1404 * drop the buffers and mark the page clean - it can be freed.
1406 * Rarely, pages can have buffers and no ->mapping. These are
1407 * the pages which were not successfully invalidated in
1408 * truncate_complete_page(). We try to drop those buffers here
1409 * and if that worked, and the page is no longer mapped into
1410 * process address space (page_count == 1) it can be freed.
1411 * Otherwise, leave the page on the LRU so it is swappable.
1413 if (page_has_private(page)) {
1414 if (!try_to_release_page(page, sc->gfp_mask))
1415 goto activate_locked;
1416 if (!mapping && page_count(page) == 1) {
1418 if (put_page_testzero(page))
1422 * rare race with speculative reference.
1423 * the speculative reference will free
1424 * this page shortly, so we may
1425 * increment nr_reclaimed here (and
1426 * leave it off the LRU).
1434 if (PageAnon(page) && !PageSwapBacked(page)) {
1435 /* follow __remove_mapping for reference */
1436 if (!page_ref_freeze(page, 1))
1438 if (PageDirty(page)) {
1439 page_ref_unfreeze(page, 1);
1443 count_vm_event(PGLAZYFREED);
1444 count_memcg_page_event(page, PGLAZYFREED);
1445 } else if (!mapping || !__remove_mapping(mapping, page, true))
1453 * Is there need to periodically free_page_list? It would
1454 * appear not as the counts should be low
1456 if (unlikely(PageTransHuge(page))) {
1457 mem_cgroup_uncharge(page);
1458 (*get_compound_page_dtor(page))(page);
1460 list_add(&page->lru, &free_pages);
1464 /* Not a candidate for swapping, so reclaim swap space. */
1465 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 try_to_free_swap(page);
1468 VM_BUG_ON_PAGE(PageActive(page), page);
1469 if (!PageMlocked(page)) {
1470 int type = page_is_file_cache(page);
1471 SetPageActive(page);
1473 stat->nr_activate[type] += hpage_nr_pages(page);
1474 count_memcg_page_event(page, PGACTIVATE);
1479 list_add(&page->lru, &ret_pages);
1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1483 mem_cgroup_uncharge_list(&free_pages);
1484 try_to_unmap_flush();
1485 free_unref_page_list(&free_pages);
1487 list_splice(&ret_pages, page_list);
1488 count_vm_events(PGACTIVATE, pgactivate);
1490 return nr_reclaimed;
1493 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1494 struct list_head *page_list)
1496 struct scan_control sc = {
1497 .gfp_mask = GFP_KERNEL,
1498 .priority = DEF_PRIORITY,
1501 struct reclaim_stat dummy_stat;
1503 struct page *page, *next;
1504 LIST_HEAD(clean_pages);
1506 list_for_each_entry_safe(page, next, page_list, lru) {
1507 if (page_is_file_cache(page) && !PageDirty(page) &&
1508 !__PageMovable(page)) {
1509 ClearPageActive(page);
1510 list_move(&page->lru, &clean_pages);
1514 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 TTU_IGNORE_ACCESS, &dummy_stat, true);
1516 list_splice(&clean_pages, page_list);
1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1522 * Attempt to remove the specified page from its LRU. Only take this page
1523 * if it is of the appropriate PageActive status. Pages which are being
1524 * freed elsewhere are also ignored.
1526 * page: page to consider
1527 * mode: one of the LRU isolation modes defined above
1529 * returns 0 on success, -ve errno on failure.
1531 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1535 /* Only take pages on the LRU. */
1539 /* Compaction should not handle unevictable pages but CMA can do so */
1540 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1546 * To minimise LRU disruption, the caller can indicate that it only
1547 * wants to isolate pages it will be able to operate on without
1548 * blocking - clean pages for the most part.
1550 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1551 * that it is possible to migrate without blocking
1553 if (mode & ISOLATE_ASYNC_MIGRATE) {
1554 /* All the caller can do on PageWriteback is block */
1555 if (PageWriteback(page))
1558 if (PageDirty(page)) {
1559 struct address_space *mapping;
1563 * Only pages without mappings or that have a
1564 * ->migratepage callback are possible to migrate
1565 * without blocking. However, we can be racing with
1566 * truncation so it's necessary to lock the page
1567 * to stabilise the mapping as truncation holds
1568 * the page lock until after the page is removed
1569 * from the page cache.
1571 if (!trylock_page(page))
1574 mapping = page_mapping(page);
1575 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1582 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1585 if (likely(get_page_unless_zero(page))) {
1587 * Be careful not to clear PageLRU until after we're
1588 * sure the page is not being freed elsewhere -- the
1589 * page release code relies on it.
1600 * Update LRU sizes after isolating pages. The LRU size updates must
1601 * be complete before mem_cgroup_update_lru_size due to a santity check.
1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604 enum lru_list lru, unsigned long *nr_zone_taken)
1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 if (!nr_zone_taken[zid])
1612 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1614 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1621 * pgdat->lru_lock is heavily contended. Some of the functions that
1622 * shrink the lists perform better by taking out a batch of pages
1623 * and working on them outside the LRU lock.
1625 * For pagecache intensive workloads, this function is the hottest
1626 * spot in the kernel (apart from copy_*_user functions).
1628 * Appropriate locks must be held before calling this function.
1630 * @nr_to_scan: The number of eligible pages to look through on the list.
1631 * @lruvec: The LRU vector to pull pages from.
1632 * @dst: The temp list to put pages on to.
1633 * @nr_scanned: The number of pages that were scanned.
1634 * @sc: The scan_control struct for this reclaim session
1635 * @mode: One of the LRU isolation modes
1636 * @lru: LRU list id for isolating
1638 * returns how many pages were moved onto *@dst.
1640 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1641 struct lruvec *lruvec, struct list_head *dst,
1642 unsigned long *nr_scanned, struct scan_control *sc,
1645 struct list_head *src = &lruvec->lists[lru];
1646 unsigned long nr_taken = 0;
1647 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1648 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1649 unsigned long skipped = 0;
1650 unsigned long scan, total_scan, nr_pages;
1651 LIST_HEAD(pages_skipped);
1652 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1655 for (total_scan = 0;
1656 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1660 page = lru_to_page(src);
1661 prefetchw_prev_lru_page(page, src, flags);
1663 VM_BUG_ON_PAGE(!PageLRU(page), page);
1665 if (page_zonenum(page) > sc->reclaim_idx) {
1666 list_move(&page->lru, &pages_skipped);
1667 nr_skipped[page_zonenum(page)]++;
1672 * Do not count skipped pages because that makes the function
1673 * return with no isolated pages if the LRU mostly contains
1674 * ineligible pages. This causes the VM to not reclaim any
1675 * pages, triggering a premature OOM.
1678 switch (__isolate_lru_page(page, mode)) {
1680 nr_pages = hpage_nr_pages(page);
1681 nr_taken += nr_pages;
1682 nr_zone_taken[page_zonenum(page)] += nr_pages;
1683 list_move(&page->lru, dst);
1687 /* else it is being freed elsewhere */
1688 list_move(&page->lru, src);
1697 * Splice any skipped pages to the start of the LRU list. Note that
1698 * this disrupts the LRU order when reclaiming for lower zones but
1699 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1700 * scanning would soon rescan the same pages to skip and put the
1701 * system at risk of premature OOM.
1703 if (!list_empty(&pages_skipped)) {
1706 list_splice(&pages_skipped, src);
1707 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 if (!nr_skipped[zid])
1711 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1712 skipped += nr_skipped[zid];
1715 *nr_scanned = total_scan;
1716 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1717 total_scan, skipped, nr_taken, mode, lru);
1718 update_lru_sizes(lruvec, lru, nr_zone_taken);
1723 * isolate_lru_page - tries to isolate a page from its LRU list
1724 * @page: page to isolate from its LRU list
1726 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1727 * vmstat statistic corresponding to whatever LRU list the page was on.
1729 * Returns 0 if the page was removed from an LRU list.
1730 * Returns -EBUSY if the page was not on an LRU list.
1732 * The returned page will have PageLRU() cleared. If it was found on
1733 * the active list, it will have PageActive set. If it was found on
1734 * the unevictable list, it will have the PageUnevictable bit set. That flag
1735 * may need to be cleared by the caller before letting the page go.
1737 * The vmstat statistic corresponding to the list on which the page was
1738 * found will be decremented.
1742 * (1) Must be called with an elevated refcount on the page. This is a
1743 * fundamentnal difference from isolate_lru_pages (which is called
1744 * without a stable reference).
1745 * (2) the lru_lock must not be held.
1746 * (3) interrupts must be enabled.
