1 // SPDX-License-Identifier: GPL-2.0
4 * Written by Mark Hemment, 1996/97.
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
40 * empty slabs with no allocated objects
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
69 * Further notes from the original documentation:
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
77 * At present, each engine can be growing a cache. This should be blocked.
79 * 15 March 2005. NUMA slab allocator.
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
143 #ifdef CONFIG_DEBUG_SLAB
146 #define FORCED_DEBUG 1
150 #define FORCED_DEBUG 0
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
167 typedef unsigned short freelist_idx_t;
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
180 * The limit is stored in the per-cpu structure to reduce the data cache
187 unsigned int batchcount;
188 unsigned int touched;
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
198 struct array_cache ac;
202 * Need this for bootstrapping a per node allocator.
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
222 static int slab_early_init = 1;
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259 #define BATCHREFILL_LIMIT 16
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
315 * memory layout of objects:
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
327 static int obj_offset(struct kmem_cache *cachep)
329 return cachep->obj_offset;
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
369 return atomic_read(&cachep->store_user_clean) == 1;
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
374 atomic_set(&cachep->store_user_clean, 1);
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
406 return page->s_mem + cache->size * idx;
409 #define BOOT_CPUCACHE_ENTRIES 1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
413 .limit = BOOT_CPUCACHE_ENTRIES,
415 .size = sizeof(struct kmem_cache),
416 .name = "kmem_cache",
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
423 return this_cpu_ptr(cachep->cpu_cache);
427 * Calculate the number of objects and left-over bytes for a given buffer size.
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 slab_flags_t flags, size_t *left_over)
433 size_t slab_size = PAGE_SIZE << gfporder;
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
440 * - @buffer_size bytes for each object
441 * - One freelist_idx_t for each object
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 num = slab_size / buffer_size;
454 *left_over = slab_size % buffer_size;
456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
470 pr_err("slab error in %s(): cache `%s': %s\n",
471 function, cachep->name, msg);
473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
488 use_alien_caches = 0;
491 __setup("noaliencache", noaliencache_setup);
493 static int __init slab_max_order_setup(char *str)
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
502 __setup("slab_max_order=", slab_max_order_setup);
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
513 static void init_reap_node(int cpu)
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
519 static void next_reap_node(void)
521 int node = __this_cpu_read(slab_reap_node);
523 node = next_node_in(node, node_online_map);
524 __this_cpu_write(slab_reap_node, node);
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
539 static void start_cpu_timer(int cpu)
541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
543 if (reap_work->work.func == NULL) {
545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
556 ac->batchcount = batch;
561 static struct array_cache *alloc_arraycache(int node, int entries,
562 int batchcount, gfp_t gfp)
564 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
565 struct array_cache *ac = NULL;
567 ac = kmalloc_node(memsize, gfp, node);
569 * The array_cache structures contain pointers to free object.
570 * However, when such objects are allocated or transferred to another
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
575 kmemleak_no_scan(ac);
576 init_arraycache(ac, entries, batchcount);
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
583 struct kmem_cache_node *n;
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
594 slabs_destroy(cachep, &list);
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
601 * Return the number of entries transferred.
603 static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
606 /* Figure out how many entries to transfer */
607 int nr = min3(from->avail, max, to->limit - to->avail);
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 gfp_t flags, int nodeid)
652 static inline gfp_t gfp_exact_node(gfp_t flags)
654 return flags & ~__GFP_NOFAIL;
657 #else /* CONFIG_NUMA */
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 struct alien_cache *alc = NULL;
668 alc = kmalloc_node(memsize, gfp, node);
670 kmemleak_no_scan(alc);
671 init_arraycache(&alc->ac, entries, batch);
672 spin_lock_init(&alc->lock);
677 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
679 struct alien_cache **alc_ptr;
684 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
689 if (i == node || !node_online(i))
691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
693 for (i--; i >= 0; i--)
702 static void free_alien_cache(struct alien_cache **alc_ptr)
713 static void __drain_alien_cache(struct kmem_cache *cachep,
714 struct array_cache *ac, int node,
715 struct list_head *list)
717 struct kmem_cache_node *n = get_node(cachep, node);
720 spin_lock(&n->list_lock);
722 * Stuff objects into the remote nodes shared array first.
723 * That way we could avoid the overhead of putting the objects
724 * into the free lists and getting them back later.
727 transfer_objects(n->shared, ac, ac->limit);
729 free_block(cachep, ac->entry, ac->avail, node, list);
731 spin_unlock(&n->list_lock);
736 * Called from cache_reap() to regularly drain alien caches round robin.
738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
740 int node = __this_cpu_read(slab_reap_node);
743 struct alien_cache *alc = n->alien[node];
744 struct array_cache *ac;
748 if (ac->avail && spin_trylock_irq(&alc->lock)) {
751 __drain_alien_cache(cachep, ac, node, &list);
752 spin_unlock_irq(&alc->lock);
753 slabs_destroy(cachep, &list);
759 static void drain_alien_cache(struct kmem_cache *cachep,
760 struct alien_cache **alien)
763 struct alien_cache *alc;
764 struct array_cache *ac;
767 for_each_online_node(i) {
773 spin_lock_irqsave(&alc->lock, flags);
774 __drain_alien_cache(cachep, ac, i, &list);
775 spin_unlock_irqrestore(&alc->lock, flags);
776 slabs_destroy(cachep, &list);
781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 int node, int page_node)
784 struct kmem_cache_node *n;
785 struct alien_cache *alien = NULL;
786 struct array_cache *ac;
789 n = get_node(cachep, node);
790 STATS_INC_NODEFREES(cachep);
791 if (n->alien && n->alien[page_node]) {
792 alien = n->alien[page_node];
794 spin_lock(&alien->lock);
795 if (unlikely(ac->avail == ac->limit)) {
796 STATS_INC_ACOVERFLOW(cachep);
797 __drain_alien_cache(cachep, ac, page_node, &list);
799 ac->entry[ac->avail++] = objp;
800 spin_unlock(&alien->lock);
801 slabs_destroy(cachep, &list);
803 n = get_node(cachep, page_node);
804 spin_lock(&n->list_lock);
805 free_block(cachep, &objp, 1, page_node, &list);
806 spin_unlock(&n->list_lock);
807 slabs_destroy(cachep, &list);
812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
814 int page_node = page_to_nid(virt_to_page(objp));
815 int node = numa_mem_id();
817 * Make sure we are not freeing a object from another node to the array
820 if (likely(node == page_node))
823 return __cache_free_alien(cachep, objp, node, page_node);
827 * Construct gfp mask to allocate from a specific node but do not reclaim or
828 * warn about failures.
830 static inline gfp_t gfp_exact_node(gfp_t flags)
832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
838 struct kmem_cache_node *n;
841 * Set up the kmem_cache_node for cpu before we can
842 * begin anything. Make sure some other cpu on this
843 * node has not already allocated this
845 n = get_node(cachep, node);
847 spin_lock_irq(&n->list_lock);
848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
850 spin_unlock_irq(&n->list_lock);
855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
859 kmem_cache_node_init(n);
860 n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
867 * The kmem_cache_nodes don't come and go as CPUs
868 * come and go. slab_mutex is sufficient
871 cachep->node[node] = n;
876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
878 * Allocates and initializes node for a node on each slab cache, used for
879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
880 * will be allocated off-node since memory is not yet online for the new node.
881 * When hotplugging memory or a cpu, existing node are not replaced if
884 * Must hold slab_mutex.
886 static int init_cache_node_node(int node)
889 struct kmem_cache *cachep;
891 list_for_each_entry(cachep, &slab_caches, list) {
892 ret = init_cache_node(cachep, node, GFP_KERNEL);
901 static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 int node, gfp_t gfp, bool force_change)
905 struct kmem_cache_node *n;
906 struct array_cache *old_shared = NULL;
907 struct array_cache *new_shared = NULL;
908 struct alien_cache **new_alien = NULL;
911 if (use_alien_caches) {
912 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
917 if (cachep->shared) {
918 new_shared = alloc_arraycache(node,
919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
924 ret = init_cache_node(cachep, node, gfp);
928 n = get_node(cachep, node);
929 spin_lock_irq(&n->list_lock);
930 if (n->shared && force_change) {
931 free_block(cachep, n->shared->entry,
932 n->shared->avail, node, &list);
933 n->shared->avail = 0;
936 if (!n->shared || force_change) {
937 old_shared = n->shared;
938 n->shared = new_shared;
943 n->alien = new_alien;
947 spin_unlock_irq(&n->list_lock);
948 slabs_destroy(cachep, &list);
951 * To protect lockless access to n->shared during irq disabled context.
952 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 * guaranteed to be valid until irq is re-enabled, because it will be
954 * freed after synchronize_rcu().
956 if (old_shared && force_change)
962 free_alien_cache(new_alien);
969 static void cpuup_canceled(long cpu)
971 struct kmem_cache *cachep;
972 struct kmem_cache_node *n = NULL;
973 int node = cpu_to_mem(cpu);
974 const struct cpumask *mask = cpumask_of_node(node);
976 list_for_each_entry(cachep, &slab_caches, list) {
977 struct array_cache *nc;
978 struct array_cache *shared;
979 struct alien_cache **alien;
982 n = get_node(cachep, node);
986 spin_lock_irq(&n->list_lock);
988 /* Free limit for this kmem_cache_node */
989 n->free_limit -= cachep->batchcount;
991 /* cpu is dead; no one can alloc from it. */
992 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
993 free_block(cachep, nc->entry, nc->avail, node, &list);
996 if (!cpumask_empty(mask)) {
997 spin_unlock_irq(&n->list_lock);
1003 free_block(cachep, shared->entry,
1004 shared->avail, node, &list);
1011 spin_unlock_irq(&n->list_lock);
1015 drain_alien_cache(cachep, alien);
1016 free_alien_cache(alien);
1020 slabs_destroy(cachep, &list);
1023 * In the previous loop, all the objects were freed to
1024 * the respective cache's slabs, now we can go ahead and
1025 * shrink each nodelist to its limit.
1027 list_for_each_entry(cachep, &slab_caches, list) {
1028 n = get_node(cachep, node);
1031 drain_freelist(cachep, n, INT_MAX);
1035 static int cpuup_prepare(long cpu)
1037 struct kmem_cache *cachep;
1038 int node = cpu_to_mem(cpu);
1042 * We need to do this right in the beginning since
1043 * alloc_arraycache's are going to use this list.
