2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args {
56 struct btrfs_root *root;
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
97 err = btrfs_init_acl(trans, inode, dir);
99 err = btrfs_xattr_security_init(trans, inode, dir);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
119 struct btrfs_file_extent_item *ei;
122 size_t cur_size = size;
124 unsigned long offset;
125 int use_compress = 0;
127 if (compressed_size && compressed_pages) {
129 cur_size = compressed_size;
132 path = btrfs_alloc_path();
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
139 key.objectid = inode->i_ino;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
176 compressed_size -= cur_size;
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
207 btrfs_free_path(path);
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
229 u64 data_len = inline_len;
233 data_len = compressed_size;
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (actual_end & (root->sectorsize - 1)) == 0) ||
241 data_len > root->fs_info->max_inline) {
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 struct async_extent {
265 unsigned long nr_pages;
266 struct list_head list;
271 struct btrfs_root *root;
272 struct page *locked_page;
275 struct list_head extents;
276 struct btrfs_work work;
279 static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
283 unsigned long nr_pages)
285 struct async_extent *async_extent;
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
313 static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
316 struct async_cow *async_cow,
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
322 u64 blocksize = root->sectorsize;
324 u64 isize = i_size_read(inode);
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
332 unsigned long max_uncompressed = 128 * 1024;
336 actual_end = min_t(u64, isize, end + 1);
339 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
340 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343 * we don't want to send crud past the end of i_size through
344 * compression, that's just a waste of CPU time. So, if the
345 * end of the file is before the start of our current
346 * requested range of bytes, we bail out to the uncompressed
347 * cleanup code that can deal with all of this.
349 * It isn't really the fastest way to fix things, but this is a
350 * very uncommon corner.
352 if (actual_end <= start)
353 goto cleanup_and_bail_uncompressed;
355 total_compressed = actual_end - start;
357 /* we want to make sure that amount of ram required to uncompress
358 * an extent is reasonable, so we limit the total size in ram
359 * of a compressed extent to 128k. This is a crucial number
360 * because it also controls how easily we can spread reads across
361 * cpus for decompression.
363 * We also want to make sure the amount of IO required to do
364 * a random read is reasonably small, so we limit the size of
365 * a compressed extent to 128k.
367 total_compressed = min(total_compressed, max_uncompressed);
368 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
369 num_bytes = max(blocksize, num_bytes);
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
378 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
379 (btrfs_test_opt(root, COMPRESS) ||
380 (BTRFS_I(inode)->force_compress))) {
382 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
384 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
385 total_compressed, pages,
386 nr_pages, &nr_pages_ret,
392 unsigned long offset = total_compressed &
393 (PAGE_CACHE_SIZE - 1);
394 struct page *page = pages[nr_pages_ret - 1];
397 /* zero the tail end of the last page, we might be
398 * sending it down to disk
401 kaddr = kmap_atomic(page, KM_USER0);
402 memset(kaddr + offset, 0,
403 PAGE_CACHE_SIZE - offset);
404 kunmap_atomic(kaddr, KM_USER0);
410 trans = btrfs_join_transaction(root, 1);
412 btrfs_set_trans_block_group(trans, inode);
413 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
415 /* lets try to make an inline extent */
416 if (ret || total_in < (actual_end - start)) {
417 /* we didn't compress the entire range, try
418 * to make an uncompressed inline extent.
420 ret = cow_file_range_inline(trans, root, inode,
421 start, end, 0, NULL);
423 /* try making a compressed inline extent */
424 ret = cow_file_range_inline(trans, root, inode,
426 total_compressed, pages);
430 * inline extent creation worked, we don't need
431 * to create any more async work items. Unlock
432 * and free up our temp pages.
434 extent_clear_unlock_delalloc(inode,
435 &BTRFS_I(inode)->io_tree,
437 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
438 EXTENT_CLEAR_DELALLOC |
439 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
441 btrfs_end_transaction(trans, root);
444 btrfs_end_transaction(trans, root);
449 * we aren't doing an inline extent round the compressed size
450 * up to a block size boundary so the allocator does sane
453 total_compressed = (total_compressed + blocksize - 1) &
457 * one last check to make sure the compression is really a
458 * win, compare the page count read with the blocks on disk
460 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
461 ~(PAGE_CACHE_SIZE - 1);
462 if (total_compressed >= total_in) {
465 num_bytes = total_in;
468 if (!will_compress && pages) {
470 * the compression code ran but failed to make things smaller,
471 * free any pages it allocated and our page pointer array
473 for (i = 0; i < nr_pages_ret; i++) {
474 WARN_ON(pages[i]->mapping);
475 page_cache_release(pages[i]);
479 total_compressed = 0;
482 /* flag the file so we don't compress in the future */
483 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
484 !(BTRFS_I(inode)->force_compress)) {
485 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
491 /* the async work queues will take care of doing actual
492 * allocation on disk for these compressed pages,
493 * and will submit them to the elevator.
495 add_async_extent(async_cow, start, num_bytes,
496 total_compressed, pages, nr_pages_ret);
498 if (start + num_bytes < end) {
505 cleanup_and_bail_uncompressed:
507 * No compression, but we still need to write the pages in
508 * the file we've been given so far. redirty the locked
509 * page if it corresponds to our extent and set things up
510 * for the async work queue to run cow_file_range to do
511 * the normal delalloc dance
513 if (page_offset(locked_page) >= start &&
514 page_offset(locked_page) <= end) {
515 __set_page_dirty_nobuffers(locked_page);
516 /* unlocked later on in the async handlers */
518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
526 for (i = 0; i < nr_pages_ret; i++) {
527 WARN_ON(pages[i]->mapping);
528 page_cache_release(pages[i]);
536 * phase two of compressed writeback. This is the ordered portion
537 * of the code, which only gets called in the order the work was
538 * queued. We walk all the async extents created by compress_file_range
539 * and send them down to the disk.
541 static noinline int submit_compressed_extents(struct inode *inode,
542 struct async_cow *async_cow)
544 struct async_extent *async_extent;
546 struct btrfs_trans_handle *trans;
547 struct btrfs_key ins;
548 struct extent_map *em;
549 struct btrfs_root *root = BTRFS_I(inode)->root;
550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 struct extent_io_tree *io_tree;
554 if (list_empty(&async_cow->extents))
558 while (!list_empty(&async_cow->extents)) {
559 async_extent = list_entry(async_cow->extents.next,
560 struct async_extent, list);
561 list_del(&async_extent->list);
563 io_tree = &BTRFS_I(inode)->io_tree;
566 /* did the compression code fall back to uncompressed IO? */
567 if (!async_extent->pages) {
568 int page_started = 0;
569 unsigned long nr_written = 0;
571 lock_extent(io_tree, async_extent->start,
572 async_extent->start +
573 async_extent->ram_size - 1, GFP_NOFS);
575 /* allocate blocks */
576 ret = cow_file_range(inode, async_cow->locked_page,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 &page_started, &nr_written, 0);
583 * if page_started, cow_file_range inserted an
584 * inline extent and took care of all the unlocking
585 * and IO for us. Otherwise, we need to submit
586 * all those pages down to the drive.
588 if (!page_started && !ret)
589 extent_write_locked_range(io_tree,
590 inode, async_extent->start,
591 async_extent->start +
592 async_extent->ram_size - 1,
600 lock_extent(io_tree, async_extent->start,
601 async_extent->start + async_extent->ram_size - 1,
604 trans = btrfs_join_transaction(root, 1);
605 ret = btrfs_reserve_extent(trans, root,
606 async_extent->compressed_size,
607 async_extent->compressed_size,
610 btrfs_end_transaction(trans, root);
614 for (i = 0; i < async_extent->nr_pages; i++) {
615 WARN_ON(async_extent->pages[i]->mapping);
616 page_cache_release(async_extent->pages[i]);
618 kfree(async_extent->pages);
619 async_extent->nr_pages = 0;
620 async_extent->pages = NULL;
621 unlock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, GFP_NOFS);
628 * here we're doing allocation and writeback of the
631 btrfs_drop_extent_cache(inode, async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1, 0);
635 em = alloc_extent_map(GFP_NOFS);
636 em->start = async_extent->start;
637 em->len = async_extent->ram_size;
638 em->orig_start = em->start;
640 em->block_start = ins.objectid;
641 em->block_len = ins.offset;
642 em->bdev = root->fs_info->fs_devices->latest_bdev;
643 set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
647 write_lock(&em_tree->lock);
648 ret = add_extent_mapping(em_tree, em);
649 write_unlock(&em_tree->lock);
650 if (ret != -EEXIST) {
654 btrfs_drop_extent_cache(inode, async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1, 0);
659 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661 async_extent->ram_size,
663 BTRFS_ORDERED_COMPRESSED);
667 * clear dirty, set writeback and unlock the pages.
669 extent_clear_unlock_delalloc(inode,
670 &BTRFS_I(inode)->io_tree,
672 async_extent->start +
673 async_extent->ram_size - 1,
674 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 EXTENT_CLEAR_UNLOCK |
676 EXTENT_CLEAR_DELALLOC |
677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
679 ret = btrfs_submit_compressed_write(inode,
681 async_extent->ram_size,
683 ins.offset, async_extent->pages,
684 async_extent->nr_pages);
687 alloc_hint = ins.objectid + ins.offset;
695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 struct extent_map *em;
702 read_lock(&em_tree->lock);
703 em = search_extent_mapping(em_tree, start, num_bytes);
706 * if block start isn't an actual block number then find the
707 * first block in this inode and use that as a hint. If that
708 * block is also bogus then just don't worry about it.
710 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
712 em = search_extent_mapping(em_tree, 0, 0);
713 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
714 alloc_hint = em->block_start;
718 alloc_hint = em->block_start;
722 read_unlock(&em_tree->lock);
728 * when extent_io.c finds a delayed allocation range in the file,
729 * the call backs end up in this code. The basic idea is to
730 * allocate extents on disk for the range, and create ordered data structs
731 * in ram to track those extents.
733 * locked_page is the page that writepage had locked already. We use
734 * it to make sure we don't do extra locks or unlocks.
736 * *page_started is set to one if we unlock locked_page and do everything
737 * required to start IO on it. It may be clean and already done with
740 static noinline int cow_file_range(struct inode *inode,
741 struct page *locked_page,
742 u64 start, u64 end, int *page_started,
743 unsigned long *nr_written,
746 struct btrfs_root *root = BTRFS_I(inode)->root;
747 struct btrfs_trans_handle *trans;
750 unsigned long ram_size;
753 u64 blocksize = root->sectorsize;
754 struct btrfs_key ins;
755 struct extent_map *em;
756 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
759 BUG_ON(root == root->fs_info->tree_root);
760 trans = btrfs_join_transaction(root, 1);
762 btrfs_set_trans_block_group(trans, inode);
763 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
765 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
766 num_bytes = max(blocksize, num_bytes);
767 disk_num_bytes = num_bytes;
771 /* lets try to make an inline extent */
772 ret = cow_file_range_inline(trans, root, inode,
773 start, end, 0, NULL);
775 extent_clear_unlock_delalloc(inode,
776 &BTRFS_I(inode)->io_tree,
778 EXTENT_CLEAR_UNLOCK_PAGE |
779 EXTENT_CLEAR_UNLOCK |
780 EXTENT_CLEAR_DELALLOC |
782 EXTENT_SET_WRITEBACK |
783 EXTENT_END_WRITEBACK);
785 *nr_written = *nr_written +
786 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
793 BUG_ON(disk_num_bytes >
794 btrfs_super_total_bytes(&root->fs_info->super_copy));
796 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
797 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
799 while (disk_num_bytes > 0) {
802 cur_alloc_size = disk_num_bytes;
803 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
804 root->sectorsize, 0, alloc_hint,
808 em = alloc_extent_map(GFP_NOFS);
810 em->orig_start = em->start;
811 ram_size = ins.offset;
812 em->len = ins.offset;
814 em->block_start = ins.objectid;
815 em->block_len = ins.offset;
816 em->bdev = root->fs_info->fs_devices->latest_bdev;
817 set_bit(EXTENT_FLAG_PINNED, &em->flags);
820 write_lock(&em_tree->lock);
821 ret = add_extent_mapping(em_tree, em);
822 write_unlock(&em_tree->lock);
823 if (ret != -EEXIST) {
827 btrfs_drop_extent_cache(inode, start,
828 start + ram_size - 1, 0);
831 cur_alloc_size = ins.offset;
832 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
833 ram_size, cur_alloc_size, 0);
836 if (root->root_key.objectid ==
837 BTRFS_DATA_RELOC_TREE_OBJECTID) {
838 ret = btrfs_reloc_clone_csums(inode, start,
843 if (disk_num_bytes < cur_alloc_size)
846 /* we're not doing compressed IO, don't unlock the first
847 * page (which the caller expects to stay locked), don't
848 * clear any dirty bits and don't set any writeback bits
850 * Do set the Private2 bit so we know this page was properly
851 * setup for writepage
853 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
854 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
857 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
858 start, start + ram_size - 1,
860 disk_num_bytes -= cur_alloc_size;
861 num_bytes -= cur_alloc_size;
862 alloc_hint = ins.objectid + ins.offset;
863 start += cur_alloc_size;
867 btrfs_end_transaction(trans, root);
873 * work queue call back to started compression on a file and pages
875 static noinline void async_cow_start(struct btrfs_work *work)
877 struct async_cow *async_cow;
879 async_cow = container_of(work, struct async_cow, work);
881 compress_file_range(async_cow->inode, async_cow->locked_page,
882 async_cow->start, async_cow->end, async_cow,
885 async_cow->inode = NULL;
889 * work queue call back to submit previously compressed pages
891 static noinline void async_cow_submit(struct btrfs_work *work)
893 struct async_cow *async_cow;
894 struct btrfs_root *root;
895 unsigned long nr_pages;
897 async_cow = container_of(work, struct async_cow, work);
899 root = async_cow->root;
900 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
903 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
905 if (atomic_read(&root->fs_info->async_delalloc_pages) <
907 waitqueue_active(&root->fs_info->async_submit_wait))
908 wake_up(&root->fs_info->async_submit_wait);
910 if (async_cow->inode)
911 submit_compressed_extents(async_cow->inode, async_cow);
914 static noinline void async_cow_free(struct btrfs_work *work)
916 struct async_cow *async_cow;
917 async_cow = container_of(work, struct async_cow, work);
921 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
922 u64 start, u64 end, int *page_started,
923 unsigned long *nr_written)
925 struct async_cow *async_cow;
926 struct btrfs_root *root = BTRFS_I(inode)->root;
927 unsigned long nr_pages;
929 int limit = 10 * 1024 * 1042;
931 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
932 1, 0, NULL, GFP_NOFS);
933 while (start < end) {
934 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
935 async_cow->inode = inode;
936 async_cow->root = root;
937 async_cow->locked_page = locked_page;
938 async_cow->start = start;
940 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
943 cur_end = min(end, start + 512 * 1024 - 1);
945 async_cow->end = cur_end;
946 INIT_LIST_HEAD(&async_cow->extents);
948 async_cow->work.func = async_cow_start;
949 async_cow->work.ordered_func = async_cow_submit;
950 async_cow->work.ordered_free = async_cow_free;
951 async_cow->work.flags = 0;
953 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
955 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
957 btrfs_queue_worker(&root->fs_info->delalloc_workers,
960 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
961 wait_event(root->fs_info->async_submit_wait,
962 (atomic_read(&root->fs_info->async_delalloc_pages) <
966 while (atomic_read(&root->fs_info->async_submit_draining) &&
967 atomic_read(&root->fs_info->async_delalloc_pages)) {
968 wait_event(root->fs_info->async_submit_wait,
969 (atomic_read(&root->fs_info->async_delalloc_pages) ==
973 *nr_written += nr_pages;
980 static noinline int csum_exist_in_range(struct btrfs_root *root,
981 u64 bytenr, u64 num_bytes)
984 struct btrfs_ordered_sum *sums;
987 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
988 bytenr + num_bytes - 1, &list);
989 if (ret == 0 && list_empty(&list))
992 while (!list_empty(&list)) {
993 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
994 list_del(&sums->list);
1001 * when nowcow writeback call back. This checks for snapshots or COW copies
1002 * of the extents that exist in the file, and COWs the file as required.
1004 * If no cow copies or snapshots exist, we write directly to the existing
1007 static noinline int run_delalloc_nocow(struct inode *inode,
1008 struct page *locked_page,
1009 u64 start, u64 end, int *page_started, int force,
1010 unsigned long *nr_written)
1012 struct btrfs_root *root = BTRFS_I(inode)->root;
1013 struct btrfs_trans_handle *trans;
1014 struct extent_buffer *leaf;
1015 struct btrfs_path *path;
1016 struct btrfs_file_extent_item *fi;
1017 struct btrfs_key found_key;
1029 bool nolock = false;
1031 path = btrfs_alloc_path();
1033 if (root == root->fs_info->tree_root) {
1035 trans = btrfs_join_transaction_nolock(root, 1);
1037 trans = btrfs_join_transaction(root, 1);
1041 cow_start = (u64)-1;
1044 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1047 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1048 leaf = path->nodes[0];
1049 btrfs_item_key_to_cpu(leaf, &found_key,
1050 path->slots[0] - 1);
1051 if (found_key.objectid == inode->i_ino &&
1052 found_key.type == BTRFS_EXTENT_DATA_KEY)
1057 leaf = path->nodes[0];
1058 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1059 ret = btrfs_next_leaf(root, path);
1064 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1072 if (found_key.objectid > inode->i_ino ||
1073 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1074 found_key.offset > end)
1077 if (found_key.offset > cur_offset) {
1078 extent_end = found_key.offset;
1083 fi = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_file_extent_item);
1085 extent_type = btrfs_file_extent_type(leaf, fi);
1087 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1088 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1089 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1090 extent_offset = btrfs_file_extent_offset(leaf, fi);
1091 extent_end = found_key.offset +
1092 btrfs_file_extent_num_bytes(leaf, fi);
1093 if (extent_end <= start) {
1097 if (disk_bytenr == 0)
1099 if (btrfs_file_extent_compression(leaf, fi) ||
1100 btrfs_file_extent_encryption(leaf, fi) ||
1101 btrfs_file_extent_other_encoding(leaf, fi))
1103 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1105 if (btrfs_extent_readonly(root, disk_bytenr))
1107 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1109 extent_offset, disk_bytenr))
1111 disk_bytenr += extent_offset;
1112 disk_bytenr += cur_offset - found_key.offset;
1113 num_bytes = min(end + 1, extent_end) - cur_offset;
1115 * force cow if csum exists in the range.
1116 * this ensure that csum for a given extent are
1117 * either valid or do not exist.
