]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c
Merge tag 'soundwire-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_gfx.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36
37 /* delay 0.1 second to enable gfx off feature */
38 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
39
40 #define GFX_OFF_NO_DELAY 0
41
42 /*
43  * GPU GFX IP block helpers function.
44  */
45
46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47                                 int pipe, int queue)
48 {
49         int bit = 0;
50
51         bit += mec * adev->gfx.mec.num_pipe_per_mec
52                 * adev->gfx.mec.num_queue_per_pipe;
53         bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54         bit += queue;
55
56         return bit;
57 }
58
59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60                                  int *mec, int *pipe, int *queue)
61 {
62         *queue = bit % adev->gfx.mec.num_queue_per_pipe;
63         *pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64                 % adev->gfx.mec.num_pipe_per_mec;
65         *mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66                / adev->gfx.mec.num_pipe_per_mec;
67
68 }
69
70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71                                      int xcc_id, int mec, int pipe, int queue)
72 {
73         return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74                         adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75 }
76
77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78                                int me, int pipe, int queue)
79 {
80         int bit = 0;
81
82         bit += me * adev->gfx.me.num_pipe_per_me
83                 * adev->gfx.me.num_queue_per_pipe;
84         bit += pipe * adev->gfx.me.num_queue_per_pipe;
85         bit += queue;
86
87         return bit;
88 }
89
90 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
91                                     int me, int pipe, int queue)
92 {
93         return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
94                         adev->gfx.me.queue_bitmap);
95 }
96
97 /**
98  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
99  *
100  * @mask: array in which the per-shader array disable masks will be stored
101  * @max_se: number of SEs
102  * @max_sh: number of SHs
103  *
104  * The bitmask of CUs to be disabled in the shader array determined by se and
105  * sh is stored in mask[se * max_sh + sh].
106  */
107 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
108 {
109         unsigned int se, sh, cu;
110         const char *p;
111
112         memset(mask, 0, sizeof(*mask) * max_se * max_sh);
113
114         if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
115                 return;
116
117         p = amdgpu_disable_cu;
118         for (;;) {
119                 char *next;
120                 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
121
122                 if (ret < 3) {
123                         DRM_ERROR("amdgpu: could not parse disable_cu\n");
124                         return;
125                 }
126
127                 if (se < max_se && sh < max_sh && cu < 16) {
128                         DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
129                         mask[se * max_sh + sh] |= 1u << cu;
130                 } else {
131                         DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
132                                   se, sh, cu);
133                 }
134
135                 next = strchr(p, ',');
136                 if (!next)
137                         break;
138                 p = next + 1;
139         }
140 }
141
142 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
143 {
144         return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
145 }
146
147 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
148 {
149         if (amdgpu_compute_multipipe != -1) {
150                 DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
151                          amdgpu_compute_multipipe);
152                 return amdgpu_compute_multipipe == 1;
153         }
154
155         if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
156                 return true;
157
158         /* FIXME: spreading the queues across pipes causes perf regressions
159          * on POLARIS11 compute workloads */
160         if (adev->asic_type == CHIP_POLARIS11)
161                 return false;
162
163         return adev->gfx.mec.num_mec > 1;
164 }
165
166 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
167                                                 struct amdgpu_ring *ring)
168 {
169         int queue = ring->queue;
170         int pipe = ring->pipe;
171
172         /* Policy: use pipe1 queue0 as high priority graphics queue if we
173          * have more than one gfx pipe.
174          */
175         if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
176             adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
177                 int me = ring->me;
178                 int bit;
179
180                 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
181                 if (ring == &adev->gfx.gfx_ring[bit])
182                         return true;
183         }
184
185         return false;
186 }
187
188 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
189                                                struct amdgpu_ring *ring)
190 {
191         /* Policy: use 1st queue as high priority compute queue if we
192          * have more than one compute queue.
193          */
194         if (adev->gfx.num_compute_rings > 1 &&
195             ring == &adev->gfx.compute_ring[0])
196                 return true;
197
198         return false;
199 }
200
201 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
202 {
203         int i, j, queue, pipe;
204         bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
205         int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
206                                      adev->gfx.mec.num_queue_per_pipe,
207                                      adev->gfx.num_compute_rings);
208         int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
209
210         if (multipipe_policy) {
211                 /* policy: make queues evenly cross all pipes on MEC1 only
212                  * for multiple xcc, just use the original policy for simplicity */
213                 for (j = 0; j < num_xcc; j++) {
214                         for (i = 0; i < max_queues_per_mec; i++) {
215                                 pipe = i % adev->gfx.mec.num_pipe_per_mec;
216                                 queue = (i / adev->gfx.mec.num_pipe_per_mec) %
217                                          adev->gfx.mec.num_queue_per_pipe;
218
219                                 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
220                                         adev->gfx.mec_bitmap[j].queue_bitmap);
221                         }
222                 }
223         } else {
224                 /* policy: amdgpu owns all queues in the given pipe */
225                 for (j = 0; j < num_xcc; j++) {
226                         for (i = 0; i < max_queues_per_mec; ++i)
227                                 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
228                 }
229         }
230
231         for (j = 0; j < num_xcc; j++) {
232                 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
233                         bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
234         }
235 }
236
237 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
238 {
239         int i, queue, pipe;
240         bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
241         int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
242                                         adev->gfx.me.num_queue_per_pipe;
243
244         if (multipipe_policy) {
245                 /* policy: amdgpu owns the first queue per pipe at this stage
246                  * will extend to mulitple queues per pipe later */
247                 for (i = 0; i < max_queues_per_me; i++) {
248                         pipe = i % adev->gfx.me.num_pipe_per_me;
249                         queue = (i / adev->gfx.me.num_pipe_per_me) %
250                                 adev->gfx.me.num_queue_per_pipe;
251
252                         set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
253                                 adev->gfx.me.queue_bitmap);
254                 }
255         } else {
256                 for (i = 0; i < max_queues_per_me; ++i)
257                         set_bit(i, adev->gfx.me.queue_bitmap);
258         }
259
260         /* update the number of active graphics rings */
261         adev->gfx.num_gfx_rings =
262                 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
263 }
264
265 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
266                                   struct amdgpu_ring *ring, int xcc_id)
267 {
268         int queue_bit;
269         int mec, pipe, queue;
270
271         queue_bit = adev->gfx.mec.num_mec
272                     * adev->gfx.mec.num_pipe_per_mec
273                     * adev->gfx.mec.num_queue_per_pipe;
274
275         while (--queue_bit >= 0) {
276                 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
277                         continue;
278
279                 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
280
281                 /*
282                  * 1. Using pipes 2/3 from MEC 2 seems cause problems.