1044 * kmalloc_node allows us to add the slab to the right
1045 * kmem_cache_node and not this cpu's kmem_cache_node
1047 err = init_cache_node_node(node);
1052 * Now we can go ahead with allocating the shared arrays and
1055 list_for_each_entry(cachep, &slab_caches, list) {
1056 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1063 cpuup_canceled(cpu);
1067 int slab_prepare_cpu(unsigned int cpu)
1071 mutex_lock(&slab_mutex);
1072 err = cpuup_prepare(cpu);
1073 mutex_unlock(&slab_mutex);
1078 * This is called for a failed online attempt and for a successful
1081 * Even if all the cpus of a node are down, we don't free the
1082 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1083 * a kmalloc allocation from another cpu for memory from the node of
1084 * the cpu going down. The list3 structure is usually allocated from
1085 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1087 int slab_dead_cpu(unsigned int cpu)
1089 mutex_lock(&slab_mutex);
1090 cpuup_canceled(cpu);
1091 mutex_unlock(&slab_mutex);
1096 static int slab_online_cpu(unsigned int cpu)
1098 start_cpu_timer(cpu);
1102 static int slab_offline_cpu(unsigned int cpu)
1105 * Shutdown cache reaper. Note that the slab_mutex is held so
1106 * that if cache_reap() is invoked it cannot do anything
1107 * expensive but will only modify reap_work and reschedule the
1110 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1111 /* Now the cache_reaper is guaranteed to be not running. */
1112 per_cpu(slab_reap_work, cpu).work.func = NULL;
1116 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1118 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1119 * Returns -EBUSY if all objects cannot be drained so that the node is not
1122 * Must hold slab_mutex.
1124 static int __meminit drain_cache_node_node(int node)
1126 struct kmem_cache *cachep;
1129 list_for_each_entry(cachep, &slab_caches, list) {
1130 struct kmem_cache_node *n;
1132 n = get_node(cachep, node);
1136 drain_freelist(cachep, n, INT_MAX);
1138 if (!list_empty(&n->slabs_full) ||
1139 !list_empty(&n->slabs_partial)) {
1147 static int __meminit slab_memory_callback(struct notifier_block *self,
1148 unsigned long action, void *arg)
1150 struct memory_notify *mnb = arg;
1154 nid = mnb->status_change_nid;
1159 case MEM_GOING_ONLINE:
1160 mutex_lock(&slab_mutex);
1161 ret = init_cache_node_node(nid);
1162 mutex_unlock(&slab_mutex);
1164 case MEM_GOING_OFFLINE:
1165 mutex_lock(&slab_mutex);
1166 ret = drain_cache_node_node(nid);
1167 mutex_unlock(&slab_mutex);
1171 case MEM_CANCEL_ONLINE:
1172 case MEM_CANCEL_OFFLINE:
1176 return notifier_from_errno(ret);
1178 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1181 * swap the static kmem_cache_node with kmalloced memory
1183 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1186 struct kmem_cache_node *ptr;
1188 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1191 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1193 * Do not assume that spinlocks can be initialized via memcpy:
1195 spin_lock_init(&ptr->list_lock);
1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 cachep->node[nodeid] = ptr;
1202 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1203 * size of kmem_cache_node.
1205 static void __init set_up_node(struct kmem_cache *cachep, int index)
1209 for_each_online_node(node) {
1210 cachep->node[node] = &init_kmem_cache_node[index + node];
1211 cachep->node[node]->next_reap = jiffies +
1213 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1218 * Initialisation. Called after the page allocator have been initialised and
1219 * before smp_init().
1221 void __init kmem_cache_init(void)
1225 kmem_cache = &kmem_cache_boot;
1227 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1228 use_alien_caches = 0;
1230 for (i = 0; i < NUM_INIT_LISTS; i++)
1231 kmem_cache_node_init(&init_kmem_cache_node[i]);
1234 * Fragmentation resistance on low memory - only use bigger
1235 * page orders on machines with more than 32MB of memory if
1236 * not overridden on the command line.
1238 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1239 slab_max_order = SLAB_MAX_ORDER_HI;
1241 /* Bootstrap is tricky, because several objects are allocated
1242 * from caches that do not exist yet:
1243 * 1) initialize the kmem_cache cache: it contains the struct
1244 * kmem_cache structures of all caches, except kmem_cache itself:
1245 * kmem_cache is statically allocated.
1246 * Initially an __init data area is used for the head array and the
1247 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1248 * array at the end of the bootstrap.
1249 * 2) Create the first kmalloc cache.
1250 * The struct kmem_cache for the new cache is allocated normally.
1251 * An __init data area is used for the head array.
1252 * 3) Create the remaining kmalloc caches, with minimally sized
1254 * 4) Replace the __init data head arrays for kmem_cache and the first
1255 * kmalloc cache with kmalloc allocated arrays.
1256 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1257 * the other cache's with kmalloc allocated memory.
1258 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1261 /* 1) create the kmem_cache */
1264 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1266 create_boot_cache(kmem_cache, "kmem_cache",
1267 offsetof(struct kmem_cache, node) +
1268 nr_node_ids * sizeof(struct kmem_cache_node *),
1269 SLAB_HWCACHE_ALIGN, 0, 0);
1270 list_add(&kmem_cache->list, &slab_caches);
1271 memcg_link_cache(kmem_cache);
1272 slab_state = PARTIAL;
1275 * Initialize the caches that provide memory for the kmem_cache_node
1276 * structures first. Without this, further allocations will bug.
1278 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1279 kmalloc_info[INDEX_NODE].name,
1280 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1281 0, kmalloc_size(INDEX_NODE));
1282 slab_state = PARTIAL_NODE;
1283 setup_kmalloc_cache_index_table();
1285 slab_early_init = 0;
1287 /* 5) Replace the bootstrap kmem_cache_node */
1291 for_each_online_node(nid) {
1292 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1294 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1295 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1299 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1302 void __init kmem_cache_init_late(void)
1304 struct kmem_cache *cachep;
1306 /* 6) resize the head arrays to their final sizes */
1307 mutex_lock(&slab_mutex);
1308 list_for_each_entry(cachep, &slab_caches, list)
1309 if (enable_cpucache(cachep, GFP_NOWAIT))
1311 mutex_unlock(&slab_mutex);
1318 * Register a memory hotplug callback that initializes and frees
1321 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1325 * The reap timers are started later, with a module init call: That part
1326 * of the kernel is not yet operational.
1330 static int __init cpucache_init(void)
1335 * Register the timers that return unneeded pages to the page allocator
1337 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1338 slab_online_cpu, slab_offline_cpu);
1343 __initcall(cpucache_init);
1345 static noinline void
1346 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349 struct kmem_cache_node *n;
1350 unsigned long flags;
1352 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1353 DEFAULT_RATELIMIT_BURST);
1355 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1358 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1359 nodeid, gfpflags, &gfpflags);
1360 pr_warn(" cache: %s, object size: %d, order: %d\n",
1361 cachep->name, cachep->size, cachep->gfporder);
1363 for_each_kmem_cache_node(cachep, node, n) {
1364 unsigned long total_slabs, free_slabs, free_objs;
1366 spin_lock_irqsave(&n->list_lock, flags);
1367 total_slabs = n->total_slabs;
1368 free_slabs = n->free_slabs;
1369 free_objs = n->free_objects;
1370 spin_unlock_irqrestore(&n->list_lock, flags);
1372 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1373 node, total_slabs - free_slabs, total_slabs,
1374 (total_slabs * cachep->num) - free_objs,
1375 total_slabs * cachep->num);
1381 * Interface to system's page allocator. No need to hold the
1382 * kmem_cache_node ->list_lock.
1384 * If we requested dmaable memory, we will get it. Even if we
1385 * did not request dmaable memory, we might get it, but that
1386 * would be relatively rare and ignorable.
1388 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1394 flags |= cachep->allocflags;
1396 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1398 slab_out_of_memory(cachep, flags, nodeid);
1402 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1403 __free_pages(page, cachep->gfporder);
1407 nr_pages = (1 << cachep->gfporder);
1408 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1409 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1411 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1413 __SetPageSlab(page);
1414 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1415 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1416 SetPageSlabPfmemalloc(page);
1422 * Interface to system's page release.