1119 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1122 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1123 extent_end = found_key.offset +
1124 btrfs_file_extent_inline_len(leaf, fi);
1125 extent_end = ALIGN(extent_end, root->sectorsize);
1130 if (extent_end <= start) {
1135 if (cow_start == (u64)-1)
1136 cow_start = cur_offset;
1137 cur_offset = extent_end;
1138 if (cur_offset > end)
1144 btrfs_release_path(root, path);
1145 if (cow_start != (u64)-1) {
1146 ret = cow_file_range(inode, locked_page, cow_start,
1147 found_key.offset - 1, page_started,
1150 cow_start = (u64)-1;
1153 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1154 struct extent_map *em;
1155 struct extent_map_tree *em_tree;
1156 em_tree = &BTRFS_I(inode)->extent_tree;
1157 em = alloc_extent_map(GFP_NOFS);
1158 em->start = cur_offset;
1159 em->orig_start = em->start;
1160 em->len = num_bytes;
1161 em->block_len = num_bytes;
1162 em->block_start = disk_bytenr;
1163 em->bdev = root->fs_info->fs_devices->latest_bdev;
1164 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1166 write_lock(&em_tree->lock);
1167 ret = add_extent_mapping(em_tree, em);
1168 write_unlock(&em_tree->lock);
1169 if (ret != -EEXIST) {
1170 free_extent_map(em);
1173 btrfs_drop_extent_cache(inode, em->start,
1174 em->start + em->len - 1, 0);
1176 type = BTRFS_ORDERED_PREALLOC;
1178 type = BTRFS_ORDERED_NOCOW;
1181 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1182 num_bytes, num_bytes, type);
1185 if (root->root_key.objectid ==
1186 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1187 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1192 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1193 cur_offset, cur_offset + num_bytes - 1,
1194 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1195 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1196 EXTENT_SET_PRIVATE2);
1197 cur_offset = extent_end;
1198 if (cur_offset > end)
1201 btrfs_release_path(root, path);
1203 if (cur_offset <= end && cow_start == (u64)-1)
1204 cow_start = cur_offset;
1205 if (cow_start != (u64)-1) {
1206 ret = cow_file_range(inode, locked_page, cow_start, end,
1207 page_started, nr_written, 1);
1212 ret = btrfs_end_transaction_nolock(trans, root);
1215 ret = btrfs_end_transaction(trans, root);
1218 btrfs_free_path(path);
1223 * extent_io.c call back to do delayed allocation processing
1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1226 u64 start, u64 end, int *page_started,
1227 unsigned long *nr_written)
1230 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1233 ret = run_delalloc_nocow(inode, locked_page, start, end,
1234 page_started, 1, nr_written);
1235 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1236 ret = run_delalloc_nocow(inode, locked_page, start, end,
1237 page_started, 0, nr_written);
1238 else if (!btrfs_test_opt(root, COMPRESS) &&
1239 !(BTRFS_I(inode)->force_compress))
1240 ret = cow_file_range(inode, locked_page, start, end,
1241 page_started, nr_written, 1);
1243 ret = cow_file_range_async(inode, locked_page, start, end,
1244 page_started, nr_written);
1248 static int btrfs_split_extent_hook(struct inode *inode,
1249 struct extent_state *orig, u64 split)
1251 /* not delalloc, ignore it */
1252 if (!(orig->state & EXTENT_DELALLOC))
1255 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1260 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1261 * extents so we can keep track of new extents that are just merged onto old
1262 * extents, such as when we are doing sequential writes, so we can properly
1263 * account for the metadata space we'll need.
1265 static int btrfs_merge_extent_hook(struct inode *inode,
1266 struct extent_state *new,
1267 struct extent_state *other)
1269 /* not delalloc, ignore it */
1270 if (!(other->state & EXTENT_DELALLOC))
1273 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1278 * extent_io.c set_bit_hook, used to track delayed allocation
1279 * bytes in this file, and to maintain the list of inodes that
1280 * have pending delalloc work to be done.
1282 static int btrfs_set_bit_hook(struct inode *inode,
1283 struct extent_state *state, int *bits)
1287 * set_bit and clear bit hooks normally require _irqsave/restore
1288 * but in this case, we are only testeing for the DELALLOC
1289 * bit, which is only set or cleared with irqs on
1291 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1292 struct btrfs_root *root = BTRFS_I(inode)->root;
1293 u64 len = state->end + 1 - state->start;
1294 int do_list = (root->root_key.objectid !=
1295 BTRFS_ROOT_TREE_OBJECTID);
1297 if (*bits & EXTENT_FIRST_DELALLOC)
1298 *bits &= ~EXTENT_FIRST_DELALLOC;
1300 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302 spin_lock(&root->fs_info->delalloc_lock);
1303 BTRFS_I(inode)->delalloc_bytes += len;
1304 root->fs_info->delalloc_bytes += len;
1305 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1306 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1307 &root->fs_info->delalloc_inodes);
1309 spin_unlock(&root->fs_info->delalloc_lock);
1315 * extent_io.c clear_bit_hook, see set_bit_hook for why
1317 static int btrfs_clear_bit_hook(struct inode *inode,
1318 struct extent_state *state, int *bits)
1321 * set_bit and clear bit hooks normally require _irqsave/restore
1322 * but in this case, we are only testeing for the DELALLOC
1323 * bit, which is only set or cleared with irqs on
1325 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1326 struct btrfs_root *root = BTRFS_I(inode)->root;
1327 u64 len = state->end + 1 - state->start;
1328 int do_list = (root->root_key.objectid !=
1329 BTRFS_ROOT_TREE_OBJECTID);
1331 if (*bits & EXTENT_FIRST_DELALLOC)
1332 *bits &= ~EXTENT_FIRST_DELALLOC;
1333 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1334 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1336 if (*bits & EXTENT_DO_ACCOUNTING)
1337 btrfs_delalloc_release_metadata(inode, len);
1339 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1341 btrfs_free_reserved_data_space(inode, len);
1343 spin_lock(&root->fs_info->delalloc_lock);
1344 root->fs_info->delalloc_bytes -= len;
1345 BTRFS_I(inode)->delalloc_bytes -= len;
1347 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1348 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1351 spin_unlock(&root->fs_info->delalloc_lock);
1357 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1358 * we don't create bios that span stripes or chunks
1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1361 size_t size, struct bio *bio,
1362 unsigned long bio_flags)
1364 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1365 struct btrfs_mapping_tree *map_tree;
1366 u64 logical = (u64)bio->bi_sector << 9;
1371 if (bio_flags & EXTENT_BIO_COMPRESSED)
1374 length = bio->bi_size;
1375 map_tree = &root->fs_info->mapping_tree;
1376 map_length = length;
1377 ret = btrfs_map_block(map_tree, READ, logical,
1378 &map_length, NULL, 0);
1380 if (map_length < length + size)
1386 * in order to insert checksums into the metadata in large chunks,
1387 * we wait until bio submission time. All the pages in the bio are
1388 * checksummed and sums are attached onto the ordered extent record.
1390 * At IO completion time the cums attached on the ordered extent record
1391 * are inserted into the btree
1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1394 struct bio *bio, int mirror_num,
1395 unsigned long bio_flags,
1398 struct btrfs_root *root = BTRFS_I(inode)->root;
1401 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1407 * in order to insert checksums into the metadata in large chunks,
1408 * we wait until bio submission time. All the pages in the bio are
1409 * checksummed and sums are attached onto the ordered extent record.
1411 * At IO completion time the cums attached on the ordered extent record
1412 * are inserted into the btree
1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1415 int mirror_num, unsigned long bio_flags,
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
1419 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1423 * extent_io.c submission hook. This does the right thing for csum calculation
1424 * on write, or reading the csums from the tree before a read
1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1427 int mirror_num, unsigned long bio_flags,
1430 struct btrfs_root *root = BTRFS_I(inode)->root;
1434 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1436 if (root == root->fs_info->tree_root)
1437 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1439 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1442 if (!(rw & REQ_WRITE)) {
1443 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1444 return btrfs_submit_compressed_read(inode, bio,
1445 mirror_num, bio_flags);
1446 } else if (!skip_sum)
1447 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1449 } else if (!skip_sum) {
1450 /* csum items have already been cloned */
1451 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1453 /* we're doing a write, do the async checksumming */
1454 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1455 inode, rw, bio, mirror_num,
1456 bio_flags, bio_offset,
1457 __btrfs_submit_bio_start,
1458 __btrfs_submit_bio_done);
1462 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1466 * given a list of ordered sums record them in the inode. This happens
1467 * at IO completion time based on sums calculated at bio submission time.
1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1470 struct inode *inode, u64 file_offset,
1471 struct list_head *list)
1473 struct btrfs_ordered_sum *sum;
1475 btrfs_set_trans_block_group(trans, inode);
1477 list_for_each_entry(sum, list, list) {
1478 btrfs_csum_file_blocks(trans,
1479 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1485 struct extent_state **cached_state)
1487 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1489 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1490 cached_state, GFP_NOFS);
1493 /* see btrfs_writepage_start_hook for details on why this is required */
1494 struct btrfs_writepage_fixup {
1496 struct btrfs_work work;
1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1501 struct btrfs_writepage_fixup *fixup;
1502 struct btrfs_ordered_extent *ordered;
1503 struct extent_state *cached_state = NULL;
1505 struct inode *inode;
1509 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1513 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1514 ClearPageChecked(page);
1518 inode = page->mapping->host;
1519 page_start = page_offset(page);
1520 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1522 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1523 &cached_state, GFP_NOFS);
1525 /* already ordered? We're done */
1526 if (PagePrivate2(page))
1529 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1532 page_end, &cached_state, GFP_NOFS);
1534 btrfs_start_ordered_extent(inode, ordered, 1);
1539 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1540 ClearPageChecked(page);
1542 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1543 &cached_state, GFP_NOFS);
1546 page_cache_release(page);
1550 * There are a few paths in the higher layers of the kernel that directly
1551 * set the page dirty bit without asking the filesystem if it is a
1552 * good idea. This causes problems because we want to make sure COW
1553 * properly happens and the data=ordered rules are followed.
1555 * In our case any range that doesn't have the ORDERED bit set
1556 * hasn't been properly setup for IO. We kick off an async process
1557 * to fix it up. The async helper will wait for ordered extents, set
1558 * the delalloc bit and make it safe to write the page.
1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1562 struct inode *inode = page->mapping->host;
1563 struct btrfs_writepage_fixup *fixup;
1564 struct btrfs_root *root = BTRFS_I(inode)->root;
1566 /* this page is properly in the ordered list */
1567 if (TestClearPagePrivate2(page))
1570 if (PageChecked(page))
1573 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1577 SetPageChecked(page);
1578 page_cache_get(page);
1579 fixup->work.func = btrfs_writepage_fixup_worker;
1581 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1586 struct inode *inode, u64 file_pos,
1587 u64 disk_bytenr, u64 disk_num_bytes,
1588 u64 num_bytes, u64 ram_bytes,
1589 u8 compression, u8 encryption,
1590 u16 other_encoding, int extent_type)
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct btrfs_file_extent_item *fi;
1594 struct btrfs_path *path;
1595 struct extent_buffer *leaf;
1596 struct btrfs_key ins;
1600 path = btrfs_alloc_path();
1603 path->leave_spinning = 1;
1606 * we may be replacing one extent in the tree with another.
1607 * The new extent is pinned in the extent map, and we don't want
1608 * to drop it from the cache until it is completely in the btree.
1610 * So, tell btrfs_drop_extents to leave this extent in the cache.
1611 * the caller is expected to unpin it and allow it to be merged
1614 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1618 ins.objectid = inode->i_ino;
1619 ins.offset = file_pos;
1620 ins.type = BTRFS_EXTENT_DATA_KEY;
1621 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1623 leaf = path->nodes[0];
1624 fi = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_file_extent_item);
1626 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1627 btrfs_set_file_extent_type(leaf, fi, extent_type);
1628 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1629 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1630 btrfs_set_file_extent_offset(leaf, fi, 0);
1631 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1632 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1633 btrfs_set_file_extent_compression(leaf, fi, compression);
1634 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1635 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1637 btrfs_unlock_up_safe(path, 1);
1638 btrfs_set_lock_blocking(leaf);
1640 btrfs_mark_buffer_dirty(leaf);
1642 inode_add_bytes(inode, num_bytes);
1644 ins.objectid = disk_bytenr;
1645 ins.offset = disk_num_bytes;
1646 ins.type = BTRFS_EXTENT_ITEM_KEY;
1647 ret = btrfs_alloc_reserved_file_extent(trans, root,
1648 root->root_key.objectid,
1649 inode->i_ino, file_pos, &ins);
1651 btrfs_free_path(path);
1657 * helper function for btrfs_finish_ordered_io, this
1658 * just reads in some of the csum leaves to prime them into ram
1659 * before we start the transaction. It limits the amount of btree
1660 * reads required while inside the transaction.
1662 /* as ordered data IO finishes, this gets called so we can finish
1663 * an ordered extent if the range of bytes in the file it covers are
1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1668 struct btrfs_root *root = BTRFS_I(inode)->root;
1669 struct btrfs_trans_handle *trans = NULL;
1670 struct btrfs_ordered_extent *ordered_extent = NULL;
1671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1672 struct extent_state *cached_state = NULL;
1675 bool nolock = false;
1677 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1681 BUG_ON(!ordered_extent);
1683 nolock = (root == root->fs_info->tree_root);
1685 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1686 BUG_ON(!list_empty(&ordered_extent->list));
1687 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1690 trans = btrfs_join_transaction_nolock(root, 1);
1692 trans = btrfs_join_transaction(root, 1);
1694 btrfs_set_trans_block_group(trans, inode);
1695 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1696 ret = btrfs_update_inode(trans, root, inode);
1702 lock_extent_bits(io_tree, ordered_extent->file_offset,
1703 ordered_extent->file_offset + ordered_extent->len - 1,
1704 0, &cached_state, GFP_NOFS);
1707 trans = btrfs_join_transaction_nolock(root, 1);
1709 trans = btrfs_join_transaction(root, 1);
1710 btrfs_set_trans_block_group(trans, inode);
1711 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1713 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1715 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1717 ret = btrfs_mark_extent_written(trans, inode,
1718 ordered_extent->file_offset,
1719 ordered_extent->file_offset +
1720 ordered_extent->len);
1723 BUG_ON(root == root->fs_info->tree_root);
1724 ret = insert_reserved_file_extent(trans, inode,
1725 ordered_extent->file_offset,
1726 ordered_extent->start,
1727 ordered_extent->disk_len,
1728 ordered_extent->len,
1729 ordered_extent->len,
1731 BTRFS_FILE_EXTENT_REG);
1732 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1733 ordered_extent->file_offset,
1734 ordered_extent->len);
1737 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1738 ordered_extent->file_offset +
1739 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1741 add_pending_csums(trans, inode, ordered_extent->file_offset,
1742 &ordered_extent->list);
1744 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1745 ret = btrfs_update_inode(trans, root, inode);
1750 btrfs_end_transaction_nolock(trans, root);
1752 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1754 btrfs_end_transaction(trans, root);
1758 btrfs_put_ordered_extent(ordered_extent);
1759 /* once for the tree */
1760 btrfs_put_ordered_extent(ordered_extent);
1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1766 struct extent_state *state, int uptodate)
1768 ClearPagePrivate2(page);
1769 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1773 * When IO fails, either with EIO or csum verification fails, we
1774 * try other mirrors that might have a good copy of the data. This
1775 * io_failure_record is used to record state as we go through all the
1776 * mirrors. If another mirror has good data, the page is set up to date
1777 * and things continue. If a good mirror can't be found, the original
1778 * bio end_io callback is called to indicate things have failed.
1780 struct io_failure_record {
1785 unsigned long bio_flags;
1789 static int btrfs_io_failed_hook(struct bio *failed_bio,
1790 struct page *page, u64 start, u64 end,
1791 struct extent_state *state)
1793 struct io_failure_record *failrec = NULL;
1795 struct extent_map *em;
1796 struct inode *inode = page->mapping->host;
1797 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1798 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1805 ret = get_state_private(failure_tree, start, &private);
1807 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1810 failrec->start = start;
1811 failrec->len = end - start + 1;
1812 failrec->last_mirror = 0;
1813 failrec->bio_flags = 0;
1815 read_lock(&em_tree->lock);
1816 em = lookup_extent_mapping(em_tree, start, failrec->len);
1817 if (em->start > start || em->start + em->len < start) {
1818 free_extent_map(em);
1821 read_unlock(&em_tree->lock);
1823 if (!em || IS_ERR(em)) {
1827 logical = start - em->start;
1828 logical = em->block_start + logical;
1829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1830 logical = em->block_start;
1831 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1833 failrec->logical = logical;
1834 free_extent_map(em);
1835 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1836 EXTENT_DIRTY, GFP_NOFS);
1837 set_state_private(failure_tree, start,
1838 (u64)(unsigned long)failrec);
1840 failrec = (struct io_failure_record *)(unsigned long)private;
1842 num_copies = btrfs_num_copies(
1843 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1844 failrec->logical, failrec->len);
1845 failrec->last_mirror++;
1847 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1848 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1851 if (state && state->start != failrec->start)
1853 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1855 if (!state || failrec->last_mirror > num_copies) {
1856 set_state_private(failure_tree, failrec->start, 0);
1857 clear_extent_bits(failure_tree, failrec->start,
1858 failrec->start + failrec->len - 1,
1859 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1863 bio = bio_alloc(GFP_NOFS, 1);
1864 bio->bi_private = state;
1865 bio->bi_end_io = failed_bio->bi_end_io;
1866 bio->bi_sector = failrec->logical >> 9;
1867 bio->bi_bdev = failed_bio->bi_bdev;
1870 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1871 if (failed_bio->bi_rw & REQ_WRITE)
1876 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1877 failrec->last_mirror,
1878 failrec->bio_flags, 0);
1883 * each time an IO finishes, we do a fast check in the IO failure tree
1884 * to see if we need to process or clean up an io_failure_record
1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1889 u64 private_failure;
1890 struct io_failure_record *failure;
1894 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1895 (u64)-1, 1, EXTENT_DIRTY)) {
1896 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1897 start, &private_failure);
1899 failure = (struct io_failure_record *)(unsigned long)
1901 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1903 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1905 failure->start + failure->len - 1,
1906 EXTENT_DIRTY | EXTENT_LOCKED,
1915 * when reads are done, we need to check csums to verify the data is correct
1916 * if there's a match, we allow the bio to finish. If not, we go through
1917 * the io_failure_record routines to find good copies
1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1920 struct extent_state *state)
1922 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1923 struct inode *inode = page->mapping->host;
1924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1926 u64 private = ~(u32)0;
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1931 if (PageChecked(page)) {
1932 ClearPageChecked(page);
1936 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1940 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1941 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1946 if (state && state->start == start) {
1947 private = state->private;
1950 ret = get_state_private(io_tree, start, &private);
1952 kaddr = kmap_atomic(page, KM_USER0);
1956 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1957 btrfs_csum_final(csum, (char *)&csum);
1958 if (csum != private)
1961 kunmap_atomic(kaddr, KM_USER0);
1963 /* if the io failure tree for this inode is non-empty,
1964 * check to see if we've recovered from a failed IO
1966 btrfs_clean_io_failures(inode, start);
1970 if (printk_ratelimit()) {
1971 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1972 "private %llu\n", page->mapping->host->i_ino,
1973 (unsigned long long)start, csum,
1974 (unsigned long long)private);
1976 memset(kaddr + offset, 1, end - start + 1);
1977 flush_dcache_page(page);
1978 kunmap_atomic(kaddr, KM_USER0);
1984 struct delayed_iput {
1985 struct list_head list;
1986 struct inode *inode;
1989 void btrfs_add_delayed_iput(struct inode *inode)
1991 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1992 struct delayed_iput *delayed;
1994 if (atomic_add_unless(&inode->i_count, -1, 1))
1997 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1998 delayed->inode = inode;
2000 spin_lock(&fs_info->delayed_iput_lock);
2001 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2002 spin_unlock(&fs_info->delayed_iput_lock);
2005 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2008 struct btrfs_fs_info *fs_info = root->fs_info;
2009 struct delayed_iput *delayed;
2012 spin_lock(&fs_info->delayed_iput_lock);
2013 empty = list_empty(&fs_info->delayed_iputs);
2014 spin_unlock(&fs_info->delayed_iput_lock);
2018 down_read(&root->fs_info->cleanup_work_sem);
2019 spin_lock(&fs_info->delayed_iput_lock);
2020 list_splice_init(&fs_info->delayed_iputs, &list);
2021 spin_unlock(&fs_info->delayed_iput_lock);
2023 while (!list_empty(&list)) {
2024 delayed = list_entry(list.next, struct delayed_iput, list);
2025 list_del(&delayed->list);
2026 iput(delayed->inode);
2029 up_read(&root->fs_info->cleanup_work_sem);
2033 * calculate extra metadata reservation when snapshotting a subvolume
2034 * contains orphan files.
