1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
18 #define EXTN_FLAG_SENSOR_ID BIT(7)
20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
22 #define OCC_STATE_SAFE 4
23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
27 #define OCC_TEMP_SENSOR_FAULT 0xFF
29 #define OCC_FRU_TYPE_VRM 3
31 /* OCC sensor type and version definitions */
33 struct temp_sensor_1 {
38 struct temp_sensor_2 {
44 struct temp_sensor_10 {
52 struct freq_sensor_1 {
57 struct freq_sensor_2 {
62 struct power_sensor_1 {
69 struct power_sensor_2 {
79 struct power_sensor_data {
85 struct power_sensor_data_and_time {
92 struct power_sensor_a0 {
94 struct power_sensor_data_and_time system;
96 struct power_sensor_data_and_time proc;
97 struct power_sensor_data vdd;
98 struct power_sensor_data vdn;
101 struct caps_sensor_2 {
111 struct caps_sensor_3 {
122 struct extended_sensor {
132 static int occ_poll(struct occ *occ)
135 u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
137 struct occ_poll_response_header *header;
140 cmd[0] = occ->seq_no++; /* sequence number */
141 cmd[1] = 0; /* cmd type */
142 cmd[2] = 0; /* data length msb */
143 cmd[3] = 1; /* data length lsb */
144 cmd[4] = occ->poll_cmd_data; /* data */
145 cmd[5] = checksum >> 8; /* checksum msb */
146 cmd[6] = checksum & 0xFF; /* checksum lsb */
149 /* mutex should already be locked if necessary */
150 rc = occ->send_cmd(occ, cmd);
152 occ->last_error = rc;
153 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
159 /* clear error since communication was successful */
160 occ->error_count = 0;
164 /* check for safe state */
165 header = (struct occ_poll_response_header *)occ->resp.data;
166 if (header->occ_state == OCC_STATE_SAFE) {
167 if (occ->last_safe) {
168 if (time_after(jiffies,
169 occ->last_safe + OCC_SAFE_TIMEOUT))
170 occ->error = -EHOSTDOWN;
172 occ->last_safe = jiffies;
179 occ_sysfs_poll_done(occ);
183 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
188 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
195 memcpy(&cmd[4], &user_power_cap_be, 2);
197 checksum += cmd[4] + cmd[5];
198 cmd[6] = checksum >> 8;
199 cmd[7] = checksum & 0xFF;
201 rc = mutex_lock_interruptible(&occ->lock);
205 rc = occ->send_cmd(occ, cmd);
207 mutex_unlock(&occ->lock);
212 int occ_update_response(struct occ *occ)
214 int rc = mutex_lock_interruptible(&occ->lock);
219 /* limit the maximum rate of polling the OCC */
220 if (time_after(jiffies, occ->next_update)) {
222 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
224 rc = occ->last_error;
227 mutex_unlock(&occ->lock);
231 static ssize_t occ_show_temp_1(struct device *dev,
232 struct device_attribute *attr, char *buf)
236 struct temp_sensor_1 *temp;
237 struct occ *occ = dev_get_drvdata(dev);
238 struct occ_sensors *sensors = &occ->sensors;
239 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
241 rc = occ_update_response(occ);
245 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
249 val = get_unaligned_be16(&temp->sensor_id);
253 * If a sensor reading has expired and couldn't be refreshed,
254 * OCC returns 0xFFFF for that sensor.