1424 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1426 int order = cachep->gfporder;
1427 unsigned long nr_freed = (1 << order);
1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1434 BUG_ON(!PageSlab(page));
1435 __ClearPageSlabPfmemalloc(page);
1436 __ClearPageSlab(page);
1437 page_mapcount_reset(page);
1438 page->mapping = NULL;
1440 if (current->reclaim_state)
1441 current->reclaim_state->reclaimed_slab += nr_freed;
1442 memcg_uncharge_slab(page, order, cachep);
1443 __free_pages(page, order);
1446 static void kmem_rcu_free(struct rcu_head *head)
1448 struct kmem_cache *cachep;
1451 page = container_of(head, struct page, rcu_head);
1452 cachep = page->slab_cache;
1454 kmem_freepages(cachep, page);
1458 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1460 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1461 (cachep->size % PAGE_SIZE) == 0)
1467 #ifdef CONFIG_DEBUG_PAGEALLOC
1468 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1470 if (!is_debug_pagealloc_cache(cachep))
1473 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1477 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1482 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1484 int size = cachep->object_size;
1485 addr = &((char *)addr)[obj_offset(cachep)];
1487 memset(addr, val, size);
1488 *(unsigned char *)(addr + size - 1) = POISON_END;
1491 static void dump_line(char *data, int offset, int limit)
1494 unsigned char error = 0;
1497 pr_err("%03x: ", offset);
1498 for (i = 0; i < limit; i++) {
1499 if (data[offset + i] != POISON_FREE) {
1500 error = data[offset + i];
1504 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1505 &data[offset], limit, 1);
1507 if (bad_count == 1) {
1508 error ^= POISON_FREE;
1509 if (!(error & (error - 1))) {
1510 pr_err("Single bit error detected. Probably bad RAM.\n");
1512 pr_err("Run memtest86+ or a similar memory test tool.\n");
1514 pr_err("Run a memory test tool.\n");
1523 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1528 if (cachep->flags & SLAB_RED_ZONE) {
1529 pr_err("Redzone: 0x%llx/0x%llx\n",
1530 *dbg_redzone1(cachep, objp),
1531 *dbg_redzone2(cachep, objp));
1534 if (cachep->flags & SLAB_STORE_USER)
1535 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1536 realobj = (char *)objp + obj_offset(cachep);
1537 size = cachep->object_size;
1538 for (i = 0; i < size && lines; i += 16, lines--) {
1541 if (i + limit > size)
1543 dump_line(realobj, i, limit);
1547 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1553 if (is_debug_pagealloc_cache(cachep))
1556 realobj = (char *)objp + obj_offset(cachep);
1557 size = cachep->object_size;
1559 for (i = 0; i < size; i++) {
1560 char exp = POISON_FREE;
1563 if (realobj[i] != exp) {
1568 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1569 print_tainted(), cachep->name,
1571 print_objinfo(cachep, objp, 0);
1573 /* Hexdump the affected line */
1576 if (i + limit > size)
1578 dump_line(realobj, i, limit);
1581 /* Limit to 5 lines */
1587 /* Print some data about the neighboring objects, if they
1590 struct page *page = virt_to_head_page(objp);
1593 objnr = obj_to_index(cachep, page, objp);
1595 objp = index_to_obj(cachep, page, objnr - 1);
1596 realobj = (char *)objp + obj_offset(cachep);
1597 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1598 print_objinfo(cachep, objp, 2);
1600 if (objnr + 1 < cachep->num) {
1601 objp = index_to_obj(cachep, page, objnr + 1);
1602 realobj = (char *)objp + obj_offset(cachep);
1603 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1604 print_objinfo(cachep, objp, 2);
1611 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1616 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1617 poison_obj(cachep, page->freelist - obj_offset(cachep),
1621 for (i = 0; i < cachep->num; i++) {
1622 void *objp = index_to_obj(cachep, page, i);
1624 if (cachep->flags & SLAB_POISON) {
1625 check_poison_obj(cachep, objp);
1626 slab_kernel_map(cachep, objp, 1);
1628 if (cachep->flags & SLAB_RED_ZONE) {
1629 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1630 slab_error(cachep, "start of a freed object was overwritten");
1631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1632 slab_error(cachep, "end of a freed object was overwritten");
1637 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1644 * slab_destroy - destroy and release all objects in a slab
1645 * @cachep: cache pointer being destroyed
1646 * @page: page pointer being destroyed
1648 * Destroy all the objs in a slab page, and release the mem back to the system.
1649 * Before calling the slab page must have been unlinked from the cache. The
1650 * kmem_cache_node ->list_lock is not held/needed.
1652 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1656 freelist = page->freelist;
1657 slab_destroy_debugcheck(cachep, page);
1658 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1659 call_rcu(&page->rcu_head, kmem_rcu_free);
1661 kmem_freepages(cachep, page);
1664 * From now on, we don't use freelist
1665 * although actual page can be freed in rcu context
1667 if (OFF_SLAB(cachep))
1668 kmem_cache_free(cachep->freelist_cache, freelist);
1671 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1673 struct page *page, *n;
1675 list_for_each_entry_safe(page, n, list, slab_list) {
1676 list_del(&page->slab_list);
1677 slab_destroy(cachep, page);
1682 * calculate_slab_order - calculate size (page order) of slabs
1683 * @cachep: pointer to the cache that is being created
1684 * @size: size of objects to be created in this cache.
1685 * @flags: slab allocation flags
1687 * Also calculates the number of objects per slab.
1689 * This could be made much more intelligent. For now, try to avoid using
1690 * high order pages for slabs. When the gfp() functions are more friendly
1691 * towards high-order requests, this should be changed.
1693 * Return: number of left-over bytes in a slab
1695 static size_t calculate_slab_order(struct kmem_cache *cachep,
1696 size_t size, slab_flags_t flags)
1698 size_t left_over = 0;
1701 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1705 num = cache_estimate(gfporder, size, flags, &remainder);
1709 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1710 if (num > SLAB_OBJ_MAX_NUM)
1713 if (flags & CFLGS_OFF_SLAB) {
1714 struct kmem_cache *freelist_cache;
1715 size_t freelist_size;
1717 freelist_size = num * sizeof(freelist_idx_t);
1718 freelist_cache = kmalloc_slab(freelist_size, 0u);
1719 if (!freelist_cache)
1723 * Needed to avoid possible looping condition
1724 * in cache_grow_begin()
1726 if (OFF_SLAB(freelist_cache))
1729 /* check if off slab has enough benefit */
1730 if (freelist_cache->size > cachep->size / 2)
1734 /* Found something acceptable - save it away */
1736 cachep->gfporder = gfporder;
1737 left_over = remainder;
1740 * A VFS-reclaimable slab tends to have most allocations
1741 * as GFP_NOFS and we really don't want to have to be allocating
1742 * higher-order pages when we are unable to shrink dcache.
1744 if (flags & SLAB_RECLAIM_ACCOUNT)
1748 * Large number of objects is good, but very large slabs are
1749 * currently bad for the gfp()s.
1751 if (gfporder >= slab_max_order)
1755 * Acceptable internal fragmentation?
1757 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1763 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1764 struct kmem_cache *cachep, int entries, int batchcount)
1768 struct array_cache __percpu *cpu_cache;
1770 size = sizeof(void *) * entries + sizeof(struct array_cache);
1771 cpu_cache = __alloc_percpu(size, sizeof(void *));
1776 for_each_possible_cpu(cpu) {
1777 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1778 entries, batchcount);
1784 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1786 if (slab_state >= FULL)
1787 return enable_cpucache(cachep, gfp);
1789 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1790 if (!cachep->cpu_cache)
1793 if (slab_state == DOWN) {
1794 /* Creation of first cache (kmem_cache). */
1795 set_up_node(kmem_cache, CACHE_CACHE);
1796 } else if (slab_state == PARTIAL) {
1797 /* For kmem_cache_node */
1798 set_up_node(cachep, SIZE_NODE);
1802 for_each_online_node(node) {
1803 cachep->node[node] = kmalloc_node(
1804 sizeof(struct kmem_cache_node), gfp, node);
1805 BUG_ON(!cachep->node[node]);
1806 kmem_cache_node_init(cachep->node[node]);
1810 cachep->node[numa_mem_id()]->next_reap =
1811 jiffies + REAPTIMEOUT_NODE +
1812 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1814 cpu_cache_get(cachep)->avail = 0;
1815 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1816 cpu_cache_get(cachep)->batchcount = 1;
1817 cpu_cache_get(cachep)->touched = 0;
1818 cachep->batchcount = 1;
1819 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1823 slab_flags_t kmem_cache_flags(unsigned int object_size,
1824 slab_flags_t flags, const char *name,
1825 void (*ctor)(void *))
1831 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1832 slab_flags_t flags, void (*ctor)(void *))
1834 struct kmem_cache *cachep;
1836 cachep = find_mergeable(size, align, flags, name, ctor);
1841 * Adjust the object sizes so that we clear
1842 * the complete object on kzalloc.
1844 cachep->object_size = max_t(int, cachep->object_size, size);
1849 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1850 size_t size, slab_flags_t flags)
1856 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1859 left = calculate_slab_order(cachep, size,
1860 flags | CFLGS_OBJFREELIST_SLAB);
1864 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1867 cachep->colour = left / cachep->colour_off;
1872 static bool set_off_slab_cache(struct kmem_cache *cachep,
1873 size_t size, slab_flags_t flags)
1880 * Always use on-slab management when SLAB_NOLEAKTRACE
1881 * to avoid recursive calls into kmemleak.
1883 if (flags & SLAB_NOLEAKTRACE)
1887 * Size is large, assume best to place the slab management obj
1888 * off-slab (should allow better packing of objs).
1890 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1895 * If the slab has been placed off-slab, and we have enough space then
1896 * move it on-slab. This is at the expense of any extra colouring.
1898 if (left >= cachep->num * sizeof(freelist_idx_t))
1901 cachep->colour = left / cachep->colour_off;
1906 static bool set_on_slab_cache(struct kmem_cache *cachep,
1907 size_t size, slab_flags_t flags)
1913 left = calculate_slab_order(cachep, size, flags);
1917 cachep->colour = left / cachep->colour_off;
1923 * __kmem_cache_create - Create a cache.
1924 * @cachep: cache management descriptor
1925 * @flags: SLAB flags
1927 * Returns a ptr to the cache on success, NULL on failure.
1928 * Cannot be called within a int, but can be interrupted.
1929 * The @ctor is run when new pages are allocated by the cache.
1933 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1934 * to catch references to uninitialised memory.
1936 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1937 * for buffer overruns.
1939 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1940 * cacheline. This can be beneficial if you're counting cycles as closely
1943 * Return: a pointer to the created cache or %NULL in case of error
1945 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1947 size_t ralign = BYTES_PER_WORD;
1950 unsigned int size = cachep->size;
1955 * Enable redzoning and last user accounting, except for caches with
1956 * large objects, if the increased size would increase the object size
1957 * above the next power of two: caches with object sizes just above a
1958 * power of two have a significant amount of internal fragmentation.
1960 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1961 2 * sizeof(unsigned long long)))
1962 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1963 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1964 flags |= SLAB_POISON;
1969 * Check that size is in terms of words. This is needed to avoid
1970 * unaligned accesses for some archs when redzoning is used, and makes
1971 * sure any on-slab bufctl's are also correctly aligned.
1973 size = ALIGN(size, BYTES_PER_WORD);
1975 if (flags & SLAB_RED_ZONE) {
1976 ralign = REDZONE_ALIGN;
1977 /* If redzoning, ensure that the second redzone is suitably
1978 * aligned, by adjusting the object size accordingly. */
1979 size = ALIGN(size, REDZONE_ALIGN);
1982 /* 3) caller mandated alignment */
1983 if (ralign < cachep->align) {
1984 ralign = cachep->align;
1986 /* disable debug if necessary */
1987 if (ralign > __alignof__(unsigned long long))
1988 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1992 cachep->align = ralign;
1993 cachep->colour_off = cache_line_size();
1994 /* Offset must be a multiple of the alignment. */
1995 if (cachep->colour_off < cachep->align)
1996 cachep->colour_off = cachep->align;
1998 if (slab_is_available())
2006 * Both debugging options require word-alignment which is calculated
2009 if (flags & SLAB_RED_ZONE) {
2010 /* add space for red zone words */
2011 cachep->obj_offset += sizeof(unsigned long long);
2012 size += 2 * sizeof(unsigned long long);
2014 if (flags & SLAB_STORE_USER) {
2015 /* user store requires one word storage behind the end of
2016 * the real object. But if the second red zone needs to be
2017 * aligned to 64 bits, we must allow that much space.
