]> Git Repo - linux.git/blob - fs/xfs/xfs_file.c
block: Prevent deadlocks when switching elevators
[linux.git] / fs / xfs / xfs_file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 #include "xfs_file.h"
28
29 #include <linux/dax.h>
30 #include <linux/falloc.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mman.h>
33 #include <linux/fadvise.h>
34 #include <linux/mount.h>
35
36 static const struct vm_operations_struct xfs_file_vm_ops;
37
38 /*
39  * Decide if the given file range is aligned to the size of the fundamental
40  * allocation unit for the file.
41  */
42 bool
43 xfs_is_falloc_aligned(
44         struct xfs_inode        *ip,
45         loff_t                  pos,
46         long long int           len)
47 {
48         unsigned int            alloc_unit = xfs_inode_alloc_unitsize(ip);
49
50         if (!is_power_of_2(alloc_unit))
51                 return isaligned_64(pos, alloc_unit) &&
52                        isaligned_64(len, alloc_unit);
53
54         return !((pos | len) & (alloc_unit - 1));
55 }
56
57 /*
58  * Fsync operations on directories are much simpler than on regular files,
59  * as there is no file data to flush, and thus also no need for explicit
60  * cache flush operations, and there are no non-transaction metadata updates
61  * on directories either.
62  */
63 STATIC int
64 xfs_dir_fsync(
65         struct file             *file,
66         loff_t                  start,
67         loff_t                  end,
68         int                     datasync)
69 {
70         struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
71
72         trace_xfs_dir_fsync(ip);
73         return xfs_log_force_inode(ip);
74 }
75
76 static xfs_csn_t
77 xfs_fsync_seq(
78         struct xfs_inode        *ip,
79         bool                    datasync)
80 {
81         if (!xfs_ipincount(ip))
82                 return 0;
83         if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
84                 return 0;
85         return ip->i_itemp->ili_commit_seq;
86 }
87
88 /*
89  * All metadata updates are logged, which means that we just have to flush the
90  * log up to the latest LSN that touched the inode.
91  *
92  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
93  * the log force before we clear the ili_fsync_fields field. This ensures that
94  * we don't get a racing sync operation that does not wait for the metadata to
95  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
96  * then all that will happen is the log force will do nothing as the lsn will
97  * already be on disk.  We can't race with setting ili_fsync_fields because that
98  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
99  * shared until after the ili_fsync_fields is cleared.
100  */
101 static  int
102 xfs_fsync_flush_log(
103         struct xfs_inode        *ip,
104         bool                    datasync,
105         int                     *log_flushed)
106 {
107         int                     error = 0;
108         xfs_csn_t               seq;
109
110         xfs_ilock(ip, XFS_ILOCK_SHARED);
111         seq = xfs_fsync_seq(ip, datasync);
112         if (seq) {
113                 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
114                                           log_flushed);
115
116                 spin_lock(&ip->i_itemp->ili_lock);
117                 ip->i_itemp->ili_fsync_fields = 0;
118                 spin_unlock(&ip->i_itemp->ili_lock);
119         }
120         xfs_iunlock(ip, XFS_ILOCK_SHARED);
121         return error;
122 }
123
124 STATIC int
125 xfs_file_fsync(
126         struct file             *file,
127         loff_t                  start,
128         loff_t                  end,
129         int                     datasync)
130 {
131         struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
132         struct xfs_mount        *mp = ip->i_mount;
133         int                     error, err2;
134         int                     log_flushed = 0;
135
136         trace_xfs_file_fsync(ip);
137
138         error = file_write_and_wait_range(file, start, end);
139         if (error)
140                 return error;
141
142         if (xfs_is_shutdown(mp))
143                 return -EIO;
144
145         xfs_iflags_clear(ip, XFS_ITRUNCATED);
146
147         /*
148          * If we have an RT and/or log subvolume we need to make sure to flush
149          * the write cache the device used for file data first.  This is to
150          * ensure newly written file data make it to disk before logging the new
151          * inode size in case of an extending write.
152          */
153         if (XFS_IS_REALTIME_INODE(ip))
154                 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
155         else if (mp->m_logdev_targp != mp->m_ddev_targp)
156                 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
157
158         /*
159          * Any inode that has dirty modifications in the log is pinned.  The
160          * racy check here for a pinned inode will not catch modifications
161          * that happen concurrently to the fsync call, but fsync semantics
162          * only require to sync previously completed I/O.
163          */
164         if (xfs_ipincount(ip)) {
165                 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
166                 if (err2 && !error)
167                         error = err2;
168         }
169
170         /*
171          * If we only have a single device, and the log force about was
172          * a no-op we might have to flush the data device cache here.
173          * This can only happen for fdatasync/O_DSYNC if we were overwriting
174          * an already allocated file and thus do not have any metadata to
175          * commit.
176          */
177         if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
178             mp->m_logdev_targp == mp->m_ddev_targp) {
179                 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
180                 if (err2 && !error)
181                         error = err2;
182         }
183
184         return error;
185 }
186
187 static int
188 xfs_ilock_iocb(
189         struct kiocb            *iocb,
190         unsigned int            lock_mode)
191 {
192         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
193
194         if (iocb->ki_flags & IOCB_NOWAIT) {
195                 if (!xfs_ilock_nowait(ip, lock_mode))
196                         return -EAGAIN;
197         } else {
198                 xfs_ilock(ip, lock_mode);
199         }
200
201         return 0;
202 }
203
204 static int
205 xfs_ilock_iocb_for_write(
206         struct kiocb            *iocb,
207         unsigned int            *lock_mode)
208 {
209         ssize_t                 ret;
210         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
211
212         ret = xfs_ilock_iocb(iocb, *lock_mode);
213         if (ret)
214                 return ret;
215
216         /*
217          * If a reflink remap is in progress we always need to take the iolock
218          * exclusively to wait for it to finish.
