]> Git Repo - linux.git/blob - drivers/hwmon/occ/common.c
ath11k: change return buffer manager for QCA6390
[linux.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct temp_sensor_10 {
45         u32 sensor_id;
46         u8 fru_type;
47         u8 value;
48         u8 throttle;
49         u8 reserved;
50 } __packed;
51
52 struct freq_sensor_1 {
53         u16 sensor_id;
54         u16 value;
55 } __packed;
56
57 struct freq_sensor_2 {
58         u32 sensor_id;
59         u16 value;
60 } __packed;
61
62 struct power_sensor_1 {
63         u16 sensor_id;
64         u32 update_tag;
65         u32 accumulator;
66         u16 value;
67 } __packed;
68
69 struct power_sensor_2 {
70         u32 sensor_id;
71         u8 function_id;
72         u8 apss_channel;
73         u16 reserved;
74         u32 update_tag;
75         u64 accumulator;
76         u16 value;
77 } __packed;
78
79 struct power_sensor_data {
80         u16 value;
81         u32 update_tag;
82         u64 accumulator;
83 } __packed;
84
85 struct power_sensor_data_and_time {
86         u16 update_time;
87         u16 value;
88         u32 update_tag;
89         u64 accumulator;
90 } __packed;
91
92 struct power_sensor_a0 {
93         u32 sensor_id;
94         struct power_sensor_data_and_time system;
95         u32 reserved;
96         struct power_sensor_data_and_time proc;
97         struct power_sensor_data vdd;
98         struct power_sensor_data vdn;
99 } __packed;
100
101 struct caps_sensor_2 {
102         u16 cap;
103         u16 system_power;
104         u16 n_cap;
105         u16 max;
106         u16 min;
107         u16 user;
108         u8 user_source;
109 } __packed;
110
111 struct caps_sensor_3 {
112         u16 cap;
113         u16 system_power;
114         u16 n_cap;
115         u16 max;
116         u16 hard_min;
117         u16 soft_min;
118         u16 user;
119         u8 user_source;
120 } __packed;
121
122 struct extended_sensor {
123         union {
124                 u8 name[4];
125                 u32 sensor_id;
126         };
127         u8 flags;
128         u8 reserved;
129         u8 data[6];
130 } __packed;
131
132 static int occ_poll(struct occ *occ)
133 {
134         int rc;
135         u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
136         u8 cmd[8];
137         struct occ_poll_response_header *header;
138
139         /* big endian */
140         cmd[0] = occ->seq_no++;         /* sequence number */
141         cmd[1] = 0;                     /* cmd type */
142         cmd[2] = 0;                     /* data length msb */
143         cmd[3] = 1;                     /* data length lsb */
144         cmd[4] = occ->poll_cmd_data;    /* data */
145         cmd[5] = checksum >> 8;         /* checksum msb */
146         cmd[6] = checksum & 0xFF;       /* checksum lsb */
147         cmd[7] = 0;
148
149         /* mutex should already be locked if necessary */
150         rc = occ->send_cmd(occ, cmd);
151         if (rc) {
152                 occ->last_error = rc;
153                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
154                         occ->error = rc;
155
156                 goto done;
157         }
158
159         /* clear error since communication was successful */
160         occ->error_count = 0;
161         occ->last_error = 0;
162         occ->error = 0;
163
164         /* check for safe state */
165         header = (struct occ_poll_response_header *)occ->resp.data;
166         if (header->occ_state == OCC_STATE_SAFE) {
167                 if (occ->last_safe) {
168                         if (time_after(jiffies,
169                                        occ->last_safe + OCC_SAFE_TIMEOUT))
170                                 occ->error = -EHOSTDOWN;
171                 } else {
172                         occ->last_safe = jiffies;
173                 }
174         } else {
175                 occ->last_safe = 0;
176         }
177
178 done:
179         occ_sysfs_poll_done(occ);
180         return rc;
181 }
182
183 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
184 {
185         int rc;
186         u8 cmd[8];
187         u16 checksum = 0x24;
188         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
189
190         cmd[0] = 0;
191         cmd[1] = 0x22;
192         cmd[2] = 0;
193         cmd[3] = 2;
194
195         memcpy(&cmd[4], &user_power_cap_be, 2);
196
197         checksum += cmd[4] + cmd[5];
198         cmd[6] = checksum >> 8;
199         cmd[7] = checksum & 0xFF;
200
201         rc = mutex_lock_interruptible(&occ->lock);
202         if (rc)
203                 return rc;
204
205         rc = occ->send_cmd(occ, cmd);
206
207         mutex_unlock(&occ->lock);
208
209         return rc;
210 }
211
212 int occ_update_response(struct occ *occ)
213 {
214         int rc = mutex_lock_interruptible(&occ->lock);
215
216         if (rc)
217                 return rc;
218
219         /* limit the maximum rate of polling the OCC */
220         if (time_after(jiffies, occ->next_update)) {