2019 if (flags & SLAB_RED_ZONE)
2020 size += REDZONE_ALIGN;
2022 size += BYTES_PER_WORD;
2026 kasan_cache_create(cachep, &size, &flags);
2028 size = ALIGN(size, cachep->align);
2030 * We should restrict the number of objects in a slab to implement
2031 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2033 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2034 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2038 * To activate debug pagealloc, off-slab management is necessary
2039 * requirement. In early phase of initialization, small sized slab
2040 * doesn't get initialized so it would not be possible. So, we need
2041 * to check size >= 256. It guarantees that all necessary small
2042 * sized slab is initialized in current slab initialization sequence.
2044 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2045 size >= 256 && cachep->object_size > cache_line_size()) {
2046 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2047 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2049 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2050 flags |= CFLGS_OFF_SLAB;
2051 cachep->obj_offset += tmp_size - size;
2059 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2060 flags |= CFLGS_OBJFREELIST_SLAB;
2064 if (set_off_slab_cache(cachep, size, flags)) {
2065 flags |= CFLGS_OFF_SLAB;
2069 if (set_on_slab_cache(cachep, size, flags))
2075 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2076 cachep->flags = flags;
2077 cachep->allocflags = __GFP_COMP;
2078 if (flags & SLAB_CACHE_DMA)
2079 cachep->allocflags |= GFP_DMA;
2080 if (flags & SLAB_CACHE_DMA32)
2081 cachep->allocflags |= GFP_DMA32;
2082 if (flags & SLAB_RECLAIM_ACCOUNT)
2083 cachep->allocflags |= __GFP_RECLAIMABLE;
2084 cachep->size = size;
2085 cachep->reciprocal_buffer_size = reciprocal_value(size);
2089 * If we're going to use the generic kernel_map_pages()
2090 * poisoning, then it's going to smash the contents of
2091 * the redzone and userword anyhow, so switch them off.
2093 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2094 (cachep->flags & SLAB_POISON) &&
2095 is_debug_pagealloc_cache(cachep))
2096 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2099 if (OFF_SLAB(cachep)) {
2100 cachep->freelist_cache =
2101 kmalloc_slab(cachep->freelist_size, 0u);
2104 err = setup_cpu_cache(cachep, gfp);
2106 __kmem_cache_release(cachep);
2114 static void check_irq_off(void)
2116 BUG_ON(!irqs_disabled());
2119 static void check_irq_on(void)
2121 BUG_ON(irqs_disabled());
2124 static void check_mutex_acquired(void)
2126 BUG_ON(!mutex_is_locked(&slab_mutex));
2129 static void check_spinlock_acquired(struct kmem_cache *cachep)
2133 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2137 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2141 assert_spin_locked(&get_node(cachep, node)->list_lock);
2146 #define check_irq_off() do { } while(0)
2147 #define check_irq_on() do { } while(0)
2148 #define check_mutex_acquired() do { } while(0)
2149 #define check_spinlock_acquired(x) do { } while(0)
2150 #define check_spinlock_acquired_node(x, y) do { } while(0)
2153 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2154 int node, bool free_all, struct list_head *list)
2158 if (!ac || !ac->avail)
2161 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2162 if (tofree > ac->avail)
2163 tofree = (ac->avail + 1) / 2;
2165 free_block(cachep, ac->entry, tofree, node, list);
2166 ac->avail -= tofree;
2167 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2170 static void do_drain(void *arg)
2172 struct kmem_cache *cachep = arg;
2173 struct array_cache *ac;
2174 int node = numa_mem_id();
2175 struct kmem_cache_node *n;
2179 ac = cpu_cache_get(cachep);
2180 n = get_node(cachep, node);
2181 spin_lock(&n->list_lock);
2182 free_block(cachep, ac->entry, ac->avail, node, &list);
2183 spin_unlock(&n->list_lock);
2184 slabs_destroy(cachep, &list);
2188 static void drain_cpu_caches(struct kmem_cache *cachep)
2190 struct kmem_cache_node *n;
2194 on_each_cpu(do_drain, cachep, 1);
2196 for_each_kmem_cache_node(cachep, node, n)
2198 drain_alien_cache(cachep, n->alien);
2200 for_each_kmem_cache_node(cachep, node, n) {
2201 spin_lock_irq(&n->list_lock);
2202 drain_array_locked(cachep, n->shared, node, true, &list);
2203 spin_unlock_irq(&n->list_lock);
2205 slabs_destroy(cachep, &list);
2210 * Remove slabs from the list of free slabs.
2211 * Specify the number of slabs to drain in tofree.
2213 * Returns the actual number of slabs released.
2215 static int drain_freelist(struct kmem_cache *cache,
2216 struct kmem_cache_node *n, int tofree)
2218 struct list_head *p;
2223 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2225 spin_lock_irq(&n->list_lock);
2226 p = n->slabs_free.prev;
2227 if (p == &n->slabs_free) {
2228 spin_unlock_irq(&n->list_lock);
2232 page = list_entry(p, struct page, slab_list);
2233 list_del(&page->slab_list);
2237 * Safe to drop the lock. The slab is no longer linked
2240 n->free_objects -= cache->num;
2241 spin_unlock_irq(&n->list_lock);
2242 slab_destroy(cache, page);
2249 bool __kmem_cache_empty(struct kmem_cache *s)
2252 struct kmem_cache_node *n;
2254 for_each_kmem_cache_node(s, node, n)
2255 if (!list_empty(&n->slabs_full) ||
2256 !list_empty(&n->slabs_partial))
2261 int __kmem_cache_shrink(struct kmem_cache *cachep)
2265 struct kmem_cache_node *n;
2267 drain_cpu_caches(cachep);
2270 for_each_kmem_cache_node(cachep, node, n) {
2271 drain_freelist(cachep, n, INT_MAX);
2273 ret += !list_empty(&n->slabs_full) ||
2274 !list_empty(&n->slabs_partial);
2276 return (ret ? 1 : 0);
2280 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2282 __kmem_cache_shrink(cachep);
2286 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2288 return __kmem_cache_shrink(cachep);
2291 void __kmem_cache_release(struct kmem_cache *cachep)
2294 struct kmem_cache_node *n;
2296 cache_random_seq_destroy(cachep);
2298 free_percpu(cachep->cpu_cache);
2300 /* NUMA: free the node structures */
2301 for_each_kmem_cache_node(cachep, i, n) {
2303 free_alien_cache(n->alien);
2305 cachep->node[i] = NULL;
2310 * Get the memory for a slab management obj.
2312 * For a slab cache when the slab descriptor is off-slab, the
2313 * slab descriptor can't come from the same cache which is being created,
2314 * Because if it is the case, that means we defer the creation of
2315 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2316 * And we eventually call down to __kmem_cache_create(), which
2317 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2318 * This is a "chicken-and-egg" problem.
2320 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2321 * which are all initialized during kmem_cache_init().
2323 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2324 struct page *page, int colour_off,
2325 gfp_t local_flags, int nodeid)
2328 void *addr = page_address(page);
2330 page->s_mem = addr + colour_off;
2333 if (OBJFREELIST_SLAB(cachep))
2335 else if (OFF_SLAB(cachep)) {
2336 /* Slab management obj is off-slab. */
2337 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2338 local_flags, nodeid);
2342 /* We will use last bytes at the slab for freelist */
2343 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2344 cachep->freelist_size;
2350 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2352 return ((freelist_idx_t *)page->freelist)[idx];
2355 static inline void set_free_obj(struct page *page,
2356 unsigned int idx, freelist_idx_t val)
2358 ((freelist_idx_t *)(page->freelist))[idx] = val;
2361 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2366 for (i = 0; i < cachep->num; i++) {
2367 void *objp = index_to_obj(cachep, page, i);
2369 if (cachep->flags & SLAB_STORE_USER)
2370 *dbg_userword(cachep, objp) = NULL;
2372 if (cachep->flags & SLAB_RED_ZONE) {
2373 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2374 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2377 * Constructors are not allowed to allocate memory from the same
2378 * cache which they are a constructor for. Otherwise, deadlock.
2379 * They must also be threaded.
2381 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2382 kasan_unpoison_object_data(cachep,
2383 objp + obj_offset(cachep));
2384 cachep->ctor(objp + obj_offset(cachep));
2385 kasan_poison_object_data(
2386 cachep, objp + obj_offset(cachep));
2389 if (cachep->flags & SLAB_RED_ZONE) {
2390 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2391 slab_error(cachep, "constructor overwrote the end of an object");
2392 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2393 slab_error(cachep, "constructor overwrote the start of an object");
2395 /* need to poison the objs? */
2396 if (cachep->flags & SLAB_POISON) {
2397 poison_obj(cachep, objp, POISON_FREE);
2398 slab_kernel_map(cachep, objp, 0);
2404 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2405 /* Hold information during a freelist initialization */
2406 union freelist_init_state {
2412 struct rnd_state rnd_state;
2416 * Initialize the state based on the randomization methode available.
2417 * return true if the pre-computed list is available, false otherwize.
2419 static bool freelist_state_initialize(union freelist_init_state *state,
2420 struct kmem_cache *cachep,
2426 /* Use best entropy available to define a random shift */
2427 rand = get_random_int();
2429 /* Use a random state if the pre-computed list is not available */
2430 if (!cachep->random_seq) {
2431 prandom_seed_state(&state->rnd_state, rand);
2434 state->list = cachep->random_seq;
2435 state->count = count;
2436 state->pos = rand % count;
2442 /* Get the next entry on the list and randomize it using a random shift */
2443 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2445 if (state->pos >= state->count)
2447 return state->list[state->pos++];
2450 /* Swap two freelist entries */
2451 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2453 swap(((freelist_idx_t *)page->freelist)[a],
2454 ((freelist_idx_t *)page->freelist)[b]);
2458 * Shuffle the freelist initialization state based on pre-computed lists.
2459 * return true if the list was successfully shuffled, false otherwise.
2461 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2463 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2464 union freelist_init_state state;
2470 precomputed = freelist_state_initialize(&state, cachep, count);
2472 /* Take a random entry as the objfreelist */
2473 if (OBJFREELIST_SLAB(cachep)) {
2475 objfreelist = count - 1;
2477 objfreelist = next_random_slot(&state);
2478 page->freelist = index_to_obj(cachep, page, objfreelist) +
2484 * On early boot, generate the list dynamically.