219          */
220         if (*lock_mode == XFS_IOLOCK_SHARED &&
221             xfs_iflags_test(ip, XFS_IREMAPPING)) {
222                 xfs_iunlock(ip, *lock_mode);
223                 *lock_mode = XFS_IOLOCK_EXCL;
224                 return xfs_ilock_iocb(iocb, *lock_mode);
225         }
226
227         return 0;
228 }
229
230 STATIC ssize_t
231 xfs_file_dio_read(
232         struct kiocb            *iocb,
233         struct iov_iter         *to)
234 {
235         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
236         ssize_t                 ret;
237
238         trace_xfs_file_direct_read(iocb, to);
239
240         if (!iov_iter_count(to))
241                 return 0; /* skip atime */
242
243         file_accessed(iocb->ki_filp);
244
245         ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
246         if (ret)
247                 return ret;
248         ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
249         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
250
251         return ret;
252 }
253
254 static noinline ssize_t
255 xfs_file_dax_read(
256         struct kiocb            *iocb,
257         struct iov_iter         *to)
258 {
259         struct xfs_inode        *ip = XFS_I(iocb->ki_filp->f_mapping->host);
260         ssize_t                 ret = 0;
261
262         trace_xfs_file_dax_read(iocb, to);
263
264         if (!iov_iter_count(to))
265                 return 0; /* skip atime */
266
267         ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
268         if (ret)
269                 return ret;
270         ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
271         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272
273         file_accessed(iocb->ki_filp);
274         return ret;
275 }
276
277 STATIC ssize_t
278 xfs_file_buffered_read(
279         struct kiocb            *iocb,
280         struct iov_iter         *to)
281 {
282         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
283         ssize_t                 ret;
284
285         trace_xfs_file_buffered_read(iocb, to);
286
287         ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
288         if (ret)
289                 return ret;
290         ret = generic_file_read_iter(iocb, to);
291         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
292
293         return ret;
294 }
295
296 STATIC ssize_t
297 xfs_file_read_iter(
298         struct kiocb            *iocb,
299         struct iov_iter         *to)
300 {
301         struct inode            *inode = file_inode(iocb->ki_filp);
302         struct xfs_mount        *mp = XFS_I(inode)->i_mount;
303         ssize_t                 ret = 0;
304
305         XFS_STATS_INC(mp, xs_read_calls);
306
307         if (xfs_is_shutdown(mp))
308                 return -EIO;
309
310         if (IS_DAX(inode))
311                 ret = xfs_file_dax_read(iocb, to);
312         else if (iocb->ki_flags & IOCB_DIRECT)
313                 ret = xfs_file_dio_read(iocb, to);
314         else
315                 ret = xfs_file_buffered_read(iocb, to);
316
317         if (ret > 0)
318                 XFS_STATS_ADD(mp, xs_read_bytes, ret);
319         return ret;
320 }
321
322 STATIC ssize_t
323 xfs_file_splice_read(
324         struct file             *in,
325         loff_t                  *ppos,
326         struct pipe_inode_info  *pipe,
327         size_t                  len,
328         unsigned int            flags)
329 {
330         struct inode            *inode = file_inode(in);
331         struct xfs_inode        *ip = XFS_I(inode);
332         struct xfs_mount        *mp = ip->i_mount;
333         ssize_t                 ret = 0;
334
335         XFS_STATS_INC(mp, xs_read_calls);
336
337         if (xfs_is_shutdown(mp))
338                 return -EIO;
339
340         trace_xfs_file_splice_read(ip, *ppos, len);
341
342         xfs_ilock(ip, XFS_IOLOCK_SHARED);
343         ret = filemap_splice_read(in, ppos, pipe, len, flags);
344         xfs_iunlock(ip, XFS_IOLOCK_SHARED);
345         if (ret > 0)
346                 XFS_STATS_ADD(mp, xs_read_bytes, ret);
347         return ret;
348 }
349
350 /*
351  * Common pre-write limit and setup checks.
352  *
353  * Called with the iolocked held either shared and exclusive according to
354  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
355  * if called for a direct write beyond i_size.
356  */
357 STATIC ssize_t
358 xfs_file_write_checks(
359         struct kiocb            *iocb,
360         struct iov_iter         *from,
361         unsigned int            *iolock)
362 {
363         struct file             *file = iocb->ki_filp;
364         struct inode            *inode = file->f_mapping->host;
365         struct xfs_inode        *ip = XFS_I(inode);
366         ssize_t                 error = 0;
367         size_t                  count = iov_iter_count(from);
368         bool                    drained_dio = false;
369         loff_t                  isize;
370
371 restart:
372         error = generic_write_checks(iocb, from);
373         if (error <= 0)
374                 return error;
375
376         if (iocb->ki_flags & IOCB_NOWAIT) {
377                 error = break_layout(inode, false);
378                 if (error == -EWOULDBLOCK)
379                         error = -EAGAIN;
380         } else {
381                 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
382         }
383
384         if (error)
385                 return error;
386
387         /*
388          * For changing security info in file_remove_privs() we need i_rwsem
389          * exclusively.
390          */
391         if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
392                 xfs_iunlock(ip, *iolock);
393                 *iolock = XFS_IOLOCK_EXCL;
394                 error = xfs_ilock_iocb(iocb, *iolock);
395                 if (error) {
396                         *iolock = 0;
397                         return error;
398                 }
399                 goto restart;
400         }
401
402         /*
403          * If the offset is beyond the size of the file, we need to zero any
404          * blocks that fall between the existing EOF and the start of this
405          * write.  If zeroing is needed and we are currently holding the iolock
406          * shared, we need to update it to exclusive which implies having to
407          * redo all checks before.