283                  * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
284                  * only can be issued on queue 0.
285                  */
286                 if ((mec == 1 && pipe > 1) || queue != 0)
287                         continue;
288
289                 ring->me = mec + 1;
290                 ring->pipe = pipe;
291                 ring->queue = queue;
292
293                 return 0;
294         }
295
296         dev_err(adev->dev, "Failed to find a queue for KIQ\n");
297         return -EINVAL;
298 }
299
300 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
301 {
302         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
303         struct amdgpu_irq_src *irq = &kiq->irq;
304         struct amdgpu_ring *ring = &kiq->ring;
305         int r = 0;
306
307         spin_lock_init(&kiq->ring_lock);
308
309         ring->adev = NULL;
310         ring->ring_obj = NULL;
311         ring->use_doorbell = true;
312         ring->xcc_id = xcc_id;
313         ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
314         ring->doorbell_index =
315                 (adev->doorbell_index.kiq +
316                  xcc_id * adev->doorbell_index.xcc_doorbell_range)
317                 << 1;
318
319         r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
320         if (r)
321                 return r;
322
323         ring->eop_gpu_addr = kiq->eop_gpu_addr;
324         ring->no_scheduler = true;
325         snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
326                  (unsigned char)xcc_id, (unsigned char)ring->me,
327                  (unsigned char)ring->pipe, (unsigned char)ring->queue);
328         r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
329                              AMDGPU_RING_PRIO_DEFAULT, NULL);
330         if (r)
331                 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
332
333         return r;
334 }
335
336 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
337 {
338         amdgpu_ring_fini(ring);
339 }
340
341 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
342 {
343         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
344
345         amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
346 }
347
348 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
349                         unsigned int hpd_size, int xcc_id)
350 {
351         int r;
352         u32 *hpd;
353         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354
355         r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
356                                     AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
357                                     &kiq->eop_gpu_addr, (void **)&hpd);
358         if (r) {
359                 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
360                 return r;
361         }
362
363         memset(hpd, 0, hpd_size);
364
365         r = amdgpu_bo_reserve(kiq->eop_obj, true);
366         if (unlikely(r != 0))
367                 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
368         amdgpu_bo_kunmap(kiq->eop_obj);
369         amdgpu_bo_unreserve(kiq->eop_obj);
370
371         return 0;
372 }
373
374 /* create MQD for each compute/gfx queue */
375 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
376                            unsigned int mqd_size, int xcc_id)
377 {
378         int r, i, j;
379         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
380         struct amdgpu_ring *ring = &kiq->ring;
381         u32 domain = AMDGPU_GEM_DOMAIN_GTT;
382
383 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
384         /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
385         if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
386                 domain |= AMDGPU_GEM_DOMAIN_VRAM;
387 #endif
388
389         /* create MQD for KIQ */
390         if (!adev->enable_mes_kiq && !ring->mqd_obj) {
391                 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
392                  * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
393                  * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
394                  * KIQ MQD no matter SRIOV or Bare-metal
395                  */
396                 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
397                                             AMDGPU_GEM_DOMAIN_VRAM |
398                                             AMDGPU_GEM_DOMAIN_GTT,
399                                             &ring->mqd_obj,
400                                             &ring->mqd_gpu_addr,
401                                             &ring->mqd_ptr);
402                 if (r) {
403                         dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
404                         return r;
405                 }
406
407                 /* prepare MQD backup */
408                 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
409                 if (!kiq->mqd_backup) {
410                         dev_warn(adev->dev,
411                                  "no memory to create MQD backup for ring %s\n", ring->name);
412                         return -ENOMEM;
413                 }
414         }
415
416         if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
417                 /* create MQD for each KGQ */
418                 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
419                         ring = &adev->gfx.gfx_ring[i];
420                         if (!ring->mqd_obj) {
421                                 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
422                                                             domain, &ring->mqd_obj,
423                                                             &ring->mqd_gpu_addr, &ring->mqd_ptr);
424                                 if (r) {
425                                         dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
426                                         return r;
427                                 }
428
429                                 ring->mqd_size = mqd_size;
430                                 /* prepare MQD backup */
431                                 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
432                                 if (!adev->gfx.me.mqd_backup[i]) {
433                                         dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
434                                         return -ENOMEM;
435                                 }
436                         }
437                 }
438         }
439
440         /* create MQD for each KCQ */
441         for (i = 0; i < adev->gfx.num_compute_rings; i++) {
442                 j = i + xcc_id * adev->gfx.num_compute_rings;
443                 ring = &adev->gfx.compute_ring[j];
444                 if (!ring->mqd_obj) {
445                         r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
446                                                     domain, &ring->mqd_obj,
447                                                     &ring->mqd_gpu_addr, &ring->mqd_ptr);
448                         if (r) {
449                                 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
450                                 return r;
451                         }
452
453                         ring->mqd_size = mqd_size;
454                         /* prepare MQD backup */
455                         adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
456                         if (!adev->gfx.mec.mqd_backup[j]) {
457                                 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
458                                 return -ENOMEM;
459                         }
460                 }
461         }
462
463         return 0;
464 }
465
466 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
467 {
468         struct amdgpu_ring *ring = NULL;
469         int i, j;
470         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
471
472         if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
473                 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
474                         ring = &adev->gfx.gfx_ring[i];
475                         kfree(adev->gfx.me.mqd_backup[i]);
476                         amdgpu_bo_free_kernel(&ring->mqd_obj,
477                                               &ring->mqd_gpu_addr,
478                                               &ring->mqd_ptr);
479                 }
480         }
481
482         for (i = 0; i < adev->gfx.num_compute_rings; i++) {
483                 j = i + xcc_id * adev->gfx.num_compute_rings;
484                 ring = &adev->gfx.compute_ring[j];
485                 kfree(adev->gfx.mec.mqd_backup[j]);
486                 amdgpu_bo_free_kernel(&ring->mqd_obj,
487                                       &ring->mqd_gpu_addr,
488                                       &ring->mqd_ptr);
489         }
490
491         ring = &kiq->ring;
492         kfree(kiq->mqd_backup);
493         amdgpu_bo_free_kernel(&ring->mqd_obj,
494                               &ring->mqd_gpu_addr,
495                               &ring->mqd_ptr);
496 }
497
498 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
499 {
500         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
501         struct amdgpu_ring *kiq_ring = &kiq->ring;
502         int i, r = 0;
503         int j;
504
505         if (adev->enable_mes) {
506                 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
507                         j = i + xcc_id * adev->gfx.num_compute_rings;
508                         amdgpu_mes_unmap_legacy_queue(adev,
509                                                    &adev->gfx.compute_ring[j],
510                                                    RESET_QUEUES, 0, 0);
511                 }
512                 return 0;
513         }
514
515         if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
516                 return -EINVAL;
517
518         if (!kiq_ring->sched.ready || amdgpu_in_reset(adev))
519                 return 0;
520
521         spin_lock(&kiq->ring_lock);
522         if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
523                                         adev->gfx.num_compute_rings)) {
524                 spin_unlock(&kiq->ring_lock);
525                 return -ENOMEM;
526         }
527
528         for (i = 0; i < adev->gfx.num_compute_rings; i++) {
529                 j = i + xcc_id * adev->gfx.num_compute_rings;
530                 kiq->pmf->kiq_unmap_queues(kiq_ring,
531                                            &adev->gfx.compute_ring[j],
532                                            RESET_QUEUES, 0, 0);
533         }
534         /* Submit unmap queue packet */
535         amdgpu_ring_commit(kiq_ring);
536         /*
537          * Ring test will do a basic scratch register change check. Just run
538          * this to ensure that unmap queues that is submitted before got
539          * processed successfully before returning.