221                 rc = occ_poll(occ);
222                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
223         } else {
224                 rc = occ->last_error;
225         }
226
227         mutex_unlock(&occ->lock);
228         return rc;
229 }
230
231 static ssize_t occ_show_temp_1(struct device *dev,
232                                struct device_attribute *attr, char *buf)
233 {
234         int rc;
235         u32 val = 0;
236         struct temp_sensor_1 *temp;
237         struct occ *occ = dev_get_drvdata(dev);
238         struct occ_sensors *sensors = &occ->sensors;
239         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
240
241         rc = occ_update_response(occ);
242         if (rc)
243                 return rc;
244
245         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
246
247         switch (sattr->nr) {
248         case 0:
249                 val = get_unaligned_be16(&temp->sensor_id);
250                 break;
251         case 1:
252                 /*
253                  * If a sensor reading has expired and couldn't be refreshed,
254                  * OCC returns 0xFFFF for that sensor.
255                  */
256                 if (temp->value == 0xFFFF)
257                         return -EREMOTEIO;
258                 val = get_unaligned_be16(&temp->value) * 1000;
259                 break;
260         default:
261                 return -EINVAL;
262         }
263
264         return sysfs_emit(buf, "%u\n", val);
265 }
266
267 static ssize_t occ_show_temp_2(struct device *dev,
268                                struct device_attribute *attr, char *buf)
269 {
270         int rc;
271         u32 val = 0;
272         struct temp_sensor_2 *temp;
273         struct occ *occ = dev_get_drvdata(dev);
274         struct occ_sensors *sensors = &occ->sensors;
275         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
276
277         rc = occ_update_response(occ);
278         if (rc)
279                 return rc;
280
281         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
282
283         switch (sattr->nr) {
284         case 0:
285                 val = get_unaligned_be32(&temp->sensor_id);
286                 break;
287         case 1:
288                 val = temp->value;
289                 if (val == OCC_TEMP_SENSOR_FAULT)
290                         return -EREMOTEIO;
291
292                 /*
293                  * VRM doesn't return temperature, only alarm bit. This
294                  * attribute maps to tempX_alarm instead of tempX_input for
295                  * VRM
296                  */
297                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
298                         /* sensor not ready */
299                         if (val == 0)
300                                 return -EAGAIN;
301
302                         val *= 1000;
303                 }
304                 break;
305         case 2:
306                 val = temp->fru_type;
307                 break;
308         case 3:
309                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
310                 break;
311         default:
312                 return -EINVAL;
313         }
314
315         return sysfs_emit(buf, "%u\n", val);
316 }
317
318 static ssize_t occ_show_temp_10(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         int rc;
322         u32 val = 0;
323         struct temp_sensor_10 *temp;
324         struct occ *occ = dev_get_drvdata(dev);
325         struct occ_sensors *sensors = &occ->sensors;
326         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
327
328         rc = occ_update_response(occ);
329         if (rc)
330                 return rc;
331
332         temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
333
334         switch (sattr->nr) {
335         case 0:
336                 val = get_unaligned_be32(&temp->sensor_id);
337                 break;
338         case 1:
339                 val = temp->value;
340                 if (val == OCC_TEMP_SENSOR_FAULT)
341                         return -EREMOTEIO;
342
343                 /* sensor not ready */
344                 if (val == 0)
345                         return -EAGAIN;
346
347                 val *= 1000;
348                 break;
349         case 2:
350                 val = temp->fru_type;
351                 break;
352         case 3:
353                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
354                 break;
355         case 4:
356                 val = temp->throttle * 1000;
357                 break;
358         default:
359                 return -EINVAL;
360         }
361
362         return sysfs_emit(buf, "%u\n", val);
363 }
364
365 static ssize_t occ_show_freq_1(struct device *dev,
366                                struct device_attribute *attr, char *buf)
367 {
368         int rc;
369         u16 val = 0;
370         struct freq_sensor_1 *freq;
371         struct occ *occ = dev_get_drvdata(dev);