408          *
409          * We need to serialise against EOF updates that occur in IO completions
410          * here. We want to make sure that nobody is changing the size while we
411          * do this check until we have placed an IO barrier (i.e.  hold the
412          * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
413          * spinlock effectively forms a memory barrier once we have the
414          * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
415          * hence be able to correctly determine if we need to run zeroing.
416          *
417          * We can do an unlocked check here safely as IO completion can only
418          * extend EOF. Truncate is locked out at this point, so the EOF can
419          * not move backwards, only forwards. Hence we only need to take the
420          * slow path and spin locks when we are at or beyond the current EOF.
421          */
422         if (iocb->ki_pos <= i_size_read(inode))
423                 goto out;
424
425         spin_lock(&ip->i_flags_lock);
426         isize = i_size_read(inode);
427         if (iocb->ki_pos > isize) {
428                 spin_unlock(&ip->i_flags_lock);
429
430                 if (iocb->ki_flags & IOCB_NOWAIT)
431                         return -EAGAIN;
432
433                 if (!drained_dio) {
434                         if (*iolock == XFS_IOLOCK_SHARED) {
435                                 xfs_iunlock(ip, *iolock);
436                                 *iolock = XFS_IOLOCK_EXCL;
437                                 xfs_ilock(ip, *iolock);
438                                 iov_iter_reexpand(from, count);
439                         }
440                         /*
441                          * We now have an IO submission barrier in place, but
442                          * AIO can do EOF updates during IO completion and hence
443                          * we now need to wait for all of them to drain. Non-AIO
444                          * DIO will have drained before we are given the
445                          * XFS_IOLOCK_EXCL, and so for most cases this wait is a
446                          * no-op.
447                          */
448                         inode_dio_wait(inode);
449                         drained_dio = true;
450                         goto restart;
451                 }
452
453                 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
454                 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
455                 if (error)
456                         return error;
457         } else
458                 spin_unlock(&ip->i_flags_lock);
459
460 out:
461         return kiocb_modified(iocb);
462 }
463
464 static int
465 xfs_dio_write_end_io(
466         struct kiocb            *iocb,
467         ssize_t                 size,
468         int                     error,
469         unsigned                flags)
470 {
471         struct inode            *inode = file_inode(iocb->ki_filp);
472         struct xfs_inode        *ip = XFS_I(inode);
473         loff_t                  offset = iocb->ki_pos;
474         unsigned int            nofs_flag;
475
476         trace_xfs_end_io_direct_write(ip, offset, size);
477
478         if (xfs_is_shutdown(ip->i_mount))
479                 return -EIO;
480
481         if (error)
482                 return error;
483         if (!size)
484                 return 0;
485
486         /*
487          * Capture amount written on completion as we can't reliably account
488          * for it on submission.
489          */
490         XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
491
492         /*
493          * We can allocate memory here while doing writeback on behalf of
494          * memory reclaim.  To avoid memory allocation deadlocks set the
495          * task-wide nofs context for the following operations.
496          */
497         nofs_flag = memalloc_nofs_save();
498
499         if (flags & IOMAP_DIO_COW) {
500                 error = xfs_reflink_end_cow(ip, offset, size);
501                 if (error)
502                         goto out;
503         }
504
505         /*
506          * Unwritten conversion updates the in-core isize after extent
507          * conversion but before updating the on-disk size. Updating isize any
508          * earlier allows a racing dio read to find unwritten extents before
509          * they are converted.
510          */
511         if (flags & IOMAP_DIO_UNWRITTEN) {
512                 error = xfs_iomap_write_unwritten(ip, offset, size, true);
513                 goto out;
514         }
515
516         /*
517          * We need to update the in-core inode size here so that we don't end up
518          * with the on-disk inode size being outside the in-core inode size. We
519          * have no other method of updating EOF for AIO, so always do it here
520          * if necessary.
521          *
522          * We need to lock the test/set EOF update as we can be racing with
523          * other IO completions here to update the EOF. Failing to serialise
524          * here can result in EOF moving backwards and Bad Things Happen when
525          * that occurs.
526          *
527          * As IO completion only ever extends EOF, we can do an unlocked check
528          * here to avoid taking the spinlock. If we land within the current EOF,
529          * then we do not need to do an extending update at all, and we don't
530          * need to take the lock to check this. If we race with an update moving
531          * EOF, then we'll either still be beyond EOF and need to take the lock,
532          * or we'll be within EOF and we don't need to take it at all.
533          */
534         if (offset + size <= i_size_read(inode))
535                 goto out;
536
537         spin_lock(&ip->i_flags_lock);
538         if (offset + size > i_size_read(inode)) {
539                 i_size_write(inode, offset + size);
540                 spin_unlock(&ip->i_flags_lock);
541                 error = xfs_setfilesize(ip, offset, size);
542         } else {
543                 spin_unlock(&ip->i_flags_lock);
544         }
545
546 out:
547         memalloc_nofs_restore(nofs_flag);
548         return error;
549 }
550
551 static const struct iomap_dio_ops xfs_dio_write_ops = {
552         .end_io         = xfs_dio_write_end_io,
553 };
554
555 /*
556  * Handle block aligned direct I/O writes
557  */
558 static noinline ssize_t
559 xfs_file_dio_write_aligned(
560         struct xfs_inode        *ip,
561         struct kiocb            *iocb,
562         struct iov_iter         *from)
563 {
564         unsigned int            iolock = XFS_IOLOCK_SHARED;
565         ssize_t                 ret;
566
567         ret = xfs_ilock_iocb_for_write(iocb, &iolock);
568         if (ret)
569                 return ret;
570         ret = xfs_file_write_checks(iocb, from, &iolock);
571         if (ret)
572                 goto out_unlock;
573
574         /*
575          * We don't need to hold the IOLOCK exclusively across the IO, so demote
576          * the iolock back to shared if we had to take the exclusive lock in
577          * xfs_file_write_checks() for other reasons.