540          */
541         r = amdgpu_ring_test_helper(kiq_ring);
542
543         spin_unlock(&kiq->ring_lock);
544
545         return r;
546 }
547
548 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
549 {
550         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
551         struct amdgpu_ring *kiq_ring = &kiq->ring;
552         int i, r = 0;
553         int j;
554
555         if (adev->enable_mes) {
556                 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
557                         for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
558                                 j = i + xcc_id * adev->gfx.num_gfx_rings;
559                                 amdgpu_mes_unmap_legacy_queue(adev,
560                                                       &adev->gfx.gfx_ring[j],
561                                                       PREEMPT_QUEUES, 0, 0);
562                         }
563                 }
564                 return 0;
565         }
566
567         if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
568                 return -EINVAL;
569
570         if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev))
571                 return 0;
572
573         if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
574                 spin_lock(&kiq->ring_lock);
575                 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
576                                                 adev->gfx.num_gfx_rings)) {
577                         spin_unlock(&kiq->ring_lock);
578                         return -ENOMEM;
579                 }
580
581                 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
582                         j = i + xcc_id * adev->gfx.num_gfx_rings;
583                         kiq->pmf->kiq_unmap_queues(kiq_ring,
584                                                    &adev->gfx.gfx_ring[j],
585                                                    PREEMPT_QUEUES, 0, 0);
586                 }
587                 /* Submit unmap queue packet */
588                 amdgpu_ring_commit(kiq_ring);
589
590                 /*
591                  * Ring test will do a basic scratch register change check.
592                  * Just run this to ensure that unmap queues that is submitted
593                  * before got processed successfully before returning.
594                  */
595                 r = amdgpu_ring_test_helper(kiq_ring);
596                 spin_unlock(&kiq->ring_lock);
597         }
598
599         return r;
600 }
601
602 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
603                                         int queue_bit)
604 {
605         int mec, pipe, queue;
606         int set_resource_bit = 0;
607
608         amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
609
610         set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
611
612         return set_resource_bit;
613 }
614
615 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
616 {
617         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
618         struct amdgpu_ring *kiq_ring = &kiq->ring;
619         uint64_t queue_mask = ~0ULL;
620         int r, i, j;
621
622         amdgpu_device_flush_hdp(adev, NULL);
623
624         if (!adev->enable_uni_mes) {
625                 spin_lock(&kiq->ring_lock);
626                 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
627                 if (r) {
628                         dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
629                         spin_unlock(&kiq->ring_lock);
630                         return r;
631                 }
632
633                 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
634                 r = amdgpu_ring_test_helper(kiq_ring);
635                 spin_unlock(&kiq->ring_lock);
636                 if (r)
637                         dev_err(adev->dev, "KIQ failed to set resources\n");
638         }
639
640         for (i = 0; i < adev->gfx.num_compute_rings; i++) {
641                 j = i + xcc_id * adev->gfx.num_compute_rings;
642                 r = amdgpu_mes_map_legacy_queue(adev,
643                                                 &adev->gfx.compute_ring[j]);
644                 if (r) {
645                         dev_err(adev->dev, "failed to map compute queue\n");
646                         return r;
647                 }
648         }
649
650         return 0;
651 }
652
653 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
654 {
655         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
656         struct amdgpu_ring *kiq_ring = &kiq->ring;
657         uint64_t queue_mask = 0;
658         int r, i, j;
659
660         if (adev->mes.enable_legacy_queue_map)
661                 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
662
663         if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
664                 return -EINVAL;
665
666         for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
667                 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
668                         continue;
669
670                 /* This situation may be hit in the future if a new HW
671                  * generation exposes more than 64 queues. If so, the
672                  * definition of queue_mask needs updating */
673                 if (WARN_ON(i > (sizeof(queue_mask)*8))) {
674                         DRM_ERROR("Invalid KCQ enabled: %d\n", i);
675                         break;
676                 }
677
678                 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
679         }
680
681         amdgpu_device_flush_hdp(adev, NULL);
682
683         DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
684                  kiq_ring->queue);
685
686         spin_lock(&kiq->ring_lock);
687         r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
688                                         adev->gfx.num_compute_rings +
689                                         kiq->pmf->set_resources_size);
690         if (r) {
691                 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
692                 spin_unlock(&kiq->ring_lock);
693                 return r;
694         }
695
696         kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
697         for (i = 0; i < adev->gfx.num_compute_rings; i++) {
698                 j = i + xcc_id * adev->gfx.num_compute_rings;
699                 kiq->pmf->kiq_map_queues(kiq_ring,
700                                          &adev->gfx.compute_ring[j]);
701         }
702         /* Submit map queue packet */
703         amdgpu_ring_commit(kiq_ring);
704         /*
705          * Ring test will do a basic scratch register change check. Just run
706          * this to ensure that map queues that is submitted before got
707          * processed successfully before returning.