1748 int isolate_lru_page(struct page *page)
1752 VM_BUG_ON_PAGE(!page_count(page), page);
1753 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1755 if (PageLRU(page)) {
1756 pg_data_t *pgdat = page_pgdat(page);
1757 struct lruvec *lruvec;
1759 spin_lock_irq(&pgdat->lru_lock);
1760 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1761 if (PageLRU(page)) {
1762 int lru = page_lru(page);
1765 del_page_from_lru_list(page, lruvec, lru);
1768 spin_unlock_irq(&pgdat->lru_lock);
1774 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1775 * then get resheduled. When there are massive number of tasks doing page
1776 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1777 * the LRU list will go small and be scanned faster than necessary, leading to
1778 * unnecessary swapping, thrashing and OOM.
1780 static int too_many_isolated(struct pglist_data *pgdat, int file,
1781 struct scan_control *sc)
1783 unsigned long inactive, isolated;
1785 if (current_is_kswapd())
1788 if (!sane_reclaim(sc))
1792 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1793 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1795 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1796 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1800 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1801 * won't get blocked by normal direct-reclaimers, forming a circular
1804 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1807 return isolated > inactive;
1811 * This moves pages from @list to corresponding LRU list.
1813 * We move them the other way if the page is referenced by one or more
1814 * processes, from rmap.
1816 * If the pages are mostly unmapped, the processing is fast and it is
1817 * appropriate to hold zone_lru_lock across the whole operation. But if
1818 * the pages are mapped, the processing is slow (page_referenced()) so we
1819 * should drop zone_lru_lock around each page. It's impossible to balance
1820 * this, so instead we remove the pages from the LRU while processing them.
1821 * It is safe to rely on PG_active against the non-LRU pages in here because
1822 * nobody will play with that bit on a non-LRU page.
1824 * The downside is that we have to touch page->_refcount against each page.
1825 * But we had to alter page->flags anyway.
1827 * Returns the number of pages moved to the given lruvec.
1830 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1831 struct list_head *list)
1833 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1834 int nr_pages, nr_moved = 0;
1835 LIST_HEAD(pages_to_free);
1839 while (!list_empty(list)) {
1840 page = lru_to_page(list);
1841 VM_BUG_ON_PAGE(PageLRU(page), page);
1842 if (unlikely(!page_evictable(page))) {
1843 list_del(&page->lru);
1844 spin_unlock_irq(&pgdat->lru_lock);
1845 putback_lru_page(page);
1846 spin_lock_irq(&pgdat->lru_lock);
1849 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1852 lru = page_lru(page);
1854 nr_pages = hpage_nr_pages(page);
1855 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1856 list_move(&page->lru, &lruvec->lists[lru]);
1858 if (put_page_testzero(page)) {
1859 __ClearPageLRU(page);
1860 __ClearPageActive(page);
1861 del_page_from_lru_list(page, lruvec, lru);
1863 if (unlikely(PageCompound(page))) {
1864 spin_unlock_irq(&pgdat->lru_lock);
1865 mem_cgroup_uncharge(page);
1866 (*get_compound_page_dtor(page))(page);
1867 spin_lock_irq(&pgdat->lru_lock);
1869 list_add(&page->lru, &pages_to_free);
1871 nr_moved += nr_pages;
1876 * To save our caller's stack, now use input list for pages to free.
1878 list_splice(&pages_to_free, list);
1884 * If a kernel thread (such as nfsd for loop-back mounts) services
1885 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1886 * In that case we should only throttle if the backing device it is
1887 * writing to is congested. In other cases it is safe to throttle.
1889 static int current_may_throttle(void)
1891 return !(current->flags & PF_LESS_THROTTLE) ||
1892 current->backing_dev_info == NULL ||
1893 bdi_write_congested(current->backing_dev_info);
1897 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1898 * of reclaimed pages
1900 static noinline_for_stack unsigned long
1901 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1902 struct scan_control *sc, enum lru_list lru)
1904 LIST_HEAD(page_list);
1905 unsigned long nr_scanned;
1906 unsigned long nr_reclaimed = 0;
1907 unsigned long nr_taken;
1908 struct reclaim_stat stat;
1909 int file = is_file_lru(lru);
1910 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1911 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1912 bool stalled = false;
1914 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1918 /* wait a bit for the reclaimer. */
1922 /* We are about to die and free our memory. Return now. */
1923 if (fatal_signal_pending(current))
1924 return SWAP_CLUSTER_MAX;
1929 spin_lock_irq(&pgdat->lru_lock);
1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932 &nr_scanned, sc, lru);
1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 reclaim_stat->recent_scanned[file] += nr_taken;
1937 if (current_is_kswapd()) {
1938 if (global_reclaim(sc))
1939 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1943 if (global_reclaim(sc))
1944 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1948 spin_unlock_irq(&pgdat->lru_lock);
1953 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1956 spin_lock_irq(&pgdat->lru_lock);
1958 if (current_is_kswapd()) {
1959 if (global_reclaim(sc))
1960 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1964 if (global_reclaim(sc))
1965 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1969 reclaim_stat->recent_rotated[0] = stat.nr_activate[0];
1970 reclaim_stat->recent_rotated[1] = stat.nr_activate[1];
1972 move_pages_to_lru(lruvec, &page_list);
1974 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1976 spin_unlock_irq(&pgdat->lru_lock);
1978 mem_cgroup_uncharge_list(&page_list);
1979 free_unref_page_list(&page_list);
1982 * If dirty pages are scanned that are not queued for IO, it
1983 * implies that flushers are not doing their job. This can
1984 * happen when memory pressure pushes dirty pages to the end of
1985 * the LRU before the dirty limits are breached and the dirty
1986 * data has expired. It can also happen when the proportion of
1987 * dirty pages grows not through writes but through memory
1988 * pressure reclaiming all the clean cache. And in some cases,
1989 * the flushers simply cannot keep up with the allocation
1990 * rate. Nudge the flusher threads in case they are asleep.
1992 if (stat.nr_unqueued_dirty == nr_taken)
1993 wakeup_flusher_threads(WB_REASON_VMSCAN);
1995 sc->nr.dirty += stat.nr_dirty;
1996 sc->nr.congested += stat.nr_congested;
1997 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1998 sc->nr.writeback += stat.nr_writeback;
1999 sc->nr.immediate += stat.nr_immediate;
2000 sc->nr.taken += nr_taken;
2002 sc->nr.file_taken += nr_taken;
2004 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2005 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2006 return nr_reclaimed;
2009 static void shrink_active_list(unsigned long nr_to_scan,
2010 struct lruvec *lruvec,
2011 struct scan_control *sc,
2014 unsigned long nr_taken;
2015 unsigned long nr_scanned;
2016 unsigned long vm_flags;
2017 LIST_HEAD(l_hold); /* The pages which were snipped off */
2018 LIST_HEAD(l_active);
2019 LIST_HEAD(l_inactive);
2021 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2022 unsigned nr_deactivate, nr_activate;
2023 unsigned nr_rotated = 0;
2024 int file = is_file_lru(lru);
2025 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2029 spin_lock_irq(&pgdat->lru_lock);
2031 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2032 &nr_scanned, sc, lru);
2034 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2035 reclaim_stat->recent_scanned[file] += nr_taken;
2037 __count_vm_events(PGREFILL, nr_scanned);
2038 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2040 spin_unlock_irq(&pgdat->lru_lock);
2042 while (!list_empty(&l_hold)) {
2044 page = lru_to_page(&l_hold);
2045 list_del(&page->lru);
2047 if (unlikely(!page_evictable(page))) {
2048 putback_lru_page(page);
2052 if (unlikely(buffer_heads_over_limit)) {
2053 if (page_has_private(page) && trylock_page(page)) {
2054 if (page_has_private(page))
2055 try_to_release_page(page, 0);
2060 if (page_referenced(page, 0, sc->target_mem_cgroup,
2062 nr_rotated += hpage_nr_pages(page);
2064 * Identify referenced, file-backed active pages and
2065 * give them one more trip around the active list. So
2066 * that executable code get better chances to stay in
2067 * memory under moderate memory pressure. Anon pages
2068 * are not likely to be evicted by use-once streaming
2069 * IO, plus JVM can create lots of anon VM_EXEC pages,
2070 * so we ignore them here.
2072 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2073 list_add(&page->lru, &l_active);
2078 ClearPageActive(page); /* we are de-activating */
2079 SetPageWorkingset(page);
2080 list_add(&page->lru, &l_inactive);
2084 * Move pages back to the lru list.
2086 spin_lock_irq(&pgdat->lru_lock);
2088 * Count referenced pages from currently used mappings as rotated,
2089 * even though only some of them are actually re-activated. This
2090 * helps balance scan pressure between file and anonymous pages in
2093 reclaim_stat->recent_rotated[file] += nr_rotated;
2095 nr_activate = move_pages_to_lru(lruvec, &l_active);
2096 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2097 /* Keep all free pages in l_active list */
2098 list_splice(&l_inactive, &l_active);
2100 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2101 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2103 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2104 spin_unlock_irq(&pgdat->lru_lock);
2106 mem_cgroup_uncharge_list(&l_active);
2107 free_unref_page_list(&l_active);
2108 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2109 nr_deactivate, nr_rotated, sc->priority, file);
2113 * The inactive anon list should be small enough that the VM never has
2114 * to do too much work.