372         struct occ_sensors *sensors = &occ->sensors;
373         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
374
375         rc = occ_update_response(occ);
376         if (rc)
377                 return rc;
378
379         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
380
381         switch (sattr->nr) {
382         case 0:
383                 val = get_unaligned_be16(&freq->sensor_id);
384                 break;
385         case 1:
386                 val = get_unaligned_be16(&freq->value);
387                 break;
388         default:
389                 return -EINVAL;
390         }
391
392         return sysfs_emit(buf, "%u\n", val);
393 }
394
395 static ssize_t occ_show_freq_2(struct device *dev,
396                                struct device_attribute *attr, char *buf)
397 {
398         int rc;
399         u32 val = 0;
400         struct freq_sensor_2 *freq;
401         struct occ *occ = dev_get_drvdata(dev);
402         struct occ_sensors *sensors = &occ->sensors;
403         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
404
405         rc = occ_update_response(occ);
406         if (rc)
407                 return rc;
408
409         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
410
411         switch (sattr->nr) {
412         case 0:
413                 val = get_unaligned_be32(&freq->sensor_id);
414                 break;
415         case 1:
416                 val = get_unaligned_be16(&freq->value);
417                 break;
418         default:
419                 return -EINVAL;
420         }
421
422         return sysfs_emit(buf, "%u\n", val);
423 }
424
425 static ssize_t occ_show_power_1(struct device *dev,
426                                 struct device_attribute *attr, char *buf)
427 {
428         int rc;
429         u64 val = 0;
430         struct power_sensor_1 *power;
431         struct occ *occ = dev_get_drvdata(dev);
432         struct occ_sensors *sensors = &occ->sensors;
433         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
434
435         rc = occ_update_response(occ);
436         if (rc)
437                 return rc;
438
439         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
440
441         switch (sattr->nr) {
442         case 0:
443                 val = get_unaligned_be16(&power->sensor_id);
444                 break;
445         case 1:
446                 val = get_unaligned_be32(&power->accumulator) /
447                         get_unaligned_be32(&power->update_tag);
448                 val *= 1000000ULL;
449                 break;
450         case 2:
451                 val = (u64)get_unaligned_be32(&power->update_tag) *
452                            occ->powr_sample_time_us;
453                 break;
454         case 3:
455                 val = get_unaligned_be16(&power->value) * 1000000ULL;
456                 break;
457         default:
458                 return -EINVAL;
459         }
460
461         return sysfs_emit(buf, "%llu\n", val);
462 }
463
464 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
465 {
466         u64 divisor = get_unaligned_be32(samples);
467
468         return (divisor == 0) ? 0 :
469                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
470 }
471
472 static ssize_t occ_show_power_2(struct device *dev,
473                                 struct device_attribute *attr, char *buf)
474 {
475         int rc;
476         u64 val = 0;
477         struct power_sensor_2 *power;
478         struct occ *occ = dev_get_drvdata(dev);
479         struct occ_sensors *sensors = &occ->sensors;
480         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
481
482         rc = occ_update_response(occ);
483         if (rc)
484                 return rc;
485
486         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
487
488         switch (sattr->nr) {
489         case 0:
490                 return sysfs_emit(buf, "%u_%u_%u\n",
491                                   get_unaligned_be32(&power->sensor_id),
492                                   power->function_id, power->apss_channel);
493         case 1:
494                 val = occ_get_powr_avg(&power->accumulator,
495                                        &power->update_tag);
496                 break;
497         case 2:
498                 val = (u64)get_unaligned_be32(&power->update_tag) *
499                            occ->powr_sample_time_us;
500                 break;
501         case 3:
502                 val = get_unaligned_be16(&power->value) * 1000000ULL;
503                 break;
504         default:
505                 return -EINVAL;
506         }
507
508         return sysfs_emit(buf, "%llu\n", val);
509 }
510
511 static ssize_t occ_show_power_a0(struct device *dev,
512                                  struct device_attribute *attr, char *buf)
513 {
514         int rc;
515         u64 val = 0;
516         struct power_sensor_a0 *power;
517         struct occ *occ = dev_get_drvdata(dev);
518         struct occ_sensors *sensors = &occ->sensors;