708          */
709         r = amdgpu_ring_test_helper(kiq_ring);
710         spin_unlock(&kiq->ring_lock);
711         if (r)
712                 DRM_ERROR("KCQ enable failed\n");
713
714         return r;
715 }
716
717 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
718 {
719         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
720         struct amdgpu_ring *kiq_ring = &kiq->ring;
721         int r, i, j;
722
723         if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
724                 return -EINVAL;
725
726         amdgpu_device_flush_hdp(adev, NULL);
727
728         if (adev->mes.enable_legacy_queue_map) {
729                 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
730                         j = i + xcc_id * adev->gfx.num_gfx_rings;
731                         r = amdgpu_mes_map_legacy_queue(adev,
732                                                         &adev->gfx.gfx_ring[j]);
733                         if (r) {
734                                 DRM_ERROR("failed to map gfx queue\n");
735                                 return r;
736                         }
737                 }
738
739                 return 0;
740         }
741
742         spin_lock(&kiq->ring_lock);
743         /* No need to map kcq on the slave */
744         if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
745                 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
746                                                 adev->gfx.num_gfx_rings);
747                 if (r) {
748                         DRM_ERROR("Failed to lock KIQ (%d).\n", r);
749                         spin_unlock(&kiq->ring_lock);
750                         return r;
751                 }
752
753                 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
754                         j = i + xcc_id * adev->gfx.num_gfx_rings;
755                         kiq->pmf->kiq_map_queues(kiq_ring,
756                                                  &adev->gfx.gfx_ring[j]);
757                 }
758         }
759         /* Submit map queue packet */
760         amdgpu_ring_commit(kiq_ring);
761         /*
762          * Ring test will do a basic scratch register change check. Just run
763          * this to ensure that map queues that is submitted before got
764          * processed successfully before returning.
765          */
766         r = amdgpu_ring_test_helper(kiq_ring);
767         spin_unlock(&kiq->ring_lock);
768         if (r)
769                 DRM_ERROR("KGQ enable failed\n");
770
771         return r;
772 }
773
774 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
775  *
776  * @adev: amdgpu_device pointer
777  * @bool enable true: enable gfx off feature, false: disable gfx off feature
778  *
779  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
780  * 2. other client can send request to disable gfx off feature, the request should be honored.
781  * 3. other client can cancel their request of disable gfx off feature
782  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
783  */
784
785 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
786 {
787         unsigned long delay = GFX_OFF_DELAY_ENABLE;
788
789         if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
790                 return;
791
792         mutex_lock(&adev->gfx.gfx_off_mutex);
793
794         if (enable) {
795                 /* If the count is already 0, it means there's an imbalance bug somewhere.
796                  * Note that the bug may be in a different caller than the one which triggers the
797                  * WARN_ON_ONCE.
798                  */
799                 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
800                         goto unlock;
801
802                 adev->gfx.gfx_off_req_count--;
803
804                 if (adev->gfx.gfx_off_req_count == 0 &&
805                     !adev->gfx.gfx_off_state) {
806                         /* If going to s2idle, no need to wait */
807                         if (adev->in_s0ix) {
808                                 if (!amdgpu_dpm_set_powergating_by_smu(adev,
809                                                 AMD_IP_BLOCK_TYPE_GFX, true, 0))
810                                         adev->gfx.gfx_off_state = true;
811                         } else {
812                                 schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
813                                               delay);
814                         }
815                 }
816         } else {
817                 if (adev->gfx.gfx_off_req_count == 0) {
818                         cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
819
820                         if (adev->gfx.gfx_off_state &&
821                             !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) {
822                                 adev->gfx.gfx_off_state = false;
823
824                                 if (adev->gfx.funcs->init_spm_golden) {
825                                         dev_dbg(adev->dev,
826                                                 "GFXOFF is disabled, re-init SPM golden settings\n");
827                                         amdgpu_gfx_init_spm_golden(adev);
828                                 }
829                         }
830                 }
831
832                 adev->gfx.gfx_off_req_count++;
833         }
834
835 unlock:
836         mutex_unlock(&adev->gfx.gfx_off_mutex);
837 }
838
839 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
840 {
841         int r = 0;
842
843         mutex_lock(&adev->gfx.gfx_off_mutex);
844
845         r = amdgpu_dpm_set_residency_gfxoff(adev, value);
846
847         mutex_unlock(&adev->gfx.gfx_off_mutex);
848
849         return r;
850 }
851
852 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
853 {
854         int r = 0;
855
856         mutex_lock(&adev->gfx.gfx_off_mutex);
857
858         r = amdgpu_dpm_get_residency_gfxoff(adev, value);
859
860         mutex_unlock(&adev->gfx.gfx_off_mutex);
861
862         return r;
863 }
864
865 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
866 {
867         int r = 0;
868
869         mutex_lock(&adev->gfx.gfx_off_mutex);
870
871         r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
872
873         mutex_unlock(&adev->gfx.gfx_off_mutex);
874
875         return r;
876 }
877
878 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
879 {
880
881         int r = 0;
882
883         mutex_lock(&adev->gfx.gfx_off_mutex);
884
885         r = amdgpu_dpm_get_status_gfxoff(adev, value);
886
887         mutex_unlock(&adev->gfx.gfx_off_mutex);
888
889         return r;
890 }
891
892 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
893 {
894         int r;
895
896         if (amdgpu_ras_is_supported(adev, ras_block->block)) {
897                 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
898                         r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
899                         if (r)
900                                 return r;
901                 }
902
903                 r = amdgpu_ras_block_late_init(adev, ras_block);
904                 if (r)
905                         return r;
906
907                 if (amdgpu_sriov_vf(adev))
908                         return r;
909
910                 if (adev->gfx.cp_ecc_error_irq.funcs) {
911                         r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
912                         if (r)
913                                 goto late_fini;
914                 }
915         } else {
916                 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
917         }
918
919         return 0;
920 late_fini:
921         amdgpu_ras_block_late_fini(adev, ras_block);
922         return r;
923 }
924
925 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
926 {
927         int err = 0;
928         struct amdgpu_gfx_ras *ras = NULL;
929
930         /* adev->gfx.ras is NULL, which means gfx does not
931          * support ras function, then do nothing here.