2485 * Later use a pre-computed list for speed.
2488 for (i = 0; i < count; i++)
2489 set_free_obj(page, i, i);
2491 /* Fisher-Yates shuffle */
2492 for (i = count - 1; i > 0; i--) {
2493 rand = prandom_u32_state(&state.rnd_state);
2495 swap_free_obj(page, i, rand);
2498 for (i = 0; i < count; i++)
2499 set_free_obj(page, i, next_random_slot(&state));
2502 if (OBJFREELIST_SLAB(cachep))
2503 set_free_obj(page, cachep->num - 1, objfreelist);
2508 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2513 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2515 static void cache_init_objs(struct kmem_cache *cachep,
2522 cache_init_objs_debug(cachep, page);
2524 /* Try to randomize the freelist if enabled */
2525 shuffled = shuffle_freelist(cachep, page);
2527 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2528 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2532 for (i = 0; i < cachep->num; i++) {
2533 objp = index_to_obj(cachep, page, i);
2534 objp = kasan_init_slab_obj(cachep, objp);
2536 /* constructor could break poison info */
2537 if (DEBUG == 0 && cachep->ctor) {
2538 kasan_unpoison_object_data(cachep, objp);
2540 kasan_poison_object_data(cachep, objp);
2544 set_free_obj(page, i, i);
2548 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2552 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2556 if (cachep->flags & SLAB_STORE_USER)
2557 set_store_user_dirty(cachep);
2563 static void slab_put_obj(struct kmem_cache *cachep,
2564 struct page *page, void *objp)
2566 unsigned int objnr = obj_to_index(cachep, page, objp);
2570 /* Verify double free bug */
2571 for (i = page->active; i < cachep->num; i++) {
2572 if (get_free_obj(page, i) == objnr) {
2573 pr_err("slab: double free detected in cache '%s', objp %px\n",
2574 cachep->name, objp);
2580 if (!page->freelist)
2581 page->freelist = objp + obj_offset(cachep);
2583 set_free_obj(page, page->active, objnr);
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
2589 * virtual address for kfree, ksize, and slab debugging.
2591 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2594 page->slab_cache = cache;
2595 page->freelist = freelist;
2599 * Grow (by 1) the number of slabs within a cache. This is called by
2600 * kmem_cache_alloc() when there are no active objs left in a cache.
2602 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2603 gfp_t flags, int nodeid)
2609 struct kmem_cache_node *n;
2613 * Be lazy and only check for valid flags here, keeping it out of the
2614 * critical path in kmem_cache_alloc().
2616 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2617 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2618 flags &= ~GFP_SLAB_BUG_MASK;
2619 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2620 invalid_mask, &invalid_mask, flags, &flags);
2623 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2624 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2627 if (gfpflags_allow_blocking(local_flags))
2631 * Get mem for the objs. Attempt to allocate a physical page from
2634 page = kmem_getpages(cachep, local_flags, nodeid);
2638 page_node = page_to_nid(page);
2639 n = get_node(cachep, page_node);
2641 /* Get colour for the slab, and cal the next value. */
2643 if (n->colour_next >= cachep->colour)
2646 offset = n->colour_next;
2647 if (offset >= cachep->colour)
2650 offset *= cachep->colour_off;
2653 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2654 * page_address() in the latter returns a non-tagged pointer,
2655 * as it should be for slab pages.
2657 kasan_poison_slab(page);
2659 /* Get slab management. */
2660 freelist = alloc_slabmgmt(cachep, page, offset,
2661 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2662 if (OFF_SLAB(cachep) && !freelist)
2665 slab_map_pages(cachep, page, freelist);
2667 cache_init_objs(cachep, page);
2669 if (gfpflags_allow_blocking(local_flags))
2670 local_irq_disable();
2675 kmem_freepages(cachep, page);
2677 if (gfpflags_allow_blocking(local_flags))
2678 local_irq_disable();
2682 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2684 struct kmem_cache_node *n;
2692 INIT_LIST_HEAD(&page->slab_list);
2693 n = get_node(cachep, page_to_nid(page));
2695 spin_lock(&n->list_lock);
2697 if (!page->active) {
2698 list_add_tail(&page->slab_list, &n->slabs_free);
2701 fixup_slab_list(cachep, n, page, &list);
2703 STATS_INC_GROWN(cachep);
2704 n->free_objects += cachep->num - page->active;
2705 spin_unlock(&n->list_lock);
2707 fixup_objfreelist_debug(cachep, &list);
2713 * Perform extra freeing checks:
2714 * - detect bad pointers.
2715 * - POISON/RED_ZONE checking
2717 static void kfree_debugcheck(const void *objp)
2719 if (!virt_addr_valid(objp)) {
2720 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2721 (unsigned long)objp);
2726 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2728 unsigned long long redzone1, redzone2;
2730 redzone1 = *dbg_redzone1(cache, obj);
2731 redzone2 = *dbg_redzone2(cache, obj);
2736 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2739 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2740 slab_error(cache, "double free detected");
2742 slab_error(cache, "memory outside object was overwritten");
2744 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2745 obj, redzone1, redzone2);
2748 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2749 unsigned long caller)
2754 BUG_ON(virt_to_cache(objp) != cachep);
2756 objp -= obj_offset(cachep);
2757 kfree_debugcheck(objp);
2758 page = virt_to_head_page(objp);
2760 if (cachep->flags & SLAB_RED_ZONE) {
2761 verify_redzone_free(cachep, objp);
2762 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2763 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2765 if (cachep->flags & SLAB_STORE_USER) {
2766 set_store_user_dirty(cachep);
2767 *dbg_userword(cachep, objp) = (void *)caller;
2770 objnr = obj_to_index(cachep, page, objp);
2772 BUG_ON(objnr >= cachep->num);
2773 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2775 if (cachep->flags & SLAB_POISON) {
2776 poison_obj(cachep, objp, POISON_FREE);
2777 slab_kernel_map(cachep, objp, 0);
2783 #define kfree_debugcheck(x) do { } while(0)
2784 #define cache_free_debugcheck(x,objp,z) (objp)
2787 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2795 objp = next - obj_offset(cachep);
2796 next = *(void **)next;
2797 poison_obj(cachep, objp, POISON_FREE);
2802 static inline void fixup_slab_list(struct kmem_cache *cachep,
2803 struct kmem_cache_node *n, struct page *page,
2806 /* move slabp to correct slabp list: */
2807 list_del(&page->slab_list);
2808 if (page->active == cachep->num) {
2809 list_add(&page->slab_list, &n->slabs_full);
2810 if (OBJFREELIST_SLAB(cachep)) {
2812 /* Poisoning will be done without holding the lock */
2813 if (cachep->flags & SLAB_POISON) {
2814 void **objp = page->freelist;
2820 page->freelist = NULL;
2823 list_add(&page->slab_list, &n->slabs_partial);
2826 /* Try to find non-pfmemalloc slab if needed */
2827 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2828 struct page *page, bool pfmemalloc)
2836 if (!PageSlabPfmemalloc(page))
2839 /* No need to keep pfmemalloc slab if we have enough free objects */
2840 if (n->free_objects > n->free_limit) {
2841 ClearPageSlabPfmemalloc(page);
2845 /* Move pfmemalloc slab to the end of list to speed up next search */
2846 list_del(&page->slab_list);
2847 if (!page->active) {
2848 list_add_tail(&page->slab_list, &n->slabs_free);
2851 list_add_tail(&page->slab_list, &n->slabs_partial);
2853 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2854 if (!PageSlabPfmemalloc(page))
2858 n->free_touched = 1;
2859 list_for_each_entry(page, &n->slabs_free, slab_list) {
2860 if (!PageSlabPfmemalloc(page)) {
2869 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2873 assert_spin_locked(&n->list_lock);
2874 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2877 n->free_touched = 1;
2878 page = list_first_entry_or_null(&n->slabs_free, struct page,
2884 if (sk_memalloc_socks())
2885 page = get_valid_first_slab(n, page, pfmemalloc);
2890 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2891 struct kmem_cache_node *n, gfp_t flags)
2897 if (!gfp_pfmemalloc_allowed(flags))
2900 spin_lock(&n->list_lock);
2901 page = get_first_slab(n, true);
2903 spin_unlock(&n->list_lock);
2907 obj = slab_get_obj(cachep, page);
2910 fixup_slab_list(cachep, n, page, &list);
2912 spin_unlock(&n->list_lock);
2913 fixup_objfreelist_debug(cachep, &list);
2919 * Slab list should be fixed up by fixup_slab_list() for existing slab
2920 * or cache_grow_end() for new slab
2922 static __always_inline int alloc_block(struct kmem_cache *cachep,
2923 struct array_cache *ac, struct page *page, int batchcount)
2926 * There must be at least one object available for
2929 BUG_ON(page->active >= cachep->num);
2931 while (page->active < cachep->num && batchcount--) {
2932 STATS_INC_ALLOCED(cachep);
2933 STATS_INC_ACTIVE(cachep);
2934 STATS_SET_HIGH(cachep);
2936 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2942 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2945 struct kmem_cache_node *n;
2946 struct array_cache *ac, *shared;
2952 node = numa_mem_id();
2954 ac = cpu_cache_get(cachep);
2955 batchcount = ac->batchcount;
2956 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2958 * If there was little recent activity on this cache, then
2959 * perform only a partial refill. Otherwise we could generate
2962 batchcount = BATCHREFILL_LIMIT;
2964 n = get_node(cachep, node);
2966 BUG_ON(ac->avail > 0 || !n);
2967 shared = READ_ONCE(n->shared);
2968 if (!n->free_objects && (!shared || !shared->avail))
2971 spin_lock(&n->list_lock);
2972 shared = READ_ONCE(n->shared);
2974 /* See if we can refill from the shared array */
2975 if (shared && transfer_objects(ac, shared, batchcount)) {
2976 shared->touched = 1;
2980 while (batchcount > 0) {
2981 /* Get slab alloc is to come from. */
2982 page = get_first_slab(n, false);
2986 check_spinlock_acquired(cachep);
2988 batchcount = alloc_block(cachep, ac, page, batchcount);
2989 fixup_slab_list(cachep, n, page, &list);
2993 n->free_objects -= ac->avail;
2995 spin_unlock(&n->list_lock);
2996 fixup_objfreelist_debug(cachep, &list);
2999 if (unlikely(!ac->avail)) {
3000 /* Check if we can use obj in pfmemalloc slab */
3001 if (sk_memalloc_socks()) {
3002 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3008 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3011 * cache_grow_begin() can reenable interrupts,
3012 * then ac could change.