519         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
520
521         rc = occ_update_response(occ);
522         if (rc)
523                 return rc;
524
525         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
526
527         switch (sattr->nr) {
528         case 0:
529                 return sysfs_emit(buf, "%u_system\n",
530                                   get_unaligned_be32(&power->sensor_id));
531         case 1:
532                 val = occ_get_powr_avg(&power->system.accumulator,
533                                        &power->system.update_tag);
534                 break;
535         case 2:
536                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
537                            occ->powr_sample_time_us;
538                 break;
539         case 3:
540                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
541                 break;
542         case 4:
543                 return sysfs_emit(buf, "%u_proc\n",
544                                   get_unaligned_be32(&power->sensor_id));
545         case 5:
546                 val = occ_get_powr_avg(&power->proc.accumulator,
547                                        &power->proc.update_tag);
548                 break;
549         case 6:
550                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
551                            occ->powr_sample_time_us;
552                 break;
553         case 7:
554                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
555                 break;
556         case 8:
557                 return sysfs_emit(buf, "%u_vdd\n",
558                                   get_unaligned_be32(&power->sensor_id));
559         case 9:
560                 val = occ_get_powr_avg(&power->vdd.accumulator,
561                                        &power->vdd.update_tag);
562                 break;
563         case 10:
564                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
565                            occ->powr_sample_time_us;
566                 break;
567         case 11:
568                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
569                 break;
570         case 12:
571                 return sysfs_emit(buf, "%u_vdn\n",
572                                   get_unaligned_be32(&power->sensor_id));
573         case 13:
574                 val = occ_get_powr_avg(&power->vdn.accumulator,
575                                        &power->vdn.update_tag);
576                 break;
577         case 14:
578                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
579                            occ->powr_sample_time_us;
580                 break;
581         case 15:
582                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
583                 break;
584         default:
585                 return -EINVAL;
586         }
587
588         return sysfs_emit(buf, "%llu\n", val);
589 }
590
591 static ssize_t occ_show_caps_1_2(struct device *dev,
592                                  struct device_attribute *attr, char *buf)
593 {
594         int rc;
595         u64 val = 0;
596         struct caps_sensor_2 *caps;
597         struct occ *occ = dev_get_drvdata(dev);
598         struct occ_sensors *sensors = &occ->sensors;
599         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
600
601         rc = occ_update_response(occ);
602         if (rc)
603                 return rc;
604
605         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
606
607         switch (sattr->nr) {
608         case 0:
609                 return sysfs_emit(buf, "system\n");
610         case 1:
611                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
612                 break;
613         case 2:
614                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
615                 break;
616         case 3:
617                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
618                 break;
619         case 4:
620                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
621                 break;
622         case 5:
623                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
624                 break;
625         case 6:
626                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
627                 break;
628         case 7:
629                 if (occ->sensors.caps.version == 1)
630                         return -EINVAL;
631
632                 val = caps->user_source;
633                 break;
634         default:
635                 return -EINVAL;
636         }
637
638         return sysfs_emit(buf, "%llu\n", val);
639 }
640
641 static ssize_t occ_show_caps_3(struct device *dev,
642                                struct device_attribute *attr, char *buf)
643 {
644         int rc;
645         u64 val = 0;
646         struct caps_sensor_3 *caps;
647         struct occ *occ = dev_get_drvdata(dev);
648         struct occ_sensors *sensors = &occ->sensors;