2116 * The inactive file list should be small enough to leave most memory
2117 * to the established workingset on the scan-resistant active list,
2118 * but large enough to avoid thrashing the aggregate readahead window.
2120 * Both inactive lists should also be large enough that each inactive
2121 * page has a chance to be referenced again before it is reclaimed.
2123 * If that fails and refaulting is observed, the inactive list grows.
2125 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2126 * on this LRU, maintained by the pageout code. An inactive_ratio
2127 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2130 * memory ratio inactive
2131 * -------------------------------------
2140 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2141 struct scan_control *sc, bool actual_reclaim)
2143 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2144 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2145 enum lru_list inactive_lru = file * LRU_FILE;
2146 unsigned long inactive, active;
2147 unsigned long inactive_ratio;
2148 unsigned long refaults;
2152 * If we don't have swap space, anonymous page deactivation
2155 if (!file && !total_swap_pages)
2158 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2159 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2162 * When refaults are being observed, it means a new workingset
2163 * is being established. Disable active list protection to get
2164 * rid of the stale workingset quickly.
2166 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2167 if (file && actual_reclaim && lruvec->refaults != refaults) {
2170 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2172 inactive_ratio = int_sqrt(10 * gb);
2178 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2179 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2180 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2181 inactive_ratio, file);
2183 return inactive * inactive_ratio < active;
2186 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2187 struct lruvec *lruvec, struct scan_control *sc)
2189 if (is_active_lru(lru)) {
2190 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2191 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2195 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2206 * Determine how aggressively the anon and file LRU lists should be
2207 * scanned. The relative value of each set of LRU lists is determined
2208 * by looking at the fraction of the pages scanned we did rotate back
2209 * onto the active list instead of evict.
2211 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2212 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2214 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2215 struct scan_control *sc, unsigned long *nr,
2216 unsigned long *lru_pages)
2218 int swappiness = mem_cgroup_swappiness(memcg);
2219 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2221 u64 denominator = 0; /* gcc */
2222 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2223 unsigned long anon_prio, file_prio;
2224 enum scan_balance scan_balance;
2225 unsigned long anon, file;
2226 unsigned long ap, fp;
2229 /* If we have no swap space, do not bother scanning anon pages. */
2230 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2231 scan_balance = SCAN_FILE;
2236 * Global reclaim will swap to prevent OOM even with no
2237 * swappiness, but memcg users want to use this knob to
2238 * disable swapping for individual groups completely when
2239 * using the memory controller's swap limit feature would be
2242 if (!global_reclaim(sc) && !swappiness) {
2243 scan_balance = SCAN_FILE;
2248 * Do not apply any pressure balancing cleverness when the
2249 * system is close to OOM, scan both anon and file equally
2250 * (unless the swappiness setting disagrees with swapping).
2252 if (!sc->priority && swappiness) {
2253 scan_balance = SCAN_EQUAL;
2258 * Prevent the reclaimer from falling into the cache trap: as
2259 * cache pages start out inactive, every cache fault will tip
2260 * the scan balance towards the file LRU. And as the file LRU
2261 * shrinks, so does the window for rotation from references.
2262 * This means we have a runaway feedback loop where a tiny
2263 * thrashing file LRU becomes infinitely more attractive than
2264 * anon pages. Try to detect this based on file LRU size.
2266 if (global_reclaim(sc)) {
2267 unsigned long pgdatfile;
2268 unsigned long pgdatfree;
2270 unsigned long total_high_wmark = 0;
2272 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2273 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2274 node_page_state(pgdat, NR_INACTIVE_FILE);
2276 for (z = 0; z < MAX_NR_ZONES; z++) {
2277 struct zone *zone = &pgdat->node_zones[z];
2278 if (!managed_zone(zone))
2281 total_high_wmark += high_wmark_pages(zone);
2284 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2286 * Force SCAN_ANON if there are enough inactive
2287 * anonymous pages on the LRU in eligible zones.
2288 * Otherwise, the small LRU gets thrashed.
2290 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2291 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2293 scan_balance = SCAN_ANON;
2300 * If there is enough inactive page cache, i.e. if the size of the
2301 * inactive list is greater than that of the active list *and* the
2302 * inactive list actually has some pages to scan on this priority, we
2303 * do not reclaim anything from the anonymous working set right now.
2304 * Without the second condition we could end up never scanning an
2305 * lruvec even if it has plenty of old anonymous pages unless the
2306 * system is under heavy pressure.
2308 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2309 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2310 scan_balance = SCAN_FILE;
2314 scan_balance = SCAN_FRACT;
2317 * With swappiness at 100, anonymous and file have the same priority.
2318 * This scanning priority is essentially the inverse of IO cost.
2320 anon_prio = swappiness;
2321 file_prio = 200 - anon_prio;
2324 * OK, so we have swap space and a fair amount of page cache
2325 * pages. We use the recently rotated / recently scanned
2326 * ratios to determine how valuable each cache is.
2328 * Because workloads change over time (and to avoid overflow)
2329 * we keep these statistics as a floating average, which ends
2330 * up weighing recent references more than old ones.
2332 * anon in [0], file in [1]
2335 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2336 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2337 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2338 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2340 spin_lock_irq(&pgdat->lru_lock);
2341 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2342 reclaim_stat->recent_scanned[0] /= 2;
2343 reclaim_stat->recent_rotated[0] /= 2;
2346 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2347 reclaim_stat->recent_scanned[1] /= 2;
2348 reclaim_stat->recent_rotated[1] /= 2;
2352 * The amount of pressure on anon vs file pages is inversely
2353 * proportional to the fraction of recently scanned pages on
2354 * each list that were recently referenced and in active use.
2356 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2357 ap /= reclaim_stat->recent_rotated[0] + 1;
2359 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2360 fp /= reclaim_stat->recent_rotated[1] + 1;
2361 spin_unlock_irq(&pgdat->lru_lock);
2365 denominator = ap + fp + 1;
2368 for_each_evictable_lru(lru) {
2369 int file = is_file_lru(lru);
2373 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2374 scan = size >> sc->priority;
2376 * If the cgroup's already been deleted, make sure to
2377 * scrape out the remaining cache.
2379 if (!scan && !mem_cgroup_online(memcg))
2380 scan = min(size, SWAP_CLUSTER_MAX);
2382 switch (scan_balance) {
2384 /* Scan lists relative to size */
2388 * Scan types proportional to swappiness and
2389 * their relative recent reclaim efficiency.
2390 * Make sure we don't miss the last page
2391 * because of a round-off error.
2393 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2398 /* Scan one type exclusively */
2399 if ((scan_balance == SCAN_FILE) != file) {
2405 /* Look ma, no brain */
2415 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2417 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2418 struct scan_control *sc, unsigned long *lru_pages)
2420 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2421 unsigned long nr[NR_LRU_LISTS];
2422 unsigned long targets[NR_LRU_LISTS];
2423 unsigned long nr_to_scan;
2425 unsigned long nr_reclaimed = 0;
2426 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2427 struct blk_plug plug;
2430 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2432 /* Record the original scan target for proportional adjustments later */
2433 memcpy(targets, nr, sizeof(nr));
2436 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2437 * event that can occur when there is little memory pressure e.g.
2438 * multiple streaming readers/writers. Hence, we do not abort scanning
2439 * when the requested number of pages are reclaimed when scanning at
2440 * DEF_PRIORITY on the assumption that the fact we are direct
2441 * reclaiming implies that kswapd is not keeping up and it is best to
2442 * do a batch of work at once. For memcg reclaim one check is made to
2443 * abort proportional reclaim if either the file or anon lru has already
2444 * dropped to zero at the first pass.
2446 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2447 sc->priority == DEF_PRIORITY);
2449 blk_start_plug(&plug);
2450 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2451 nr[LRU_INACTIVE_FILE]) {
2452 unsigned long nr_anon, nr_file, percentage;
2453 unsigned long nr_scanned;
2455 for_each_evictable_lru(lru) {
2457 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2458 nr[lru] -= nr_to_scan;
2460 nr_reclaimed += shrink_list(lru, nr_to_scan,
2467 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471 * For kswapd and memcg, reclaim at least the number of pages
2472 * requested. Ensure that the anon and file LRUs are scanned
2473 * proportionally what was requested by get_scan_count(). We
2474 * stop reclaiming one LRU and reduce the amount scanning
2475 * proportional to the original scan target.