3014 ac = cpu_cache_get(cachep);
3015 if (!ac->avail && page)
3016 alloc_block(cachep, ac, page, batchcount);
3017 cache_grow_end(cachep, page);
3024 return ac->entry[--ac->avail];
3027 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3030 might_sleep_if(gfpflags_allow_blocking(flags));
3034 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035 gfp_t flags, void *objp, unsigned long caller)
3037 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3040 if (cachep->flags & SLAB_POISON) {
3041 check_poison_obj(cachep, objp);
3042 slab_kernel_map(cachep, objp, 1);
3043 poison_obj(cachep, objp, POISON_INUSE);
3045 if (cachep->flags & SLAB_STORE_USER)
3046 *dbg_userword(cachep, objp) = (void *)caller;
3048 if (cachep->flags & SLAB_RED_ZONE) {
3049 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3050 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3051 slab_error(cachep, "double free, or memory outside object was overwritten");
3052 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3053 objp, *dbg_redzone1(cachep, objp),
3054 *dbg_redzone2(cachep, objp));
3056 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3057 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3060 objp += obj_offset(cachep);
3061 if (cachep->ctor && cachep->flags & SLAB_POISON)
3063 if (ARCH_SLAB_MINALIGN &&
3064 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3065 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3066 objp, (int)ARCH_SLAB_MINALIGN);
3071 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3074 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3077 struct array_cache *ac;
3081 ac = cpu_cache_get(cachep);
3082 if (likely(ac->avail)) {
3084 objp = ac->entry[--ac->avail];
3086 STATS_INC_ALLOCHIT(cachep);
3090 STATS_INC_ALLOCMISS(cachep);
3091 objp = cache_alloc_refill(cachep, flags);
3093 * the 'ac' may be updated by cache_alloc_refill(),
3094 * and kmemleak_erase() requires its correct value.
3096 ac = cpu_cache_get(cachep);
3100 * To avoid a false negative, if an object that is in one of the
3101 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3102 * treat the array pointers as a reference to the object.
3105 kmemleak_erase(&ac->entry[ac->avail]);
3111 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3113 * If we are in_interrupt, then process context, including cpusets and
3114 * mempolicy, may not apply and should not be used for allocation policy.
3116 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3118 int nid_alloc, nid_here;
3120 if (in_interrupt() || (flags & __GFP_THISNODE))
3122 nid_alloc = nid_here = numa_mem_id();
3123 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3124 nid_alloc = cpuset_slab_spread_node();
3125 else if (current->mempolicy)
3126 nid_alloc = mempolicy_slab_node();
3127 if (nid_alloc != nid_here)
3128 return ____cache_alloc_node(cachep, flags, nid_alloc);
3133 * Fallback function if there was no memory available and no objects on a
3134 * certain node and fall back is permitted. First we scan all the
3135 * available node for available objects. If that fails then we
3136 * perform an allocation without specifying a node. This allows the page
3137 * allocator to do its reclaim / fallback magic. We then insert the
3138 * slab into the proper nodelist and then allocate from it.
3140 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3142 struct zonelist *zonelist;
3145 enum zone_type high_zoneidx = gfp_zone(flags);
3149 unsigned int cpuset_mems_cookie;
3151 if (flags & __GFP_THISNODE)
3155 cpuset_mems_cookie = read_mems_allowed_begin();
3156 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3160 * Look through allowed nodes for objects available
3161 * from existing per node queues.
3163 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3164 nid = zone_to_nid(zone);
3166 if (cpuset_zone_allowed(zone, flags) &&
3167 get_node(cache, nid) &&
3168 get_node(cache, nid)->free_objects) {
3169 obj = ____cache_alloc_node(cache,
3170 gfp_exact_node(flags), nid);
3178 * This allocation will be performed within the constraints
3179 * of the current cpuset / memory policy requirements.
3180 * We may trigger various forms of reclaim on the allowed
3181 * set and go into memory reserves if necessary.
3183 page = cache_grow_begin(cache, flags, numa_mem_id());
3184 cache_grow_end(cache, page);
3186 nid = page_to_nid(page);
3187 obj = ____cache_alloc_node(cache,
3188 gfp_exact_node(flags), nid);
3191 * Another processor may allocate the objects in
3192 * the slab since we are not holding any locks.
3199 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3205 * A interface to enable slab creation on nodeid
3207 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3211 struct kmem_cache_node *n;
3215 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3216 n = get_node(cachep, nodeid);
3220 spin_lock(&n->list_lock);
3221 page = get_first_slab(n, false);
3225 check_spinlock_acquired_node(cachep, nodeid);
3227 STATS_INC_NODEALLOCS(cachep);
3228 STATS_INC_ACTIVE(cachep);
3229 STATS_SET_HIGH(cachep);
3231 BUG_ON(page->active == cachep->num);
3233 obj = slab_get_obj(cachep, page);
3236 fixup_slab_list(cachep, n, page, &list);
3238 spin_unlock(&n->list_lock);
3239 fixup_objfreelist_debug(cachep, &list);
3243 spin_unlock(&n->list_lock);
3244 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3246 /* This slab isn't counted yet so don't update free_objects */
3247 obj = slab_get_obj(cachep, page);
3249 cache_grow_end(cachep, page);
3251 return obj ? obj : fallback_alloc(cachep, flags);
3254 static __always_inline void *
3255 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3256 unsigned long caller)
3258 unsigned long save_flags;
3260 int slab_node = numa_mem_id();
3262 flags &= gfp_allowed_mask;
3263 cachep = slab_pre_alloc_hook(cachep, flags);
3264 if (unlikely(!cachep))
3267 cache_alloc_debugcheck_before(cachep, flags);
3268 local_irq_save(save_flags);
3270 if (nodeid == NUMA_NO_NODE)
3273 if (unlikely(!get_node(cachep, nodeid))) {
3274 /* Node not bootstrapped yet */
3275 ptr = fallback_alloc(cachep, flags);
3279 if (nodeid == slab_node) {
3281 * Use the locally cached objects if possible.
3282 * However ____cache_alloc does not allow fallback
3283 * to other nodes. It may fail while we still have
3284 * objects on other nodes available.
3286 ptr = ____cache_alloc(cachep, flags);
3290 /* ___cache_alloc_node can fall back to other nodes */
3291 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3293 local_irq_restore(save_flags);
3294 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3296 if (unlikely(flags & __GFP_ZERO) && ptr)
3297 memset(ptr, 0, cachep->object_size);
3299 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3303 static __always_inline void *
3304 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3308 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3309 objp = alternate_node_alloc(cache, flags);
3313 objp = ____cache_alloc(cache, flags);
3316 * We may just have run out of memory on the local node.
3317 * ____cache_alloc_node() knows how to locate memory on other nodes
3320 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3327 static __always_inline void *
3328 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3330 return ____cache_alloc(cachep, flags);
3333 #endif /* CONFIG_NUMA */
3335 static __always_inline void *
3336 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3338 unsigned long save_flags;
3341 flags &= gfp_allowed_mask;
3342 cachep = slab_pre_alloc_hook(cachep, flags);
3343 if (unlikely(!cachep))
3346 cache_alloc_debugcheck_before(cachep, flags);
3347 local_irq_save(save_flags);
3348 objp = __do_cache_alloc(cachep, flags);
3349 local_irq_restore(save_flags);
3350 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3353 if (unlikely(flags & __GFP_ZERO) && objp)
3354 memset(objp, 0, cachep->object_size);
3356 slab_post_alloc_hook(cachep, flags, 1, &objp);
3361 * Caller needs to acquire correct kmem_cache_node's list_lock
3362 * @list: List of detached free slabs should be freed by caller
3364 static void free_block(struct kmem_cache *cachep, void **objpp,
3365 int nr_objects, int node, struct list_head *list)
3368 struct kmem_cache_node *n = get_node(cachep, node);
3371 n->free_objects += nr_objects;
3373 for (i = 0; i < nr_objects; i++) {
3379 page = virt_to_head_page(objp);
3380 list_del(&page->slab_list);
3381 check_spinlock_acquired_node(cachep, node);
3382 slab_put_obj(cachep, page, objp);
3383 STATS_DEC_ACTIVE(cachep);
3385 /* fixup slab chains */
3386 if (page->active == 0) {
3387 list_add(&page->slab_list, &n->slabs_free);
3390 /* Unconditionally move a slab to the end of the
3391 * partial list on free - maximum time for the
3392 * other objects to be freed, too.
3394 list_add_tail(&page->slab_list, &n->slabs_partial);
3398 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3399 n->free_objects -= cachep->num;
3401 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3402 list_move(&page->slab_list, list);
3408 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3411 struct kmem_cache_node *n;
3412 int node = numa_mem_id();
3415 batchcount = ac->batchcount;
3418 n = get_node(cachep, node);
3419 spin_lock(&n->list_lock);
3421 struct array_cache *shared_array = n->shared;
3422 int max = shared_array->limit - shared_array->avail;
3424 if (batchcount > max)
3426 memcpy(&(shared_array->entry[shared_array->avail]),
3427 ac->entry, sizeof(void *) * batchcount);
3428 shared_array->avail += batchcount;
3433 free_block(cachep, ac->entry, batchcount, node, &list);
3440 list_for_each_entry(page, &n->slabs_free, slab_list) {
3441 BUG_ON(page->active);
3445 STATS_SET_FREEABLE(cachep, i);
3448 spin_unlock(&n->list_lock);
3449 slabs_destroy(cachep, &list);
3450 ac->avail -= batchcount;
3451 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3455 * Release an obj back to its cache. If the obj has a constructed state, it must
3456 * be in this state _before_ it is released. Called with disabled ints.
3458 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3459 unsigned long caller)
3461 /* Put the object into the quarantine, don't touch it for now. */
3462 if (kasan_slab_free(cachep, objp, _RET_IP_))
3465 ___cache_free(cachep, objp, caller);
3468 void ___cache_free(struct kmem_cache *cachep, void *objp,
3469 unsigned long caller)
3471 struct array_cache *ac = cpu_cache_get(cachep);
3474 kmemleak_free_recursive(objp, cachep->flags);
3475 objp = cache_free_debugcheck(cachep, objp, caller);
3478 * Skip calling cache_free_alien() when the platform is not numa.