578          */
579         if (iolock == XFS_IOLOCK_EXCL) {
580                 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
581                 iolock = XFS_IOLOCK_SHARED;
582         }
583         trace_xfs_file_direct_write(iocb, from);
584         ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
585                            &xfs_dio_write_ops, 0, NULL, 0);
586 out_unlock:
587         if (iolock)
588                 xfs_iunlock(ip, iolock);
589         return ret;
590 }
591
592 /*
593  * Handle block unaligned direct I/O writes
594  *
595  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
596  * them to be done in parallel with reads and other direct I/O writes.  However,
597  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
598  * to do sub-block zeroing and that requires serialisation against other direct
599  * I/O to the same block.  In this case we need to serialise the submission of
600  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
601  * In the case where sub-block zeroing is not required, we can do concurrent
602  * sub-block dios to the same block successfully.
603  *
604  * Optimistically submit the I/O using the shared lock first, but use the
605  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
606  * if block allocation or partial block zeroing would be required.  In that case
607  * we try again with the exclusive lock.
608  */
609 static noinline ssize_t
610 xfs_file_dio_write_unaligned(
611         struct xfs_inode        *ip,
612         struct kiocb            *iocb,
613         struct iov_iter         *from)
614 {
615         size_t                  isize = i_size_read(VFS_I(ip));
616         size_t                  count = iov_iter_count(from);
617         unsigned int            iolock = XFS_IOLOCK_SHARED;
618         unsigned int            flags = IOMAP_DIO_OVERWRITE_ONLY;
619         ssize_t                 ret;
620
621         /*
622          * Extending writes need exclusivity because of the sub-block zeroing
623          * that the DIO code always does for partial tail blocks beyond EOF, so
624          * don't even bother trying the fast path in this case.
625          */
626         if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
627                 if (iocb->ki_flags & IOCB_NOWAIT)
628                         return -EAGAIN;
629 retry_exclusive:
630                 iolock = XFS_IOLOCK_EXCL;
631                 flags = IOMAP_DIO_FORCE_WAIT;
632         }
633
634         ret = xfs_ilock_iocb_for_write(iocb, &iolock);
635         if (ret)
636                 return ret;
637
638         /*
639          * We can't properly handle unaligned direct I/O to reflink files yet,
640          * as we can't unshare a partial block.
641          */
642         if (xfs_is_cow_inode(ip)) {
643                 trace_xfs_reflink_bounce_dio_write(iocb, from);
644                 ret = -ENOTBLK;
645                 goto out_unlock;
646         }
647
648         ret = xfs_file_write_checks(iocb, from, &iolock);
649         if (ret)
650                 goto out_unlock;
651
652         /*
653          * If we are doing exclusive unaligned I/O, this must be the only I/O
654          * in-flight.  Otherwise we risk data corruption due to unwritten extent
655          * conversions from the AIO end_io handler.  Wait for all other I/O to
656          * drain first.
657          */
658         if (flags & IOMAP_DIO_FORCE_WAIT)
659                 inode_dio_wait(VFS_I(ip));
660
661         trace_xfs_file_direct_write(iocb, from);
662         ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
663                            &xfs_dio_write_ops, flags, NULL, 0);
664
665         /*
666          * Retry unaligned I/O with exclusive blocking semantics if the DIO
667          * layer rejected it for mapping or locking reasons. If we are doing
668          * nonblocking user I/O, propagate the error.
669          */
670         if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
671                 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
672                 xfs_iunlock(ip, iolock);
673                 goto retry_exclusive;
674         }
675
676 out_unlock:
677         if (iolock)
678                 xfs_iunlock(ip, iolock);
679         return ret;
680 }
681
682 static ssize_t
683 xfs_file_dio_write(
684         struct kiocb            *iocb,
685         struct iov_iter         *from)
686 {
687         struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
688         struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
689         size_t                  count = iov_iter_count(from);
690
691         /* direct I/O must be aligned to device logical sector size */
692         if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
693                 return -EINVAL;
694         if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
695                 return xfs_file_dio_write_unaligned(ip, iocb, from);
696         return xfs_file_dio_write_aligned(ip, iocb, from);
697 }
698
699 static noinline ssize_t
700 xfs_file_dax_write(
701         struct kiocb            *iocb,
702         struct iov_iter         *from)
703 {
704         struct inode            *inode = iocb->ki_filp->f_mapping->host;
705         struct xfs_inode        *ip = XFS_I(inode);
706         unsigned int            iolock = XFS_IOLOCK_EXCL;
707         ssize_t                 ret, error = 0;
708         loff_t                  pos;
709
710         ret = xfs_ilock_iocb(iocb, iolock);
711         if (ret)
712                 return ret;
713         ret = xfs_file_write_checks(iocb, from, &iolock);
714         if (ret)
715                 goto out;
716
717         pos = iocb->ki_pos;
718
719         trace_xfs_file_dax_write(iocb, from);
720         ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
721         if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
722                 i_size_write(inode, iocb->ki_pos);
723                 error = xfs_setfilesize(ip, pos, ret);
724         }
725 out:
726         if (iolock)
727                 xfs_iunlock(ip, iolock);
728         if (error)
729                 return error;
730
731         if (ret > 0) {
732                 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
733
734                 /* Handle various SYNC-type writes */
735                 ret = generic_write_sync(iocb, ret);
736         }
737         return ret;
738 }
739
740 STATIC ssize_t
741 xfs_file_buffered_write(
742         struct kiocb            *iocb,
743         struct iov_iter         *from)
744 {
745         struct inode            *inode = iocb->ki_filp->f_mapping->host;
746         struct xfs_inode        *ip = XFS_I(inode);
747         ssize_t                 ret;
748         bool                    cleared_space = false;
749         unsigned int            iolock;
750
751 write_retry:
752         iolock = XFS_IOLOCK_EXCL;
753         ret = xfs_ilock_iocb(iocb, iolock);
754         if (ret)
755                 return ret;
756
757         ret = xfs_file_write_checks(iocb, from, &iolock);
758         if (ret)
759                 goto out;
760
761         trace_xfs_file_buffered_write(iocb, from);
762         ret = iomap_file_buffered_write(iocb, from,
763                         &xfs_buffered_write_iomap_ops);
764
765         /*
766          * If we hit a space limit, try to free up some lingering preallocated
767          * space before returning an error. In the case of ENOSPC, first try to
768          * write back all dirty inodes to free up some of the excess reserved
769          * metadata space. This reduces the chances that the eofblocks scan
770          * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
771          * also behaves as a filter to prevent too many eofblocks scans from
772          * running at the same time.  Use a synchronous scan to increase the
773          * effectiveness of the scan.