2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2037 struct btrfs_pending_snapshot *pending,
2038 u64 *bytes_to_reserve)
2040 struct btrfs_root *root;
2041 struct btrfs_block_rsv *block_rsv;
2045 root = pending->root;
2046 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2049 block_rsv = root->orphan_block_rsv;
2051 /* orphan block reservation for the snapshot */
2052 num_bytes = block_rsv->size;
2055 * after the snapshot is created, COWing tree blocks may use more
2056 * space than it frees. So we should make sure there is enough
2059 index = trans->transid & 0x1;
2060 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2061 num_bytes += block_rsv->size -
2062 (block_rsv->reserved + block_rsv->freed[index]);
2065 *bytes_to_reserve += num_bytes;
2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending)
2071 struct btrfs_root *root = pending->root;
2072 struct btrfs_root *snap = pending->snap;
2073 struct btrfs_block_rsv *block_rsv;
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2081 /* refill source subvolume's orphan block reservation */
2082 block_rsv = root->orphan_block_rsv;
2083 index = trans->transid & 0x1;
2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 num_bytes = block_rsv->size -
2086 (block_rsv->reserved + block_rsv->freed[index]);
2087 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2088 root->orphan_block_rsv,
2093 /* setup orphan block reservation for the snapshot */
2094 block_rsv = btrfs_alloc_block_rsv(snap);
2097 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2098 snap->orphan_block_rsv = block_rsv;
2100 num_bytes = root->orphan_block_rsv->size;
2101 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2102 block_rsv, num_bytes);
2106 /* insert orphan item for the snapshot */
2107 WARN_ON(!root->orphan_item_inserted);
2108 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2109 snap->root_key.objectid);
2111 snap->orphan_item_inserted = 1;
2115 enum btrfs_orphan_cleanup_state {
2116 ORPHAN_CLEANUP_STARTED = 1,
2117 ORPHAN_CLEANUP_DONE = 2,
2121 * This is called in transaction commmit time. If there are no orphan
2122 * files in the subvolume, it removes orphan item and frees block_rsv
2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root)
2130 if (!list_empty(&root->orphan_list) ||
2131 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2134 if (root->orphan_item_inserted &&
2135 btrfs_root_refs(&root->root_item) > 0) {
2136 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2137 root->root_key.objectid);
2139 root->orphan_item_inserted = 0;
2142 if (root->orphan_block_rsv) {
2143 WARN_ON(root->orphan_block_rsv->size > 0);
2144 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2145 root->orphan_block_rsv = NULL;
2150 * This creates an orphan entry for the given inode in case something goes
2151 * wrong in the middle of an unlink/truncate.
2153 * NOTE: caller of this function should reserve 5 units of metadata for
2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2158 struct btrfs_root *root = BTRFS_I(inode)->root;
2159 struct btrfs_block_rsv *block_rsv = NULL;
2164 if (!root->orphan_block_rsv) {
2165 block_rsv = btrfs_alloc_block_rsv(root);
2169 spin_lock(&root->orphan_lock);
2170 if (!root->orphan_block_rsv) {
2171 root->orphan_block_rsv = block_rsv;
2172 } else if (block_rsv) {
2173 btrfs_free_block_rsv(root, block_rsv);
2177 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2178 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2181 * For proper ENOSPC handling, we should do orphan
2182 * cleanup when mounting. But this introduces backward
2183 * compatibility issue.
2185 if (!xchg(&root->orphan_item_inserted, 1))
2192 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2195 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2196 BTRFS_I(inode)->orphan_meta_reserved = 1;
2199 spin_unlock(&root->orphan_lock);
2202 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2204 /* grab metadata reservation from transaction handle */
2206 ret = btrfs_orphan_reserve_metadata(trans, inode);
2210 /* insert an orphan item to track this unlinked/truncated file */
2212 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2216 /* insert an orphan item to track subvolume contains orphan files */
2218 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2219 root->root_key.objectid);
2226 * We have done the truncate/delete so we can go ahead and remove the orphan
2227 * item for this particular inode.
2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2231 struct btrfs_root *root = BTRFS_I(inode)->root;
2232 int delete_item = 0;
2233 int release_rsv = 0;
2236 spin_lock(&root->orphan_lock);
2237 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2238 list_del_init(&BTRFS_I(inode)->i_orphan);
2242 if (BTRFS_I(inode)->orphan_meta_reserved) {
2243 BTRFS_I(inode)->orphan_meta_reserved = 0;
2246 spin_unlock(&root->orphan_lock);
2248 if (trans && delete_item) {
2249 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2254 btrfs_orphan_release_metadata(inode);
2260 * this cleans up any orphans that may be left on the list from the last use
2263 void btrfs_orphan_cleanup(struct btrfs_root *root)
2265 struct btrfs_path *path;
2266 struct extent_buffer *leaf;
2267 struct btrfs_key key, found_key;
2268 struct btrfs_trans_handle *trans;
2269 struct inode *inode;
2270 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2272 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2275 path = btrfs_alloc_path();
2279 key.objectid = BTRFS_ORPHAN_OBJECTID;
2280 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2281 key.offset = (u64)-1;
2284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2286 printk(KERN_ERR "Error searching slot for orphan: %d"
2292 * if ret == 0 means we found what we were searching for, which
2293 * is weird, but possible, so only screw with path if we didnt
2294 * find the key and see if we have stuff that matches
2297 if (path->slots[0] == 0)
2302 /* pull out the item */
2303 leaf = path->nodes[0];
2304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2306 /* make sure the item matches what we want */
2307 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2309 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2312 /* release the path since we're done with it */
2313 btrfs_release_path(root, path);
2316 * this is where we are basically btrfs_lookup, without the
2317 * crossing root thing. we store the inode number in the
2318 * offset of the orphan item.
2320 found_key.objectid = found_key.offset;
2321 found_key.type = BTRFS_INODE_ITEM_KEY;
2322 found_key.offset = 0;
2323 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2324 BUG_ON(IS_ERR(inode));
2327 * add this inode to the orphan list so btrfs_orphan_del does
2328 * the proper thing when we hit it
2330 spin_lock(&root->orphan_lock);
2331 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2332 spin_unlock(&root->orphan_lock);
2335 * if this is a bad inode, means we actually succeeded in
2336 * removing the inode, but not the orphan record, which means
2337 * we need to manually delete the orphan since iput will just
2338 * do a destroy_inode
2340 if (is_bad_inode(inode)) {
2341 trans = btrfs_start_transaction(root, 0);
2342 btrfs_orphan_del(trans, inode);
2343 btrfs_end_transaction(trans, root);
2348 /* if we have links, this was a truncate, lets do that */
2349 if (inode->i_nlink) {
2351 btrfs_truncate(inode);
2356 /* this will do delete_inode and everything for us */
2359 btrfs_free_path(path);
2361 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2363 if (root->orphan_block_rsv)
2364 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2367 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2368 trans = btrfs_join_transaction(root, 1);
2369 btrfs_end_transaction(trans, root);
2373 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2375 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2379 * very simple check to peek ahead in the leaf looking for xattrs. If we
2380 * don't find any xattrs, we know there can't be any acls.
2382 * slot is the slot the inode is in, objectid is the objectid of the inode
2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2385 int slot, u64 objectid)
2387 u32 nritems = btrfs_header_nritems(leaf);
2388 struct btrfs_key found_key;
2392 while (slot < nritems) {
2393 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2395 /* we found a different objectid, there must not be acls */
2396 if (found_key.objectid != objectid)
2399 /* we found an xattr, assume we've got an acl */
2400 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2404 * we found a key greater than an xattr key, there can't
2405 * be any acls later on
2407 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2414 * it goes inode, inode backrefs, xattrs, extents,
2415 * so if there are a ton of hard links to an inode there can
2416 * be a lot of backrefs. Don't waste time searching too hard,
2417 * this is just an optimization
2422 /* we hit the end of the leaf before we found an xattr or
2423 * something larger than an xattr. We have to assume the inode
2430 * read an inode from the btree into the in-memory inode
2432 static void btrfs_read_locked_inode(struct inode *inode)
2434 struct btrfs_path *path;
2435 struct extent_buffer *leaf;
2436 struct btrfs_inode_item *inode_item;
2437 struct btrfs_timespec *tspec;
2438 struct btrfs_root *root = BTRFS_I(inode)->root;
2439 struct btrfs_key location;
2441 u64 alloc_group_block;
2445 path = btrfs_alloc_path();
2447 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2449 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2453 leaf = path->nodes[0];
2454 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2455 struct btrfs_inode_item);
2457 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2458 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2459 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2460 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2461 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2463 tspec = btrfs_inode_atime(inode_item);
2464 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2465 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2467 tspec = btrfs_inode_mtime(inode_item);
2468 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2469 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2471 tspec = btrfs_inode_ctime(inode_item);
2472 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2473 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2475 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2476 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2477 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2478 inode->i_generation = BTRFS_I(inode)->generation;
2480 rdev = btrfs_inode_rdev(leaf, inode_item);
2482 BTRFS_I(inode)->index_cnt = (u64)-1;
2483 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2485 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2488 * try to precache a NULL acl entry for files that don't have
2489 * any xattrs or acls
2491 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2493 cache_no_acl(inode);
2495 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2496 alloc_group_block, 0);
2497 btrfs_free_path(path);
2500 switch (inode->i_mode & S_IFMT) {
2502 inode->i_mapping->a_ops = &btrfs_aops;
2503 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2504 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2505 inode->i_fop = &btrfs_file_operations;
2506 inode->i_op = &btrfs_file_inode_operations;
2509 inode->i_fop = &btrfs_dir_file_operations;
2510 if (root == root->fs_info->tree_root)
2511 inode->i_op = &btrfs_dir_ro_inode_operations;
2513 inode->i_op = &btrfs_dir_inode_operations;
2516 inode->i_op = &btrfs_symlink_inode_operations;
2517 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2518 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2521 inode->i_op = &btrfs_special_inode_operations;
2522 init_special_inode(inode, inode->i_mode, rdev);
2526 btrfs_update_iflags(inode);
2530 btrfs_free_path(path);
2531 make_bad_inode(inode);
2535 * given a leaf and an inode, copy the inode fields into the leaf
2537 static void fill_inode_item(struct btrfs_trans_handle *trans,
2538 struct extent_buffer *leaf,
2539 struct btrfs_inode_item *item,
2540 struct inode *inode)
2542 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2543 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2544 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2545 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2546 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2548 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2549 inode->i_atime.tv_sec);
2550 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2551 inode->i_atime.tv_nsec);
2553 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2554 inode->i_mtime.tv_sec);
2555 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2556 inode->i_mtime.tv_nsec);
2558 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2559 inode->i_ctime.tv_sec);
2560 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2561 inode->i_ctime.tv_nsec);
2563 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2564 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2565 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2566 btrfs_set_inode_transid(leaf, item, trans->transid);
2567 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2568 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2569 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2573 * copy everything in the in-memory inode into the btree.
2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2576 struct btrfs_root *root, struct inode *inode)
2578 struct btrfs_inode_item *inode_item;
2579 struct btrfs_path *path;
2580 struct extent_buffer *leaf;
2583 path = btrfs_alloc_path();
2585 path->leave_spinning = 1;
2586 ret = btrfs_lookup_inode(trans, root, path,
2587 &BTRFS_I(inode)->location, 1);
2594 btrfs_unlock_up_safe(path, 1);
2595 leaf = path->nodes[0];
2596 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2597 struct btrfs_inode_item);
2599 fill_inode_item(trans, leaf, inode_item, inode);
2600 btrfs_mark_buffer_dirty(leaf);
2601 btrfs_set_inode_last_trans(trans, inode);
2604 btrfs_free_path(path);
2610 * unlink helper that gets used here in inode.c and in the tree logging
2611 * recovery code. It remove a link in a directory with a given name, and
2612 * also drops the back refs in the inode to the directory
2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2615 struct btrfs_root *root,
2616 struct inode *dir, struct inode *inode,
2617 const char *name, int name_len)
2619 struct btrfs_path *path;
2621 struct extent_buffer *leaf;
2622 struct btrfs_dir_item *di;
2623 struct btrfs_key key;
2626 path = btrfs_alloc_path();
2632 path->leave_spinning = 1;
2633 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2634 name, name_len, -1);
2643 leaf = path->nodes[0];
2644 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2645 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2648 btrfs_release_path(root, path);
2650 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2652 dir->i_ino, &index);
2654 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2655 "inode %lu parent %lu\n", name_len, name,
2656 inode->i_ino, dir->i_ino);
2660 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2661 index, name, name_len, -1);
2670 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2671 btrfs_release_path(root, path);
2673 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2675 BUG_ON(ret != 0 && ret != -ENOENT);
2677 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2682 btrfs_free_path(path);
2686 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2687 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2688 btrfs_update_inode(trans, root, dir);
2689 btrfs_drop_nlink(inode);
2690 ret = btrfs_update_inode(trans, root, inode);
2695 /* helper to check if there is any shared block in the path */
2696 static int check_path_shared(struct btrfs_root *root,
2697 struct btrfs_path *path)
2699 struct extent_buffer *eb;
2702 int uninitialized_var(ret);
2704 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2705 if (!path->nodes[level])
2707 eb = path->nodes[level];
2708 if (!btrfs_block_can_be_shared(root, eb))
2710 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2715 return ret; /* XXX callers? */
2719 * helper to start transaction for unlink and rmdir.
2721 * unlink and rmdir are special in btrfs, they do not always free space.
2722 * so in enospc case, we should make sure they will free space before
2723 * allowing them to use the global metadata reservation.
2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2726 struct dentry *dentry)
2728 struct btrfs_trans_handle *trans;
2729 struct btrfs_root *root = BTRFS_I(dir)->root;
2730 struct btrfs_path *path;
2731 struct btrfs_inode_ref *ref;
2732 struct btrfs_dir_item *di;
2733 struct inode *inode = dentry->d_inode;
2739 trans = btrfs_start_transaction(root, 10);
2740 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2743 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2744 return ERR_PTR(-ENOSPC);
2746 /* check if there is someone else holds reference */
2747 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2748 return ERR_PTR(-ENOSPC);
2750 if (atomic_read(&inode->i_count) > 2)
2751 return ERR_PTR(-ENOSPC);
2753 if (xchg(&root->fs_info->enospc_unlink, 1))
2754 return ERR_PTR(-ENOSPC);
2756 path = btrfs_alloc_path();
2758 root->fs_info->enospc_unlink = 0;
2759 return ERR_PTR(-ENOMEM);
2762 trans = btrfs_start_transaction(root, 0);
2763 if (IS_ERR(trans)) {
2764 btrfs_free_path(path);
2765 root->fs_info->enospc_unlink = 0;
2769 path->skip_locking = 1;
2770 path->search_commit_root = 1;
2772 ret = btrfs_lookup_inode(trans, root, path,
2773 &BTRFS_I(dir)->location, 0);
2779 if (check_path_shared(root, path))
2784 btrfs_release_path(root, path);
2786 ret = btrfs_lookup_inode(trans, root, path,
2787 &BTRFS_I(inode)->location, 0);
2793 if (check_path_shared(root, path))
2798 btrfs_release_path(root, path);
2800 if (ret == 0 && S_ISREG(inode->i_mode)) {
2801 ret = btrfs_lookup_file_extent(trans, root, path,
2802 inode->i_ino, (u64)-1, 0);
2808 if (check_path_shared(root, path))
2810 btrfs_release_path(root, path);
2818 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2819 dentry->d_name.name, dentry->d_name.len, 0);
2825 if (check_path_shared(root, path))
2831 btrfs_release_path(root, path);
2833 ref = btrfs_lookup_inode_ref(trans, root, path,
2834 dentry->d_name.name, dentry->d_name.len,
2835 inode->i_ino, dir->i_ino, 0);
2841 if (check_path_shared(root, path))
2843 index = btrfs_inode_ref_index(path->nodes[0], ref);
2844 btrfs_release_path(root, path);
2846 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2847 dentry->d_name.name, dentry->d_name.len, 0);
2852 BUG_ON(ret == -ENOENT);
2853 if (check_path_shared(root, path))
2858 btrfs_free_path(path);
2860 btrfs_end_transaction(trans, root);
2861 root->fs_info->enospc_unlink = 0;
2862 return ERR_PTR(err);
2865 trans->block_rsv = &root->fs_info->global_block_rsv;
2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root)
2872 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2873 BUG_ON(!root->fs_info->enospc_unlink);
2874 root->fs_info->enospc_unlink = 0;
2876 btrfs_end_transaction_throttle(trans, root);
2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2881 struct btrfs_root *root = BTRFS_I(dir)->root;
2882 struct btrfs_trans_handle *trans;
2883 struct inode *inode = dentry->d_inode;
2885 unsigned long nr = 0;
2887 trans = __unlink_start_trans(dir, dentry);
2889 return PTR_ERR(trans);
2891 btrfs_set_trans_block_group(trans, dir);
2893 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2895 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2896 dentry->d_name.name, dentry->d_name.len);
2899 if (inode->i_nlink == 0) {
2900 ret = btrfs_orphan_add(trans, inode);
2904 nr = trans->blocks_used;
2905 __unlink_end_trans(trans, root);
2906 btrfs_btree_balance_dirty(root, nr);
2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2911 struct btrfs_root *root,
2912 struct inode *dir, u64 objectid,
2913 const char *name, int name_len)
2915 struct btrfs_path *path;
2916 struct extent_buffer *leaf;
2917 struct btrfs_dir_item *di;
2918 struct btrfs_key key;
2922 path = btrfs_alloc_path();
2926 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2927 name, name_len, -1);
2928 BUG_ON(!di || IS_ERR(di));
2930 leaf = path->nodes[0];
2931 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2935 btrfs_release_path(root, path);
2937 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2938 objectid, root->root_key.objectid,
2939 dir->i_ino, &index, name, name_len);
2941 BUG_ON(ret != -ENOENT);
2942 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2944 BUG_ON(!di || IS_ERR(di));
2946 leaf = path->nodes[0];
2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 btrfs_release_path(root, path);
2952 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2953 index, name, name_len, -1);
2954 BUG_ON(!di || IS_ERR(di));
2956 leaf = path->nodes[0];
2957 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2961 btrfs_release_path(root, path);
2963 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2964 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2965 ret = btrfs_update_inode(trans, root, dir);
2968 btrfs_free_path(path);
2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2974 struct inode *inode = dentry->d_inode;
2976 struct btrfs_root *root = BTRFS_I(dir)->root;
2977 struct btrfs_trans_handle *trans;
2978 unsigned long nr = 0;
2980 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2981 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2984 trans = __unlink_start_trans(dir, dentry);
2986 return PTR_ERR(trans);
2988 btrfs_set_trans_block_group(trans, dir);
2990 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2991 err = btrfs_unlink_subvol(trans, root, dir,
2992 BTRFS_I(inode)->location.objectid,
2993 dentry->d_name.name,
2994 dentry->d_name.len);
2998 err = btrfs_orphan_add(trans, inode);
3002 /* now the directory is empty */
3003 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004 dentry->d_name.name, dentry->d_name.len);
3006 btrfs_i_size_write(inode, 0);
3008 nr = trans->blocks_used;
3009 __unlink_end_trans(trans, root);
3010 btrfs_btree_balance_dirty(root, nr);
3017 * when truncating bytes in a file, it is possible to avoid reading
3018 * the leaves that contain only checksum items. This can be the
3019 * majority of the IO required to delete a large file, but it must
3020 * be done carefully.