2477 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2478 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2481 * It's just vindictive to attack the larger once the smaller
2482 * has gone to zero. And given the way we stop scanning the
2483 * smaller below, this makes sure that we only make one nudge
2484 * towards proportionality once we've got nr_to_reclaim.
2486 if (!nr_file || !nr_anon)
2489 if (nr_file > nr_anon) {
2490 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2491 targets[LRU_ACTIVE_ANON] + 1;
2493 percentage = nr_anon * 100 / scan_target;
2495 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2496 targets[LRU_ACTIVE_FILE] + 1;
2498 percentage = nr_file * 100 / scan_target;
2501 /* Stop scanning the smaller of the LRU */
2503 nr[lru + LRU_ACTIVE] = 0;
2506 * Recalculate the other LRU scan count based on its original
2507 * scan target and the percentage scanning already complete
2509 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2510 nr_scanned = targets[lru] - nr[lru];
2511 nr[lru] = targets[lru] * (100 - percentage) / 100;
2512 nr[lru] -= min(nr[lru], nr_scanned);
2515 nr_scanned = targets[lru] - nr[lru];
2516 nr[lru] = targets[lru] * (100 - percentage) / 100;
2517 nr[lru] -= min(nr[lru], nr_scanned);
2519 scan_adjusted = true;
2521 blk_finish_plug(&plug);
2522 sc->nr_reclaimed += nr_reclaimed;
2525 * Even if we did not try to evict anon pages at all, we want to
2526 * rebalance the anon lru active/inactive ratio.
2528 if (inactive_list_is_low(lruvec, false, sc, true))
2529 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2530 sc, LRU_ACTIVE_ANON);
2533 /* Use reclaim/compaction for costly allocs or under memory pressure */
2534 static bool in_reclaim_compaction(struct scan_control *sc)
2536 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2537 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2538 sc->priority < DEF_PRIORITY - 2))
2545 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2546 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2547 * true if more pages should be reclaimed such that when the page allocator
2548 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2549 * It will give up earlier than that if there is difficulty reclaiming pages.
2551 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2552 unsigned long nr_reclaimed,
2553 unsigned long nr_scanned,
2554 struct scan_control *sc)
2556 unsigned long pages_for_compaction;
2557 unsigned long inactive_lru_pages;
2560 /* If not in reclaim/compaction mode, stop */
2561 if (!in_reclaim_compaction(sc))
2564 /* Consider stopping depending on scan and reclaim activity */
2565 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2567 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2568 * full LRU list has been scanned and we are still failing
2569 * to reclaim pages. This full LRU scan is potentially
2570 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2572 if (!nr_reclaimed && !nr_scanned)
2576 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2577 * fail without consequence, stop if we failed to reclaim
2578 * any pages from the last SWAP_CLUSTER_MAX number of
2579 * pages that were scanned. This will return to the
2580 * caller faster at the risk reclaim/compaction and
2581 * the resulting allocation attempt fails
2588 * If we have not reclaimed enough pages for compaction and the
2589 * inactive lists are large enough, continue reclaiming
2591 pages_for_compaction = compact_gap(sc->order);
2592 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2593 if (get_nr_swap_pages() > 0)
2594 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2595 if (sc->nr_reclaimed < pages_for_compaction &&
2596 inactive_lru_pages > pages_for_compaction)
2599 /* If compaction would go ahead or the allocation would succeed, stop */
2600 for (z = 0; z <= sc->reclaim_idx; z++) {
2601 struct zone *zone = &pgdat->node_zones[z];
2602 if (!managed_zone(zone))
2605 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2606 case COMPACT_SUCCESS:
2607 case COMPACT_CONTINUE:
2610 /* check next zone */
2617 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2619 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2620 (memcg && memcg_congested(pgdat, memcg));
2623 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2625 struct reclaim_state *reclaim_state = current->reclaim_state;
2626 unsigned long nr_reclaimed, nr_scanned;
2627 bool reclaimable = false;
2630 struct mem_cgroup *root = sc->target_mem_cgroup;
2631 struct mem_cgroup_reclaim_cookie reclaim = {
2633 .priority = sc->priority,
2635 unsigned long node_lru_pages = 0;
2636 struct mem_cgroup *memcg;
2638 memset(&sc->nr, 0, sizeof(sc->nr));
2640 nr_reclaimed = sc->nr_reclaimed;
2641 nr_scanned = sc->nr_scanned;
2643 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2645 unsigned long lru_pages;
2646 unsigned long reclaimed;
2647 unsigned long scanned;
2649 switch (mem_cgroup_protected(root, memcg)) {
2650 case MEMCG_PROT_MIN:
2653 * If there is no reclaimable memory, OOM.
2656 case MEMCG_PROT_LOW:
2659 * Respect the protection only as long as
2660 * there is an unprotected supply
2661 * of reclaimable memory from other cgroups.
2663 if (!sc->memcg_low_reclaim) {
2664 sc->memcg_low_skipped = 1;
2667 memcg_memory_event(memcg, MEMCG_LOW);
2669 case MEMCG_PROT_NONE:
2673 reclaimed = sc->nr_reclaimed;
2674 scanned = sc->nr_scanned;
2675 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2676 node_lru_pages += lru_pages;
2678 if (sc->may_shrinkslab) {
2679 shrink_slab(sc->gfp_mask, pgdat->node_id,
2680 memcg, sc->priority);
2683 /* Record the group's reclaim efficiency */
2684 vmpressure(sc->gfp_mask, memcg, false,
2685 sc->nr_scanned - scanned,
2686 sc->nr_reclaimed - reclaimed);
2689 * Kswapd have to scan all memory cgroups to fulfill
2690 * the overall scan target for the node.
2692 * Limit reclaim, on the other hand, only cares about
2693 * nr_to_reclaim pages to be reclaimed and it will
2694 * retry with decreasing priority if one round over the
2695 * whole hierarchy is not sufficient.
2697 if (!current_is_kswapd() &&
2698 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2699 mem_cgroup_iter_break(root, memcg);
2702 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2704 if (reclaim_state) {
2705 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2706 reclaim_state->reclaimed_slab = 0;
2709 /* Record the subtree's reclaim efficiency */
2710 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2711 sc->nr_scanned - nr_scanned,
2712 sc->nr_reclaimed - nr_reclaimed);
2714 if (sc->nr_reclaimed - nr_reclaimed)
2717 if (current_is_kswapd()) {
2719 * If reclaim is isolating dirty pages under writeback,
2720 * it implies that the long-lived page allocation rate
2721 * is exceeding the page laundering rate. Either the
2722 * global limits are not being effective at throttling
2723 * processes due to the page distribution throughout
2724 * zones or there is heavy usage of a slow backing
2725 * device. The only option is to throttle from reclaim
2726 * context which is not ideal as there is no guarantee
2727 * the dirtying process is throttled in the same way
2728 * balance_dirty_pages() manages.
2730 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2731 * count the number of pages under pages flagged for
2732 * immediate reclaim and stall if any are encountered
2733 * in the nr_immediate check below.
2735 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2736 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2739 * Tag a node as congested if all the dirty pages
2740 * scanned were backed by a congested BDI and
2741 * wait_iff_congested will stall.
2743 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2744 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2746 /* Allow kswapd to start writing pages during reclaim.*/
2747 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2748 set_bit(PGDAT_DIRTY, &pgdat->flags);
2751 * If kswapd scans pages marked marked for immediate
2752 * reclaim and under writeback (nr_immediate), it
2753 * implies that pages are cycling through the LRU
2754 * faster than they are written so also forcibly stall.
2756 if (sc->nr.immediate)
2757 congestion_wait(BLK_RW_ASYNC, HZ/10);
2761 * Legacy memcg will stall in page writeback so avoid forcibly
2762 * stalling in wait_iff_congested().
2764 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2765 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2766 set_memcg_congestion(pgdat, root, true);
2769 * Stall direct reclaim for IO completions if underlying BDIs
2770 * and node is congested. Allow kswapd to continue until it
2771 * starts encountering unqueued dirty pages or cycling through
2772 * the LRU too quickly.
2774 if (!sc->hibernation_mode && !current_is_kswapd() &&
2775 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2776 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2778 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2779 sc->nr_scanned - nr_scanned, sc));
2782 * Kswapd gives up on balancing particular nodes after too
2783 * many failures to reclaim anything from them and goes to
2784 * sleep. On reclaim progress, reset the failure counter. A
2785 * successful direct reclaim run will revive a dormant kswapd.
2788 pgdat->kswapd_failures = 0;
2794 * Returns true if compaction should go ahead for a costly-order request, or
2795 * the allocation would already succeed without compaction. Return false if we
2796 * should reclaim first.