932          */
933         if (!adev->gfx.ras)
934                 return 0;
935
936         ras = adev->gfx.ras;
937
938         err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
939         if (err) {
940                 dev_err(adev->dev, "Failed to register gfx ras block!\n");
941                 return err;
942         }
943
944         strcpy(ras->ras_block.ras_comm.name, "gfx");
945         ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
946         ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
947         adev->gfx.ras_if = &ras->ras_block.ras_comm;
948
949         /* If not define special ras_late_init function, use gfx default ras_late_init */
950         if (!ras->ras_block.ras_late_init)
951                 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
952
953         /* If not defined special ras_cb function, use default ras_cb */
954         if (!ras->ras_block.ras_cb)
955                 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
956
957         return 0;
958 }
959
960 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
961                                                 struct amdgpu_iv_entry *entry)
962 {
963         if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
964                 return adev->gfx.ras->poison_consumption_handler(adev, entry);
965
966         return 0;
967 }
968
969 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
970                 void *err_data,
971                 struct amdgpu_iv_entry *entry)
972 {
973         /* TODO ue will trigger an interrupt.
974          *
975          * When “Full RAS” is enabled, the per-IP interrupt sources should
976          * be disabled and the driver should only look for the aggregated
977          * interrupt via sync flood
978          */
979         if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
980                 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
981                 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
982                     adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
983                         adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
984                 amdgpu_ras_reset_gpu(adev);
985         }
986         return AMDGPU_RAS_SUCCESS;
987 }
988
989 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
990                                   struct amdgpu_irq_src *source,
991                                   struct amdgpu_iv_entry *entry)
992 {
993         struct ras_common_if *ras_if = adev->gfx.ras_if;
994         struct ras_dispatch_if ih_data = {
995                 .entry = entry,
996         };
997
998         if (!ras_if)
999                 return 0;
1000
1001         ih_data.head = *ras_if;
1002
1003         DRM_ERROR("CP ECC ERROR IRQ\n");
1004         amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1005         return 0;
1006 }
1007
1008 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
1009                 void *ras_error_status,
1010                 void (*func)(struct amdgpu_device *adev, void *ras_error_status,
1011                                 int xcc_id))
1012 {
1013         int i;
1014         int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1015         uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1016         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1017
1018         if (err_data) {
1019                 err_data->ue_count = 0;
1020                 err_data->ce_count = 0;
1021         }
1022
1023         for_each_inst(i, xcc_mask)
1024                 func(adev, ras_error_status, i);
1025 }
1026
1027 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1028 {
1029         signed long r, cnt = 0;
1030         unsigned long flags;
1031         uint32_t seq, reg_val_offs = 0, value = 0;
1032         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1033         struct amdgpu_ring *ring = &kiq->ring;
1034
1035         if (amdgpu_device_skip_hw_access(adev))
1036                 return 0;
1037
1038         if (adev->mes.ring[0].sched.ready)
1039                 return amdgpu_mes_rreg(adev, reg);
1040
1041         BUG_ON(!ring->funcs->emit_rreg);
1042
1043         spin_lock_irqsave(&kiq->ring_lock, flags);
1044         if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1045                 pr_err("critical bug! too many kiq readers\n");
1046                 goto failed_unlock;
1047         }
1048         r = amdgpu_ring_alloc(ring, 32);
1049         if (r)
1050                 goto failed_unlock;
1051
1052         amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1053         r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1054         if (r)
1055                 goto failed_undo;
1056
1057         amdgpu_ring_commit(ring);
1058         spin_unlock_irqrestore(&kiq->ring_lock, flags);
1059
1060         r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1061
1062         /* don't wait anymore for gpu reset case because this way may
1063          * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1064          * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1065          * never return if we keep waiting in virt_kiq_rreg, which cause
1066          * gpu_recover() hang there.
1067          *
1068          * also don't wait anymore for IRQ context
1069          * */
1070         if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1071                 goto failed_kiq_read;
1072
1073         might_sleep();
1074         while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1075                 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1076                 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1077         }
1078
1079         if (cnt > MAX_KIQ_REG_TRY)
1080                 goto failed_kiq_read;
1081
1082         mb();
1083         value = adev->wb.wb[reg_val_offs];
1084         amdgpu_device_wb_free(adev, reg_val_offs);
1085         return value;
1086
1087 failed_undo:
1088         amdgpu_ring_undo(ring);
1089 failed_unlock:
1090         spin_unlock_irqrestore(&kiq->ring_lock, flags);
1091 failed_kiq_read:
1092         if (reg_val_offs)
1093                 amdgpu_device_wb_free(adev, reg_val_offs);
1094         dev_err(adev->dev, "failed to read reg:%x\n", reg);
1095         return ~0;
1096 }
1097
1098 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1099 {
1100         signed long r, cnt = 0;
1101         unsigned long flags;
1102         uint32_t seq;
1103         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1104         struct amdgpu_ring *ring = &kiq->ring;
1105
1106         BUG_ON(!ring->funcs->emit_wreg);
1107
1108         if (amdgpu_device_skip_hw_access(adev))
1109                 return;
1110
1111         if (adev->mes.ring[0].sched.ready) {
1112                 amdgpu_mes_wreg(adev, reg, v);
1113                 return;
1114         }
1115
1116         spin_lock_irqsave(&kiq->ring_lock, flags);
1117         r = amdgpu_ring_alloc(ring, 32);
1118         if (r)
1119                 goto failed_unlock;
1120
1121         amdgpu_ring_emit_wreg(ring, reg, v);
1122         r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1123         if (r)
1124                 goto failed_undo;
1125
1126         amdgpu_ring_commit(ring);
1127         spin_unlock_irqrestore(&kiq->ring_lock, flags);
1128
1129         r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1130
1131         /* don't wait anymore for gpu reset case because this way may
1132          * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1133          * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1134          * never return if we keep waiting in virt_kiq_rreg, which cause
1135          * gpu_recover() hang there.