3022 * The keys in the level just above the leaves are checked to make sure
3023 * the lowest key in a given leaf is a csum key, and starts at an offset
3024 * after the new size.
3026 * Then the key for the next leaf is checked to make sure it also has
3027 * a checksum item for the same file. If it does, we know our target leaf
3028 * contains only checksum items, and it can be safely freed without reading
3031 * This is just an optimization targeted at large files. It may do
3032 * nothing. It will return 0 unless things went badly.
3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root,
3036 struct btrfs_path *path,
3037 struct inode *inode, u64 new_size)
3039 struct btrfs_key key;
3042 struct btrfs_key found_key;
3043 struct btrfs_key other_key;
3044 struct btrfs_leaf_ref *ref;
3048 path->lowest_level = 1;
3049 key.objectid = inode->i_ino;
3050 key.type = BTRFS_CSUM_ITEM_KEY;
3051 key.offset = new_size;
3053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3057 if (path->nodes[1] == NULL) {
3062 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3063 nritems = btrfs_header_nritems(path->nodes[1]);
3068 if (path->slots[1] >= nritems)
3071 /* did we find a key greater than anything we want to delete? */
3072 if (found_key.objectid > inode->i_ino ||
3073 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3076 /* we check the next key in the node to make sure the leave contains
3077 * only checksum items. This comparison doesn't work if our
3078 * leaf is the last one in the node
3080 if (path->slots[1] + 1 >= nritems) {
3082 /* search forward from the last key in the node, this
3083 * will bring us into the next node in the tree
3085 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3087 /* unlikely, but we inc below, so check to be safe */
3088 if (found_key.offset == (u64)-1)
3091 /* search_forward needs a path with locks held, do the
3092 * search again for the original key. It is possible
3093 * this will race with a balance and return a path that
3094 * we could modify, but this drop is just an optimization
3095 * and is allowed to miss some leaves.
3097 btrfs_release_path(root, path);
3100 /* setup a max key for search_forward */
3101 other_key.offset = (u64)-1;
3102 other_key.type = key.type;
3103 other_key.objectid = key.objectid;
3105 path->keep_locks = 1;
3106 ret = btrfs_search_forward(root, &found_key, &other_key,
3108 path->keep_locks = 0;
3109 if (ret || found_key.objectid != key.objectid ||
3110 found_key.type != key.type) {
3115 key.offset = found_key.offset;
3116 btrfs_release_path(root, path);
3121 /* we know there's one more slot after us in the tree,
3122 * read that key so we can verify it is also a checksum item
3124 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3126 if (found_key.objectid < inode->i_ino)
3129 if (found_key.type != key.type || found_key.offset < new_size)
3133 * if the key for the next leaf isn't a csum key from this objectid,
3134 * we can't be sure there aren't good items inside this leaf.
3137 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3140 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3141 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3143 * it is safe to delete this leaf, it contains only
3144 * csum items from this inode at an offset >= new_size
3146 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3149 if (root->ref_cows && leaf_gen < trans->transid) {
3150 ref = btrfs_alloc_leaf_ref(root, 0);
3152 ref->root_gen = root->root_key.offset;
3153 ref->bytenr = leaf_start;
3155 ref->generation = leaf_gen;
3158 btrfs_sort_leaf_ref(ref);
3160 ret = btrfs_add_leaf_ref(root, ref, 0);
3162 btrfs_free_leaf_ref(root, ref);
3168 btrfs_release_path(root, path);
3170 if (other_key.objectid == inode->i_ino &&
3171 other_key.type == key.type && other_key.offset > key.offset) {
3172 key.offset = other_key.offset;
3178 /* fixup any changes we've made to the path */
3179 path->lowest_level = 0;
3180 path->keep_locks = 0;
3181 btrfs_release_path(root, path);
3188 * this can truncate away extent items, csum items and directory items.
3189 * It starts at a high offset and removes keys until it can't find
3190 * any higher than new_size
3192 * csum items that cross the new i_size are truncated to the new size
3195 * min_type is the minimum key type to truncate down to. If set to 0, this
3196 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3199 struct btrfs_root *root,
3200 struct inode *inode,
3201 u64 new_size, u32 min_type)
3203 struct btrfs_path *path;
3204 struct extent_buffer *leaf;
3205 struct btrfs_file_extent_item *fi;
3206 struct btrfs_key key;
3207 struct btrfs_key found_key;
3208 u64 extent_start = 0;
3209 u64 extent_num_bytes = 0;
3210 u64 extent_offset = 0;
3212 u64 mask = root->sectorsize - 1;
3213 u32 found_type = (u8)-1;
3216 int pending_del_nr = 0;
3217 int pending_del_slot = 0;
3218 int extent_type = -1;
3223 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3225 if (root->ref_cows || root == root->fs_info->tree_root)
3226 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3228 path = btrfs_alloc_path();
3232 key.objectid = inode->i_ino;
3233 key.offset = (u64)-1;
3237 path->leave_spinning = 1;
3238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3245 /* there are no items in the tree for us to truncate, we're
3248 if (path->slots[0] == 0)
3255 leaf = path->nodes[0];
3256 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3257 found_type = btrfs_key_type(&found_key);
3260 if (found_key.objectid != inode->i_ino)
3263 if (found_type < min_type)
3266 item_end = found_key.offset;
3267 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3268 fi = btrfs_item_ptr(leaf, path->slots[0],
3269 struct btrfs_file_extent_item);
3270 extent_type = btrfs_file_extent_type(leaf, fi);
3271 encoding = btrfs_file_extent_compression(leaf, fi);
3272 encoding |= btrfs_file_extent_encryption(leaf, fi);
3273 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3275 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3277 btrfs_file_extent_num_bytes(leaf, fi);
3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 item_end += btrfs_file_extent_inline_len(leaf,
3284 if (found_type > min_type) {
3287 if (item_end < new_size)
3289 if (found_key.offset >= new_size)
3295 /* FIXME, shrink the extent if the ref count is only 1 */
3296 if (found_type != BTRFS_EXTENT_DATA_KEY)
3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3301 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3302 if (!del_item && !encoding) {
3303 u64 orig_num_bytes =
3304 btrfs_file_extent_num_bytes(leaf, fi);
3305 extent_num_bytes = new_size -
3306 found_key.offset + root->sectorsize - 1;
3307 extent_num_bytes = extent_num_bytes &
3308 ~((u64)root->sectorsize - 1);
3309 btrfs_set_file_extent_num_bytes(leaf, fi,
3311 num_dec = (orig_num_bytes -
3313 if (root->ref_cows && extent_start != 0)
3314 inode_sub_bytes(inode, num_dec);
3315 btrfs_mark_buffer_dirty(leaf);
3318 btrfs_file_extent_disk_num_bytes(leaf,
3320 extent_offset = found_key.offset -
3321 btrfs_file_extent_offset(leaf, fi);
3323 /* FIXME blocksize != 4096 */
3324 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3325 if (extent_start != 0) {
3328 inode_sub_bytes(inode, num_dec);
3331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3333 * we can't truncate inline items that have had
3337 btrfs_file_extent_compression(leaf, fi) == 0 &&
3338 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3339 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3340 u32 size = new_size - found_key.offset;
3342 if (root->ref_cows) {
3343 inode_sub_bytes(inode, item_end + 1 -
3347 btrfs_file_extent_calc_inline_size(size);
3348 ret = btrfs_truncate_item(trans, root, path,
3351 } else if (root->ref_cows) {
3352 inode_sub_bytes(inode, item_end + 1 -
3358 if (!pending_del_nr) {
3359 /* no pending yet, add ourselves */
3360 pending_del_slot = path->slots[0];
3362 } else if (pending_del_nr &&
3363 path->slots[0] + 1 == pending_del_slot) {
3364 /* hop on the pending chunk */
3366 pending_del_slot = path->slots[0];
3373 if (found_extent && (root->ref_cows ||
3374 root == root->fs_info->tree_root)) {
3375 btrfs_set_path_blocking(path);
3376 ret = btrfs_free_extent(trans, root, extent_start,
3377 extent_num_bytes, 0,
3378 btrfs_header_owner(leaf),
3379 inode->i_ino, extent_offset);
3383 if (found_type == BTRFS_INODE_ITEM_KEY)
3386 if (path->slots[0] == 0 ||
3387 path->slots[0] != pending_del_slot) {
3388 if (root->ref_cows) {
3392 if (pending_del_nr) {
3393 ret = btrfs_del_items(trans, root, path,
3399 btrfs_release_path(root, path);
3406 if (pending_del_nr) {
3407 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3411 btrfs_free_path(path);
3416 * taken from block_truncate_page, but does cow as it zeros out
3417 * any bytes left in the last page in the file.
3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3421 struct inode *inode = mapping->host;
3422 struct btrfs_root *root = BTRFS_I(inode)->root;
3423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3424 struct btrfs_ordered_extent *ordered;
3425 struct extent_state *cached_state = NULL;
3427 u32 blocksize = root->sectorsize;
3428 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3429 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3435 if ((offset & (blocksize - 1)) == 0)
3437 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3443 page = grab_cache_page(mapping, index);
3445 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3449 page_start = page_offset(page);
3450 page_end = page_start + PAGE_CACHE_SIZE - 1;
3452 if (!PageUptodate(page)) {
3453 ret = btrfs_readpage(NULL, page);
3455 if (page->mapping != mapping) {
3457 page_cache_release(page);
3460 if (!PageUptodate(page)) {
3465 wait_on_page_writeback(page);
3467 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3469 set_page_extent_mapped(page);
3471 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3473 unlock_extent_cached(io_tree, page_start, page_end,
3474 &cached_state, GFP_NOFS);
3476 page_cache_release(page);
3477 btrfs_start_ordered_extent(inode, ordered, 1);
3478 btrfs_put_ordered_extent(ordered);
3482 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3483 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3484 0, 0, &cached_state, GFP_NOFS);
3486 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3489 unlock_extent_cached(io_tree, page_start, page_end,
3490 &cached_state, GFP_NOFS);
3495 if (offset != PAGE_CACHE_SIZE) {
3497 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3498 flush_dcache_page(page);
3501 ClearPageChecked(page);
3502 set_page_dirty(page);
3503 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3508 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3510 page_cache_release(page);
3515 int btrfs_cont_expand(struct inode *inode, loff_t size)
3517 struct btrfs_trans_handle *trans;
3518 struct btrfs_root *root = BTRFS_I(inode)->root;
3519 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3520 struct extent_map *em = NULL;
3521 struct extent_state *cached_state = NULL;
3522 u64 mask = root->sectorsize - 1;
3523 u64 hole_start = (inode->i_size + mask) & ~mask;
3524 u64 block_end = (size + mask) & ~mask;
3530 if (size <= hole_start)
3534 struct btrfs_ordered_extent *ordered;
3535 btrfs_wait_ordered_range(inode, hole_start,
3536 block_end - hole_start);
3537 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3538 &cached_state, GFP_NOFS);
3539 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3542 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3543 &cached_state, GFP_NOFS);
3544 btrfs_put_ordered_extent(ordered);
3547 cur_offset = hole_start;
3549 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3550 block_end - cur_offset, 0);
3551 BUG_ON(IS_ERR(em) || !em);
3552 last_byte = min(extent_map_end(em), block_end);
3553 last_byte = (last_byte + mask) & ~mask;
3554 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3556 hole_size = last_byte - cur_offset;
3558 trans = btrfs_start_transaction(root, 2);
3559 if (IS_ERR(trans)) {
3560 err = PTR_ERR(trans);
3563 btrfs_set_trans_block_group(trans, inode);
3565 err = btrfs_drop_extents(trans, inode, cur_offset,
3566 cur_offset + hole_size,
3570 err = btrfs_insert_file_extent(trans, root,
3571 inode->i_ino, cur_offset, 0,
3572 0, hole_size, 0, hole_size,
3576 btrfs_drop_extent_cache(inode, hole_start,
3579 btrfs_end_transaction(trans, root);
3581 free_extent_map(em);
3583 cur_offset = last_byte;
3584 if (cur_offset >= block_end)
3588 free_extent_map(em);
3589 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3596 struct btrfs_root *root = BTRFS_I(inode)->root;
3597 struct btrfs_trans_handle *trans;
3601 if (attr->ia_size == inode->i_size)
3604 if (attr->ia_size > inode->i_size) {
3605 unsigned long limit;
3606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3607 if (attr->ia_size > inode->i_sb->s_maxbytes)
3609 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3610 send_sig(SIGXFSZ, current, 0);
3615 trans = btrfs_start_transaction(root, 5);
3617 return PTR_ERR(trans);
3619 btrfs_set_trans_block_group(trans, inode);
3621 ret = btrfs_orphan_add(trans, inode);
3624 nr = trans->blocks_used;
3625 btrfs_end_transaction(trans, root);
3626 btrfs_btree_balance_dirty(root, nr);
3628 if (attr->ia_size > inode->i_size) {
3629 ret = btrfs_cont_expand(inode, attr->ia_size);
3631 btrfs_truncate(inode);
3635 i_size_write(inode, attr->ia_size);
3636 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3638 trans = btrfs_start_transaction(root, 0);
3639 BUG_ON(IS_ERR(trans));
3640 btrfs_set_trans_block_group(trans, inode);
3641 trans->block_rsv = root->orphan_block_rsv;
3642 BUG_ON(!trans->block_rsv);
3644 ret = btrfs_update_inode(trans, root, inode);
3646 if (inode->i_nlink > 0) {
3647 ret = btrfs_orphan_del(trans, inode);
3650 nr = trans->blocks_used;
3651 btrfs_end_transaction(trans, root);
3652 btrfs_btree_balance_dirty(root, nr);
3657 * We're truncating a file that used to have good data down to
3658 * zero. Make sure it gets into the ordered flush list so that
3659 * any new writes get down to disk quickly.
3661 if (attr->ia_size == 0)
3662 BTRFS_I(inode)->ordered_data_close = 1;
3664 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3665 ret = vmtruncate(inode, attr->ia_size);
3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3673 struct inode *inode = dentry->d_inode;
3676 err = inode_change_ok(inode, attr);
3680 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3681 err = btrfs_setattr_size(inode, attr);
3686 if (attr->ia_valid) {
3687 setattr_copy(inode, attr);
3688 mark_inode_dirty(inode);
3690 if (attr->ia_valid & ATTR_MODE)
3691 err = btrfs_acl_chmod(inode);
3697 void btrfs_evict_inode(struct inode *inode)
3699 struct btrfs_trans_handle *trans;
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3704 truncate_inode_pages(&inode->i_data, 0);
3705 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3706 root == root->fs_info->tree_root))
3709 if (is_bad_inode(inode)) {
3710 btrfs_orphan_del(NULL, inode);
3713 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3714 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3716 if (root->fs_info->log_root_recovering) {
3717 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3721 if (inode->i_nlink > 0) {
3722 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3726 btrfs_i_size_write(inode, 0);
3729 trans = btrfs_start_transaction(root, 0);
3730 BUG_ON(IS_ERR(trans));
3731 btrfs_set_trans_block_group(trans, inode);
3732 trans->block_rsv = root->orphan_block_rsv;
3734 ret = btrfs_block_rsv_check(trans, root,
3735 root->orphan_block_rsv, 0, 5);
3737 BUG_ON(ret != -EAGAIN);
3738 ret = btrfs_commit_transaction(trans, root);
3743 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3747 nr = trans->blocks_used;
3748 btrfs_end_transaction(trans, root);
3750 btrfs_btree_balance_dirty(root, nr);
3755 ret = btrfs_orphan_del(trans, inode);
3759 nr = trans->blocks_used;
3760 btrfs_end_transaction(trans, root);
3761 btrfs_btree_balance_dirty(root, nr);
3763 end_writeback(inode);
3768 * this returns the key found in the dir entry in the location pointer.
3769 * If no dir entries were found, location->objectid is 0.
3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3772 struct btrfs_key *location)
3774 const char *name = dentry->d_name.name;
3775 int namelen = dentry->d_name.len;
3776 struct btrfs_dir_item *di;
3777 struct btrfs_path *path;
3778 struct btrfs_root *root = BTRFS_I(dir)->root;
3781 path = btrfs_alloc_path();
3784 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3789 if (!di || IS_ERR(di))
3792 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3794 btrfs_free_path(path);
3797 location->objectid = 0;
3802 * when we hit a tree root in a directory, the btrfs part of the inode
3803 * needs to be changed to reflect the root directory of the tree root. This
3804 * is kind of like crossing a mount point.
3806 static int fixup_tree_root_location(struct btrfs_root *root,
3808 struct dentry *dentry,
3809 struct btrfs_key *location,
3810 struct btrfs_root **sub_root)
3812 struct btrfs_path *path;
3813 struct btrfs_root *new_root;
3814 struct btrfs_root_ref *ref;
3815 struct extent_buffer *leaf;
3819 path = btrfs_alloc_path();
3826 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3827 BTRFS_I(dir)->root->root_key.objectid,
3828 location->objectid);
3835 leaf = path->nodes[0];
3836 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3837 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3838 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3841 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3842 (unsigned long)(ref + 1),
3843 dentry->d_name.len);
3847 btrfs_release_path(root->fs_info->tree_root, path);
3849 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3850 if (IS_ERR(new_root)) {
3851 err = PTR_ERR(new_root);
3855 if (btrfs_root_refs(&new_root->root_item) == 0) {
3860 *sub_root = new_root;
3861 location->objectid = btrfs_root_dirid(&new_root->root_item);
3862 location->type = BTRFS_INODE_ITEM_KEY;
3863 location->offset = 0;
3866 btrfs_free_path(path);
3870 static void inode_tree_add(struct inode *inode)
3872 struct btrfs_root *root = BTRFS_I(inode)->root;
3873 struct btrfs_inode *entry;
3875 struct rb_node *parent;
3877 p = &root->inode_tree.rb_node;
3880 if (inode_unhashed(inode))
3883 spin_lock(&root->inode_lock);
3886 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3888 if (inode->i_ino < entry->vfs_inode.i_ino)
3889 p = &parent->rb_left;
3890 else if (inode->i_ino > entry->vfs_inode.i_ino)
3891 p = &parent->rb_right;
3893 WARN_ON(!(entry->vfs_inode.i_state &
3894 (I_WILL_FREE | I_FREEING)));
3895 rb_erase(parent, &root->inode_tree);
3896 RB_CLEAR_NODE(parent);
3897 spin_unlock(&root->inode_lock);
3901 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3902 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3903 spin_unlock(&root->inode_lock);
3906 static void inode_tree_del(struct inode *inode)
3908 struct btrfs_root *root = BTRFS_I(inode)->root;
3911 spin_lock(&root->inode_lock);
3912 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3913 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3914 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3915 empty = RB_EMPTY_ROOT(&root->inode_tree);
3917 spin_unlock(&root->inode_lock);
3920 * Free space cache has inodes in the tree root, but the tree root has a
3921 * root_refs of 0, so this could end up dropping the tree root as a
3922 * snapshot, so we need the extra !root->fs_info->tree_root check to
3923 * make sure we don't drop it.