3479 * This will avoid cache misses that happen while accessing slabp (which
3480 * is per page memory reference) to get nodeid. Instead use a global
3481 * variable to skip the call, which is mostly likely to be present in
3484 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3487 if (ac->avail < ac->limit) {
3488 STATS_INC_FREEHIT(cachep);
3490 STATS_INC_FREEMISS(cachep);
3491 cache_flusharray(cachep, ac);
3494 if (sk_memalloc_socks()) {
3495 struct page *page = virt_to_head_page(objp);
3497 if (unlikely(PageSlabPfmemalloc(page))) {
3498 cache_free_pfmemalloc(cachep, page, objp);
3503 ac->entry[ac->avail++] = objp;
3507 * kmem_cache_alloc - Allocate an object
3508 * @cachep: The cache to allocate from.
3509 * @flags: See kmalloc().
3511 * Allocate an object from this cache. The flags are only relevant
3512 * if the cache has no available objects.
3514 * Return: pointer to the new object or %NULL in case of error
3516 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3518 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3520 trace_kmem_cache_alloc(_RET_IP_, ret,
3521 cachep->object_size, cachep->size, flags);
3525 EXPORT_SYMBOL(kmem_cache_alloc);
3527 static __always_inline void
3528 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3529 size_t size, void **p, unsigned long caller)
3533 for (i = 0; i < size; i++)
3534 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3537 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3542 s = slab_pre_alloc_hook(s, flags);
3546 cache_alloc_debugcheck_before(s, flags);
3548 local_irq_disable();
3549 for (i = 0; i < size; i++) {
3550 void *objp = __do_cache_alloc(s, flags);
3552 if (unlikely(!objp))
3558 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3560 /* Clear memory outside IRQ disabled section */
3561 if (unlikely(flags & __GFP_ZERO))
3562 for (i = 0; i < size; i++)
3563 memset(p[i], 0, s->object_size);
3565 slab_post_alloc_hook(s, flags, size, p);
3566 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3570 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3571 slab_post_alloc_hook(s, flags, i, p);
3572 __kmem_cache_free_bulk(s, i, p);
3575 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3577 #ifdef CONFIG_TRACING
3579 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3583 ret = slab_alloc(cachep, flags, _RET_IP_);
3585 ret = kasan_kmalloc(cachep, ret, size, flags);
3586 trace_kmalloc(_RET_IP_, ret,
3587 size, cachep->size, flags);
3590 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3595 * kmem_cache_alloc_node - Allocate an object on the specified node
3596 * @cachep: The cache to allocate from.
3597 * @flags: See kmalloc().
3598 * @nodeid: node number of the target node.
3600 * Identical to kmem_cache_alloc but it will allocate memory on the given
3601 * node, which can improve the performance for cpu bound structures.
3603 * Fallback to other node is possible if __GFP_THISNODE is not set.
3605 * Return: pointer to the new object or %NULL in case of error
3607 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3609 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3611 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3612 cachep->object_size, cachep->size,
3617 EXPORT_SYMBOL(kmem_cache_alloc_node);
3619 #ifdef CONFIG_TRACING
3620 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3627 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3629 ret = kasan_kmalloc(cachep, ret, size, flags);
3630 trace_kmalloc_node(_RET_IP_, ret,
3635 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3638 static __always_inline void *
3639 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3641 struct kmem_cache *cachep;
3644 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3646 cachep = kmalloc_slab(size, flags);
3647 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3649 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3650 ret = kasan_kmalloc(cachep, ret, size, flags);
3655 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3657 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3659 EXPORT_SYMBOL(__kmalloc_node);
3661 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3662 int node, unsigned long caller)
3664 return __do_kmalloc_node(size, flags, node, caller);
3666 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3667 #endif /* CONFIG_NUMA */
3670 * __do_kmalloc - allocate memory
3671 * @size: how many bytes of memory are required.
3672 * @flags: the type of memory to allocate (see kmalloc).
3673 * @caller: function caller for debug tracking of the caller
3675 * Return: pointer to the allocated memory or %NULL in case of error
3677 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3678 unsigned long caller)
3680 struct kmem_cache *cachep;
3683 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3685 cachep = kmalloc_slab(size, flags);
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 ret = slab_alloc(cachep, flags, caller);
3690 ret = kasan_kmalloc(cachep, ret, size, flags);
3691 trace_kmalloc(caller, ret,
3692 size, cachep->size, flags);
3697 void *__kmalloc(size_t size, gfp_t flags)
3699 return __do_kmalloc(size, flags, _RET_IP_);
3701 EXPORT_SYMBOL(__kmalloc);
3703 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3705 return __do_kmalloc(size, flags, caller);
3707 EXPORT_SYMBOL(__kmalloc_track_caller);
3710 * kmem_cache_free - Deallocate an object
3711 * @cachep: The cache the allocation was from.
3712 * @objp: The previously allocated object.
3714 * Free an object which was previously allocated from this
3717 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3719 unsigned long flags;
3720 cachep = cache_from_obj(cachep, objp);
3724 local_irq_save(flags);
3725 debug_check_no_locks_freed(objp, cachep->object_size);
3726 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3727 debug_check_no_obj_freed(objp, cachep->object_size);
3728 __cache_free(cachep, objp, _RET_IP_);
3729 local_irq_restore(flags);
3731 trace_kmem_cache_free(_RET_IP_, objp);
3733 EXPORT_SYMBOL(kmem_cache_free);
3735 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3737 struct kmem_cache *s;
3740 local_irq_disable();
3741 for (i = 0; i < size; i++) {
3744 if (!orig_s) /* called via kfree_bulk */
3745 s = virt_to_cache(objp);
3747 s = cache_from_obj(orig_s, objp);
3749 debug_check_no_locks_freed(objp, s->object_size);
3750 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3751 debug_check_no_obj_freed(objp, s->object_size);
3753 __cache_free(s, objp, _RET_IP_);
3757 /* FIXME: add tracing */
3759 EXPORT_SYMBOL(kmem_cache_free_bulk);
3762 * kfree - free previously allocated memory
3763 * @objp: pointer returned by kmalloc.
3765 * If @objp is NULL, no operation is performed.
3767 * Don't free memory not originally allocated by kmalloc()
3768 * or you will run into trouble.
3770 void kfree(const void *objp)
3772 struct kmem_cache *c;
3773 unsigned long flags;
3775 trace_kfree(_RET_IP_, objp);
3777 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3779 local_irq_save(flags);
3780 kfree_debugcheck(objp);
3781 c = virt_to_cache(objp);
3782 debug_check_no_locks_freed(objp, c->object_size);
3784 debug_check_no_obj_freed(objp, c->object_size);
3785 __cache_free(c, (void *)objp, _RET_IP_);
3786 local_irq_restore(flags);
3788 EXPORT_SYMBOL(kfree);
3791 * This initializes kmem_cache_node or resizes various caches for all nodes.
3793 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3797 struct kmem_cache_node *n;
3799 for_each_online_node(node) {
3800 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3809 if (!cachep->list.next) {
3810 /* Cache is not active yet. Roll back what we did */
3813 n = get_node(cachep, node);
3816 free_alien_cache(n->alien);
3818 cachep->node[node] = NULL;
3826 /* Always called with the slab_mutex held */
3827 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3828 int batchcount, int shared, gfp_t gfp)
3830 struct array_cache __percpu *cpu_cache, *prev;
3833 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3837 prev = cachep->cpu_cache;
3838 cachep->cpu_cache = cpu_cache;
3840 * Without a previous cpu_cache there's no need to synchronize remote
3841 * cpus, so skip the IPIs.
3844 kick_all_cpus_sync();
3847 cachep->batchcount = batchcount;
3848 cachep->limit = limit;
3849 cachep->shared = shared;
3854 for_each_online_cpu(cpu) {
3857 struct kmem_cache_node *n;
3858 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3860 node = cpu_to_mem(cpu);
3861 n = get_node(cachep, node);
3862 spin_lock_irq(&n->list_lock);
3863 free_block(cachep, ac->entry, ac->avail, node, &list);
3864 spin_unlock_irq(&n->list_lock);
3865 slabs_destroy(cachep, &list);
3870 return setup_kmem_cache_nodes(cachep, gfp);
3873 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3874 int batchcount, int shared, gfp_t gfp)
3877 struct kmem_cache *c;
3879 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3881 if (slab_state < FULL)
3884 if ((ret < 0) || !is_root_cache(cachep))
3887 lockdep_assert_held(&slab_mutex);
3888 for_each_memcg_cache(c, cachep) {
3889 /* return value determined by the root cache only */
3890 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3896 /* Called with slab_mutex held always */
3897 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3904 err = cache_random_seq_create(cachep, cachep->num, gfp);
3908 if (!is_root_cache(cachep)) {
3909 struct kmem_cache *root = memcg_root_cache(cachep);
3910 limit = root->limit;
3911 shared = root->shared;
3912 batchcount = root->batchcount;
3915 if (limit && shared && batchcount)
3918 * The head array serves three purposes:
3919 * - create a LIFO ordering, i.e. return objects that are cache-warm
3920 * - reduce the number of spinlock operations.
3921 * - reduce the number of linked list operations on the slab and
3922 * bufctl chains: array operations are cheaper.
3923 * The numbers are guessed, we should auto-tune as described by
3926 if (cachep->size > 131072)
3928 else if (cachep->size > PAGE_SIZE)
3930 else if (cachep->size > 1024)
3932 else if (cachep->size > 256)
3938 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3939 * allocation behaviour: Most allocs on one cpu, most free operations
3940 * on another cpu. For these cases, an efficient object passing between
3941 * cpus is necessary. This is provided by a shared array. The array
3942 * replaces Bonwick's magazine layer.
3943 * On uniprocessor, it's functionally equivalent (but less efficient)
3944 * to a larger limit. Thus disabled by default.
3947 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3952 * With debugging enabled, large batchcount lead to excessively long
3953 * periods with disabled local interrupts. Limit the batchcount
3958 batchcount = (limit + 1) / 2;
3960 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3963 pr_err("enable_cpucache failed for %s, error %d\n",
3964 cachep->name, -err);
3969 * Drain an array if it contains any elements taking the node lock only if
3970 * necessary. Note that the node listlock also protects the array_cache
3971 * if drain_array() is used on the shared array.