774          */
775         if (ret == -EDQUOT && !cleared_space) {
776                 xfs_iunlock(ip, iolock);
777                 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
778                 cleared_space = true;
779                 goto write_retry;
780         } else if (ret == -ENOSPC && !cleared_space) {
781                 struct xfs_icwalk       icw = {0};
782
783                 cleared_space = true;
784                 xfs_flush_inodes(ip->i_mount);
785
786                 xfs_iunlock(ip, iolock);
787                 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
788                 xfs_blockgc_free_space(ip->i_mount, &icw);
789                 goto write_retry;
790         }
791
792 out:
793         if (iolock)
794                 xfs_iunlock(ip, iolock);
795
796         if (ret > 0) {
797                 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
798                 /* Handle various SYNC-type writes */
799                 ret = generic_write_sync(iocb, ret);
800         }
801         return ret;
802 }
803
804 STATIC ssize_t
805 xfs_file_write_iter(
806         struct kiocb            *iocb,
807         struct iov_iter         *from)
808 {
809         struct inode            *inode = iocb->ki_filp->f_mapping->host;
810         struct xfs_inode        *ip = XFS_I(inode);
811         ssize_t                 ret;
812         size_t                  ocount = iov_iter_count(from);
813
814         XFS_STATS_INC(ip->i_mount, xs_write_calls);
815
816         if (ocount == 0)
817                 return 0;
818
819         if (xfs_is_shutdown(ip->i_mount))
820                 return -EIO;
821
822         if (IS_DAX(inode))
823                 return xfs_file_dax_write(iocb, from);
824
825         if (iocb->ki_flags & IOCB_DIRECT) {
826                 /*
827                  * Allow a directio write to fall back to a buffered
828                  * write *only* in the case that we're doing a reflink
829                  * CoW.  In all other directio scenarios we do not
830                  * allow an operation to fall back to buffered mode.
831                  */
832                 ret = xfs_file_dio_write(iocb, from);
833                 if (ret != -ENOTBLK)
834                         return ret;
835         }
836
837         return xfs_file_buffered_write(iocb, from);
838 }
839
840 /* Does this file, inode, or mount want synchronous writes? */
841 static inline bool xfs_file_sync_writes(struct file *filp)
842 {
843         struct xfs_inode        *ip = XFS_I(file_inode(filp));
844
845         if (xfs_has_wsync(ip->i_mount))
846                 return true;
847         if (filp->f_flags & (__O_SYNC | O_DSYNC))
848                 return true;
849         if (IS_SYNC(file_inode(filp)))
850                 return true;
851
852         return false;
853 }
854
855 #define XFS_FALLOC_FL_SUPPORTED                                         \
856                 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
857                  FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
858                  FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
859
860 STATIC long
861 xfs_file_fallocate(
862         struct file             *file,
863         int                     mode,
864         loff_t                  offset,
865         loff_t                  len)
866 {
867         struct inode            *inode = file_inode(file);
868         struct xfs_inode        *ip = XFS_I(inode);
869         long                    error;
870         uint                    iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
871         loff_t                  new_size = 0;
872         bool                    do_file_insert = false;
873
874         if (!S_ISREG(inode->i_mode))
875                 return -EINVAL;
876         if (mode & ~XFS_FALLOC_FL_SUPPORTED)
877                 return -EOPNOTSUPP;
878
879         xfs_ilock(ip, iolock);
880         error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
881         if (error)
882                 goto out_unlock;
883
884         /*
885          * Must wait for all AIO to complete before we continue as AIO can
886          * change the file size on completion without holding any locks we
887          * currently hold. We must do this first because AIO can update both
888          * the on disk and in memory inode sizes, and the operations that follow
889          * require the in-memory size to be fully up-to-date.
890          */
891         inode_dio_wait(inode);
892
893         /*
894          * Now AIO and DIO has drained we flush and (if necessary) invalidate
895          * the cached range over the first operation we are about to run.
896          *
897          * We care about zero and collapse here because they both run a hole
898          * punch over the range first. Because that can zero data, and the range
899          * of invalidation for the shift operations is much larger, we still do
900          * the required flush for collapse in xfs_prepare_shift().
901          *
902          * Insert has the same range requirements as collapse, and we extend the
903          * file first which can zero data. Hence insert has the same
904          * flush/invalidate requirements as collapse and so they are both
905          * handled at the right time by xfs_prepare_shift().