3925 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3926 root != root->fs_info->tree_root) {
3927 synchronize_srcu(&root->fs_info->subvol_srcu);
3928 spin_lock(&root->inode_lock);
3929 empty = RB_EMPTY_ROOT(&root->inode_tree);
3930 spin_unlock(&root->inode_lock);
3932 btrfs_add_dead_root(root);
3936 int btrfs_invalidate_inodes(struct btrfs_root *root)
3938 struct rb_node *node;
3939 struct rb_node *prev;
3940 struct btrfs_inode *entry;
3941 struct inode *inode;
3944 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3946 spin_lock(&root->inode_lock);
3948 node = root->inode_tree.rb_node;
3952 entry = rb_entry(node, struct btrfs_inode, rb_node);
3954 if (objectid < entry->vfs_inode.i_ino)
3955 node = node->rb_left;
3956 else if (objectid > entry->vfs_inode.i_ino)
3957 node = node->rb_right;
3963 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3964 if (objectid <= entry->vfs_inode.i_ino) {
3968 prev = rb_next(prev);
3972 entry = rb_entry(node, struct btrfs_inode, rb_node);
3973 objectid = entry->vfs_inode.i_ino + 1;
3974 inode = igrab(&entry->vfs_inode);
3976 spin_unlock(&root->inode_lock);
3977 if (atomic_read(&inode->i_count) > 1)
3978 d_prune_aliases(inode);
3980 * btrfs_drop_inode will have it removed from
3981 * the inode cache when its usage count
3986 spin_lock(&root->inode_lock);
3990 if (cond_resched_lock(&root->inode_lock))
3993 node = rb_next(node);
3995 spin_unlock(&root->inode_lock);
3999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4001 struct btrfs_iget_args *args = p;
4002 inode->i_ino = args->ino;
4003 BTRFS_I(inode)->root = args->root;
4004 btrfs_set_inode_space_info(args->root, inode);
4008 static int btrfs_find_actor(struct inode *inode, void *opaque)
4010 struct btrfs_iget_args *args = opaque;
4011 return args->ino == inode->i_ino &&
4012 args->root == BTRFS_I(inode)->root;
4015 static struct inode *btrfs_iget_locked(struct super_block *s,
4017 struct btrfs_root *root)
4019 struct inode *inode;
4020 struct btrfs_iget_args args;
4021 args.ino = objectid;
4024 inode = iget5_locked(s, objectid, btrfs_find_actor,
4025 btrfs_init_locked_inode,
4030 /* Get an inode object given its location and corresponding root.
4031 * Returns in *is_new if the inode was read from disk
4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4034 struct btrfs_root *root, int *new)
4036 struct inode *inode;
4038 inode = btrfs_iget_locked(s, location->objectid, root);
4040 return ERR_PTR(-ENOMEM);
4042 if (inode->i_state & I_NEW) {
4043 BTRFS_I(inode)->root = root;
4044 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4045 btrfs_read_locked_inode(inode);
4047 inode_tree_add(inode);
4048 unlock_new_inode(inode);
4056 static struct inode *new_simple_dir(struct super_block *s,
4057 struct btrfs_key *key,
4058 struct btrfs_root *root)
4060 struct inode *inode = new_inode(s);
4063 return ERR_PTR(-ENOMEM);
4065 BTRFS_I(inode)->root = root;
4066 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4067 BTRFS_I(inode)->dummy_inode = 1;
4069 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4070 inode->i_op = &simple_dir_inode_operations;
4071 inode->i_fop = &simple_dir_operations;
4072 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4073 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4080 struct inode *inode;
4081 struct btrfs_root *root = BTRFS_I(dir)->root;
4082 struct btrfs_root *sub_root = root;
4083 struct btrfs_key location;
4087 d_set_d_op(dentry, &btrfs_dentry_operations);
4089 if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 return ERR_PTR(-ENAMETOOLONG);
4092 ret = btrfs_inode_by_name(dir, dentry, &location);
4095 return ERR_PTR(ret);
4097 if (location.objectid == 0)
4100 if (location.type == BTRFS_INODE_ITEM_KEY) {
4101 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4105 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4107 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4108 ret = fixup_tree_root_location(root, dir, dentry,
4109 &location, &sub_root);
4112 inode = ERR_PTR(ret);
4114 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4116 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4118 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4120 if (root != sub_root) {
4121 down_read(&root->fs_info->cleanup_work_sem);
4122 if (!(inode->i_sb->s_flags & MS_RDONLY))
4123 btrfs_orphan_cleanup(sub_root);
4124 up_read(&root->fs_info->cleanup_work_sem);
4130 static int btrfs_dentry_delete(const struct dentry *dentry)
4132 struct btrfs_root *root;
4134 if (!dentry->d_inode && !IS_ROOT(dentry))
4135 dentry = dentry->d_parent;
4137 if (dentry->d_inode) {
4138 root = BTRFS_I(dentry->d_inode)->root;
4139 if (btrfs_root_refs(&root->root_item) == 0)
4145 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4146 struct nameidata *nd)
4148 struct inode *inode;
4150 inode = btrfs_lookup_dentry(dir, dentry);
4152 return ERR_CAST(inode);
4154 return d_splice_alias(inode, dentry);
4157 static unsigned char btrfs_filetype_table[] = {
4158 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4161 static int btrfs_real_readdir(struct file *filp, void *dirent,
4164 struct inode *inode = filp->f_dentry->d_inode;
4165 struct btrfs_root *root = BTRFS_I(inode)->root;
4166 struct btrfs_item *item;
4167 struct btrfs_dir_item *di;
4168 struct btrfs_key key;
4169 struct btrfs_key found_key;
4170 struct btrfs_path *path;
4173 struct extent_buffer *leaf;
4176 unsigned char d_type;
4181 int key_type = BTRFS_DIR_INDEX_KEY;
4186 /* FIXME, use a real flag for deciding about the key type */
4187 if (root->fs_info->tree_root == root)
4188 key_type = BTRFS_DIR_ITEM_KEY;
4190 /* special case for "." */
4191 if (filp->f_pos == 0) {
4192 over = filldir(dirent, ".", 1,
4199 /* special case for .., just use the back ref */
4200 if (filp->f_pos == 1) {
4201 u64 pino = parent_ino(filp->f_path.dentry);
4202 over = filldir(dirent, "..", 2,
4208 path = btrfs_alloc_path();
4211 btrfs_set_key_type(&key, key_type);
4212 key.offset = filp->f_pos;
4213 key.objectid = inode->i_ino;
4215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4221 leaf = path->nodes[0];
4222 nritems = btrfs_header_nritems(leaf);
4223 slot = path->slots[0];
4224 if (advance || slot >= nritems) {
4225 if (slot >= nritems - 1) {
4226 ret = btrfs_next_leaf(root, path);
4229 leaf = path->nodes[0];
4230 nritems = btrfs_header_nritems(leaf);
4231 slot = path->slots[0];
4239 item = btrfs_item_nr(leaf, slot);
4240 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4242 if (found_key.objectid != key.objectid)
4244 if (btrfs_key_type(&found_key) != key_type)
4246 if (found_key.offset < filp->f_pos)
4249 filp->f_pos = found_key.offset;
4251 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4253 di_total = btrfs_item_size(leaf, item);
4255 while (di_cur < di_total) {
4256 struct btrfs_key location;
4258 name_len = btrfs_dir_name_len(leaf, di);
4259 if (name_len <= sizeof(tmp_name)) {
4260 name_ptr = tmp_name;
4262 name_ptr = kmalloc(name_len, GFP_NOFS);
4268 read_extent_buffer(leaf, name_ptr,
4269 (unsigned long)(di + 1), name_len);
4271 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4272 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4274 /* is this a reference to our own snapshot? If so
4277 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4278 location.objectid == root->root_key.objectid) {
4282 over = filldir(dirent, name_ptr, name_len,
4283 found_key.offset, location.objectid,
4287 if (name_ptr != tmp_name)
4292 di_len = btrfs_dir_name_len(leaf, di) +
4293 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4295 di = (struct btrfs_dir_item *)((char *)di + di_len);
4299 /* Reached end of directory/root. Bump pos past the last item. */
4300 if (key_type == BTRFS_DIR_INDEX_KEY)
4302 * 32-bit glibc will use getdents64, but then strtol -
4303 * so the last number we can serve is this.
4305 filp->f_pos = 0x7fffffff;
4311 btrfs_free_path(path);
4315 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4317 struct btrfs_root *root = BTRFS_I(inode)->root;
4318 struct btrfs_trans_handle *trans;
4320 bool nolock = false;
4322 if (BTRFS_I(inode)->dummy_inode)
4326 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4328 if (wbc->sync_mode == WB_SYNC_ALL) {
4330 trans = btrfs_join_transaction_nolock(root, 1);
4332 trans = btrfs_join_transaction(root, 1);
4333 btrfs_set_trans_block_group(trans, inode);
4335 ret = btrfs_end_transaction_nolock(trans, root);
4337 ret = btrfs_commit_transaction(trans, root);
4343 * This is somewhat expensive, updating the tree every time the
4344 * inode changes. But, it is most likely to find the inode in cache.
4345 * FIXME, needs more benchmarking...there are no reasons other than performance
4346 * to keep or drop this code.
4348 void btrfs_dirty_inode(struct inode *inode)
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_trans_handle *trans;
4354 if (BTRFS_I(inode)->dummy_inode)
4357 trans = btrfs_join_transaction(root, 1);
4358 btrfs_set_trans_block_group(trans, inode);
4360 ret = btrfs_update_inode(trans, root, inode);
4361 if (ret && ret == -ENOSPC) {
4362 /* whoops, lets try again with the full transaction */
4363 btrfs_end_transaction(trans, root);
4364 trans = btrfs_start_transaction(root, 1);
4365 if (IS_ERR(trans)) {
4366 if (printk_ratelimit()) {
4367 printk(KERN_ERR "btrfs: fail to "
4368 "dirty inode %lu error %ld\n",
4369 inode->i_ino, PTR_ERR(trans));
4373 btrfs_set_trans_block_group(trans, inode);
4375 ret = btrfs_update_inode(trans, root, inode);
4377 if (printk_ratelimit()) {
4378 printk(KERN_ERR "btrfs: fail to "
4379 "dirty inode %lu error %d\n",
4384 btrfs_end_transaction(trans, root);
4388 * find the highest existing sequence number in a directory
4389 * and then set the in-memory index_cnt variable to reflect
4390 * free sequence numbers
4392 static int btrfs_set_inode_index_count(struct inode *inode)
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395 struct btrfs_key key, found_key;
4396 struct btrfs_path *path;
4397 struct extent_buffer *leaf;
4400 key.objectid = inode->i_ino;
4401 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4402 key.offset = (u64)-1;
4404 path = btrfs_alloc_path();
4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4411 /* FIXME: we should be able to handle this */
4417 * MAGIC NUMBER EXPLANATION:
4418 * since we search a directory based on f_pos we have to start at 2
4419 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4420 * else has to start at 2
4422 if (path->slots[0] == 0) {
4423 BTRFS_I(inode)->index_cnt = 2;
4429 leaf = path->nodes[0];
4430 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4432 if (found_key.objectid != inode->i_ino ||
4433 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4434 BTRFS_I(inode)->index_cnt = 2;
4438 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4440 btrfs_free_path(path);
4445 * helper to find a free sequence number in a given directory. This current
4446 * code is very simple, later versions will do smarter things in the btree
4448 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4452 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4453 ret = btrfs_set_inode_index_count(dir);
4458 *index = BTRFS_I(dir)->index_cnt;
4459 BTRFS_I(dir)->index_cnt++;
4464 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4465 struct btrfs_root *root,
4467 const char *name, int name_len,
4468 u64 ref_objectid, u64 objectid,
4469 u64 alloc_hint, int mode, u64 *index)
4471 struct inode *inode;
4472 struct btrfs_inode_item *inode_item;
4473 struct btrfs_key *location;
4474 struct btrfs_path *path;
4475 struct btrfs_inode_ref *ref;
4476 struct btrfs_key key[2];
4482 path = btrfs_alloc_path();
4485 inode = new_inode(root->fs_info->sb);
4487 return ERR_PTR(-ENOMEM);
4490 ret = btrfs_set_inode_index(dir, index);
4493 return ERR_PTR(ret);
4497 * index_cnt is ignored for everything but a dir,
4498 * btrfs_get_inode_index_count has an explanation for the magic
4501 BTRFS_I(inode)->index_cnt = 2;
4502 BTRFS_I(inode)->root = root;
4503 BTRFS_I(inode)->generation = trans->transid;
4504 inode->i_generation = BTRFS_I(inode)->generation;
4505 btrfs_set_inode_space_info(root, inode);
4511 BTRFS_I(inode)->block_group =
4512 btrfs_find_block_group(root, 0, alloc_hint, owner);
4514 key[0].objectid = objectid;
4515 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4518 key[1].objectid = objectid;
4519 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4520 key[1].offset = ref_objectid;
4522 sizes[0] = sizeof(struct btrfs_inode_item);
4523 sizes[1] = name_len + sizeof(*ref);
4525 path->leave_spinning = 1;
4526 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4530 inode_init_owner(inode, dir, mode);
4531 inode->i_ino = objectid;
4532 inode_set_bytes(inode, 0);
4533 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4534 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4535 struct btrfs_inode_item);
4536 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4538 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4539 struct btrfs_inode_ref);
4540 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4541 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4542 ptr = (unsigned long)(ref + 1);
4543 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4545 btrfs_mark_buffer_dirty(path->nodes[0]);
4546 btrfs_free_path(path);
4548 location = &BTRFS_I(inode)->location;
4549 location->objectid = objectid;
4550 location->offset = 0;
4551 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4553 btrfs_inherit_iflags(inode, dir);
4555 if ((mode & S_IFREG)) {
4556 if (btrfs_test_opt(root, NODATASUM))
4557 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4558 if (btrfs_test_opt(root, NODATACOW))
4559 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4562 insert_inode_hash(inode);
4563 inode_tree_add(inode);
4567 BTRFS_I(dir)->index_cnt--;
4568 btrfs_free_path(path);
4570 return ERR_PTR(ret);
4573 static inline u8 btrfs_inode_type(struct inode *inode)
4575 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4579 * utility function to add 'inode' into 'parent_inode' with
4580 * a give name and a given sequence number.
4581 * if 'add_backref' is true, also insert a backref from the
4582 * inode to the parent directory.
4584 int btrfs_add_link(struct btrfs_trans_handle *trans,
4585 struct inode *parent_inode, struct inode *inode,
4586 const char *name, int name_len, int add_backref, u64 index)
4589 struct btrfs_key key;
4590 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4592 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4593 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4595 key.objectid = inode->i_ino;
4596 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4600 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4601 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4602 key.objectid, root->root_key.objectid,
4603 parent_inode->i_ino,
4604 index, name, name_len);
4605 } else if (add_backref) {
4606 ret = btrfs_insert_inode_ref(trans, root,
4607 name, name_len, inode->i_ino,
4608 parent_inode->i_ino, index);
4612 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4613 parent_inode->i_ino, &key,
4614 btrfs_inode_type(inode), index);
4617 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4619 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4620 ret = btrfs_update_inode(trans, root, parent_inode);
4625 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4626 struct inode *dir, struct dentry *dentry,
4627 struct inode *inode, int backref, u64 index)
4629 int err = btrfs_add_link(trans, dir, inode,
4630 dentry->d_name.name, dentry->d_name.len,
4633 d_instantiate(dentry, inode);
4641 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4642 int mode, dev_t rdev)
4644 struct btrfs_trans_handle *trans;
4645 struct btrfs_root *root = BTRFS_I(dir)->root;
4646 struct inode *inode = NULL;
4650 unsigned long nr = 0;
4653 if (!new_valid_dev(rdev))
4656 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4661 * 2 for inode item and ref
4663 * 1 for xattr if selinux is on
4665 trans = btrfs_start_transaction(root, 5);
4667 return PTR_ERR(trans);
4669 btrfs_set_trans_block_group(trans, dir);
4671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4672 dentry->d_name.len, dir->i_ino, objectid,
4673 BTRFS_I(dir)->block_group, mode, &index);
4674 err = PTR_ERR(inode);
4678 err = btrfs_init_inode_security(trans, inode, dir);
4684 btrfs_set_trans_block_group(trans, inode);
4685 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4689 inode->i_op = &btrfs_special_inode_operations;
4690 init_special_inode(inode, inode->i_mode, rdev);
4691 btrfs_update_inode(trans, root, inode);
4693 btrfs_update_inode_block_group(trans, inode);
4694 btrfs_update_inode_block_group(trans, dir);
4696 nr = trans->blocks_used;
4697 btrfs_end_transaction_throttle(trans, root);
4698 btrfs_btree_balance_dirty(root, nr);
4700 inode_dec_link_count(inode);
4706 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4707 int mode, struct nameidata *nd)
4709 struct btrfs_trans_handle *trans;
4710 struct btrfs_root *root = BTRFS_I(dir)->root;
4711 struct inode *inode = NULL;
4714 unsigned long nr = 0;
4718 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4722 * 2 for inode item and ref
4724 * 1 for xattr if selinux is on
4726 trans = btrfs_start_transaction(root, 5);
4728 return PTR_ERR(trans);
4730 btrfs_set_trans_block_group(trans, dir);
4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733 dentry->d_name.len, dir->i_ino, objectid,
4734 BTRFS_I(dir)->block_group, mode, &index);
4735 err = PTR_ERR(inode);
4739 err = btrfs_init_inode_security(trans, inode, dir);
4745 btrfs_set_trans_block_group(trans, inode);
4746 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4750 inode->i_mapping->a_ops = &btrfs_aops;
4751 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4752 inode->i_fop = &btrfs_file_operations;
4753 inode->i_op = &btrfs_file_inode_operations;
4754 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4756 btrfs_update_inode_block_group(trans, inode);
4757 btrfs_update_inode_block_group(trans, dir);
4759 nr = trans->blocks_used;
4760 btrfs_end_transaction_throttle(trans, root);
4762 inode_dec_link_count(inode);
4765 btrfs_btree_balance_dirty(root, nr);
4769 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4770 struct dentry *dentry)
4772 struct btrfs_trans_handle *trans;
4773 struct btrfs_root *root = BTRFS_I(dir)->root;
4774 struct inode *inode = old_dentry->d_inode;
4776 unsigned long nr = 0;
4780 if (inode->i_nlink == 0)
4783 /* do not allow sys_link's with other subvols of the same device */
4784 if (root->objectid != BTRFS_I(inode)->root->objectid)
4787 btrfs_inc_nlink(inode);
4788 inode->i_ctime = CURRENT_TIME;
4790 err = btrfs_set_inode_index(dir, &index);
4795 * 1 item for inode ref
4796 * 2 items for dir items
4798 trans = btrfs_start_transaction(root, 3);
4799 if (IS_ERR(trans)) {
4800 err = PTR_ERR(trans);
4804 btrfs_set_trans_block_group(trans, dir);
4807 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4812 struct dentry *parent = dget_parent(dentry);
4813 btrfs_update_inode_block_group(trans, dir);
4814 err = btrfs_update_inode(trans, root, inode);
4816 btrfs_log_new_name(trans, inode, NULL, parent);
4820 nr = trans->blocks_used;
4821 btrfs_end_transaction_throttle(trans, root);
4824 inode_dec_link_count(inode);
4827 btrfs_btree_balance_dirty(root, nr);
4831 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4833 struct inode *inode = NULL;
4834 struct btrfs_trans_handle *trans;
4835 struct btrfs_root *root = BTRFS_I(dir)->root;
4837 int drop_on_err = 0;
4840 unsigned long nr = 1;
4842 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4847 * 2 items for inode and ref
4848 * 2 items for dir items
4849 * 1 for xattr if selinux is on
4851 trans = btrfs_start_transaction(root, 5);
4853 return PTR_ERR(trans);
4854 btrfs_set_trans_block_group(trans, dir);
4856 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4857 dentry->d_name.len, dir->i_ino, objectid,
4858 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4860 if (IS_ERR(inode)) {
4861 err = PTR_ERR(inode);
4867 err = btrfs_init_inode_security(trans, inode, dir);
4871 inode->i_op = &btrfs_dir_inode_operations;
4872 inode->i_fop = &btrfs_dir_file_operations;
4873 btrfs_set_trans_block_group(trans, inode);
4875 btrfs_i_size_write(inode, 0);
4876 err = btrfs_update_inode(trans, root, inode);
4880 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4881 dentry->d_name.len, 0, index);
4885 d_instantiate(dentry, inode);
4887 btrfs_update_inode_block_group(trans, inode);
4888 btrfs_update_inode_block_group(trans, dir);
4891 nr = trans->blocks_used;
4892 btrfs_end_transaction_throttle(trans, root);
4895 btrfs_btree_balance_dirty(root, nr);
4899 /* helper for btfs_get_extent. Given an existing extent in the tree,
4900 * and an extent that you want to insert, deal with overlap and insert
4901 * the new extent into the tree.