649         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
650
651         rc = occ_update_response(occ);
652         if (rc)
653                 return rc;
654
655         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
656
657         switch (sattr->nr) {
658         case 0:
659                 return sysfs_emit(buf, "system\n");
660         case 1:
661                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
662                 break;
663         case 2:
664                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
665                 break;
666         case 3:
667                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
668                 break;
669         case 4:
670                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
671                 break;
672         case 5:
673                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
674                 break;
675         case 6:
676                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
677                 break;
678         case 7:
679                 val = caps->user_source;
680                 break;
681         default:
682                 return -EINVAL;
683         }
684
685         return sysfs_emit(buf, "%llu\n", val);
686 }
687
688 static ssize_t occ_store_caps_user(struct device *dev,
689                                    struct device_attribute *attr,
690                                    const char *buf, size_t count)
691 {
692         int rc;
693         u16 user_power_cap;
694         unsigned long long value;
695         struct occ *occ = dev_get_drvdata(dev);
696
697         rc = kstrtoull(buf, 0, &value);
698         if (rc)
699                 return rc;
700
701         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
702
703         rc = occ_set_user_power_cap(occ, user_power_cap);
704         if (rc)
705                 return rc;
706
707         return count;
708 }
709
710 static ssize_t occ_show_extended(struct device *dev,
711                                  struct device_attribute *attr, char *buf)
712 {
713         int rc;
714         struct extended_sensor *extn;
715         struct occ *occ = dev_get_drvdata(dev);
716         struct occ_sensors *sensors = &occ->sensors;
717         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
718
719         rc = occ_update_response(occ);
720         if (rc)
721                 return rc;
722
723         extn = ((struct extended_sensor *)sensors->extended.data) +
724                 sattr->index;
725
726         switch (sattr->nr) {
727         case 0:
728                 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
729                         rc = sysfs_emit(buf, "%u",
730                                         get_unaligned_be32(&extn->sensor_id));
731                 } else {
732                         rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
733                                         extn->name[0], extn->name[1],
734                                         extn->name[2], extn->name[3]);
735                 }
736                 break;
737         case 1:
738                 rc = sysfs_emit(buf, "%02x\n", extn->flags);
739                 break;
740         case 2:
741                 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
742                                 extn->data[0], extn->data[1], extn->data[2],
743                                 extn->data[3], extn->data[4], extn->data[5]);
744                 break;
745         default:
746                 return -EINVAL;
747         }
748
749         return rc;
750 }
751
752 /*
753  * Some helper macros to make it easier to define an occ_attribute. Since these
754  * are dynamically allocated, we shouldn't use the existing kernel macros which
755  * stringify the name argument.
756  */
757 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
758         .attr   = {                                                     \
759                 .name = _name,                                          \
760                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
761         },                                                              \
762         .show   = _show,                                                \
763         .store  = _store,                                               \
764 }
765
766 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
767         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
768         .index          = _index,                                       \
769         .nr             = _nr,                                          \
770 }
771
772 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
773         ((struct sensor_device_attribute_2)                             \
774                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
775
776 /*
777  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
778  * use our own instead of the built-in hwmon attribute types.