906          */
907         if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
908                     FALLOC_FL_COLLAPSE_RANGE)) {
909                 error = xfs_flush_unmap_range(ip, offset, len);
910                 if (error)
911                         goto out_unlock;
912         }
913
914         error = file_modified(file);
915         if (error)
916                 goto out_unlock;
917
918         if (mode & FALLOC_FL_PUNCH_HOLE) {
919                 error = xfs_free_file_space(ip, offset, len);
920                 if (error)
921                         goto out_unlock;
922         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
923                 if (!xfs_is_falloc_aligned(ip, offset, len)) {
924                         error = -EINVAL;
925                         goto out_unlock;
926                 }
927
928                 /*
929                  * There is no need to overlap collapse range with EOF,
930                  * in which case it is effectively a truncate operation
931                  */
932                 if (offset + len >= i_size_read(inode)) {
933                         error = -EINVAL;
934                         goto out_unlock;
935                 }
936
937                 new_size = i_size_read(inode) - len;
938
939                 error = xfs_collapse_file_space(ip, offset, len);
940                 if (error)
941                         goto out_unlock;
942         } else if (mode & FALLOC_FL_INSERT_RANGE) {
943                 loff_t          isize = i_size_read(inode);
944
945                 if (!xfs_is_falloc_aligned(ip, offset, len)) {
946                         error = -EINVAL;
947                         goto out_unlock;
948                 }
949
950                 /*
951                  * New inode size must not exceed ->s_maxbytes, accounting for
952                  * possible signed overflow.
953                  */
954                 if (inode->i_sb->s_maxbytes - isize < len) {
955                         error = -EFBIG;
956                         goto out_unlock;
957                 }
958                 new_size = isize + len;
959
960                 /* Offset should be less than i_size */
961                 if (offset >= isize) {
962                         error = -EINVAL;
963                         goto out_unlock;
964                 }
965                 do_file_insert = true;
966         } else {
967                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
968                     offset + len > i_size_read(inode)) {
969                         new_size = offset + len;
970                         error = inode_newsize_ok(inode, new_size);
971                         if (error)
972                                 goto out_unlock;
973                 }
974
975                 if (mode & FALLOC_FL_ZERO_RANGE) {
976                         /*
977                          * Punch a hole and prealloc the range.  We use a hole
978                          * punch rather than unwritten extent conversion for two
979                          * reasons:
980                          *
981                          *   1.) Hole punch handles partial block zeroing for us.
982                          *   2.) If prealloc returns ENOSPC, the file range is
983                          *       still zero-valued by virtue of the hole punch.
984                          */
985                         unsigned int blksize = i_blocksize(inode);
986
987                         trace_xfs_zero_file_space(ip);
988
989                         error = xfs_free_file_space(ip, offset, len);
990                         if (error)
991                                 goto out_unlock;
992
993                         len = round_up(offset + len, blksize) -
994                               round_down(offset, blksize);
995                         offset = round_down(offset, blksize);
996                 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
997                         error = xfs_reflink_unshare(ip, offset, len);
998                         if (error)
999                                 goto out_unlock;
1000                 } else {
1001                         /*
1002                          * If always_cow mode we can't use preallocations and
1003                          * thus should not create them.
1004                          */
1005                         if (xfs_is_always_cow_inode(ip)) {
1006                                 error = -EOPNOTSUPP;
1007                                 goto out_unlock;
1008                         }
1009                 }
1010
1011                 if (!xfs_is_always_cow_inode(ip)) {
1012                         error = xfs_alloc_file_space(ip, offset, len);
1013                         if (error)
1014                                 goto out_unlock;
1015                 }
1016         }
1017
1018         /* Change file size if needed */
1019         if (new_size) {
1020                 struct iattr iattr;
1021
1022                 iattr.ia_valid = ATTR_SIZE;
1023                 iattr.ia_size = new_size;
1024                 error = xfs_vn_setattr_size(file_mnt_idmap(file),
1025                                             file_dentry(file), &iattr);
1026                 if (error)
1027                         goto out_unlock;
1028         }
1029
1030         /*
1031          * Perform hole insertion now that the file size has been
1032          * updated so that if we crash during the operation we don't
1033          * leave shifted extents past EOF and hence losing access to
1034          * the data that is contained within them.
1035          */
1036         if (do_file_insert) {
1037                 error = xfs_insert_file_space(ip, offset, len);
1038                 if (error)
1039                         goto out_unlock;
1040         }
1041
1042         if (xfs_file_sync_writes(file))
1043                 error = xfs_log_force_inode(ip);
1044
1045 out_unlock:
1046         xfs_iunlock(ip, iolock);
1047         return error;
1048 }
1049
1050 STATIC int
1051 xfs_file_fadvise(
1052         struct file     *file,
1053         loff_t          start,
1054         loff_t          end,
1055         int             advice)
1056 {
1057         struct xfs_inode *ip = XFS_I(file_inode(file));
1058         int ret;
1059         int lockflags = 0;
1060
1061         /*
1062          * Operations creating pages in page cache need protection from hole
1063          * punching and similar ops
1064          */
1065         if (advice == POSIX_FADV_WILLNEED) {
1066                 lockflags = XFS_IOLOCK_SHARED;
1067                 xfs_ilock(ip, lockflags);
1068         }
1069         ret = generic_fadvise(file, start, end, advice);
1070         if (lockflags)
1071                 xfs_iunlock(ip, lockflags);
1072         return ret;
1073 }
1074
1075 STATIC loff_t
1076 xfs_file_remap_range(
1077         struct file             *file_in,
1078         loff_t                  pos_in,
1079         struct file             *file_out,
1080         loff_t                  pos_out,
1081         loff_t                  len,
1082         unsigned int            remap_flags)
1083 {
1084         struct inode            *inode_in = file_inode(file_in);
1085         struct xfs_inode        *src = XFS_I(inode_in);
1086         struct inode            *inode_out = file_inode(file_out);
1087         struct xfs_inode        *dest = XFS_I(inode_out);
1088         struct xfs_mount        *mp = src->i_mount;
1089         loff_t                  remapped = 0;
1090         xfs_extlen_t            cowextsize;
1091         int                     ret;
1092
1093         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1094                 return -EINVAL;
1095
1096         if (!xfs_has_reflink(mp))
1097                 return -EOPNOTSUPP;
1098
1099         if (xfs_is_shutdown(mp))
1100                 return -EIO;
1101
1102         /* Prepare and then clone file data. */
1103         ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1104                         &len, remap_flags);
1105         if (ret || len == 0)
1106                 return ret;
1107
1108         trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1109
1110         ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1111                         &remapped);
1112         if (ret)
1113                 goto out_unlock;
1114
1115         /*
1116          * Carry the cowextsize hint from src to dest if we're sharing the
1117          * entire source file to the entire destination file, the source file
1118          * has a cowextsize hint, and the destination file does not.