4903 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4904 struct extent_map *existing,
4905 struct extent_map *em,
4906 u64 map_start, u64 map_len)
4910 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4911 start_diff = map_start - em->start;
4912 em->start = map_start;
4914 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4915 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4916 em->block_start += start_diff;
4917 em->block_len -= start_diff;
4919 return add_extent_mapping(em_tree, em);
4922 static noinline int uncompress_inline(struct btrfs_path *path,
4923 struct inode *inode, struct page *page,
4924 size_t pg_offset, u64 extent_offset,
4925 struct btrfs_file_extent_item *item)
4928 struct extent_buffer *leaf = path->nodes[0];
4931 unsigned long inline_size;
4934 WARN_ON(pg_offset != 0);
4935 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4936 inline_size = btrfs_file_extent_inline_item_len(leaf,
4937 btrfs_item_nr(leaf, path->slots[0]));
4938 tmp = kmalloc(inline_size, GFP_NOFS);
4939 ptr = btrfs_file_extent_inline_start(item);
4941 read_extent_buffer(leaf, tmp, ptr, inline_size);
4943 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4944 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4945 inline_size, max_size);
4947 char *kaddr = kmap_atomic(page, KM_USER0);
4948 unsigned long copy_size = min_t(u64,
4949 PAGE_CACHE_SIZE - pg_offset,
4950 max_size - extent_offset);
4951 memset(kaddr + pg_offset, 0, copy_size);
4952 kunmap_atomic(kaddr, KM_USER0);
4959 * a bit scary, this does extent mapping from logical file offset to the disk.
4960 * the ugly parts come from merging extents from the disk with the in-ram
4961 * representation. This gets more complex because of the data=ordered code,
4962 * where the in-ram extents might be locked pending data=ordered completion.
4964 * This also copies inline extents directly into the page.
4967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4968 size_t pg_offset, u64 start, u64 len,
4974 u64 extent_start = 0;
4976 u64 objectid = inode->i_ino;
4978 struct btrfs_path *path = NULL;
4979 struct btrfs_root *root = BTRFS_I(inode)->root;
4980 struct btrfs_file_extent_item *item;
4981 struct extent_buffer *leaf;
4982 struct btrfs_key found_key;
4983 struct extent_map *em = NULL;
4984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4986 struct btrfs_trans_handle *trans = NULL;
4990 read_lock(&em_tree->lock);
4991 em = lookup_extent_mapping(em_tree, start, len);
4993 em->bdev = root->fs_info->fs_devices->latest_bdev;
4994 read_unlock(&em_tree->lock);
4997 if (em->start > start || em->start + em->len <= start)
4998 free_extent_map(em);
4999 else if (em->block_start == EXTENT_MAP_INLINE && page)
5000 free_extent_map(em);
5004 em = alloc_extent_map(GFP_NOFS);
5009 em->bdev = root->fs_info->fs_devices->latest_bdev;
5010 em->start = EXTENT_MAP_HOLE;
5011 em->orig_start = EXTENT_MAP_HOLE;
5013 em->block_len = (u64)-1;
5016 path = btrfs_alloc_path();
5020 ret = btrfs_lookup_file_extent(trans, root, path,
5021 objectid, start, trans != NULL);
5028 if (path->slots[0] == 0)
5033 leaf = path->nodes[0];
5034 item = btrfs_item_ptr(leaf, path->slots[0],
5035 struct btrfs_file_extent_item);
5036 /* are we inside the extent that was found? */
5037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5038 found_type = btrfs_key_type(&found_key);
5039 if (found_key.objectid != objectid ||
5040 found_type != BTRFS_EXTENT_DATA_KEY) {
5044 found_type = btrfs_file_extent_type(leaf, item);
5045 extent_start = found_key.offset;
5046 compressed = btrfs_file_extent_compression(leaf, item);
5047 if (found_type == BTRFS_FILE_EXTENT_REG ||
5048 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5049 extent_end = extent_start +
5050 btrfs_file_extent_num_bytes(leaf, item);
5051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5053 size = btrfs_file_extent_inline_len(leaf, item);
5054 extent_end = (extent_start + size + root->sectorsize - 1) &
5055 ~((u64)root->sectorsize - 1);
5058 if (start >= extent_end) {
5060 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5061 ret = btrfs_next_leaf(root, path);
5068 leaf = path->nodes[0];
5070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5071 if (found_key.objectid != objectid ||
5072 found_key.type != BTRFS_EXTENT_DATA_KEY)
5074 if (start + len <= found_key.offset)
5077 em->len = found_key.offset - start;
5081 if (found_type == BTRFS_FILE_EXTENT_REG ||
5082 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5083 em->start = extent_start;
5084 em->len = extent_end - extent_start;
5085 em->orig_start = extent_start -
5086 btrfs_file_extent_offset(leaf, item);
5087 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5089 em->block_start = EXTENT_MAP_HOLE;
5093 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5094 em->block_start = bytenr;
5095 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5098 bytenr += btrfs_file_extent_offset(leaf, item);
5099 em->block_start = bytenr;
5100 em->block_len = em->len;
5101 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5102 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5105 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5109 size_t extent_offset;
5112 em->block_start = EXTENT_MAP_INLINE;
5113 if (!page || create) {
5114 em->start = extent_start;
5115 em->len = extent_end - extent_start;
5119 size = btrfs_file_extent_inline_len(leaf, item);
5120 extent_offset = page_offset(page) + pg_offset - extent_start;
5121 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5122 size - extent_offset);
5123 em->start = extent_start + extent_offset;
5124 em->len = (copy_size + root->sectorsize - 1) &
5125 ~((u64)root->sectorsize - 1);
5126 em->orig_start = EXTENT_MAP_INLINE;
5128 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5129 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5130 if (create == 0 && !PageUptodate(page)) {
5131 if (btrfs_file_extent_compression(leaf, item) ==
5132 BTRFS_COMPRESS_ZLIB) {
5133 ret = uncompress_inline(path, inode, page,
5135 extent_offset, item);
5139 read_extent_buffer(leaf, map + pg_offset, ptr,
5141 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5142 memset(map + pg_offset + copy_size, 0,
5143 PAGE_CACHE_SIZE - pg_offset -
5148 flush_dcache_page(page);
5149 } else if (create && PageUptodate(page)) {
5153 free_extent_map(em);
5155 btrfs_release_path(root, path);
5156 trans = btrfs_join_transaction(root, 1);
5160 write_extent_buffer(leaf, map + pg_offset, ptr,
5163 btrfs_mark_buffer_dirty(leaf);
5165 set_extent_uptodate(io_tree, em->start,
5166 extent_map_end(em) - 1, GFP_NOFS);
5169 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5176 em->block_start = EXTENT_MAP_HOLE;
5177 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5179 btrfs_release_path(root, path);
5180 if (em->start > start || extent_map_end(em) <= start) {
5181 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5182 "[%llu %llu]\n", (unsigned long long)em->start,
5183 (unsigned long long)em->len,
5184 (unsigned long long)start,
5185 (unsigned long long)len);
5191 write_lock(&em_tree->lock);
5192 ret = add_extent_mapping(em_tree, em);
5193 /* it is possible that someone inserted the extent into the tree
5194 * while we had the lock dropped. It is also possible that
5195 * an overlapping map exists in the tree
5197 if (ret == -EEXIST) {
5198 struct extent_map *existing;
5202 existing = lookup_extent_mapping(em_tree, start, len);
5203 if (existing && (existing->start > start ||
5204 existing->start + existing->len <= start)) {
5205 free_extent_map(existing);
5209 existing = lookup_extent_mapping(em_tree, em->start,
5212 err = merge_extent_mapping(em_tree, existing,
5215 free_extent_map(existing);
5217 free_extent_map(em);
5222 free_extent_map(em);
5226 free_extent_map(em);
5231 write_unlock(&em_tree->lock);
5234 btrfs_free_path(path);
5236 ret = btrfs_end_transaction(trans, root);
5241 free_extent_map(em);
5242 return ERR_PTR(err);
5247 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5250 struct btrfs_root *root = BTRFS_I(inode)->root;
5251 struct btrfs_trans_handle *trans;
5252 struct extent_map *em;
5253 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5254 struct btrfs_key ins;
5258 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5260 trans = btrfs_join_transaction(root, 0);
5262 return ERR_PTR(-ENOMEM);
5264 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5266 alloc_hint = get_extent_allocation_hint(inode, start, len);
5267 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5268 alloc_hint, (u64)-1, &ins, 1);
5274 em = alloc_extent_map(GFP_NOFS);
5276 em = ERR_PTR(-ENOMEM);
5281 em->orig_start = em->start;
5282 em->len = ins.offset;
5284 em->block_start = ins.objectid;
5285 em->block_len = ins.offset;
5286 em->bdev = root->fs_info->fs_devices->latest_bdev;
5287 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5290 write_lock(&em_tree->lock);
5291 ret = add_extent_mapping(em_tree, em);
5292 write_unlock(&em_tree->lock);
5295 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5298 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5299 ins.offset, ins.offset, 0);
5301 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5305 btrfs_end_transaction(trans, root);
5310 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5311 * block must be cow'd
5313 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5314 struct inode *inode, u64 offset, u64 len)
5316 struct btrfs_path *path;
5318 struct extent_buffer *leaf;
5319 struct btrfs_root *root = BTRFS_I(inode)->root;
5320 struct btrfs_file_extent_item *fi;
5321 struct btrfs_key key;
5329 path = btrfs_alloc_path();
5333 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5338 slot = path->slots[0];
5341 /* can't find the item, must cow */
5348 leaf = path->nodes[0];
5349 btrfs_item_key_to_cpu(leaf, &key, slot);
5350 if (key.objectid != inode->i_ino ||
5351 key.type != BTRFS_EXTENT_DATA_KEY) {
5352 /* not our file or wrong item type, must cow */
5356 if (key.offset > offset) {
5357 /* Wrong offset, must cow */
5361 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5362 found_type = btrfs_file_extent_type(leaf, fi);
5363 if (found_type != BTRFS_FILE_EXTENT_REG &&
5364 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5365 /* not a regular extent, must cow */
5368 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5369 backref_offset = btrfs_file_extent_offset(leaf, fi);
5371 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5372 if (extent_end < offset + len) {
5373 /* extent doesn't include our full range, must cow */
5377 if (btrfs_extent_readonly(root, disk_bytenr))
5381 * look for other files referencing this extent, if we
5382 * find any we must cow
5384 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5385 key.offset - backref_offset, disk_bytenr))
5389 * adjust disk_bytenr and num_bytes to cover just the bytes
5390 * in this extent we are about to write. If there
5391 * are any csums in that range we have to cow in order
5392 * to keep the csums correct
5394 disk_bytenr += backref_offset;
5395 disk_bytenr += offset - key.offset;
5396 num_bytes = min(offset + len, extent_end) - offset;
5397 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5400 * all of the above have passed, it is safe to overwrite this extent
5405 btrfs_free_path(path);
5409 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5410 struct buffer_head *bh_result, int create)
5412 struct extent_map *em;
5413 struct btrfs_root *root = BTRFS_I(inode)->root;
5414 u64 start = iblock << inode->i_blkbits;
5415 u64 len = bh_result->b_size;
5416 struct btrfs_trans_handle *trans;
5418 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5423 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5424 * io. INLINE is special, and we could probably kludge it in here, but
5425 * it's still buffered so for safety lets just fall back to the generic
5428 * For COMPRESSED we _have_ to read the entire extent in so we can
5429 * decompress it, so there will be buffering required no matter what we
5430 * do, so go ahead and fallback to buffered.
5432 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5433 * to buffered IO. Don't blame me, this is the price we pay for using
5436 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5437 em->block_start == EXTENT_MAP_INLINE) {
5438 free_extent_map(em);
5442 /* Just a good old fashioned hole, return */
5443 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5444 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5445 free_extent_map(em);
5446 /* DIO will do one hole at a time, so just unlock a sector */
5447 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5448 start + root->sectorsize - 1, GFP_NOFS);
5453 * We don't allocate a new extent in the following cases
5455 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5457 * 2) The extent is marked as PREALLOC. We're good to go here and can
5458 * just use the extent.
5462 len = em->len - (start - em->start);
5466 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5467 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5468 em->block_start != EXTENT_MAP_HOLE)) {
5473 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5474 type = BTRFS_ORDERED_PREALLOC;
5476 type = BTRFS_ORDERED_NOCOW;
5477 len = min(len, em->len - (start - em->start));
5478 block_start = em->block_start + (start - em->start);
5481 * we're not going to log anything, but we do need
5482 * to make sure the current transaction stays open
5483 * while we look for nocow cross refs
5485 trans = btrfs_join_transaction(root, 0);
5489 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5490 ret = btrfs_add_ordered_extent_dio(inode, start,
5491 block_start, len, len, type);
5492 btrfs_end_transaction(trans, root);
5494 free_extent_map(em);
5499 btrfs_end_transaction(trans, root);
5503 * this will cow the extent, reset the len in case we changed
5506 len = bh_result->b_size;
5507 free_extent_map(em);
5508 em = btrfs_new_extent_direct(inode, start, len);
5511 len = min(len, em->len - (start - em->start));
5513 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5514 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5517 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5519 bh_result->b_size = len;
5520 bh_result->b_bdev = em->bdev;
5521 set_buffer_mapped(bh_result);
5522 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5523 set_buffer_new(bh_result);
5525 free_extent_map(em);
5530 struct btrfs_dio_private {
5531 struct inode *inode;
5538 /* number of bios pending for this dio */
5539 atomic_t pending_bios;
5544 struct bio *orig_bio;
5547 static void btrfs_endio_direct_read(struct bio *bio, int err)
5549 struct btrfs_dio_private *dip = bio->bi_private;
5550 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5551 struct bio_vec *bvec = bio->bi_io_vec;
5552 struct inode *inode = dip->inode;
5553 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 u32 *private = dip->csums;
5557 start = dip->logical_offset;
5559 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5560 struct page *page = bvec->bv_page;
5563 unsigned long flags;
5565 local_irq_save(flags);
5566 kaddr = kmap_atomic(page, KM_IRQ0);
5567 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5568 csum, bvec->bv_len);
5569 btrfs_csum_final(csum, (char *)&csum);
5570 kunmap_atomic(kaddr, KM_IRQ0);
5571 local_irq_restore(flags);
5573 flush_dcache_page(bvec->bv_page);
5574 if (csum != *private) {
5575 printk(KERN_ERR "btrfs csum failed ino %lu off"
5576 " %llu csum %u private %u\n",
5577 inode->i_ino, (unsigned long long)start,
5583 start += bvec->bv_len;
5586 } while (bvec <= bvec_end);
5588 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5589 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5590 bio->bi_private = dip->private;
5594 dio_end_io(bio, err);
5597 static void btrfs_endio_direct_write(struct bio *bio, int err)
5599 struct btrfs_dio_private *dip = bio->bi_private;
5600 struct inode *inode = dip->inode;
5601 struct btrfs_root *root = BTRFS_I(inode)->root;
5602 struct btrfs_trans_handle *trans;
5603 struct btrfs_ordered_extent *ordered = NULL;
5604 struct extent_state *cached_state = NULL;
5605 u64 ordered_offset = dip->logical_offset;
5606 u64 ordered_bytes = dip->bytes;
5612 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5620 trans = btrfs_join_transaction(root, 1);
5625 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5628 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5630 ret = btrfs_update_inode(trans, root, inode);
5635 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5636 ordered->file_offset + ordered->len - 1, 0,
5637 &cached_state, GFP_NOFS);
5639 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5640 ret = btrfs_mark_extent_written(trans, inode,
5641 ordered->file_offset,
5642 ordered->file_offset +
5649 ret = insert_reserved_file_extent(trans, inode,
5650 ordered->file_offset,
5656 BTRFS_FILE_EXTENT_REG);
5657 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5658 ordered->file_offset, ordered->len);
5666 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5667 btrfs_ordered_update_i_size(inode, 0, ordered);
5668 btrfs_update_inode(trans, root, inode);
5670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5671 ordered->file_offset + ordered->len - 1,
5672 &cached_state, GFP_NOFS);
5674 btrfs_delalloc_release_metadata(inode, ordered->len);
5675 btrfs_end_transaction(trans, root);
5676 ordered_offset = ordered->file_offset + ordered->len;
5677 btrfs_put_ordered_extent(ordered);
5678 btrfs_put_ordered_extent(ordered);
5682 * our bio might span multiple ordered extents. If we haven't
5683 * completed the accounting for the whole dio, go back and try again
5685 if (ordered_offset < dip->logical_offset + dip->bytes) {
5686 ordered_bytes = dip->logical_offset + dip->bytes -
5691 bio->bi_private = dip->private;
5695 dio_end_io(bio, err);
5698 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5699 struct bio *bio, int mirror_num,
5700 unsigned long bio_flags, u64 offset)
5703 struct btrfs_root *root = BTRFS_I(inode)->root;
5704 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5709 static void btrfs_end_dio_bio(struct bio *bio, int err)
5711 struct btrfs_dio_private *dip = bio->bi_private;
5714 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5715 "sector %#Lx len %u err no %d\n",
5716 dip->inode->i_ino, bio->bi_rw,
5717 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5721 * before atomic variable goto zero, we must make sure
5722 * dip->errors is perceived to be set.