1136          *
1137          * also don't wait anymore for IRQ context
1138          * */
1139         if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1140                 goto failed_kiq_write;
1141
1142         might_sleep();
1143         while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1144
1145                 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1146                 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1147         }
1148
1149         if (cnt > MAX_KIQ_REG_TRY)
1150                 goto failed_kiq_write;
1151
1152         return;
1153
1154 failed_undo:
1155         amdgpu_ring_undo(ring);
1156 failed_unlock:
1157         spin_unlock_irqrestore(&kiq->ring_lock, flags);
1158 failed_kiq_write:
1159         dev_err(adev->dev, "failed to write reg:%x\n", reg);
1160 }
1161
1162 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1163 {
1164         if (amdgpu_num_kcq == -1) {
1165                 return 8;
1166         } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1167                 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1168                 return 8;
1169         }
1170         return amdgpu_num_kcq;
1171 }
1172
1173 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1174                                   uint32_t ucode_id)
1175 {
1176         const struct gfx_firmware_header_v1_0 *cp_hdr;
1177         const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1178         struct amdgpu_firmware_info *info = NULL;
1179         const struct firmware *ucode_fw;
1180         unsigned int fw_size;
1181
1182         switch (ucode_id) {
1183         case AMDGPU_UCODE_ID_CP_PFP:
1184                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1185                         adev->gfx.pfp_fw->data;
1186                 adev->gfx.pfp_fw_version =
1187                         le32_to_cpu(cp_hdr->header.ucode_version);
1188                 adev->gfx.pfp_feature_version =
1189                         le32_to_cpu(cp_hdr->ucode_feature_version);
1190                 ucode_fw = adev->gfx.pfp_fw;
1191                 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1192                 break;
1193         case AMDGPU_UCODE_ID_CP_RS64_PFP:
1194                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1195                         adev->gfx.pfp_fw->data;
1196                 adev->gfx.pfp_fw_version =
1197                         le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1198                 adev->gfx.pfp_feature_version =
1199                         le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1200                 ucode_fw = adev->gfx.pfp_fw;
1201                 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1202                 break;
1203         case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1204         case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1205                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1206                         adev->gfx.pfp_fw->data;
1207                 ucode_fw = adev->gfx.pfp_fw;
1208                 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1209                 break;
1210         case AMDGPU_UCODE_ID_CP_ME:
1211                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1212                         adev->gfx.me_fw->data;
1213                 adev->gfx.me_fw_version =
1214                         le32_to_cpu(cp_hdr->header.ucode_version);
1215                 adev->gfx.me_feature_version =
1216                         le32_to_cpu(cp_hdr->ucode_feature_version);
1217                 ucode_fw = adev->gfx.me_fw;
1218                 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1219                 break;
1220         case AMDGPU_UCODE_ID_CP_RS64_ME:
1221                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1222                         adev->gfx.me_fw->data;
1223                 adev->gfx.me_fw_version =
1224                         le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1225                 adev->gfx.me_feature_version =
1226                         le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1227                 ucode_fw = adev->gfx.me_fw;
1228                 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1229                 break;
1230         case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1231         case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1232                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1233                         adev->gfx.me_fw->data;
1234                 ucode_fw = adev->gfx.me_fw;
1235                 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1236                 break;
1237         case AMDGPU_UCODE_ID_CP_CE:
1238                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1239                         adev->gfx.ce_fw->data;
1240                 adev->gfx.ce_fw_version =
1241                         le32_to_cpu(cp_hdr->header.ucode_version);
1242                 adev->gfx.ce_feature_version =
1243                         le32_to_cpu(cp_hdr->ucode_feature_version);
1244                 ucode_fw = adev->gfx.ce_fw;
1245                 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1246                 break;
1247         case AMDGPU_UCODE_ID_CP_MEC1:
1248                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1249                         adev->gfx.mec_fw->data;
1250                 adev->gfx.mec_fw_version =
1251                         le32_to_cpu(cp_hdr->header.ucode_version);
1252                 adev->gfx.mec_feature_version =
1253                         le32_to_cpu(cp_hdr->ucode_feature_version);
1254                 ucode_fw = adev->gfx.mec_fw;
1255                 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1256                           le32_to_cpu(cp_hdr->jt_size) * 4;
1257                 break;
1258         case AMDGPU_UCODE_ID_CP_MEC1_JT:
1259                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1260                         adev->gfx.mec_fw->data;
1261                 ucode_fw = adev->gfx.mec_fw;
1262                 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1263                 break;
1264         case AMDGPU_UCODE_ID_CP_MEC2:
1265                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1266                         adev->gfx.mec2_fw->data;
1267                 adev->gfx.mec2_fw_version =
1268                         le32_to_cpu(cp_hdr->header.ucode_version);
1269                 adev->gfx.mec2_feature_version =
1270                         le32_to_cpu(cp_hdr->ucode_feature_version);
1271                 ucode_fw = adev->gfx.mec2_fw;
1272                 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1273                           le32_to_cpu(cp_hdr->jt_size) * 4;
1274                 break;
1275         case AMDGPU_UCODE_ID_CP_MEC2_JT:
1276                 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1277                         adev->gfx.mec2_fw->data;
1278                 ucode_fw = adev->gfx.mec2_fw;
1279                 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1280                 break;
1281         case AMDGPU_UCODE_ID_CP_RS64_MEC:
1282                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1283                         adev->gfx.mec_fw->data;
1284                 adev->gfx.mec_fw_version =
1285                         le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1286                 adev->gfx.mec_feature_version =
1287                         le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1288                 ucode_fw = adev->gfx.mec_fw;
1289                 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1290                 break;
1291         case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1292         case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1293         case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1294         case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1295                 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1296                         adev->gfx.mec_fw->data;
1297                 ucode_fw = adev->gfx.mec_fw;
1298                 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1299                 break;
1300         default:
1301                 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1302                 return;
1303         }
1304
1305         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1306                 info = &adev->firmware.ucode[ucode_id];
1307                 info->ucode_id = ucode_id;
1308                 info->fw = ucode_fw;
1309                 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1310         }
1311 }
1312
1313 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1314 {
1315         return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1316                         adev->gfx.num_xcc_per_xcp : 1));
1317 }
1318
1319 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1320                                                 struct device_attribute *addr,
1321                                                 char *buf)
1322 {
1323         struct drm_device *ddev = dev_get_drvdata(dev);
1324         struct amdgpu_device *adev = drm_to_adev(ddev);
1325         int mode;
1326
1327         mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1328                                                AMDGPU_XCP_FL_NONE);
1329
1330         return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1331 }
1332
1333 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1334                                                 struct device_attribute *addr,
1335                                                 const char *buf, size_t count)
1336 {
1337         struct drm_device *ddev = dev_get_drvdata(dev);
1338         struct amdgpu_device *adev = drm_to_adev(ddev);
1339         enum amdgpu_gfx_partition mode;
1340         int ret = 0, num_xcc;
1341
1342         num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1343         if (num_xcc % 2 != 0)
1344                 return -EINVAL;
1345
1346         if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1347                 mode = AMDGPU_SPX_PARTITION_MODE;
1348         } else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1349                 /*
1350                  * DPX mode needs AIDs to be in multiple of 2.