2798 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2800 unsigned long watermark;
2801 enum compact_result suitable;
2803 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2804 if (suitable == COMPACT_SUCCESS)
2805 /* Allocation should succeed already. Don't reclaim. */
2807 if (suitable == COMPACT_SKIPPED)
2808 /* Compaction cannot yet proceed. Do reclaim. */
2812 * Compaction is already possible, but it takes time to run and there
2813 * are potentially other callers using the pages just freed. So proceed
2814 * with reclaim to make a buffer of free pages available to give
2815 * compaction a reasonable chance of completing and allocating the page.
2816 * Note that we won't actually reclaim the whole buffer in one attempt
2817 * as the target watermark in should_continue_reclaim() is lower. But if
2818 * we are already above the high+gap watermark, don't reclaim at all.
2820 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2822 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2826 * This is the direct reclaim path, for page-allocating processes. We only
2827 * try to reclaim pages from zones which will satisfy the caller's allocation
2830 * If a zone is deemed to be full of pinned pages then just give it a light
2831 * scan then give up on it.
2833 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2837 unsigned long nr_soft_reclaimed;
2838 unsigned long nr_soft_scanned;
2840 pg_data_t *last_pgdat = NULL;
2843 * If the number of buffer_heads in the machine exceeds the maximum
2844 * allowed level, force direct reclaim to scan the highmem zone as
2845 * highmem pages could be pinning lowmem pages storing buffer_heads
2847 orig_mask = sc->gfp_mask;
2848 if (buffer_heads_over_limit) {
2849 sc->gfp_mask |= __GFP_HIGHMEM;
2850 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2853 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2854 sc->reclaim_idx, sc->nodemask) {
2856 * Take care memory controller reclaiming has small influence
2859 if (global_reclaim(sc)) {
2860 if (!cpuset_zone_allowed(zone,
2861 GFP_KERNEL | __GFP_HARDWALL))
2865 * If we already have plenty of memory free for
2866 * compaction in this zone, don't free any more.
2867 * Even though compaction is invoked for any
2868 * non-zero order, only frequent costly order
2869 * reclamation is disruptive enough to become a
2870 * noticeable problem, like transparent huge
2873 if (IS_ENABLED(CONFIG_COMPACTION) &&
2874 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2875 compaction_ready(zone, sc)) {
2876 sc->compaction_ready = true;
2881 * Shrink each node in the zonelist once. If the
2882 * zonelist is ordered by zone (not the default) then a
2883 * node may be shrunk multiple times but in that case
2884 * the user prefers lower zones being preserved.
2886 if (zone->zone_pgdat == last_pgdat)
2890 * This steals pages from memory cgroups over softlimit
2891 * and returns the number of reclaimed pages and
2892 * scanned pages. This works for global memory pressure
2893 * and balancing, not for a memcg's limit.
2895 nr_soft_scanned = 0;
2896 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2897 sc->order, sc->gfp_mask,
2899 sc->nr_reclaimed += nr_soft_reclaimed;
2900 sc->nr_scanned += nr_soft_scanned;
2901 /* need some check for avoid more shrink_zone() */
2904 /* See comment about same check for global reclaim above */
2905 if (zone->zone_pgdat == last_pgdat)
2907 last_pgdat = zone->zone_pgdat;
2908 shrink_node(zone->zone_pgdat, sc);
2912 * Restore to original mask to avoid the impact on the caller if we
2913 * promoted it to __GFP_HIGHMEM.
2915 sc->gfp_mask = orig_mask;
2918 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2920 struct mem_cgroup *memcg;
2922 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2924 unsigned long refaults;
2925 struct lruvec *lruvec;
2927 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2928 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2929 lruvec->refaults = refaults;
2930 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2934 * This is the main entry point to direct page reclaim.
2936 * If a full scan of the inactive list fails to free enough memory then we
2937 * are "out of memory" and something needs to be killed.
2939 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2940 * high - the zone may be full of dirty or under-writeback pages, which this
2941 * caller can't do much about. We kick the writeback threads and take explicit
2942 * naps in the hope that some of these pages can be written. But if the
2943 * allocating task holds filesystem locks which prevent writeout this might not
2944 * work, and the allocation attempt will fail.
2946 * returns: 0, if no pages reclaimed
2947 * else, the number of pages reclaimed
2949 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2950 struct scan_control *sc)
2952 int initial_priority = sc->priority;
2953 pg_data_t *last_pgdat;
2957 delayacct_freepages_start();
2959 if (global_reclaim(sc))
2960 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2963 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2966 shrink_zones(zonelist, sc);
2968 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2971 if (sc->compaction_ready)
2975 * If we're getting trouble reclaiming, start doing
2976 * writepage even in laptop mode.
2978 if (sc->priority < DEF_PRIORITY - 2)
2979 sc->may_writepage = 1;
2980 } while (--sc->priority >= 0);
2983 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2985 if (zone->zone_pgdat == last_pgdat)
2987 last_pgdat = zone->zone_pgdat;
2988 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2989 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2992 delayacct_freepages_end();
2994 if (sc->nr_reclaimed)
2995 return sc->nr_reclaimed;
2997 /* Aborted reclaim to try compaction? don't OOM, then */
2998 if (sc->compaction_ready)
3001 /* Untapped cgroup reserves? Don't OOM, retry. */
3002 if (sc->memcg_low_skipped) {
3003 sc->priority = initial_priority;
3004 sc->memcg_low_reclaim = 1;
3005 sc->memcg_low_skipped = 0;
3012 static bool allow_direct_reclaim(pg_data_t *pgdat)
3015 unsigned long pfmemalloc_reserve = 0;
3016 unsigned long free_pages = 0;
3020 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3023 for (i = 0; i <= ZONE_NORMAL; i++) {
3024 zone = &pgdat->node_zones[i];
3025 if (!managed_zone(zone))
3028 if (!zone_reclaimable_pages(zone))
3031 pfmemalloc_reserve += min_wmark_pages(zone);
3032 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3035 /* If there are no reserves (unexpected config) then do not throttle */
3036 if (!pfmemalloc_reserve)
3039 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3041 /* kswapd must be awake if processes are being throttled */
3042 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3043 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3044 (enum zone_type)ZONE_NORMAL);
3045 wake_up_interruptible(&pgdat->kswapd_wait);
3052 * Throttle direct reclaimers if backing storage is backed by the network
3053 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3054 * depleted. kswapd will continue to make progress and wake the processes
3055 * when the low watermark is reached.
3057 * Returns true if a fatal signal was delivered during throttling. If this
3058 * happens, the page allocator should not consider triggering the OOM killer.
3060 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3061 nodemask_t *nodemask)
3065 pg_data_t *pgdat = NULL;
3068 * Kernel threads should not be throttled as they may be indirectly
3069 * responsible for cleaning pages necessary for reclaim to make forward
3070 * progress. kjournald for example may enter direct reclaim while
3071 * committing a transaction where throttling it could forcing other
3072 * processes to block on log_wait_commit().
3074 if (current->flags & PF_KTHREAD)
3078 * If a fatal signal is pending, this process should not throttle.
3079 * It should return quickly so it can exit and free its memory
3081 if (fatal_signal_pending(current))
3085 * Check if the pfmemalloc reserves are ok by finding the first node
3086 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3087 * GFP_KERNEL will be required for allocating network buffers when
3088 * swapping over the network so ZONE_HIGHMEM is unusable.
3090 * Throttling is based on the first usable node and throttled processes
3091 * wait on a queue until kswapd makes progress and wakes them. There
3092 * is an affinity then between processes waking up and where reclaim
3093 * progress has been made assuming the process wakes on the same node.
3094 * More importantly, processes running on remote nodes will not compete
3095 * for remote pfmemalloc reserves and processes on different nodes
3096 * should make reasonable progress.
3098 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3099 gfp_zone(gfp_mask), nodemask) {
3100 if (zone_idx(zone) > ZONE_NORMAL)
3103 /* Throttle based on the first usable node */
3104 pgdat = zone->zone_pgdat;
3105 if (allow_direct_reclaim(pgdat))
3110 /* If no zone was usable by the allocation flags then do not throttle */
3114 /* Account for the throttling */
3115 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3118 * If the caller cannot enter the filesystem, it's possible that it
3119 * is due to the caller holding an FS lock or performing a journal
3120 * transaction in the case of a filesystem like ext[3|4]. In this case,
3121 * it is not safe to block on pfmemalloc_wait as kswapd could be
3122 * blocked waiting on the same lock. Instead, throttle for up to a
3123 * second before continuing.
3125 if (!(gfp_mask & __GFP_FS)) {
3126 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3127 allow_direct_reclaim(pgdat), HZ);
3132 /* Throttle until kswapd wakes the process */
3133 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3134 allow_direct_reclaim(pgdat));
3137 if (fatal_signal_pending(current))
3144 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3145 gfp_t gfp_mask, nodemask_t *nodemask)
3147 unsigned long nr_reclaimed;
3148 struct scan_control sc = {
3149 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3150 .gfp_mask = current_gfp_context(gfp_mask),
3151 .reclaim_idx = gfp_zone(gfp_mask),
3153 .nodemask = nodemask,
3154 .priority = DEF_PRIORITY,
3155 .may_writepage = !laptop_mode,
3158 .may_shrinkslab = 1,
3162 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3163 * Confirm they are large enough for max values.