256 if (temp->value == 0xFFFF)
258 val = get_unaligned_be16(&temp->value) * 1000;
264 return sysfs_emit(buf, "%u\n", val);
267 static ssize_t occ_show_temp_2(struct device *dev,
268 struct device_attribute *attr, char *buf)
272 struct temp_sensor_2 *temp;
273 struct occ *occ = dev_get_drvdata(dev);
274 struct occ_sensors *sensors = &occ->sensors;
275 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
277 rc = occ_update_response(occ);
281 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
285 val = get_unaligned_be32(&temp->sensor_id);
289 if (val == OCC_TEMP_SENSOR_FAULT)
293 * VRM doesn't return temperature, only alarm bit. This
294 * attribute maps to tempX_alarm instead of tempX_input for
297 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
298 /* sensor not ready */
306 val = temp->fru_type;
309 val = temp->value == OCC_TEMP_SENSOR_FAULT;
315 return sysfs_emit(buf, "%u\n", val);
318 static ssize_t occ_show_temp_10(struct device *dev,
319 struct device_attribute *attr, char *buf)
323 struct temp_sensor_10 *temp;
324 struct occ *occ = dev_get_drvdata(dev);
325 struct occ_sensors *sensors = &occ->sensors;
326 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
328 rc = occ_update_response(occ);
332 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
336 val = get_unaligned_be32(&temp->sensor_id);
340 if (val == OCC_TEMP_SENSOR_FAULT)
343 /* sensor not ready */
350 val = temp->fru_type;
353 val = temp->value == OCC_TEMP_SENSOR_FAULT;
356 val = temp->throttle * 1000;
362 return sysfs_emit(buf, "%u\n", val);
365 static ssize_t occ_show_freq_1(struct device *dev,
366 struct device_attribute *attr, char *buf)
370 struct freq_sensor_1 *freq;
371 struct occ *occ = dev_get_drvdata(dev);
372 struct occ_sensors *sensors = &occ->sensors;
373 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
375 rc = occ_update_response(occ);
379 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
383 val = get_unaligned_be16(&freq->sensor_id);
386 val = get_unaligned_be16(&freq->value);
392 return sysfs_emit(buf, "%u\n", val);
395 static ssize_t occ_show_freq_2(struct device *dev,
396 struct device_attribute *attr, char *buf)
400 struct freq_sensor_2 *freq;
401 struct occ *occ = dev_get_drvdata(dev);
402 struct occ_sensors *sensors = &occ->sensors;
403 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
405 rc = occ_update_response(occ);
409 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
413 val = get_unaligned_be32(&freq->sensor_id);
416 val = get_unaligned_be16(&freq->value);
422 return sysfs_emit(buf, "%u\n", val);
425 static ssize_t occ_show_power_1(struct device *dev,
426 struct device_attribute *attr, char *buf)
430 struct power_sensor_1 *power;
431 struct occ *occ = dev_get_drvdata(dev);
432 struct occ_sensors *sensors = &occ->sensors;
433 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
435 rc = occ_update_response(occ);
439 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
443 val = get_unaligned_be16(&power->sensor_id);
446 val = get_unaligned_be32(&power->accumulator) /
447 get_unaligned_be32(&power->update_tag);
451 val = (u64)get_unaligned_be32(&power->update_tag) *
452 occ->powr_sample_time_us;
455 val = get_unaligned_be16(&power->value) * 1000000ULL;
461 return sysfs_emit(buf, "%llu\n", val);
464 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
466 u64 divisor = get_unaligned_be32(samples);
468 return (divisor == 0) ? 0 :
469 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
472 static ssize_t occ_show_power_2(struct device *dev,
473 struct device_attribute *attr, char *buf)
477 struct power_sensor_2 *power;
478 struct occ *occ = dev_get_drvdata(dev);
479 struct occ_sensors *sensors = &occ->sensors;
480 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
482 rc = occ_update_response(occ);
486 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
490 return sysfs_emit(buf, "%u_%u_%u\n",
491 get_unaligned_be32(&power->sensor_id),
492 power->function_id, power->apss_channel);
494 val = occ_get_powr_avg(&power->accumulator,
498 val = (u64)get_unaligned_be32(&power->update_tag) *
499 occ->powr_sample_time_us;
502 val = get_unaligned_be16(&power->value) * 1000000ULL;
508 return sysfs_emit(buf, "%llu\n", val);
511 static ssize_t occ_show_power_a0(struct device *dev,
512 struct device_attribute *attr, char *buf)
516 struct power_sensor_a0 *power;
517 struct occ *occ = dev_get_drvdata(dev);
518 struct occ_sensors *sensors = &occ->sensors;
519 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