1119          */
1120         cowextsize = 0;
1121         if (pos_in == 0 && len == i_size_read(inode_in) &&
1122             (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1123             pos_out == 0 && len >= i_size_read(inode_out) &&
1124             !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1125                 cowextsize = src->i_cowextsize;
1126
1127         ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1128                         remap_flags);
1129         if (ret)
1130                 goto out_unlock;
1131
1132         if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1133                 xfs_log_force_inode(dest);
1134 out_unlock:
1135         xfs_iunlock2_remapping(src, dest);
1136         if (ret)
1137                 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1138         return remapped > 0 ? remapped : ret;
1139 }
1140
1141 STATIC int
1142 xfs_file_open(
1143         struct inode    *inode,
1144         struct file     *file)
1145 {
1146         if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1147                 return -EIO;
1148         file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1149         return generic_file_open(inode, file);
1150 }
1151
1152 STATIC int
1153 xfs_dir_open(
1154         struct inode    *inode,
1155         struct file     *file)
1156 {
1157         struct xfs_inode *ip = XFS_I(inode);
1158         unsigned int    mode;
1159         int             error;
1160
1161         if (xfs_is_shutdown(ip->i_mount))
1162                 return -EIO;
1163         error = generic_file_open(inode, file);
1164         if (error)
1165                 return error;
1166
1167         /*
1168          * If there are any blocks, read-ahead block 0 as we're almost
1169          * certain to have the next operation be a read there.
1170          */
1171         mode = xfs_ilock_data_map_shared(ip);
1172         if (ip->i_df.if_nextents > 0)
1173                 error = xfs_dir3_data_readahead(ip, 0, 0);
1174         xfs_iunlock(ip, mode);
1175         return error;
1176 }
1177
1178 STATIC int
1179 xfs_file_release(
1180         struct inode    *inode,
1181         struct file     *filp)
1182 {
1183         return xfs_release(XFS_I(inode));
1184 }
1185
1186 STATIC int
1187 xfs_file_readdir(
1188         struct file     *file,
1189         struct dir_context *ctx)
1190 {
1191         struct inode    *inode = file_inode(file);
1192         xfs_inode_t     *ip = XFS_I(inode);
1193         size_t          bufsize;
1194
1195         /*
1196          * The Linux API doesn't pass down the total size of the buffer
1197          * we read into down to the filesystem.  With the filldir concept
1198          * it's not needed for correct information, but the XFS dir2 leaf
1199          * code wants an estimate of the buffer size to calculate it's
1200          * readahead window and size the buffers used for mapping to
1201          * physical blocks.
1202          *
1203          * Try to give it an estimate that's good enough, maybe at some
1204          * point we can change the ->readdir prototype to include the
1205          * buffer size.  For now we use the current glibc buffer size.
1206          */
1207         bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1208
1209         return xfs_readdir(NULL, ip, ctx, bufsize);
1210 }
1211
1212 STATIC loff_t
1213 xfs_file_llseek(
1214         struct file     *file,
1215         loff_t          offset,
1216         int             whence)
1217 {
1218         struct inode            *inode = file->f_mapping->host;
1219
1220         if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1221                 return -EIO;
1222
1223         switch (whence) {
1224         default:
1225                 return generic_file_llseek(file, offset, whence);
1226         case SEEK_HOLE:
1227                 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1228                 break;
1229         case SEEK_DATA:
1230                 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1231                 break;
1232         }
1233
1234         if (offset < 0)
1235                 return offset;
1236         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1237 }
1238
1239 static inline vm_fault_t
1240 xfs_dax_fault_locked(
1241         struct vm_fault         *vmf,
1242         unsigned int            order,
1243         bool                    write_fault)
1244 {
1245         vm_fault_t              ret;
1246         pfn_t                   pfn;
1247
1248         if (!IS_ENABLED(CONFIG_FS_DAX)) {
1249                 ASSERT(0);
1250                 return VM_FAULT_SIGBUS;
1251         }
1252         ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1253                         (write_fault && !vmf->cow_page) ?
1254                                 &xfs_dax_write_iomap_ops :
1255                                 &xfs_read_iomap_ops);
1256         if (ret & VM_FAULT_NEEDDSYNC)
1257                 ret = dax_finish_sync_fault(vmf, order, pfn);
1258         return ret;
1259 }
1260
1261 static vm_fault_t
1262 xfs_dax_read_fault(
1263         struct vm_fault         *vmf,
1264         unsigned int            order)
1265 {
1266         struct xfs_inode        *ip = XFS_I(file_inode(vmf->vma->vm_file));
1267         vm_fault_t              ret;
1268
1269         xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1270         ret = xfs_dax_fault_locked(vmf, order, false);
1271         xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1272
1273         return ret;
1274 }
1275
1276 static vm_fault_t
1277 xfs_write_fault(
1278         struct vm_fault         *vmf,
1279         unsigned int            order)
1280 {
1281         struct inode            *inode = file_inode(vmf->vma->vm_file);
1282         struct xfs_inode        *ip = XFS_I(inode);
1283         unsigned int            lock_mode = XFS_MMAPLOCK_SHARED;
1284         vm_fault_t              ret;
1285
1286         sb_start_pagefault(inode->i_sb);
1287         file_update_time(vmf->vma->vm_file);
1288
1289         /*
1290          * Normally we only need the shared mmaplock, but if a reflink remap is
1291          * in progress we take the exclusive lock to wait for the remap to
1292          * finish before taking a write fault.