3165 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3166 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3167 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3170 * Do not enter reclaim if fatal signal was delivered while throttled.
3171 * 1 is returned so that the page allocator does not OOM kill at this
3174 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3177 trace_mm_vmscan_direct_reclaim_begin(order,
3182 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3184 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3186 return nr_reclaimed;
3191 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3192 gfp_t gfp_mask, bool noswap,
3194 unsigned long *nr_scanned)
3196 struct scan_control sc = {
3197 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3198 .target_mem_cgroup = memcg,
3199 .may_writepage = !laptop_mode,
3201 .reclaim_idx = MAX_NR_ZONES - 1,
3202 .may_swap = !noswap,
3203 .may_shrinkslab = 1,
3205 unsigned long lru_pages;
3207 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3208 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3210 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3216 * NOTE: Although we can get the priority field, using it
3217 * here is not a good idea, since it limits the pages we can scan.
3218 * if we don't reclaim here, the shrink_node from balance_pgdat
3219 * will pick up pages from other mem cgroup's as well. We hack
3220 * the priority and make it zero.
3222 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3224 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3226 *nr_scanned = sc.nr_scanned;
3227 return sc.nr_reclaimed;
3230 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3231 unsigned long nr_pages,
3235 struct zonelist *zonelist;
3236 unsigned long nr_reclaimed;
3237 unsigned long pflags;
3239 unsigned int noreclaim_flag;
3240 struct scan_control sc = {
3241 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3242 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3243 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3244 .reclaim_idx = MAX_NR_ZONES - 1,
3245 .target_mem_cgroup = memcg,
3246 .priority = DEF_PRIORITY,
3247 .may_writepage = !laptop_mode,
3249 .may_swap = may_swap,
3250 .may_shrinkslab = 1,
3254 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3255 * take care of from where we get pages. So the node where we start the
3256 * scan does not need to be the current node.
3258 nid = mem_cgroup_select_victim_node(memcg);
3260 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3262 trace_mm_vmscan_memcg_reclaim_begin(0,
3267 psi_memstall_enter(&pflags);
3268 noreclaim_flag = memalloc_noreclaim_save();
3270 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3272 memalloc_noreclaim_restore(noreclaim_flag);
3273 psi_memstall_leave(&pflags);
3275 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3277 return nr_reclaimed;
3281 static void age_active_anon(struct pglist_data *pgdat,
3282 struct scan_control *sc)
3284 struct mem_cgroup *memcg;
3286 if (!total_swap_pages)
3289 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3291 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3293 if (inactive_list_is_low(lruvec, false, sc, true))
3294 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3295 sc, LRU_ACTIVE_ANON);
3297 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3301 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3307 * Check for watermark boosts top-down as the higher zones
3308 * are more likely to be boosted. Both watermarks and boosts
3309 * should not be checked at the time time as reclaim would
3310 * start prematurely when there is no boosting and a lower
3313 for (i = classzone_idx; i >= 0; i--) {
3314 zone = pgdat->node_zones + i;
3315 if (!managed_zone(zone))
3318 if (zone->watermark_boost)
3326 * Returns true if there is an eligible zone balanced for the request order
3329 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3332 unsigned long mark = -1;
3336 * Check watermarks bottom-up as lower zones are more likely to
3339 for (i = 0; i <= classzone_idx; i++) {
3340 zone = pgdat->node_zones + i;
3342 if (!managed_zone(zone))
3345 mark = high_wmark_pages(zone);
3346 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3351 * If a node has no populated zone within classzone_idx, it does not
3352 * need balancing by definition. This can happen if a zone-restricted
3353 * allocation tries to wake a remote kswapd.
3361 /* Clear pgdat state for congested, dirty or under writeback. */
3362 static void clear_pgdat_congested(pg_data_t *pgdat)
3364 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3365 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3366 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3370 * Prepare kswapd for sleeping. This verifies that there are no processes
3371 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3373 * Returns true if kswapd is ready to sleep
3375 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3378 * The throttled processes are normally woken up in balance_pgdat() as
3379 * soon as allow_direct_reclaim() is true. But there is a potential
3380 * race between when kswapd checks the watermarks and a process gets
3381 * throttled. There is also a potential race if processes get
3382 * throttled, kswapd wakes, a large process exits thereby balancing the
3383 * zones, which causes kswapd to exit balance_pgdat() before reaching
3384 * the wake up checks. If kswapd is going to sleep, no process should
3385 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3386 * the wake up is premature, processes will wake kswapd and get
3387 * throttled again. The difference from wake ups in balance_pgdat() is
3388 * that here we are under prepare_to_wait().
3390 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3391 wake_up_all(&pgdat->pfmemalloc_wait);
3393 /* Hopeless node, leave it to direct reclaim */
3394 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3397 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3398 clear_pgdat_congested(pgdat);
3406 * kswapd shrinks a node of pages that are at or below the highest usable
3407 * zone that is currently unbalanced.
3409 * Returns true if kswapd scanned at least the requested number of pages to
3410 * reclaim or if the lack of progress was due to pages under writeback.
3411 * This is used to determine if the scanning priority needs to be raised.
3413 static bool kswapd_shrink_node(pg_data_t *pgdat,
3414 struct scan_control *sc)
3419 /* Reclaim a number of pages proportional to the number of zones */
3420 sc->nr_to_reclaim = 0;
3421 for (z = 0; z <= sc->reclaim_idx; z++) {
3422 zone = pgdat->node_zones + z;
3423 if (!managed_zone(zone))
3426 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3430 * Historically care was taken to put equal pressure on all zones but
3431 * now pressure is applied based on node LRU order.
3433 shrink_node(pgdat, sc);
3436 * Fragmentation may mean that the system cannot be rebalanced for
3437 * high-order allocations. If twice the allocation size has been
3438 * reclaimed then recheck watermarks only at order-0 to prevent
3439 * excessive reclaim. Assume that a process requested a high-order
3440 * can direct reclaim/compact.
3442 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3445 return sc->nr_scanned >= sc->nr_to_reclaim;
3449 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3450 * that are eligible for use by the caller until at least one zone is
3453 * Returns the order kswapd finished reclaiming at.
3455 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3456 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3457 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3458 * or lower is eligible for reclaim until at least one usable zone is
3461 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3464 unsigned long nr_soft_reclaimed;
3465 unsigned long nr_soft_scanned;
3466 unsigned long pflags;
3467 unsigned long nr_boost_reclaim;
3468 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3471 struct scan_control sc = {
3472 .gfp_mask = GFP_KERNEL,
3477 psi_memstall_enter(&pflags);
3478 __fs_reclaim_acquire();
3480 count_vm_event(PAGEOUTRUN);
3483 * Account for the reclaim boost. Note that the zone boost is left in
3484 * place so that parallel allocations that are near the watermark will
3485 * stall or direct reclaim until kswapd is finished.
3487 nr_boost_reclaim = 0;
3488 for (i = 0; i <= classzone_idx; i++) {
3489 zone = pgdat->node_zones + i;
3490 if (!managed_zone(zone))
3493 nr_boost_reclaim += zone->watermark_boost;
3494 zone_boosts[i] = zone->watermark_boost;
3496 boosted = nr_boost_reclaim;
3499 sc.priority = DEF_PRIORITY;
3501 unsigned long nr_reclaimed = sc.nr_reclaimed;
3502 bool raise_priority = true;
3506 sc.reclaim_idx = classzone_idx;
3509 * If the number of buffer_heads exceeds the maximum allowed
3510 * then consider reclaiming from all zones. This has a dual
3511 * purpose -- on 64-bit systems it is expected that
3512 * buffer_heads are stripped during active rotation. On 32-bit
3513 * systems, highmem pages can pin lowmem memory and shrinking
3514 * buffers can relieve lowmem pressure. Reclaim may still not
3515 * go ahead if all eligible zones for the original allocation
3516 * request are balanced to avoid excessive reclaim from kswapd.
3518 if (buffer_heads_over_limit) {
3519 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3520 zone = pgdat->node_zones + i;
3521 if (!managed_zone(zone))
3530 * If the pgdat is imbalanced then ignore boosting and preserve
3531 * the watermarks for a later time and restart. Note that the
3532 * zone watermarks will be still reset at the end of balancing
3533 * on the grounds that the normal reclaim should be enough to
3534 * re-evaluate if boosting is required when kswapd next wakes.