521 rc = occ_update_response(occ);
525 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
529 return sysfs_emit(buf, "%u_system\n",
530 get_unaligned_be32(&power->sensor_id));
532 val = occ_get_powr_avg(&power->system.accumulator,
533 &power->system.update_tag);
536 val = (u64)get_unaligned_be32(&power->system.update_tag) *
537 occ->powr_sample_time_us;
540 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
543 return sysfs_emit(buf, "%u_proc\n",
544 get_unaligned_be32(&power->sensor_id));
546 val = occ_get_powr_avg(&power->proc.accumulator,
547 &power->proc.update_tag);
550 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
551 occ->powr_sample_time_us;
554 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
557 return sysfs_emit(buf, "%u_vdd\n",
558 get_unaligned_be32(&power->sensor_id));
560 val = occ_get_powr_avg(&power->vdd.accumulator,
561 &power->vdd.update_tag);
564 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
565 occ->powr_sample_time_us;
568 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
571 return sysfs_emit(buf, "%u_vdn\n",
572 get_unaligned_be32(&power->sensor_id));
574 val = occ_get_powr_avg(&power->vdn.accumulator,
575 &power->vdn.update_tag);
578 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
579 occ->powr_sample_time_us;
582 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
588 return sysfs_emit(buf, "%llu\n", val);
591 static ssize_t occ_show_caps_1_2(struct device *dev,
592 struct device_attribute *attr, char *buf)
596 struct caps_sensor_2 *caps;
597 struct occ *occ = dev_get_drvdata(dev);
598 struct occ_sensors *sensors = &occ->sensors;
599 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
601 rc = occ_update_response(occ);
605 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
609 return sysfs_emit(buf, "system\n");
611 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
614 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
617 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
620 val = get_unaligned_be16(&caps->max) * 1000000ULL;
623 val = get_unaligned_be16(&caps->min) * 1000000ULL;
626 val = get_unaligned_be16(&caps->user) * 1000000ULL;
629 if (occ->sensors.caps.version == 1)
632 val = caps->user_source;
638 return sysfs_emit(buf, "%llu\n", val);
641 static ssize_t occ_show_caps_3(struct device *dev,
642 struct device_attribute *attr, char *buf)
646 struct caps_sensor_3 *caps;
647 struct occ *occ = dev_get_drvdata(dev);
648 struct occ_sensors *sensors = &occ->sensors;
649 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
651 rc = occ_update_response(occ);
655 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
659 return sysfs_emit(buf, "system\n");
661 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
664 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
667 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
670 val = get_unaligned_be16(&caps->max) * 1000000ULL;
673 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
676 val = get_unaligned_be16(&caps->user) * 1000000ULL;
679 val = caps->user_source;
685 return sysfs_emit(buf, "%llu\n", val);
688 static ssize_t occ_store_caps_user(struct device *dev,
689 struct device_attribute *attr,
690 const char *buf, size_t count)
694 unsigned long long value;
695 struct occ *occ = dev_get_drvdata(dev);
697 rc = kstrtoull(buf, 0, &value);
701 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
703 rc = occ_set_user_power_cap(occ, user_power_cap);
710 static ssize_t occ_show_extended(struct device *dev,
711 struct device_attribute *attr, char *buf)
714 struct extended_sensor *extn;
715 struct occ *occ = dev_get_drvdata(dev);
716 struct occ_sensors *sensors = &occ->sensors;
717 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
719 rc = occ_update_response(occ);
723 extn = ((struct extended_sensor *)sensors->extended.data) +
728 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
729 rc = sysfs_emit(buf, "%u",
730 get_unaligned_be32(&extn->sensor_id));
732 rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
733 extn->name[0], extn->name[1],
734 extn->name[2], extn->name[3]);
738 rc = sysfs_emit(buf, "%02x\n", extn->flags);
741 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
742 extn->data[0], extn->data[1], extn->data[2],
743 extn->data[3], extn->data[4], extn->data[5]);
753 * Some helper macros to make it easier to define an occ_attribute. Since these
754 * are dynamically allocated, we shouldn't use the existing kernel macros which
755 * stringify the name argument.