779  */
780 static int occ_setup_sensor_attrs(struct occ *occ)
781 {
782         unsigned int i, s, num_attrs = 0;
783         struct device *dev = occ->bus_dev;
784         struct occ_sensors *sensors = &occ->sensors;
785         struct occ_attribute *attr;
786         struct temp_sensor_2 *temp;
787         ssize_t (*show_temp)(struct device *, struct device_attribute *,
788                              char *) = occ_show_temp_1;
789         ssize_t (*show_freq)(struct device *, struct device_attribute *,
790                              char *) = occ_show_freq_1;
791         ssize_t (*show_power)(struct device *, struct device_attribute *,
792                               char *) = occ_show_power_1;
793         ssize_t (*show_caps)(struct device *, struct device_attribute *,
794                              char *) = occ_show_caps_1_2;
795
796         switch (sensors->temp.version) {
797         case 1:
798                 num_attrs += (sensors->temp.num_sensors * 2);
799                 break;
800         case 2:
801                 num_attrs += (sensors->temp.num_sensors * 4);
802                 show_temp = occ_show_temp_2;
803                 break;
804         case 0x10:
805                 num_attrs += (sensors->temp.num_sensors * 5);
806                 show_temp = occ_show_temp_10;
807                 break;
808         default:
809                 sensors->temp.num_sensors = 0;
810         }
811
812         switch (sensors->freq.version) {
813         case 2:
814                 show_freq = occ_show_freq_2;
815                 fallthrough;
816         case 1:
817                 num_attrs += (sensors->freq.num_sensors * 2);
818                 break;
819         default:
820                 sensors->freq.num_sensors = 0;
821         }
822
823         switch (sensors->power.version) {
824         case 2:
825                 show_power = occ_show_power_2;
826                 fallthrough;
827         case 1:
828                 num_attrs += (sensors->power.num_sensors * 4);
829                 break;
830         case 0xA0:
831                 num_attrs += (sensors->power.num_sensors * 16);
832                 show_power = occ_show_power_a0;
833                 break;
834         default:
835                 sensors->power.num_sensors = 0;
836         }
837
838         switch (sensors->caps.version) {
839         case 1:
840                 num_attrs += (sensors->caps.num_sensors * 7);
841                 break;
842         case 3:
843                 show_caps = occ_show_caps_3;
844                 fallthrough;
845         case 2:
846                 num_attrs += (sensors->caps.num_sensors * 8);
847                 break;
848         default:
849                 sensors->caps.num_sensors = 0;
850         }
851
852         switch (sensors->extended.version) {
853         case 1:
854                 num_attrs += (sensors->extended.num_sensors * 3);
855                 break;
856         default:
857                 sensors->extended.num_sensors = 0;
858         }
859
860         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
861                                   GFP_KERNEL);
862         if (!occ->attrs)
863                 return -ENOMEM;
864
865         /* null-terminated list */
866         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
867                                         num_attrs + 1, GFP_KERNEL);
868         if (!occ->group.attrs)
869                 return -ENOMEM;
870
871         attr = occ->attrs;
872
873         for (i = 0; i < sensors->temp.num_sensors; ++i) {
874                 s = i + 1;
875                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
876
877                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
878                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
879                                              0, i);
880                 attr++;
881
882                 if (sensors->temp.version == 2 &&
883                     temp->fru_type == OCC_FRU_TYPE_VRM) {
884                         snprintf(attr->name, sizeof(attr->name),
885                                  "temp%d_alarm", s);
886                 } else {
887                         snprintf(attr->name, sizeof(attr->name),
888                                  "temp%d_input", s);
889                 }
890
891                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
892                                              1, i);
893                 attr++;
894
895                 if (sensors->temp.version > 1) {
896                         snprintf(attr->name, sizeof(attr->name),
897                                  "temp%d_fru_type", s);
898                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
899                                                      show_temp, NULL, 2, i);
900                         attr++;
901
902                         snprintf(attr->name, sizeof(attr->name),
903                                  "temp%d_fault", s);
904                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
905                                                      show_temp, NULL, 3, i);
906                         attr++;
907
908                         if (sensors->temp.version == 0x10) {
909                                 snprintf(attr->name, sizeof(attr->name),
910                                          "temp%d_max", s);
911                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912                                                              show_temp, NULL,
913                                                              4, i);
914                                 attr++;
915                         }
916                 }
917         }
918
919         for (i = 0; i < sensors->freq.num_sensors; ++i) {
920                 s = i + 1;
921
922                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
923                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
924                                              0, i);
925                 attr++;
926
927                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
928                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
929                                              1, i);
930                 attr++;
931         }
932
933         if (sensors->power.version == 0xA0) {
934                 /*
935                  * Special case for many-attribute power sensor. Split it into
936                  * a sensor number per power type, emulating several sensors.