3536 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3537 if (!balanced && nr_boost_reclaim) {
3538 nr_boost_reclaim = 0;
3543 * If boosting is not active then only reclaim if there are no
3544 * eligible zones. Note that sc.reclaim_idx is not used as
3545 * buffer_heads_over_limit may have adjusted it.
3547 if (!nr_boost_reclaim && balanced)
3550 /* Limit the priority of boosting to avoid reclaim writeback */
3551 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3552 raise_priority = false;
3555 * Do not writeback or swap pages for boosted reclaim. The
3556 * intent is to relieve pressure not issue sub-optimal IO
3557 * from reclaim context. If no pages are reclaimed, the
3558 * reclaim will be aborted.
3560 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3561 sc.may_swap = !nr_boost_reclaim;
3562 sc.may_shrinkslab = !nr_boost_reclaim;
3565 * Do some background aging of the anon list, to give
3566 * pages a chance to be referenced before reclaiming. All
3567 * pages are rotated regardless of classzone as this is
3568 * about consistent aging.
3570 age_active_anon(pgdat, &sc);
3573 * If we're getting trouble reclaiming, start doing writepage
3574 * even in laptop mode.
3576 if (sc.priority < DEF_PRIORITY - 2)
3577 sc.may_writepage = 1;
3579 /* Call soft limit reclaim before calling shrink_node. */
3581 nr_soft_scanned = 0;
3582 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3583 sc.gfp_mask, &nr_soft_scanned);
3584 sc.nr_reclaimed += nr_soft_reclaimed;
3587 * There should be no need to raise the scanning priority if
3588 * enough pages are already being scanned that that high
3589 * watermark would be met at 100% efficiency.
3591 if (kswapd_shrink_node(pgdat, &sc))
3592 raise_priority = false;
3595 * If the low watermark is met there is no need for processes
3596 * to be throttled on pfmemalloc_wait as they should not be
3597 * able to safely make forward progress. Wake them
3599 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3600 allow_direct_reclaim(pgdat))
3601 wake_up_all(&pgdat->pfmemalloc_wait);
3603 /* Check if kswapd should be suspending */
3604 __fs_reclaim_release();
3605 ret = try_to_freeze();
3606 __fs_reclaim_acquire();
3607 if (ret || kthread_should_stop())
3611 * Raise priority if scanning rate is too low or there was no
3612 * progress in reclaiming pages
3614 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3615 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3618 * If reclaim made no progress for a boost, stop reclaim as
3619 * IO cannot be queued and it could be an infinite loop in
3620 * extreme circumstances.
3622 if (nr_boost_reclaim && !nr_reclaimed)
3625 if (raise_priority || !nr_reclaimed)
3627 } while (sc.priority >= 1);
3629 if (!sc.nr_reclaimed)
3630 pgdat->kswapd_failures++;
3633 /* If reclaim was boosted, account for the reclaim done in this pass */
3635 unsigned long flags;
3637 for (i = 0; i <= classzone_idx; i++) {
3638 if (!zone_boosts[i])
3641 /* Increments are under the zone lock */
3642 zone = pgdat->node_zones + i;
3643 spin_lock_irqsave(&zone->lock, flags);
3644 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3645 spin_unlock_irqrestore(&zone->lock, flags);
3649 * As there is now likely space, wakeup kcompact to defragment
3652 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3655 snapshot_refaults(NULL, pgdat);
3656 __fs_reclaim_release();
3657 psi_memstall_leave(&pflags);
3659 * Return the order kswapd stopped reclaiming at as
3660 * prepare_kswapd_sleep() takes it into account. If another caller
3661 * entered the allocator slow path while kswapd was awake, order will
3662 * remain at the higher level.
3668 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3669 * allocation request woke kswapd for. When kswapd has not woken recently,
3670 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3671 * given classzone and returns it or the highest classzone index kswapd
3672 * was recently woke for.
3674 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3675 enum zone_type classzone_idx)
3677 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3678 return classzone_idx;
3680 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3683 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3684 unsigned int classzone_idx)
3689 if (freezing(current) || kthread_should_stop())
3692 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3695 * Try to sleep for a short interval. Note that kcompactd will only be
3696 * woken if it is possible to sleep for a short interval. This is
3697 * deliberate on the assumption that if reclaim cannot keep an
3698 * eligible zone balanced that it's also unlikely that compaction will
3701 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3703 * Compaction records what page blocks it recently failed to
3704 * isolate pages from and skips them in the future scanning.
3705 * When kswapd is going to sleep, it is reasonable to assume
3706 * that pages and compaction may succeed so reset the cache.
3708 reset_isolation_suitable(pgdat);
3711 * We have freed the memory, now we should compact it to make
3712 * allocation of the requested order possible.
3714 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3716 remaining = schedule_timeout(HZ/10);
3719 * If woken prematurely then reset kswapd_classzone_idx and
3720 * order. The values will either be from a wakeup request or
3721 * the previous request that slept prematurely.
3724 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3725 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3728 finish_wait(&pgdat->kswapd_wait, &wait);
3729 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3733 * After a short sleep, check if it was a premature sleep. If not, then
3734 * go fully to sleep until explicitly woken up.
3737 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3738 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3741 * vmstat counters are not perfectly accurate and the estimated
3742 * value for counters such as NR_FREE_PAGES can deviate from the
3743 * true value by nr_online_cpus * threshold. To avoid the zone
3744 * watermarks being breached while under pressure, we reduce the
3745 * per-cpu vmstat threshold while kswapd is awake and restore
3746 * them before going back to sleep.
3748 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3750 if (!kthread_should_stop())
3753 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3756 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3758 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3760 finish_wait(&pgdat->kswapd_wait, &wait);
3764 * The background pageout daemon, started as a kernel thread
3765 * from the init process.
3767 * This basically trickles out pages so that we have _some_
3768 * free memory available even if there is no other activity
3769 * that frees anything up. This is needed for things like routing
3770 * etc, where we otherwise might have all activity going on in
3771 * asynchronous contexts that cannot page things out.
3773 * If there are applications that are active memory-allocators
3774 * (most normal use), this basically shouldn't matter.
3776 static int kswapd(void *p)
3778 unsigned int alloc_order, reclaim_order;
3779 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3780 pg_data_t *pgdat = (pg_data_t*)p;
3781 struct task_struct *tsk = current;
3783 struct reclaim_state reclaim_state = {
3784 .reclaimed_slab = 0,
3786 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3788 if (!cpumask_empty(cpumask))
3789 set_cpus_allowed_ptr(tsk, cpumask);
3790 current->reclaim_state = &reclaim_state;
3793 * Tell the memory management that we're a "memory allocator",
3794 * and that if we need more memory we should get access to it
3795 * regardless (see "__alloc_pages()"). "kswapd" should
3796 * never get caught in the normal page freeing logic.
3798 * (Kswapd normally doesn't need memory anyway, but sometimes
3799 * you need a small amount of memory in order to be able to
3800 * page out something else, and this flag essentially protects
3801 * us from recursively trying to free more memory as we're
3802 * trying to free the first piece of memory in the first place).
3804 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3807 pgdat->kswapd_order = 0;
3808 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3812 alloc_order = reclaim_order = pgdat->kswapd_order;
3813 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3816 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3819 /* Read the new order and classzone_idx */
3820 alloc_order = reclaim_order = pgdat->kswapd_order;
3821 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3822 pgdat->kswapd_order = 0;
3823 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3825 ret = try_to_freeze();
3826 if (kthread_should_stop())
3830 * We can speed up thawing tasks if we don't call balance_pgdat
3831 * after returning from the refrigerator
3837 * Reclaim begins at the requested order but if a high-order
3838 * reclaim fails then kswapd falls back to reclaiming for
3839 * order-0. If that happens, kswapd will consider sleeping
3840 * for the order it finished reclaiming at (reclaim_order)
3841 * but kcompactd is woken to compact for the original
3842 * request (alloc_order).
3844 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3846 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3847 if (reclaim_order < alloc_order)
3848 goto kswapd_try_sleep;
3851 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3852 current->reclaim_state = NULL;
3858 * A zone is low on free memory or too fragmented for high-order memory. If
3859 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3860 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3861 * has failed or is not needed, still wake up kcompactd if only compaction is
3864 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3865 enum zone_type classzone_idx)
3869 if (!managed_zone(zone))
3872 if (!cpuset_zone_allowed(zone, gfp_flags))
3874 pgdat = zone->zone_pgdat;
3875 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3877 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3878 if (!waitqueue_active(&pgdat->kswapd_wait))
3881 /* Hopeless node, leave it to direct reclaim if possible */
3882 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3883 (pgdat_balanced(pgdat, order, classzone_idx) &&
3884 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3886 * There may be plenty of free memory available, but it's too
3887 * fragmented for high-order allocations. Wake up kcompactd
3888 * and rely on compaction_suitable() to determine if it's
3889 * needed. If it fails, it will defer subsequent attempts to
3890 * ratelimit its work.