1351                  * Each AID connects 2 XCCs.
1352                  */
1353                 if (num_xcc%4)
1354                         return -EINVAL;
1355                 mode = AMDGPU_DPX_PARTITION_MODE;
1356         } else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1357                 if (num_xcc != 6)
1358                         return -EINVAL;
1359                 mode = AMDGPU_TPX_PARTITION_MODE;
1360         } else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1361                 if (num_xcc != 8)
1362                         return -EINVAL;
1363                 mode = AMDGPU_QPX_PARTITION_MODE;
1364         } else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1365                 mode = AMDGPU_CPX_PARTITION_MODE;
1366         } else {
1367                 return -EINVAL;
1368         }
1369
1370         ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1371
1372         if (ret)
1373                 return ret;
1374
1375         return count;
1376 }
1377
1378 static const char *xcp_desc[] = {
1379         [AMDGPU_SPX_PARTITION_MODE] = "SPX",
1380         [AMDGPU_DPX_PARTITION_MODE] = "DPX",
1381         [AMDGPU_TPX_PARTITION_MODE] = "TPX",
1382         [AMDGPU_QPX_PARTITION_MODE] = "QPX",
1383         [AMDGPU_CPX_PARTITION_MODE] = "CPX",
1384 };
1385
1386 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1387                                                 struct device_attribute *addr,
1388                                                 char *buf)
1389 {
1390         struct drm_device *ddev = dev_get_drvdata(dev);
1391         struct amdgpu_device *adev = drm_to_adev(ddev);
1392         struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1393         int size = 0, mode;
1394         char *sep = "";
1395
1396         if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
1397                 return sysfs_emit(buf, "Not supported\n");
1398
1399         for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
1400                 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
1401                 sep = ", ";
1402         }
1403
1404         size += sysfs_emit_at(buf, size, "\n");
1405
1406         return size;
1407 }
1408
1409 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1410 {
1411         struct amdgpu_device *adev = ring->adev;
1412         struct drm_gpu_scheduler *sched = &ring->sched;
1413         struct drm_sched_entity entity;
1414         struct dma_fence *f;
1415         struct amdgpu_job *job;
1416         struct amdgpu_ib *ib;
1417         int i, r;
1418
1419         /* Initialize the scheduler entity */
1420         r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1421                                   &sched, 1, NULL);
1422         if (r) {
1423                 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1424                 goto err;
1425         }
1426
1427         r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1428                                      64, 0,
1429                                      &job);
1430         if (r)
1431                 goto err;
1432
1433         job->enforce_isolation = true;
1434
1435         ib = &job->ibs[0];
1436         for (i = 0; i <= ring->funcs->align_mask; ++i)
1437                 ib->ptr[i] = ring->funcs->nop;
1438         ib->length_dw = ring->funcs->align_mask + 1;
1439
1440         f = amdgpu_job_submit(job);
1441
1442         r = dma_fence_wait(f, false);
1443         if (r)
1444                 goto err;
1445
1446         dma_fence_put(f);
1447
1448         /* Clean up the scheduler entity */
1449         drm_sched_entity_destroy(&entity);
1450         return 0;
1451
1452 err:
1453         return r;
1454 }
1455
1456 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1457 {
1458         int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1459         struct amdgpu_ring *ring;
1460         int num_xcc_to_clear;
1461         int i, r, xcc_id;
1462
1463         if (adev->gfx.num_xcc_per_xcp)
1464                 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1465         else
1466                 num_xcc_to_clear = 1;
1467
1468         for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1469                 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1470                         ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1471                         if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1472                                 r = amdgpu_gfx_run_cleaner_shader_job(ring);
1473                                 if (r)
1474                                         return r;
1475                                 num_xcc_to_clear--;
1476                                 break;
1477                         }
1478                 }
1479         }
1480
1481         if (num_xcc_to_clear)
1482                 return -ENOENT;
1483
1484         return 0;
1485 }
1486
1487 /**
1488  * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader
1489  * @dev: The device structure
1490  * @attr: The device attribute structure
1491  * @buf: The buffer containing the input data
1492  * @count: The size of the input data
1493  *
1494  * Provides the sysfs interface to manually run a cleaner shader, which is
1495  * used to clear the GPU state between different tasks. Writing a value to the
1496  * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution.
1497  * The value written corresponds to the partition index on multi-partition
1498  * devices. On single-partition devices, the value should be '0'.
1499  *
1500  * The cleaner shader clears the Local Data Store (LDS) and General Purpose
1501  * Registers (GPRs) to ensure data isolation between GPU workloads.
1502  *
1503  * Return: The number of bytes written to the sysfs file.
1504  */
1505 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1506                                                  struct device_attribute *attr,
1507                                                  const char *buf,
1508                                                  size_t count)
1509 {
1510         struct drm_device *ddev = dev_get_drvdata(dev);
1511         struct amdgpu_device *adev = drm_to_adev(ddev);
1512         int ret;
1513         long value;
1514
1515         if (amdgpu_in_reset(adev))
1516                 return -EPERM;
1517         if (adev->in_suspend && !adev->in_runpm)
1518                 return -EPERM;
1519
1520         ret = kstrtol(buf, 0, &value);
1521
1522         if (ret)
1523                 return -EINVAL;
1524
1525         if (value < 0)
1526                 return -EINVAL;
1527
1528         if (adev->xcp_mgr) {
1529                 if (value >= adev->xcp_mgr->num_xcps)
1530                         return -EINVAL;
1531         } else {
1532                 if (value > 1)
1533                         return -EINVAL;
1534         }
1535
1536         ret = pm_runtime_get_sync(ddev->dev);
1537         if (ret < 0) {
1538                 pm_runtime_put_autosuspend(ddev->dev);
1539                 return ret;
1540         }
1541
1542         ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1543
1544         pm_runtime_mark_last_busy(ddev->dev);
1545         pm_runtime_put_autosuspend(ddev->dev);
1546
1547         if (ret)
1548                 return ret;
1549
1550         return count;
1551 }
1552
1553 /**
1554  * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings
1555  * @dev: The device structure
1556  * @attr: The device attribute structure
1557  * @buf: The buffer to store the output data
1558  *
1559  * Provides the sysfs read interface to get the current settings of the 'enforce_isolation'
1560  * feature for each GPU partition. Reading from the 'enforce_isolation'
1561  * sysfs file returns the isolation settings for all partitions, where '0'
1562  * indicates disabled and '1' indicates enabled.