937                  */
938                 for (i = 0; i < sensors->power.num_sensors; ++i) {
939                         unsigned int j;
940                         unsigned int nr = 0;
941
942                         s = (i * 4) + 1;
943
944                         for (j = 0; j < 4; ++j) {
945                                 snprintf(attr->name, sizeof(attr->name),
946                                          "power%d_label", s);
947                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
948                                                              show_power, NULL,
949                                                              nr++, i);
950                                 attr++;
951
952                                 snprintf(attr->name, sizeof(attr->name),
953                                          "power%d_average", s);
954                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
955                                                              show_power, NULL,
956                                                              nr++, i);
957                                 attr++;
958
959                                 snprintf(attr->name, sizeof(attr->name),
960                                          "power%d_average_interval", s);
961                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
962                                                              show_power, NULL,
963                                                              nr++, i);
964                                 attr++;
965
966                                 snprintf(attr->name, sizeof(attr->name),
967                                          "power%d_input", s);
968                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969                                                              show_power, NULL,
970                                                              nr++, i);
971                                 attr++;
972
973                                 s++;
974                         }
975                 }
976
977                 s = (sensors->power.num_sensors * 4) + 1;
978         } else {
979                 for (i = 0; i < sensors->power.num_sensors; ++i) {
980                         s = i + 1;
981
982                         snprintf(attr->name, sizeof(attr->name),
983                                  "power%d_label", s);
984                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
985                                                      show_power, NULL, 0, i);
986                         attr++;
987
988                         snprintf(attr->name, sizeof(attr->name),
989                                  "power%d_average", s);
990                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991                                                      show_power, NULL, 1, i);
992                         attr++;
993
994                         snprintf(attr->name, sizeof(attr->name),
995                                  "power%d_average_interval", s);
996                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
997                                                      show_power, NULL, 2, i);
998                         attr++;
999
1000                         snprintf(attr->name, sizeof(attr->name),
1001                                  "power%d_input", s);
1002                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003                                                      show_power, NULL, 3, i);
1004                         attr++;
1005                 }
1006
1007                 s = sensors->power.num_sensors + 1;
1008         }
1009
1010         if (sensors->caps.num_sensors >= 1) {
1011                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1012                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1013                                              0, 0);
1014                 attr++;
1015
1016                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1017                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1018                                              1, 0);
1019                 attr++;
1020
1021                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1022                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1023                                              2, 0);
1024                 attr++;
1025
1026                 snprintf(attr->name, sizeof(attr->name),
1027                          "power%d_cap_not_redundant", s);
1028                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1029                                              3, 0);
1030                 attr++;
1031
1032                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1033                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1034                                              4, 0);
1035                 attr++;
1036
1037                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1038                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1039                                              5, 0);
1040                 attr++;
1041
1042                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1043                          s);
1044                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1045                                              occ_store_caps_user, 6, 0);
1046                 attr++;
1047
1048                 if (sensors->caps.version > 1) {
1049                         snprintf(attr->name, sizeof(attr->name),
1050                                  "power%d_cap_user_source", s);
1051                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1052                                                      show_caps, NULL, 7, 0);
1053                         attr++;
1054                 }
1055         }
1056