3973 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3974 struct array_cache *ac, int node)
3978 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3979 check_mutex_acquired();
3981 if (!ac || !ac->avail)
3989 spin_lock_irq(&n->list_lock);
3990 drain_array_locked(cachep, ac, node, false, &list);
3991 spin_unlock_irq(&n->list_lock);
3993 slabs_destroy(cachep, &list);
3997 * cache_reap - Reclaim memory from caches.
3998 * @w: work descriptor
4000 * Called from workqueue/eventd every few seconds.
4002 * - clear the per-cpu caches for this CPU.
4003 * - return freeable pages to the main free memory pool.
4005 * If we cannot acquire the cache chain mutex then just give up - we'll try
4006 * again on the next iteration.
4008 static void cache_reap(struct work_struct *w)
4010 struct kmem_cache *searchp;
4011 struct kmem_cache_node *n;
4012 int node = numa_mem_id();
4013 struct delayed_work *work = to_delayed_work(w);
4015 if (!mutex_trylock(&slab_mutex))
4016 /* Give up. Setup the next iteration. */
4019 list_for_each_entry(searchp, &slab_caches, list) {
4023 * We only take the node lock if absolutely necessary and we
4024 * have established with reasonable certainty that
4025 * we can do some work if the lock was obtained.
4027 n = get_node(searchp, node);
4029 reap_alien(searchp, n);
4031 drain_array(searchp, n, cpu_cache_get(searchp), node);
4034 * These are racy checks but it does not matter
4035 * if we skip one check or scan twice.
4037 if (time_after(n->next_reap, jiffies))
4040 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4042 drain_array(searchp, n, n->shared, node);
4044 if (n->free_touched)
4045 n->free_touched = 0;
4049 freed = drain_freelist(searchp, n, (n->free_limit +
4050 5 * searchp->num - 1) / (5 * searchp->num));
4051 STATS_ADD_REAPED(searchp, freed);
4057 mutex_unlock(&slab_mutex);
4060 /* Set up the next iteration */
4061 schedule_delayed_work_on(smp_processor_id(), work,
4062 round_jiffies_relative(REAPTIMEOUT_AC));
4065 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4067 unsigned long active_objs, num_objs, active_slabs;
4068 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4069 unsigned long free_slabs = 0;
4071 struct kmem_cache_node *n;
4073 for_each_kmem_cache_node(cachep, node, n) {
4075 spin_lock_irq(&n->list_lock);
4077 total_slabs += n->total_slabs;
4078 free_slabs += n->free_slabs;
4079 free_objs += n->free_objects;
4082 shared_avail += n->shared->avail;
4084 spin_unlock_irq(&n->list_lock);
4086 num_objs = total_slabs * cachep->num;
4087 active_slabs = total_slabs - free_slabs;
4088 active_objs = num_objs - free_objs;
4090 sinfo->active_objs = active_objs;
4091 sinfo->num_objs = num_objs;
4092 sinfo->active_slabs = active_slabs;
4093 sinfo->num_slabs = total_slabs;
4094 sinfo->shared_avail = shared_avail;
4095 sinfo->limit = cachep->limit;
4096 sinfo->batchcount = cachep->batchcount;
4097 sinfo->shared = cachep->shared;
4098 sinfo->objects_per_slab = cachep->num;
4099 sinfo->cache_order = cachep->gfporder;
4102 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4106 unsigned long high = cachep->high_mark;
4107 unsigned long allocs = cachep->num_allocations;
4108 unsigned long grown = cachep->grown;
4109 unsigned long reaped = cachep->reaped;
4110 unsigned long errors = cachep->errors;
4111 unsigned long max_freeable = cachep->max_freeable;
4112 unsigned long node_allocs = cachep->node_allocs;
4113 unsigned long node_frees = cachep->node_frees;
4114 unsigned long overflows = cachep->node_overflow;
4116 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4117 allocs, high, grown,
4118 reaped, errors, max_freeable, node_allocs,
4119 node_frees, overflows);
4123 unsigned long allochit = atomic_read(&cachep->allochit);
4124 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4125 unsigned long freehit = atomic_read(&cachep->freehit);
4126 unsigned long freemiss = atomic_read(&cachep->freemiss);
4128 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4129 allochit, allocmiss, freehit, freemiss);
4134 #define MAX_SLABINFO_WRITE 128
4136 * slabinfo_write - Tuning for the slab allocator
4138 * @buffer: user buffer
4139 * @count: data length
4142 * Return: %0 on success, negative error code otherwise.
4144 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4145 size_t count, loff_t *ppos)
4147 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4148 int limit, batchcount, shared, res;
4149 struct kmem_cache *cachep;
4151 if (count > MAX_SLABINFO_WRITE)
4153 if (copy_from_user(&kbuf, buffer, count))
4155 kbuf[MAX_SLABINFO_WRITE] = '\0';
4157 tmp = strchr(kbuf, ' ');
4162 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4165 /* Find the cache in the chain of caches. */
4166 mutex_lock(&slab_mutex);
4168 list_for_each_entry(cachep, &slab_caches, list) {
4169 if (!strcmp(cachep->name, kbuf)) {
4170 if (limit < 1 || batchcount < 1 ||
4171 batchcount > limit || shared < 0) {
4174 res = do_tune_cpucache(cachep, limit,
4181 mutex_unlock(&slab_mutex);
4187 #ifdef CONFIG_DEBUG_SLAB_LEAK
4189 static inline int add_caller(unsigned long *n, unsigned long v)
4199 unsigned long *q = p + 2 * i;
4213 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4219 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4228 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4231 for (j = page->active; j < c->num; j++) {
4232 if (get_free_obj(page, j) == i) {
4242 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4243 * mapping is established when actual object allocation and
4244 * we could mistakenly access the unmapped object in the cpu
4247 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4250 if (!add_caller(n, v))
4255 static void show_symbol(struct seq_file *m, unsigned long address)
4257 #ifdef CONFIG_KALLSYMS
4258 unsigned long offset, size;
4259 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4261 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4262 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4264 seq_printf(m, " [%s]", modname);
4268 seq_printf(m, "%px", (void *)address);
4271 static int leaks_show(struct seq_file *m, void *p)
4273 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4276 struct kmem_cache_node *n;
4278 unsigned long *x = m->private;
4282 if (!(cachep->flags & SLAB_STORE_USER))
4284 if (!(cachep->flags & SLAB_RED_ZONE))
4288 * Set store_user_clean and start to grab stored user information
4289 * for all objects on this cache. If some alloc/free requests comes
4290 * during the processing, information would be wrong so restart
4294 drain_cpu_caches(cachep);
4296 * drain_cpu_caches() could make kmemleak_object and
4297 * debug_objects_cache dirty, so reset afterwards.
4299 set_store_user_clean(cachep);
4303 for_each_kmem_cache_node(cachep, node, n) {
4306 spin_lock_irq(&n->list_lock);
4308 list_for_each_entry(page, &n->slabs_full, slab_list)
4309 handle_slab(x, cachep, page);
4310 list_for_each_entry(page, &n->slabs_partial, slab_list)
4311 handle_slab(x, cachep, page);
4312 spin_unlock_irq(&n->list_lock);
4314 } while (!is_store_user_clean(cachep));
4316 name = cachep->name;
4318 /* Increase the buffer size */
4319 mutex_unlock(&slab_mutex);
4320 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4323 /* Too bad, we are really out */
4325 mutex_lock(&slab_mutex);
4328 *(unsigned long *)m->private = x[0] * 2;
4330 mutex_lock(&slab_mutex);
4331 /* Now make sure this entry will be retried */
4335 for (i = 0; i < x[1]; i++) {
4336 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4337 show_symbol(m, x[2*i+2]);
4344 static const struct seq_operations slabstats_op = {
4345 .start = slab_start,
4351 static int slabstats_open(struct inode *inode, struct file *file)
4355 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4359 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4364 static const struct file_operations proc_slabstats_operations = {
4365 .open = slabstats_open,
4367 .llseek = seq_lseek,
4368 .release = seq_release_private,
4372 static int __init slab_proc_init(void)
4374 #ifdef CONFIG_DEBUG_SLAB_LEAK
4375 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4379 module_init(slab_proc_init);
4381 #ifdef CONFIG_HARDENED_USERCOPY
4383 * Rejects incorrectly sized objects and objects that are to be copied
4384 * to/from userspace but do not fall entirely within the containing slab
4385 * cache's usercopy region.
4387 * Returns NULL if check passes, otherwise const char * to name of cache
4388 * to indicate an error.
4390 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4393 struct kmem_cache *cachep;
4395 unsigned long offset;
4397 ptr = kasan_reset_tag(ptr);
4399 /* Find and validate object. */
4400 cachep = page->slab_cache;
4401 objnr = obj_to_index(cachep, page, (void *)ptr);
4402 BUG_ON(objnr >= cachep->num);
4404 /* Find offset within object. */
4405 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4407 /* Allow address range falling entirely within usercopy region. */
4408 if (offset >= cachep->useroffset &&
4409 offset - cachep->useroffset <= cachep->usersize &&
4410 n <= cachep->useroffset - offset + cachep->usersize)
4414 * If the copy is still within the allocated object, produce
4415 * a warning instead of rejecting the copy. This is intended
4416 * to be a temporary method to find any missing usercopy
4419 if (usercopy_fallback &&
4420 offset <= cachep->object_size &&
4421 n <= cachep->object_size - offset) {
4422 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4426 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4428 #endif /* CONFIG_HARDENED_USERCOPY */
4431 * ksize - get the actual amount of memory allocated for a given object
4432 * @objp: Pointer to the object
4434 * kmalloc may internally round up allocations and return more memory
4435 * than requested. ksize() can be used to determine the actual amount of
4436 * memory allocated. The caller may use this additional memory, even though
4437 * a smaller amount of memory was initially specified with the kmalloc call.
4438 * The caller must guarantee that objp points to a valid object previously
4439 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4440 * must not be freed during the duration of the call.
4442 * Return: size of the actual memory used by @objp in bytes
4444 size_t ksize(const void *objp)
4449 if (unlikely(objp == ZERO_SIZE_PTR))
4452 size = virt_to_cache(objp)->object_size;
4453 /* We assume that ksize callers could use the whole allocated area,
4454 * so we need to unpoison this area.
4456 kasan_unpoison_shadow(objp, size);
4460 EXPORT_SYMBOL(ksize);