757 #define ATTR_OCC(_name, _mode, _show, _store) { \
760 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
766 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
767 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
772 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
773 ((struct sensor_device_attribute_2) \
774 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
777 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
778 * use our own instead of the built-in hwmon attribute types.
780 static int occ_setup_sensor_attrs(struct occ *occ)
782 unsigned int i, s, num_attrs = 0;
783 struct device *dev = occ->bus_dev;
784 struct occ_sensors *sensors = &occ->sensors;
785 struct occ_attribute *attr;
786 struct temp_sensor_2 *temp;
787 ssize_t (*show_temp)(struct device *, struct device_attribute *,
788 char *) = occ_show_temp_1;
789 ssize_t (*show_freq)(struct device *, struct device_attribute *,
790 char *) = occ_show_freq_1;
791 ssize_t (*show_power)(struct device *, struct device_attribute *,
792 char *) = occ_show_power_1;
793 ssize_t (*show_caps)(struct device *, struct device_attribute *,
794 char *) = occ_show_caps_1_2;
796 switch (sensors->temp.version) {
798 num_attrs += (sensors->temp.num_sensors * 2);
801 num_attrs += (sensors->temp.num_sensors * 4);
802 show_temp = occ_show_temp_2;
805 num_attrs += (sensors->temp.num_sensors * 5);
806 show_temp = occ_show_temp_10;
809 sensors->temp.num_sensors = 0;
812 switch (sensors->freq.version) {
814 show_freq = occ_show_freq_2;
817 num_attrs += (sensors->freq.num_sensors * 2);
820 sensors->freq.num_sensors = 0;
823 switch (sensors->power.version) {
825 show_power = occ_show_power_2;
828 num_attrs += (sensors->power.num_sensors * 4);
831 num_attrs += (sensors->power.num_sensors * 16);
832 show_power = occ_show_power_a0;
835 sensors->power.num_sensors = 0;
838 switch (sensors->caps.version) {
840 num_attrs += (sensors->caps.num_sensors * 7);
843 show_caps = occ_show_caps_3;
846 num_attrs += (sensors->caps.num_sensors * 8);
849 sensors->caps.num_sensors = 0;
852 switch (sensors->extended.version) {
854 num_attrs += (sensors->extended.num_sensors * 3);
857 sensors->extended.num_sensors = 0;
860 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
865 /* null-terminated list */
866 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
867 num_attrs + 1, GFP_KERNEL);
868 if (!occ->group.attrs)
873 for (i = 0; i < sensors->temp.num_sensors; ++i) {
875 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
877 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
878 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
882 if (sensors->temp.version == 2 &&
883 temp->fru_type == OCC_FRU_TYPE_VRM) {
884 snprintf(attr->name, sizeof(attr->name),
887 snprintf(attr->name, sizeof(attr->name),
891 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
895 if (sensors->temp.version > 1) {
896 snprintf(attr->name, sizeof(attr->name),
897 "temp%d_fru_type", s);
898 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
899 show_temp, NULL, 2, i);
902 snprintf(attr->name, sizeof(attr->name),
904 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
905 show_temp, NULL, 3, i);
908 if (sensors->temp.version == 0x10) {
909 snprintf(attr->name, sizeof(attr->name),
911 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
919 for (i = 0; i < sensors->freq.num_sensors; ++i) {
922 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
923 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
927 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
928 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
933 if (sensors->power.version == 0xA0) {
935 * Special case for many-attribute power sensor. Split it into
936 * a sensor number per power type, emulating several sensors.