1293          */
1294         xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1295         if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1296                 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1297                 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1298                 lock_mode = XFS_MMAPLOCK_EXCL;
1299         }
1300
1301         if (IS_DAX(inode))
1302                 ret = xfs_dax_fault_locked(vmf, order, true);
1303         else
1304                 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1305         xfs_iunlock(ip, lock_mode);
1306
1307         sb_end_pagefault(inode->i_sb);
1308         return ret;
1309 }
1310
1311 /*
1312  * Locking for serialisation of IO during page faults. This results in a lock
1313  * ordering of:
1314  *
1315  * mmap_lock (MM)
1316  *   sb_start_pagefault(vfs, freeze)
1317  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1318  *       page_lock (MM)
1319  *         i_lock (XFS - extent map serialisation)
1320  */
1321 static vm_fault_t
1322 __xfs_filemap_fault(
1323         struct vm_fault         *vmf,
1324         unsigned int            order,
1325         bool                    write_fault)
1326 {
1327         struct inode            *inode = file_inode(vmf->vma->vm_file);
1328
1329         trace_xfs_filemap_fault(XFS_I(inode), order, write_fault);
1330
1331         if (write_fault)
1332                 return xfs_write_fault(vmf, order);
1333         if (IS_DAX(inode))
1334                 return xfs_dax_read_fault(vmf, order);
1335         return filemap_fault(vmf);
1336 }
1337
1338 static inline bool
1339 xfs_is_write_fault(
1340         struct vm_fault         *vmf)
1341 {
1342         return (vmf->flags & FAULT_FLAG_WRITE) &&
1343                (vmf->vma->vm_flags & VM_SHARED);
1344 }
1345
1346 static vm_fault_t
1347 xfs_filemap_fault(
1348         struct vm_fault         *vmf)
1349 {
1350         /* DAX can shortcut the normal fault path on write faults! */
1351         return __xfs_filemap_fault(vmf, 0,
1352                         IS_DAX(file_inode(vmf->vma->vm_file)) &&
1353                         xfs_is_write_fault(vmf));
1354 }
1355
1356 static vm_fault_t
1357 xfs_filemap_huge_fault(
1358         struct vm_fault         *vmf,
1359         unsigned int            order)
1360 {
1361         if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1362                 return VM_FAULT_FALLBACK;
1363
1364         /* DAX can shortcut the normal fault path on write faults! */
1365         return __xfs_filemap_fault(vmf, order,
1366                         xfs_is_write_fault(vmf));
1367 }
1368
1369 static vm_fault_t
1370 xfs_filemap_page_mkwrite(
1371         struct vm_fault         *vmf)
1372 {
1373         return __xfs_filemap_fault(vmf, 0, true);
1374 }
1375
1376 /*
1377  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1378  * on write faults. In reality, it needs to serialise against truncate and
1379  * prepare memory for writing so handle is as standard write fault.
1380  */
1381 static vm_fault_t
1382 xfs_filemap_pfn_mkwrite(
1383         struct vm_fault         *vmf)
1384 {
1385
1386         return __xfs_filemap_fault(vmf, 0, true);
1387 }
1388
1389 static const struct vm_operations_struct xfs_file_vm_ops = {
1390         .fault          = xfs_filemap_fault,
1391         .huge_fault     = xfs_filemap_huge_fault,
1392         .map_pages      = filemap_map_pages,
1393         .page_mkwrite   = xfs_filemap_page_mkwrite,
1394         .pfn_mkwrite    = xfs_filemap_pfn_mkwrite,
1395 };
1396
1397 STATIC int
1398 xfs_file_mmap(
1399         struct file             *file,
1400         struct vm_area_struct   *vma)
1401 {
1402         struct inode            *inode = file_inode(file);
1403         struct xfs_buftarg      *target = xfs_inode_buftarg(XFS_I(inode));
1404
1405         /*
1406          * We don't support synchronous mappings for non-DAX files and
1407          * for DAX files if underneath dax_device is not synchronous.
1408          */
1409         if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1410                 return -EOPNOTSUPP;
1411
1412         file_accessed(file);
1413         vma->vm_ops = &xfs_file_vm_ops;
1414         if (IS_DAX(inode))
1415                 vm_flags_set(vma, VM_HUGEPAGE);
1416         return 0;
1417 }
1418
1419 const struct file_operations xfs_file_operations = {
1420         .llseek         = xfs_file_llseek,
1421         .read_iter      = xfs_file_read_iter,
1422         .write_iter     = xfs_file_write_iter,
1423         .splice_read    = xfs_file_splice_read,
1424         .splice_write   = iter_file_splice_write,
1425         .iopoll         = iocb_bio_iopoll,
1426         .unlocked_ioctl = xfs_file_ioctl,
1427 #ifdef CONFIG_COMPAT
1428         .compat_ioctl   = xfs_file_compat_ioctl,
1429 #endif
1430         .mmap           = xfs_file_mmap,
1431         .open           = xfs_file_open,
1432         .release        = xfs_file_release,
1433         .fsync          = xfs_file_fsync,
1434         .get_unmapped_area = thp_get_unmapped_area,
1435         .fallocate      = xfs_file_fallocate,
1436         .fadvise        = xfs_file_fadvise,
1437         .remap_file_range = xfs_file_remap_range,
1438         .fop_flags      = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1439                           FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1440 };
1441
1442 const struct file_operations xfs_dir_file_operations = {
1443         .open           = xfs_dir_open,
1444         .read           = generic_read_dir,
1445         .iterate_shared = xfs_file_readdir,
1446         .llseek         = generic_file_llseek,
1447         .unlocked_ioctl = xfs_file_ioctl,
1448 #ifdef CONFIG_COMPAT
1449         .compat_ioctl   = xfs_file_compat_ioctl,
1450 #endif
1451         .fsync          = xfs_dir_fsync,
1452 };
This page took 0.11153 seconds and 4 git commands to generate.