5724 smp_mb__before_atomic_dec();
5727 /* if there are more bios still pending for this dio, just exit */
5728 if (!atomic_dec_and_test(&dip->pending_bios))
5732 bio_io_error(dip->orig_bio);
5734 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5735 bio_endio(dip->orig_bio, 0);
5741 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5742 u64 first_sector, gfp_t gfp_flags)
5744 int nr_vecs = bio_get_nr_vecs(bdev);
5745 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5748 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5749 int rw, u64 file_offset, int skip_sum,
5752 int write = rw & REQ_WRITE;
5753 struct btrfs_root *root = BTRFS_I(inode)->root;
5757 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5761 if (write && !skip_sum) {
5762 ret = btrfs_wq_submit_bio(root->fs_info,
5763 inode, rw, bio, 0, 0,
5765 __btrfs_submit_bio_start_direct_io,
5766 __btrfs_submit_bio_done);
5768 } else if (!skip_sum)
5769 btrfs_lookup_bio_sums_dio(root, inode, bio,
5770 file_offset, csums);
5772 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5778 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5781 struct inode *inode = dip->inode;
5782 struct btrfs_root *root = BTRFS_I(inode)->root;
5783 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5785 struct bio *orig_bio = dip->orig_bio;
5786 struct bio_vec *bvec = orig_bio->bi_io_vec;
5787 u64 start_sector = orig_bio->bi_sector;
5788 u64 file_offset = dip->logical_offset;
5792 u32 *csums = dip->csums;
5795 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5798 bio->bi_private = dip;
5799 bio->bi_end_io = btrfs_end_dio_bio;
5800 atomic_inc(&dip->pending_bios);
5802 map_length = orig_bio->bi_size;
5803 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5804 &map_length, NULL, 0);
5810 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5811 if (unlikely(map_length < submit_len + bvec->bv_len ||
5812 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5813 bvec->bv_offset) < bvec->bv_len)) {
5815 * inc the count before we submit the bio so
5816 * we know the end IO handler won't happen before
5817 * we inc the count. Otherwise, the dip might get freed
5818 * before we're done setting it up
5820 atomic_inc(&dip->pending_bios);
5821 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5822 file_offset, skip_sum,
5826 atomic_dec(&dip->pending_bios);
5831 csums = csums + nr_pages;
5832 start_sector += submit_len >> 9;
5833 file_offset += submit_len;
5838 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5839 start_sector, GFP_NOFS);
5842 bio->bi_private = dip;
5843 bio->bi_end_io = btrfs_end_dio_bio;
5845 map_length = orig_bio->bi_size;
5846 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5847 &map_length, NULL, 0);
5853 submit_len += bvec->bv_len;
5859 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5868 * before atomic variable goto zero, we must
5869 * make sure dip->errors is perceived to be set.
5871 smp_mb__before_atomic_dec();
5872 if (atomic_dec_and_test(&dip->pending_bios))
5873 bio_io_error(dip->orig_bio);
5875 /* bio_end_io() will handle error, so we needn't return it */
5879 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5883 struct btrfs_dio_private *dip;
5884 struct bio_vec *bvec = bio->bi_io_vec;
5886 int write = rw & REQ_WRITE;
5889 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5891 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5899 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5906 dip->private = bio->bi_private;
5908 dip->logical_offset = file_offset;
5912 dip->bytes += bvec->bv_len;
5914 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5916 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5917 bio->bi_private = dip;
5919 dip->orig_bio = bio;
5920 atomic_set(&dip->pending_bios, 0);
5923 bio->bi_end_io = btrfs_endio_direct_write;
5925 bio->bi_end_io = btrfs_endio_direct_read;
5927 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5932 * If this is a write, we need to clean up the reserved space and kill
5933 * the ordered extent.
5936 struct btrfs_ordered_extent *ordered;
5937 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5938 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5939 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5940 btrfs_free_reserved_extent(root, ordered->start,
5942 btrfs_put_ordered_extent(ordered);
5943 btrfs_put_ordered_extent(ordered);
5945 bio_endio(bio, ret);
5948 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5949 const struct iovec *iov, loff_t offset,
5950 unsigned long nr_segs)
5955 unsigned blocksize_mask = root->sectorsize - 1;
5956 ssize_t retval = -EINVAL;
5957 loff_t end = offset;
5959 if (offset & blocksize_mask)
5962 /* Check the memory alignment. Blocks cannot straddle pages */
5963 for (seg = 0; seg < nr_segs; seg++) {
5964 addr = (unsigned long)iov[seg].iov_base;
5965 size = iov[seg].iov_len;
5967 if ((addr & blocksize_mask) || (size & blocksize_mask))
5974 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5975 const struct iovec *iov, loff_t offset,
5976 unsigned long nr_segs)
5978 struct file *file = iocb->ki_filp;
5979 struct inode *inode = file->f_mapping->host;
5980 struct btrfs_ordered_extent *ordered;
5981 struct extent_state *cached_state = NULL;
5982 u64 lockstart, lockend;
5984 int writing = rw & WRITE;
5986 size_t count = iov_length(iov, nr_segs);
5988 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5994 lockend = offset + count - 1;
5997 ret = btrfs_delalloc_reserve_space(inode, count);
6003 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6004 0, &cached_state, GFP_NOFS);
6006 * We're concerned with the entire range that we're going to be
6007 * doing DIO to, so we need to make sure theres no ordered
6008 * extents in this range.
6010 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6011 lockend - lockstart + 1);
6014 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6015 &cached_state, GFP_NOFS);
6016 btrfs_start_ordered_extent(inode, ordered, 1);
6017 btrfs_put_ordered_extent(ordered);
6022 * we don't use btrfs_set_extent_delalloc because we don't want
6023 * the dirty or uptodate bits
6026 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6027 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6028 EXTENT_DELALLOC, 0, NULL, &cached_state,
6031 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6032 lockend, EXTENT_LOCKED | write_bits,
6033 1, 0, &cached_state, GFP_NOFS);
6038 free_extent_state(cached_state);
6039 cached_state = NULL;
6041 ret = __blockdev_direct_IO(rw, iocb, inode,
6042 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6043 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6044 btrfs_submit_direct, 0);
6046 if (ret < 0 && ret != -EIOCBQUEUED) {
6047 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6048 offset + iov_length(iov, nr_segs) - 1,
6049 EXTENT_LOCKED | write_bits, 1, 0,
6050 &cached_state, GFP_NOFS);
6051 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6053 * We're falling back to buffered, unlock the section we didn't
6056 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6057 offset + iov_length(iov, nr_segs) - 1,
6058 EXTENT_LOCKED | write_bits, 1, 0,
6059 &cached_state, GFP_NOFS);
6062 free_extent_state(cached_state);
6066 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6067 __u64 start, __u64 len)
6069 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6072 int btrfs_readpage(struct file *file, struct page *page)
6074 struct extent_io_tree *tree;
6075 tree = &BTRFS_I(page->mapping->host)->io_tree;
6076 return extent_read_full_page(tree, page, btrfs_get_extent);
6079 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6081 struct extent_io_tree *tree;
6084 if (current->flags & PF_MEMALLOC) {
6085 redirty_page_for_writepage(wbc, page);
6089 tree = &BTRFS_I(page->mapping->host)->io_tree;
6090 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6093 int btrfs_writepages(struct address_space *mapping,
6094 struct writeback_control *wbc)
6096 struct extent_io_tree *tree;
6098 tree = &BTRFS_I(mapping->host)->io_tree;
6099 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6103 btrfs_readpages(struct file *file, struct address_space *mapping,
6104 struct list_head *pages, unsigned nr_pages)
6106 struct extent_io_tree *tree;
6107 tree = &BTRFS_I(mapping->host)->io_tree;
6108 return extent_readpages(tree, mapping, pages, nr_pages,
6111 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6113 struct extent_io_tree *tree;
6114 struct extent_map_tree *map;
6117 tree = &BTRFS_I(page->mapping->host)->io_tree;
6118 map = &BTRFS_I(page->mapping->host)->extent_tree;
6119 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6121 ClearPagePrivate(page);
6122 set_page_private(page, 0);
6123 page_cache_release(page);
6128 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6130 if (PageWriteback(page) || PageDirty(page))
6132 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6135 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6137 struct extent_io_tree *tree;
6138 struct btrfs_ordered_extent *ordered;
6139 struct extent_state *cached_state = NULL;
6140 u64 page_start = page_offset(page);
6141 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6145 * we have the page locked, so new writeback can't start,
6146 * and the dirty bit won't be cleared while we are here.
6148 * Wait for IO on this page so that we can safely clear
6149 * the PagePrivate2 bit and do ordered accounting
6151 wait_on_page_writeback(page);
6153 tree = &BTRFS_I(page->mapping->host)->io_tree;
6155 btrfs_releasepage(page, GFP_NOFS);
6158 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6160 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6164 * IO on this page will never be started, so we need
6165 * to account for any ordered extents now
6167 clear_extent_bit(tree, page_start, page_end,
6168 EXTENT_DIRTY | EXTENT_DELALLOC |
6169 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6170 &cached_state, GFP_NOFS);
6172 * whoever cleared the private bit is responsible
6173 * for the finish_ordered_io
6175 if (TestClearPagePrivate2(page)) {
6176 btrfs_finish_ordered_io(page->mapping->host,
6177 page_start, page_end);
6179 btrfs_put_ordered_extent(ordered);
6180 cached_state = NULL;
6181 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6184 clear_extent_bit(tree, page_start, page_end,
6185 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6186 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6187 __btrfs_releasepage(page, GFP_NOFS);
6189 ClearPageChecked(page);
6190 if (PagePrivate(page)) {
6191 ClearPagePrivate(page);
6192 set_page_private(page, 0);
6193 page_cache_release(page);
6198 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6199 * called from a page fault handler when a page is first dirtied. Hence we must
6200 * be careful to check for EOF conditions here. We set the page up correctly
6201 * for a written page which means we get ENOSPC checking when writing into
6202 * holes and correct delalloc and unwritten extent mapping on filesystems that
6203 * support these features.
6205 * We are not allowed to take the i_mutex here so we have to play games to
6206 * protect against truncate races as the page could now be beyond EOF. Because
6207 * vmtruncate() writes the inode size before removing pages, once we have the
6208 * page lock we can determine safely if the page is beyond EOF. If it is not
6209 * beyond EOF, then the page is guaranteed safe against truncation until we
6212 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6214 struct page *page = vmf->page;
6215 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6216 struct btrfs_root *root = BTRFS_I(inode)->root;
6217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6218 struct btrfs_ordered_extent *ordered;
6219 struct extent_state *cached_state = NULL;
6221 unsigned long zero_start;
6227 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6231 else /* -ENOSPC, -EIO, etc */
6232 ret = VM_FAULT_SIGBUS;
6236 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6239 size = i_size_read(inode);
6240 page_start = page_offset(page);
6241 page_end = page_start + PAGE_CACHE_SIZE - 1;
6243 if ((page->mapping != inode->i_mapping) ||
6244 (page_start >= size)) {
6245 /* page got truncated out from underneath us */
6248 wait_on_page_writeback(page);
6250 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6252 set_page_extent_mapped(page);
6255 * we can't set the delalloc bits if there are pending ordered
6256 * extents. Drop our locks and wait for them to finish
6258 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6260 unlock_extent_cached(io_tree, page_start, page_end,
6261 &cached_state, GFP_NOFS);
6263 btrfs_start_ordered_extent(inode, ordered, 1);
6264 btrfs_put_ordered_extent(ordered);
6269 * XXX - page_mkwrite gets called every time the page is dirtied, even
6270 * if it was already dirty, so for space accounting reasons we need to
6271 * clear any delalloc bits for the range we are fixing to save. There
6272 * is probably a better way to do this, but for now keep consistent with
6273 * prepare_pages in the normal write path.
6275 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6276 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6277 0, 0, &cached_state, GFP_NOFS);
6279 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6282 unlock_extent_cached(io_tree, page_start, page_end,
6283 &cached_state, GFP_NOFS);
6284 ret = VM_FAULT_SIGBUS;
6289 /* page is wholly or partially inside EOF */
6290 if (page_start + PAGE_CACHE_SIZE > size)
6291 zero_start = size & ~PAGE_CACHE_MASK;
6293 zero_start = PAGE_CACHE_SIZE;
6295 if (zero_start != PAGE_CACHE_SIZE) {
6297 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6298 flush_dcache_page(page);
6301 ClearPageChecked(page);
6302 set_page_dirty(page);
6303 SetPageUptodate(page);
6305 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6306 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6308 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6312 return VM_FAULT_LOCKED;
6314 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6319 static void btrfs_truncate(struct inode *inode)
6321 struct btrfs_root *root = BTRFS_I(inode)->root;
6323 struct btrfs_trans_handle *trans;
6325 u64 mask = root->sectorsize - 1;
6327 if (!S_ISREG(inode->i_mode)) {
6332 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6336 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6337 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6339 trans = btrfs_start_transaction(root, 0);
6340 BUG_ON(IS_ERR(trans));
6341 btrfs_set_trans_block_group(trans, inode);
6342 trans->block_rsv = root->orphan_block_rsv;
6345 * setattr is responsible for setting the ordered_data_close flag,
6346 * but that is only tested during the last file release. That
6347 * could happen well after the next commit, leaving a great big
6348 * window where new writes may get lost if someone chooses to write
6349 * to this file after truncating to zero
6351 * The inode doesn't have any dirty data here, and so if we commit
6352 * this is a noop. If someone immediately starts writing to the inode
6353 * it is very likely we'll catch some of their writes in this
6354 * transaction, and the commit will find this file on the ordered
6355 * data list with good things to send down.
6357 * This is a best effort solution, there is still a window where
6358 * using truncate to replace the contents of the file will
6359 * end up with a zero length file after a crash.
6361 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6362 btrfs_add_ordered_operation(trans, root, inode);
6366 trans = btrfs_start_transaction(root, 0);
6367 BUG_ON(IS_ERR(trans));
6368 btrfs_set_trans_block_group(trans, inode);
6369 trans->block_rsv = root->orphan_block_rsv;
6372 ret = btrfs_block_rsv_check(trans, root,
6373 root->orphan_block_rsv, 0, 5);
6375 BUG_ON(ret != -EAGAIN);
6376 ret = btrfs_commit_transaction(trans, root);
6382 ret = btrfs_truncate_inode_items(trans, root, inode,
6384 BTRFS_EXTENT_DATA_KEY);
6388 ret = btrfs_update_inode(trans, root, inode);
6391 nr = trans->blocks_used;
6392 btrfs_end_transaction(trans, root);
6394 btrfs_btree_balance_dirty(root, nr);
6397 if (ret == 0 && inode->i_nlink > 0) {
6398 ret = btrfs_orphan_del(trans, inode);
6402 ret = btrfs_update_inode(trans, root, inode);
6405 nr = trans->blocks_used;
6406 ret = btrfs_end_transaction_throttle(trans, root);
6408 btrfs_btree_balance_dirty(root, nr);
6412 * create a new subvolume directory/inode (helper for the ioctl).
6414 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6415 struct btrfs_root *new_root,
6416 u64 new_dirid, u64 alloc_hint)
6418 struct inode *inode;
6422 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6423 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6425 return PTR_ERR(inode);
6426 inode->i_op = &btrfs_dir_inode_operations;
6427 inode->i_fop = &btrfs_dir_file_operations;
6430 btrfs_i_size_write(inode, 0);
6432 err = btrfs_update_inode(trans, new_root, inode);
6439 /* helper function for file defrag and space balancing. This
6440 * forces readahead on a given range of bytes in an inode
6442 unsigned long btrfs_force_ra(struct address_space *mapping,
6443 struct file_ra_state *ra, struct file *file,
6444 pgoff_t offset, pgoff_t last_index)
6446 pgoff_t req_size = last_index - offset + 1;
6448 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6449 return offset + req_size;
6452 struct inode *btrfs_alloc_inode(struct super_block *sb)
6454 struct btrfs_inode *ei;
6455 struct inode *inode;
6457 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6462 ei->space_info = NULL;
6466 ei->last_sub_trans = 0;
6467 ei->logged_trans = 0;
6468 ei->delalloc_bytes = 0;
6469 ei->reserved_bytes = 0;
6470 ei->disk_i_size = 0;
6472 ei->index_cnt = (u64)-1;
6473 ei->last_unlink_trans = 0;
6475 spin_lock_init(&ei->accounting_lock);
6476 atomic_set(&ei->outstanding_extents, 0);
6477 ei->reserved_extents = 0;
6479 ei->ordered_data_close = 0;
6480 ei->orphan_meta_reserved = 0;
6481 ei->dummy_inode = 0;
6482 ei->force_compress = 0;
6484 inode = &ei->vfs_inode;
6485 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6486 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6487 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6488 mutex_init(&ei->log_mutex);
6489 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6490 INIT_LIST_HEAD(&ei->i_orphan);
6491 INIT_LIST_HEAD(&ei->delalloc_inodes);
6492 INIT_LIST_HEAD(&ei->ordered_operations);
6493 RB_CLEAR_NODE(&ei->rb_node);
6498 static void btrfs_i_callback(struct rcu_head *head)
6500 struct inode *inode = container_of(head, struct inode, i_rcu);
6501 INIT_LIST_HEAD(&inode->i_dentry);
6502 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6505 void btrfs_destroy_inode(struct inode *inode)
6507 struct btrfs_ordered_extent *ordered;
6508 struct btrfs_root *root = BTRFS_I(inode)->root;
6510 WARN_ON(!list_empty(&inode->i_dentry));
6511 WARN_ON(inode->i_data.nrpages);
6512 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6513 WARN_ON(BTRFS_I(inode)->reserved_extents);
6516 * This can happen where we create an inode, but somebody else also
6517 * created the same inode and we need to destroy the one we already
6524 * Make sure we're properly removed from the ordered operation
6528 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6529 spin_lock(&root->fs_info->ordered_extent_lock);
6530 list_del_init(&BTRFS_I(inode)->ordered_operations);
6531 spin_unlock(&root->fs_info->ordered_extent_lock);
6534 if (root == root->fs_info->tree_root) {
6535 struct btrfs_block_group_cache *block_group;
6537 block_group = btrfs_lookup_block_group(root->fs_info,
6538 BTRFS_I(inode)->block_group);
6539 if (block_group && block_group->inode == inode) {
6540 spin_lock(&block_group->lock);
6541 block_group->inode = NULL;
6542 spin_unlock(&block_group->lock);
6543 btrfs_put_block_group(block_group);
6544 } else if (block_group) {
6545 btrfs_put_block_group(block_group);
6549 spin_lock(&root->orphan_lock);
6550 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6551 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6553 list_del_init(&BTRFS_I(inode)->i_orphan);
6555 spin_unlock(&root->orphan_lock);
6558 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6562 printk(KERN_ERR "btrfs found ordered "
6563 "extent %llu %llu on inode cleanup\n",
6564 (unsigned long long)ordered->file_offset,
6565 (unsigned long long)ordered->len);
6566 btrfs_remove_ordered_extent(inode, ordered);
6567 btrfs_put_ordered_extent(ordered);
6568 btrfs_put_ordered_extent(ordered);
6571 inode_tree_del(inode);
6572 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6574 call_rcu(&inode->i_rcu, btrfs_i_callback);
6577 int btrfs_drop_inode(struct inode *inode)
6579 struct btrfs_root *root = BTRFS_I(inode)->root;
6581 if (btrfs_root_refs(&root->root_item) == 0 &&
6582 root != root->fs_info->tree_root)
6585 return generic_drop_inode(inode);
6588 static void init_once(void *foo)
6590 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6592 inode_init_once(&ei->vfs_inode);
6595 void btrfs_destroy_cachep(void)
6597 if (btrfs_inode_cachep)
6598 kmem_cache_destroy(btrfs_inode_cachep);
6599 if (btrfs_trans_handle_cachep)
6600 kmem_cache_destroy(btrfs_trans_handle_cachep);
6601 if (btrfs_transaction_cachep)
6602 kmem_cache_destroy(btrfs_transaction_cachep);
6603 if (btrfs_path_cachep)
6604 kmem_cache_destroy(btrfs_path_cachep);
6607 int btrfs_init_cachep(void)
6609 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6610 sizeof(struct btrfs_inode), 0,
6611 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6612 if (!btrfs_inode_cachep)
6615 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6616 sizeof(struct btrfs_trans_handle), 0,
6617 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6618 if (!btrfs_trans_handle_cachep)
6621 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6622 sizeof(struct btrfs_transaction), 0,
6623 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6624 if (!btrfs_transaction_cachep)
6627 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6628 sizeof(struct btrfs_path), 0,
6629 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6630 if (!btrfs_path_cachep)
6635 btrfs_destroy_cachep();
6639 static int btrfs_getattr(struct vfsmount *mnt,
6640 struct dentry *dentry, struct kstat *stat)
6642 struct inode *inode = dentry->d_inode;
6643 generic_fillattr(inode, stat);
6644 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6645 stat->blksize = PAGE_CACHE_SIZE;
6646 stat->blocks = (inode_get_bytes(inode) +
6647 BTRFS_I(inode)->delalloc_bytes) >> 9;
6651 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6652 struct inode *new_dir, struct dentry *new_dentry)
6654 struct btrfs_trans_handle *trans;
6655 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6656 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6657 struct inode *new_inode = new_dentry->d_inode;
6658 struct inode *old_inode = old_dentry->d_inode;
6659 struct timespec ctime = CURRENT_TIME;
6664 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6667 /* we only allow rename subvolume link between subvolumes */
6668 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6671 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6672 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6675 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6676 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6679 * we're using rename to replace one file with another.