938 for (i = 0; i < sensors->power.num_sensors; ++i) {
944 for (j = 0; j < 4; ++j) {
945 snprintf(attr->name, sizeof(attr->name),
947 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
952 snprintf(attr->name, sizeof(attr->name),
953 "power%d_average", s);
954 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
959 snprintf(attr->name, sizeof(attr->name),
960 "power%d_average_interval", s);
961 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
966 snprintf(attr->name, sizeof(attr->name),
968 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
977 s = (sensors->power.num_sensors * 4) + 1;
979 for (i = 0; i < sensors->power.num_sensors; ++i) {
982 snprintf(attr->name, sizeof(attr->name),
984 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
985 show_power, NULL, 0, i);
988 snprintf(attr->name, sizeof(attr->name),
989 "power%d_average", s);
990 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991 show_power, NULL, 1, i);
994 snprintf(attr->name, sizeof(attr->name),
995 "power%d_average_interval", s);
996 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
997 show_power, NULL, 2, i);
1000 snprintf(attr->name, sizeof(attr->name),
1001 "power%d_input", s);
1002 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003 show_power, NULL, 3, i);
1007 s = sensors->power.num_sensors + 1;
1010 if (sensors->caps.num_sensors >= 1) {
1011 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1012 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1016 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1017 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1021 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1022 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1026 snprintf(attr->name, sizeof(attr->name),
1027 "power%d_cap_not_redundant", s);
1028 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1032 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1033 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1037 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1038 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1042 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1044 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1045 occ_store_caps_user, 6, 0);
1048 if (sensors->caps.version > 1) {
1049 snprintf(attr->name, sizeof(attr->name),
1050 "power%d_cap_user_source", s);
1051 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1052 show_caps, NULL, 7, 0);
1057 for (i = 0; i < sensors->extended.num_sensors; ++i) {
1060 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1061 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1062 occ_show_extended, NULL, 0, i);
1065 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1066 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1067 occ_show_extended, NULL, 1, i);
1070 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1071 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1072 occ_show_extended, NULL, 2, i);
1076 /* put the sensors in the group */
1077 for (i = 0; i < num_attrs; ++i) {
1078 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1079 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1085 /* only need to do this once at startup, as OCC won't change sensors on us */
1086 static void occ_parse_poll_response(struct occ *occ)
1088 unsigned int i, old_offset, offset = 0, size = 0;
1089 struct occ_sensor *sensor;
1090 struct occ_sensors *sensors = &occ->sensors;
1091 struct occ_response *resp = &occ->resp;
1092 struct occ_poll_response *poll =
1093 (struct occ_poll_response *)&resp->data[0];
1094 struct occ_poll_response_header *header = &poll->header;
1095 struct occ_sensor_data_block *block = &poll->block;
1097 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1098 header->occ_code_level);
1100 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1101 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1102 old_offset = offset;
1103 offset = (block->header.num_sensors *
1104 block->header.sensor_length) + sizeof(block->header);
1107 /* validate all the length/size fields */
1108 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1109 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1113 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1114 old_offset, offset - 1, block->header.eye_catcher,
1115 block->header.num_sensors);
1117 /* match sensor block type */
1118 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1119 sensor = &sensors->temp;
1120 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1121 sensor = &sensors->freq;
1122 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1123 sensor = &sensors->power;
1124 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1125 sensor = &sensors->caps;
1126 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1127 sensor = &sensors->extended;
1129 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1130 block->header.eye_catcher);
1134 sensor->num_sensors = block->header.num_sensors;
1135 sensor->version = block->header.sensor_format;
1136 sensor->data = &block->data;
1139 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1140 sizeof(*header), size + sizeof(*header));
1143 int occ_setup(struct occ *occ, const char *name)
1147 /* start with 1 to avoid false match with zero-initialized SRAM buffer */
1149 mutex_init(&occ->lock);
1150 occ->groups[0] = &occ->group;
1152 /* no need to lock */
1154 if (rc == -ESHUTDOWN) {
1155 dev_info(occ->bus_dev, "host is not ready\n");
1157 } else if (rc < 0) {
1158 dev_err(occ->bus_dev,
1159 "failed to get OCC poll response=%02x: %d\n",
1160 occ->resp.return_status, rc);
1164 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1165 occ_parse_poll_response(occ);
1167 rc = occ_setup_sensor_attrs(occ);
1169 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1174 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1176 if (IS_ERR(occ->hwmon)) {
1177 rc = PTR_ERR(occ->hwmon);
1178 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1183 rc = occ_setup_sysfs(occ);
1185 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1189 EXPORT_SYMBOL_GPL(occ_setup);
1192 MODULE_DESCRIPTION("Common OCC hwmon code");
1193 MODULE_LICENSE("GPL");