3892 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3893 wakeup_kcompactd(pgdat, order, classzone_idx);
3897 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3899 wake_up_interruptible(&pgdat->kswapd_wait);
3902 #ifdef CONFIG_HIBERNATION
3904 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3907 * Rather than trying to age LRUs the aim is to preserve the overall
3908 * LRU order by reclaiming preferentially
3909 * inactive > active > active referenced > active mapped
3911 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3913 struct reclaim_state reclaim_state;
3914 struct scan_control sc = {
3915 .nr_to_reclaim = nr_to_reclaim,
3916 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3917 .reclaim_idx = MAX_NR_ZONES - 1,
3918 .priority = DEF_PRIORITY,
3922 .hibernation_mode = 1,
3924 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3925 struct task_struct *p = current;
3926 unsigned long nr_reclaimed;
3927 unsigned int noreclaim_flag;
3929 fs_reclaim_acquire(sc.gfp_mask);
3930 noreclaim_flag = memalloc_noreclaim_save();
3931 reclaim_state.reclaimed_slab = 0;
3932 p->reclaim_state = &reclaim_state;
3934 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3936 p->reclaim_state = NULL;
3937 memalloc_noreclaim_restore(noreclaim_flag);
3938 fs_reclaim_release(sc.gfp_mask);
3940 return nr_reclaimed;
3942 #endif /* CONFIG_HIBERNATION */
3944 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3945 not required for correctness. So if the last cpu in a node goes
3946 away, we get changed to run anywhere: as the first one comes back,
3947 restore their cpu bindings. */
3948 static int kswapd_cpu_online(unsigned int cpu)
3952 for_each_node_state(nid, N_MEMORY) {
3953 pg_data_t *pgdat = NODE_DATA(nid);
3954 const struct cpumask *mask;
3956 mask = cpumask_of_node(pgdat->node_id);
3958 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3959 /* One of our CPUs online: restore mask */
3960 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3966 * This kswapd start function will be called by init and node-hot-add.
3967 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3969 int kswapd_run(int nid)
3971 pg_data_t *pgdat = NODE_DATA(nid);
3977 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3978 if (IS_ERR(pgdat->kswapd)) {
3979 /* failure at boot is fatal */
3980 BUG_ON(system_state < SYSTEM_RUNNING);
3981 pr_err("Failed to start kswapd on node %d\n", nid);
3982 ret = PTR_ERR(pgdat->kswapd);
3983 pgdat->kswapd = NULL;
3989 * Called by memory hotplug when all memory in a node is offlined. Caller must
3990 * hold mem_hotplug_begin/end().
3992 void kswapd_stop(int nid)
3994 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3997 kthread_stop(kswapd);
3998 NODE_DATA(nid)->kswapd = NULL;
4002 static int __init kswapd_init(void)
4007 for_each_node_state(nid, N_MEMORY)
4009 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4010 "mm/vmscan:online", kswapd_cpu_online,
4016 module_init(kswapd_init)
4022 * If non-zero call node_reclaim when the number of free pages falls below
4025 int node_reclaim_mode __read_mostly;
4027 #define RECLAIM_OFF 0
4028 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4029 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4030 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4033 * Priority for NODE_RECLAIM. This determines the fraction of pages
4034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4037 #define NODE_RECLAIM_PRIORITY 4
4040 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4043 int sysctl_min_unmapped_ratio = 1;
4046 * If the number of slab pages in a zone grows beyond this percentage then
4047 * slab reclaim needs to occur.
4049 int sysctl_min_slab_ratio = 5;
4051 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4053 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4054 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4055 node_page_state(pgdat, NR_ACTIVE_FILE);
4058 * It's possible for there to be more file mapped pages than
4059 * accounted for by the pages on the file LRU lists because
4060 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4062 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4065 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4066 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4068 unsigned long nr_pagecache_reclaimable;
4069 unsigned long delta = 0;
4072 * If RECLAIM_UNMAP is set, then all file pages are considered
4073 * potentially reclaimable. Otherwise, we have to worry about
4074 * pages like swapcache and node_unmapped_file_pages() provides
4077 if (node_reclaim_mode & RECLAIM_UNMAP)
4078 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4080 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4082 /* If we can't clean pages, remove dirty pages from consideration */
4083 if (!(node_reclaim_mode & RECLAIM_WRITE))
4084 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4086 /* Watch for any possible underflows due to delta */
4087 if (unlikely(delta > nr_pagecache_reclaimable))
4088 delta = nr_pagecache_reclaimable;
4090 return nr_pagecache_reclaimable - delta;
4094 * Try to free up some pages from this node through reclaim.
4096 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4098 /* Minimum pages needed in order to stay on node */
4099 const unsigned long nr_pages = 1 << order;
4100 struct task_struct *p = current;
4101 struct reclaim_state reclaim_state;
4102 unsigned int noreclaim_flag;
4103 struct scan_control sc = {
4104 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4105 .gfp_mask = current_gfp_context(gfp_mask),
4107 .priority = NODE_RECLAIM_PRIORITY,
4108 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4109 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4111 .reclaim_idx = gfp_zone(gfp_mask),
4115 fs_reclaim_acquire(sc.gfp_mask);
4117 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4118 * and we also need to be able to write out pages for RECLAIM_WRITE
4119 * and RECLAIM_UNMAP.
4121 noreclaim_flag = memalloc_noreclaim_save();
4122 p->flags |= PF_SWAPWRITE;
4123 reclaim_state.reclaimed_slab = 0;
4124 p->reclaim_state = &reclaim_state;
4126 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4128 * Free memory by calling shrink node with increasing
4129 * priorities until we have enough memory freed.
4132 shrink_node(pgdat, &sc);
4133 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4136 p->reclaim_state = NULL;
4137 current->flags &= ~PF_SWAPWRITE;
4138 memalloc_noreclaim_restore(noreclaim_flag);
4139 fs_reclaim_release(sc.gfp_mask);
4140 return sc.nr_reclaimed >= nr_pages;
4143 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4148 * Node reclaim reclaims unmapped file backed pages and
4149 * slab pages if we are over the defined limits.
4151 * A small portion of unmapped file backed pages is needed for
4152 * file I/O otherwise pages read by file I/O will be immediately
4153 * thrown out if the node is overallocated. So we do not reclaim
4154 * if less than a specified percentage of the node is used by
4155 * unmapped file backed pages.
4157 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4158 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4159 return NODE_RECLAIM_FULL;
4162 * Do not scan if the allocation should not be delayed.
4164 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4165 return NODE_RECLAIM_NOSCAN;
4168 * Only run node reclaim on the local node or on nodes that do not
4169 * have associated processors. This will favor the local processor
4170 * over remote processors and spread off node memory allocations
4171 * as wide as possible.
4173 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4174 return NODE_RECLAIM_NOSCAN;
4176 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4177 return NODE_RECLAIM_NOSCAN;
4179 ret = __node_reclaim(pgdat, gfp_mask, order);
4180 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4183 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4190 * page_evictable - test whether a page is evictable
4191 * @page: the page to test
4193 * Test whether page is evictable--i.e., should be placed on active/inactive
4194 * lists vs unevictable list.
4196 * Reasons page might not be evictable:
4197 * (1) page's mapping marked unevictable
4198 * (2) page is part of an mlocked VMA
4201 int page_evictable(struct page *page)
4205 /* Prevent address_space of inode and swap cache from being freed */
4207 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4213 * check_move_unevictable_pages - check pages for evictability and move to
4214 * appropriate zone lru list
4215 * @pvec: pagevec with lru pages to check
4217 * Checks pages for evictability, if an evictable page is in the unevictable
4218 * lru list, moves it to the appropriate evictable lru list. This function
4219 * should be only used for lru pages.
4221 void check_move_unevictable_pages(struct pagevec *pvec)
4223 struct lruvec *lruvec;
4224 struct pglist_data *pgdat = NULL;
4229 for (i = 0; i < pvec->nr; i++) {
4230 struct page *page = pvec->pages[i];
4231 struct pglist_data *pagepgdat = page_pgdat(page);
4234 if (pagepgdat != pgdat) {
4236 spin_unlock_irq(&pgdat->lru_lock);
4238 spin_lock_irq(&pgdat->lru_lock);
4240 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4242 if (!PageLRU(page) || !PageUnevictable(page))
4245 if (page_evictable(page)) {
4246 enum lru_list lru = page_lru_base_type(page);
4248 VM_BUG_ON_PAGE(PageActive(page), page);
4249 ClearPageUnevictable(page);
4250 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4251 add_page_to_lru_list(page, lruvec, lru);
4257 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4258 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4259 spin_unlock_irq(&pgdat->lru_lock);
4262 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);