6680 * and the replacement file is large. Start IO on it now so
6681 * we don't add too much work to the end of the transaction
6683 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6684 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6685 filemap_flush(old_inode->i_mapping);
6687 /* close the racy window with snapshot create/destroy ioctl */
6688 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6689 down_read(&root->fs_info->subvol_sem);
6691 * We want to reserve the absolute worst case amount of items. So if
6692 * both inodes are subvols and we need to unlink them then that would
6693 * require 4 item modifications, but if they are both normal inodes it
6694 * would require 5 item modifications, so we'll assume their normal
6695 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6696 * should cover the worst case number of items we'll modify.
6698 trans = btrfs_start_transaction(root, 20);
6700 return PTR_ERR(trans);
6702 btrfs_set_trans_block_group(trans, new_dir);
6705 btrfs_record_root_in_trans(trans, dest);
6707 ret = btrfs_set_inode_index(new_dir, &index);
6711 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6712 /* force full log commit if subvolume involved. */
6713 root->fs_info->last_trans_log_full_commit = trans->transid;
6715 ret = btrfs_insert_inode_ref(trans, dest,
6716 new_dentry->d_name.name,
6717 new_dentry->d_name.len,
6719 new_dir->i_ino, index);
6723 * this is an ugly little race, but the rename is required
6724 * to make sure that if we crash, the inode is either at the
6725 * old name or the new one. pinning the log transaction lets
6726 * us make sure we don't allow a log commit to come in after
6727 * we unlink the name but before we add the new name back in.
6729 btrfs_pin_log_trans(root);
6732 * make sure the inode gets flushed if it is replacing
6735 if (new_inode && new_inode->i_size &&
6736 old_inode && S_ISREG(old_inode->i_mode)) {
6737 btrfs_add_ordered_operation(trans, root, old_inode);
6740 old_dir->i_ctime = old_dir->i_mtime = ctime;
6741 new_dir->i_ctime = new_dir->i_mtime = ctime;
6742 old_inode->i_ctime = ctime;
6744 if (old_dentry->d_parent != new_dentry->d_parent)
6745 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6747 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6748 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6749 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6750 old_dentry->d_name.name,
6751 old_dentry->d_name.len);
6753 btrfs_inc_nlink(old_dentry->d_inode);
6754 ret = btrfs_unlink_inode(trans, root, old_dir,
6755 old_dentry->d_inode,
6756 old_dentry->d_name.name,
6757 old_dentry->d_name.len);
6762 new_inode->i_ctime = CURRENT_TIME;
6763 if (unlikely(new_inode->i_ino ==
6764 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6765 root_objectid = BTRFS_I(new_inode)->location.objectid;
6766 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6768 new_dentry->d_name.name,
6769 new_dentry->d_name.len);
6770 BUG_ON(new_inode->i_nlink == 0);
6772 ret = btrfs_unlink_inode(trans, dest, new_dir,
6773 new_dentry->d_inode,
6774 new_dentry->d_name.name,
6775 new_dentry->d_name.len);
6778 if (new_inode->i_nlink == 0) {
6779 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6784 ret = btrfs_add_link(trans, new_dir, old_inode,
6785 new_dentry->d_name.name,
6786 new_dentry->d_name.len, 0, index);
6789 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6790 struct dentry *parent = dget_parent(new_dentry);
6791 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6793 btrfs_end_log_trans(root);
6796 btrfs_end_transaction_throttle(trans, root);
6798 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6799 up_read(&root->fs_info->subvol_sem);
6805 * some fairly slow code that needs optimization. This walks the list
6806 * of all the inodes with pending delalloc and forces them to disk.
6808 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6810 struct list_head *head = &root->fs_info->delalloc_inodes;
6811 struct btrfs_inode *binode;
6812 struct inode *inode;
6814 if (root->fs_info->sb->s_flags & MS_RDONLY)
6817 spin_lock(&root->fs_info->delalloc_lock);
6818 while (!list_empty(head)) {
6819 binode = list_entry(head->next, struct btrfs_inode,
6821 inode = igrab(&binode->vfs_inode);
6823 list_del_init(&binode->delalloc_inodes);
6824 spin_unlock(&root->fs_info->delalloc_lock);
6826 filemap_flush(inode->i_mapping);
6828 btrfs_add_delayed_iput(inode);
6833 spin_lock(&root->fs_info->delalloc_lock);
6835 spin_unlock(&root->fs_info->delalloc_lock);
6837 /* the filemap_flush will queue IO into the worker threads, but
6838 * we have to make sure the IO is actually started and that
6839 * ordered extents get created before we return
6841 atomic_inc(&root->fs_info->async_submit_draining);
6842 while (atomic_read(&root->fs_info->nr_async_submits) ||
6843 atomic_read(&root->fs_info->async_delalloc_pages)) {
6844 wait_event(root->fs_info->async_submit_wait,
6845 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6846 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6848 atomic_dec(&root->fs_info->async_submit_draining);
6852 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6855 struct btrfs_inode *binode;
6856 struct inode *inode = NULL;
6858 spin_lock(&root->fs_info->delalloc_lock);
6859 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6860 binode = list_entry(root->fs_info->delalloc_inodes.next,
6861 struct btrfs_inode, delalloc_inodes);
6862 inode = igrab(&binode->vfs_inode);
6864 list_move_tail(&binode->delalloc_inodes,
6865 &root->fs_info->delalloc_inodes);
6869 list_del_init(&binode->delalloc_inodes);
6870 cond_resched_lock(&root->fs_info->delalloc_lock);
6872 spin_unlock(&root->fs_info->delalloc_lock);
6876 filemap_write_and_wait(inode->i_mapping);
6878 * We have to do this because compression doesn't
6879 * actually set PG_writeback until it submits the pages
6880 * for IO, which happens in an async thread, so we could
6881 * race and not actually wait for any writeback pages
6882 * because they've not been submitted yet. Technically
6883 * this could still be the case for the ordered stuff
6884 * since the async thread may not have started to do its
6885 * work yet. If this becomes the case then we need to
6886 * figure out a way to make sure that in writepage we
6887 * wait for any async pages to be submitted before
6888 * returning so that fdatawait does what its supposed to
6891 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6893 filemap_flush(inode->i_mapping);
6896 btrfs_add_delayed_iput(inode);
6904 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6905 const char *symname)
6907 struct btrfs_trans_handle *trans;
6908 struct btrfs_root *root = BTRFS_I(dir)->root;
6909 struct btrfs_path *path;
6910 struct btrfs_key key;
6911 struct inode *inode = NULL;
6919 struct btrfs_file_extent_item *ei;
6920 struct extent_buffer *leaf;
6921 unsigned long nr = 0;
6923 name_len = strlen(symname) + 1;
6924 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6925 return -ENAMETOOLONG;
6927 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6931 * 2 items for inode item and ref
6932 * 2 items for dir items
6933 * 1 item for xattr if selinux is on
6935 trans = btrfs_start_transaction(root, 5);
6937 return PTR_ERR(trans);
6939 btrfs_set_trans_block_group(trans, dir);
6941 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6942 dentry->d_name.len, dir->i_ino, objectid,
6943 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6945 err = PTR_ERR(inode);
6949 err = btrfs_init_inode_security(trans, inode, dir);
6955 btrfs_set_trans_block_group(trans, inode);
6956 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6960 inode->i_mapping->a_ops = &btrfs_aops;
6961 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6962 inode->i_fop = &btrfs_file_operations;
6963 inode->i_op = &btrfs_file_inode_operations;
6964 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6966 btrfs_update_inode_block_group(trans, inode);
6967 btrfs_update_inode_block_group(trans, dir);
6971 path = btrfs_alloc_path();
6973 key.objectid = inode->i_ino;
6975 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6976 datasize = btrfs_file_extent_calc_inline_size(name_len);
6977 err = btrfs_insert_empty_item(trans, root, path, &key,
6983 leaf = path->nodes[0];
6984 ei = btrfs_item_ptr(leaf, path->slots[0],
6985 struct btrfs_file_extent_item);
6986 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6987 btrfs_set_file_extent_type(leaf, ei,
6988 BTRFS_FILE_EXTENT_INLINE);
6989 btrfs_set_file_extent_encryption(leaf, ei, 0);
6990 btrfs_set_file_extent_compression(leaf, ei, 0);
6991 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6992 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6994 ptr = btrfs_file_extent_inline_start(ei);
6995 write_extent_buffer(leaf, symname, ptr, name_len);
6996 btrfs_mark_buffer_dirty(leaf);
6997 btrfs_free_path(path);
6999 inode->i_op = &btrfs_symlink_inode_operations;
7000 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7001 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7002 inode_set_bytes(inode, name_len);
7003 btrfs_i_size_write(inode, name_len - 1);
7004 err = btrfs_update_inode(trans, root, inode);
7009 nr = trans->blocks_used;
7010 btrfs_end_transaction_throttle(trans, root);
7012 inode_dec_link_count(inode);
7015 btrfs_btree_balance_dirty(root, nr);
7019 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7020 u64 start, u64 num_bytes, u64 min_size,
7021 loff_t actual_len, u64 *alloc_hint,
7022 struct btrfs_trans_handle *trans)
7024 struct btrfs_root *root = BTRFS_I(inode)->root;
7025 struct btrfs_key ins;
7026 u64 cur_offset = start;
7029 bool own_trans = true;
7033 while (num_bytes > 0) {
7035 trans = btrfs_start_transaction(root, 3);
7036 if (IS_ERR(trans)) {
7037 ret = PTR_ERR(trans);
7042 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7043 0, *alloc_hint, (u64)-1, &ins, 1);
7046 btrfs_end_transaction(trans, root);
7050 ret = insert_reserved_file_extent(trans, inode,
7051 cur_offset, ins.objectid,
7052 ins.offset, ins.offset,
7053 ins.offset, 0, 0, 0,
7054 BTRFS_FILE_EXTENT_PREALLOC);
7056 btrfs_drop_extent_cache(inode, cur_offset,
7057 cur_offset + ins.offset -1, 0);
7059 num_bytes -= ins.offset;
7060 cur_offset += ins.offset;
7061 *alloc_hint = ins.objectid + ins.offset;
7063 inode->i_ctime = CURRENT_TIME;
7064 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7065 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7066 (actual_len > inode->i_size) &&
7067 (cur_offset > inode->i_size)) {
7068 if (cur_offset > actual_len)
7069 i_size = actual_len;
7071 i_size = cur_offset;
7072 i_size_write(inode, i_size);
7073 btrfs_ordered_update_i_size(inode, i_size, NULL);
7076 ret = btrfs_update_inode(trans, root, inode);
7080 btrfs_end_transaction(trans, root);
7085 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7086 u64 start, u64 num_bytes, u64 min_size,
7087 loff_t actual_len, u64 *alloc_hint)
7089 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7090 min_size, actual_len, alloc_hint,
7094 int btrfs_prealloc_file_range_trans(struct inode *inode,
7095 struct btrfs_trans_handle *trans, int mode,
7096 u64 start, u64 num_bytes, u64 min_size,
7097 loff_t actual_len, u64 *alloc_hint)
7099 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7100 min_size, actual_len, alloc_hint, trans);
7103 static long btrfs_fallocate(struct inode *inode, int mode,
7104 loff_t offset, loff_t len)
7106 struct extent_state *cached_state = NULL;
7113 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7114 struct extent_map *em;
7117 alloc_start = offset & ~mask;
7118 alloc_end = (offset + len + mask) & ~mask;
7121 * wait for ordered IO before we have any locks. We'll loop again
7122 * below with the locks held.
7124 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7126 mutex_lock(&inode->i_mutex);
7127 ret = inode_newsize_ok(inode, alloc_end);
7131 if (alloc_start > inode->i_size) {
7132 ret = btrfs_cont_expand(inode, alloc_start);
7137 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
7141 locked_end = alloc_end - 1;
7143 struct btrfs_ordered_extent *ordered;
7145 /* the extent lock is ordered inside the running
7148 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7149 locked_end, 0, &cached_state, GFP_NOFS);
7150 ordered = btrfs_lookup_first_ordered_extent(inode,
7153 ordered->file_offset + ordered->len > alloc_start &&
7154 ordered->file_offset < alloc_end) {
7155 btrfs_put_ordered_extent(ordered);
7156 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7157 alloc_start, locked_end,
7158 &cached_state, GFP_NOFS);
7160 * we can't wait on the range with the transaction
7161 * running or with the extent lock held
7163 btrfs_wait_ordered_range(inode, alloc_start,
7164 alloc_end - alloc_start);
7167 btrfs_put_ordered_extent(ordered);
7172 cur_offset = alloc_start;
7174 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7175 alloc_end - cur_offset, 0);
7176 BUG_ON(IS_ERR(em) || !em);
7177 last_byte = min(extent_map_end(em), alloc_end);
7178 last_byte = (last_byte + mask) & ~mask;
7179 if (em->block_start == EXTENT_MAP_HOLE ||
7180 (cur_offset >= inode->i_size &&
7181 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7182 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
7183 last_byte - cur_offset,
7184 1 << inode->i_blkbits,
7188 free_extent_map(em);
7192 free_extent_map(em);
7194 cur_offset = last_byte;
7195 if (cur_offset >= alloc_end) {
7200 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7201 &cached_state, GFP_NOFS);
7203 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7205 mutex_unlock(&inode->i_mutex);
7209 static int btrfs_set_page_dirty(struct page *page)
7211 return __set_page_dirty_nobuffers(page);
7214 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7216 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7218 return generic_permission(inode, mask, flags, btrfs_check_acl);
7221 static const struct inode_operations btrfs_dir_inode_operations = {
7222 .getattr = btrfs_getattr,
7223 .lookup = btrfs_lookup,
7224 .create = btrfs_create,
7225 .unlink = btrfs_unlink,
7227 .mkdir = btrfs_mkdir,
7228 .rmdir = btrfs_rmdir,
7229 .rename = btrfs_rename,
7230 .symlink = btrfs_symlink,
7231 .setattr = btrfs_setattr,
7232 .mknod = btrfs_mknod,
7233 .setxattr = btrfs_setxattr,
7234 .getxattr = btrfs_getxattr,
7235 .listxattr = btrfs_listxattr,
7236 .removexattr = btrfs_removexattr,
7237 .permission = btrfs_permission,
7239 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7240 .lookup = btrfs_lookup,
7241 .permission = btrfs_permission,
7244 static const struct file_operations btrfs_dir_file_operations = {
7245 .llseek = generic_file_llseek,
7246 .read = generic_read_dir,
7247 .readdir = btrfs_real_readdir,
7248 .unlocked_ioctl = btrfs_ioctl,
7249 #ifdef CONFIG_COMPAT
7250 .compat_ioctl = btrfs_ioctl,
7252 .release = btrfs_release_file,
7253 .fsync = btrfs_sync_file,
7256 static struct extent_io_ops btrfs_extent_io_ops = {
7257 .fill_delalloc = run_delalloc_range,
7258 .submit_bio_hook = btrfs_submit_bio_hook,
7259 .merge_bio_hook = btrfs_merge_bio_hook,
7260 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7261 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7262 .writepage_start_hook = btrfs_writepage_start_hook,
7263 .readpage_io_failed_hook = btrfs_io_failed_hook,
7264 .set_bit_hook = btrfs_set_bit_hook,
7265 .clear_bit_hook = btrfs_clear_bit_hook,
7266 .merge_extent_hook = btrfs_merge_extent_hook,
7267 .split_extent_hook = btrfs_split_extent_hook,
7271 * btrfs doesn't support the bmap operation because swapfiles
7272 * use bmap to make a mapping of extents in the file. They assume
7273 * these extents won't change over the life of the file and they
7274 * use the bmap result to do IO directly to the drive.
7276 * the btrfs bmap call would return logical addresses that aren't
7277 * suitable for IO and they also will change frequently as COW
7278 * operations happen. So, swapfile + btrfs == corruption.
7280 * For now we're avoiding this by dropping bmap.
7282 static const struct address_space_operations btrfs_aops = {
7283 .readpage = btrfs_readpage,
7284 .writepage = btrfs_writepage,
7285 .writepages = btrfs_writepages,
7286 .readpages = btrfs_readpages,
7287 .sync_page = block_sync_page,
7288 .direct_IO = btrfs_direct_IO,
7289 .invalidatepage = btrfs_invalidatepage,
7290 .releasepage = btrfs_releasepage,
7291 .set_page_dirty = btrfs_set_page_dirty,
7292 .error_remove_page = generic_error_remove_page,
7295 static const struct address_space_operations btrfs_symlink_aops = {
7296 .readpage = btrfs_readpage,
7297 .writepage = btrfs_writepage,
7298 .invalidatepage = btrfs_invalidatepage,
7299 .releasepage = btrfs_releasepage,
7302 static const struct inode_operations btrfs_file_inode_operations = {
7303 .truncate = btrfs_truncate,
7304 .getattr = btrfs_getattr,
7305 .setattr = btrfs_setattr,
7306 .setxattr = btrfs_setxattr,
7307 .getxattr = btrfs_getxattr,
7308 .listxattr = btrfs_listxattr,
7309 .removexattr = btrfs_removexattr,
7310 .permission = btrfs_permission,
7311 .fallocate = btrfs_fallocate,
7312 .fiemap = btrfs_fiemap,
7314 static const struct inode_operations btrfs_special_inode_operations = {
7315 .getattr = btrfs_getattr,
7316 .setattr = btrfs_setattr,
7317 .permission = btrfs_permission,
7318 .setxattr = btrfs_setxattr,
7319 .getxattr = btrfs_getxattr,
7320 .listxattr = btrfs_listxattr,
7321 .removexattr = btrfs_removexattr,
7323 static const struct inode_operations btrfs_symlink_inode_operations = {
7324 .readlink = generic_readlink,
7325 .follow_link = page_follow_link_light,
7326 .put_link = page_put_link,
7327 .getattr = btrfs_getattr,
7328 .permission = btrfs_permission,
7329 .setxattr = btrfs_setxattr,
7330 .getxattr = btrfs_getxattr,
7331 .listxattr = btrfs_listxattr,
7332 .removexattr = btrfs_removexattr,
7335 const struct dentry_operations btrfs_dentry_operations = {
7336 .d_delete = btrfs_dentry_delete,