1057         for (i = 0; i < sensors->extended.num_sensors; ++i) {
1058                 s = i + 1;
1059
1060                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1061                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1062                                              occ_show_extended, NULL, 0, i);
1063                 attr++;
1064
1065                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1066                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1067                                              occ_show_extended, NULL, 1, i);
1068                 attr++;
1069
1070                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1071                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1072                                              occ_show_extended, NULL, 2, i);
1073                 attr++;
1074         }
1075
1076         /* put the sensors in the group */
1077         for (i = 0; i < num_attrs; ++i) {
1078                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1079                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1080         }
1081
1082         return 0;
1083 }
1084
1085 /* only need to do this once at startup, as OCC won't change sensors on us */
1086 static void occ_parse_poll_response(struct occ *occ)
1087 {
1088         unsigned int i, old_offset, offset = 0, size = 0;
1089         struct occ_sensor *sensor;
1090         struct occ_sensors *sensors = &occ->sensors;
1091         struct occ_response *resp = &occ->resp;
1092         struct occ_poll_response *poll =
1093                 (struct occ_poll_response *)&resp->data[0];
1094         struct occ_poll_response_header *header = &poll->header;
1095         struct occ_sensor_data_block *block = &poll->block;
1096
1097         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1098                  header->occ_code_level);
1099
1100         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1101                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1102                 old_offset = offset;
1103                 offset = (block->header.num_sensors *
1104                           block->header.sensor_length) + sizeof(block->header);
1105                 size += offset;
1106
1107                 /* validate all the length/size fields */
1108                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1109                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1110                         return;
1111                 }
1112
1113                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1114                         old_offset, offset - 1, block->header.eye_catcher,
1115                         block->header.num_sensors);
1116
1117                 /* match sensor block type */
1118                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1119                         sensor = &sensors->temp;
1120                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1121                         sensor = &sensors->freq;
1122                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1123                         sensor = &sensors->power;
1124                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1125                         sensor = &sensors->caps;
1126                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1127                         sensor = &sensors->extended;
1128                 else {
1129                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1130                                  block->header.eye_catcher);
1131                         continue;
1132                 }
1133
1134                 sensor->num_sensors = block->header.num_sensors;
1135                 sensor->version = block->header.sensor_format;
1136                 sensor->data = &block->data;
1137         }
1138
1139         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1140                 sizeof(*header), size + sizeof(*header));
1141 }
1142
1143 int occ_setup(struct occ *occ, const char *name)
1144 {
1145         int rc;
1146
1147         /* start with 1 to avoid false match with zero-initialized SRAM buffer */
1148         occ->seq_no = 1;
1149         mutex_init(&occ->lock);
1150         occ->groups[0] = &occ->group;
1151
1152         /* no need to lock */
1153         rc = occ_poll(occ);
1154         if (rc == -ESHUTDOWN) {
1155                 dev_info(occ->bus_dev, "host is not ready\n");
1156                 return rc;
1157         } else if (rc < 0) {
1158                 dev_err(occ->bus_dev,
1159                         "failed to get OCC poll response=%02x: %d\n",
1160                         occ->resp.return_status, rc);
1161                 return rc;
1162         }
1163
1164         occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1165         occ_parse_poll_response(occ);
1166
1167         rc = occ_setup_sensor_attrs(occ);
1168         if (rc) {
1169                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1170                         rc);
1171                 return rc;
1172         }
1173
1174         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1175                                                             occ, occ->groups);
1176         if (IS_ERR(occ->hwmon)) {
1177                 rc = PTR_ERR(occ->hwmon);
1178                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1179                         rc);
1180                 return rc;
1181         }
1182
1183         rc = occ_setup_sysfs(occ);
1184         if (rc)
1185                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1186
1187         return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(occ_setup);
1190
1191 MODULE_AUTHOR("Eddie James <[email protected]>");
1192 MODULE_DESCRIPTION("Common OCC hwmon code");
1193 MODULE_LICENSE("GPL");
This page took 0.107169 seconds and 4 git commands to generate.