1563  *
1564  * Return: The number of bytes read from the sysfs file.
1565  */
1566 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1567                                                 struct device_attribute *attr,
1568                                                 char *buf)
1569 {
1570         struct drm_device *ddev = dev_get_drvdata(dev);
1571         struct amdgpu_device *adev = drm_to_adev(ddev);
1572         int i;
1573         ssize_t size = 0;
1574
1575         if (adev->xcp_mgr) {
1576                 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1577                         size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1578                         if (i < (adev->xcp_mgr->num_xcps - 1))
1579                                 size += sysfs_emit_at(buf, size, " ");
1580                 }
1581                 buf[size++] = '\n';
1582         } else {
1583                 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1584         }
1585
1586         return size;
1587 }
1588
1589 /**
1590  * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation
1591  * @dev: The device structure
1592  * @attr: The device attribute structure
1593  * @buf: The buffer containing the input data
1594  * @count: The size of the input data
1595  *
1596  * This function allows control over the 'enforce_isolation' feature, which
1597  * serializes access to the graphics engine. Writing '1' or '0' to the
1598  * 'enforce_isolation' sysfs file enables or disables process isolation for
1599  * each partition. The input should specify the setting for all partitions.
1600  *
1601  * Return: The number of bytes written to the sysfs file.
1602  */
1603 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1604                                                 struct device_attribute *attr,
1605                                                 const char *buf, size_t count)
1606 {
1607         struct drm_device *ddev = dev_get_drvdata(dev);
1608         struct amdgpu_device *adev = drm_to_adev(ddev);
1609         long partition_values[MAX_XCP] = {0};
1610         int ret, i, num_partitions;
1611         const char *input_buf = buf;
1612
1613         for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1614                 ret = sscanf(input_buf, "%ld", &partition_values[i]);
1615                 if (ret <= 0)
1616                         break;
1617
1618                 /* Move the pointer to the next value in the string */
1619                 input_buf = strchr(input_buf, ' ');
1620                 if (input_buf) {
1621                         input_buf++;
1622                 } else {
1623                         i++;
1624                         break;
1625                 }
1626         }
1627         num_partitions = i;
1628
1629         if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1630                 return -EINVAL;
1631
1632         if (!adev->xcp_mgr && num_partitions != 1)
1633                 return -EINVAL;
1634
1635         for (i = 0; i < num_partitions; i++) {
1636                 if (partition_values[i] != 0 && partition_values[i] != 1)
1637                         return -EINVAL;
1638         }
1639
1640         mutex_lock(&adev->enforce_isolation_mutex);
1641
1642         for (i = 0; i < num_partitions; i++) {
1643                 if (adev->enforce_isolation[i] && !partition_values[i]) {
1644                         /* Going from enabled to disabled */
1645                         amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1646                         amdgpu_mes_set_enforce_isolation(adev, i, false);
1647                 } else if (!adev->enforce_isolation[i] && partition_values[i]) {
1648                         /* Going from disabled to enabled */
1649                         amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1650                         amdgpu_mes_set_enforce_isolation(adev, i, true);
1651                 }
1652                 adev->enforce_isolation[i] = partition_values[i];
1653         }
1654
1655         mutex_unlock(&adev->enforce_isolation_mutex);
1656
1657         return count;
1658 }
1659
1660 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev,
1661                                                 struct device_attribute *attr,
1662                                                 char *buf)
1663 {
1664         struct drm_device *ddev = dev_get_drvdata(dev);
1665         struct amdgpu_device *adev = drm_to_adev(ddev);
1666
1667         if (!adev)
1668                 return -ENODEV;
1669
1670         return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset);
1671 }
1672
1673 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev,
1674                                                 struct device_attribute *attr,
1675                                                 char *buf)
1676 {
1677         struct drm_device *ddev = dev_get_drvdata(dev);
1678         struct amdgpu_device *adev = drm_to_adev(ddev);
1679
1680         if (!adev)
1681                 return -ENODEV;
1682
1683         return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset);
1684 }
1685
1686 static DEVICE_ATTR(run_cleaner_shader, 0200,
1687                    NULL, amdgpu_gfx_set_run_cleaner_shader);
1688
1689 static DEVICE_ATTR(enforce_isolation, 0644,
1690                    amdgpu_gfx_get_enforce_isolation,
1691                    amdgpu_gfx_set_enforce_isolation);
1692
1693 static DEVICE_ATTR(current_compute_partition, 0644,
1694                    amdgpu_gfx_get_current_compute_partition,
1695                    amdgpu_gfx_set_compute_partition);
1696
1697 static DEVICE_ATTR(available_compute_partition, 0444,
1698                    amdgpu_gfx_get_available_compute_partition, NULL);
1699 static DEVICE_ATTR(gfx_reset_mask, 0444,
1700                    amdgpu_gfx_get_gfx_reset_mask, NULL);
1701
1702 static DEVICE_ATTR(compute_reset_mask, 0444,
1703                    amdgpu_gfx_get_compute_reset_mask, NULL);
1704
1705 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev)
1706 {
1707         struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1708         bool xcp_switch_supported;
1709         int r;
1710
1711         if (!xcp_mgr)
1712                 return 0;
1713
1714         xcp_switch_supported =
1715                 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1716
1717         if (!xcp_switch_supported)
1718                 dev_attr_current_compute_partition.attr.mode &=
1719                         ~(S_IWUSR | S_IWGRP | S_IWOTH);
1720
1721         r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1722         if (r)
1723                 return r;
1724
1725         if (xcp_switch_supported)
1726                 r = device_create_file(adev->dev,
1727                                        &dev_attr_available_compute_partition);
1728
1729         return r;
1730 }
1731
1732 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev)
1733 {
1734         struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1735         bool xcp_switch_supported;
1736
1737         if (!xcp_mgr)
1738                 return;
1739
1740         xcp_switch_supported =
1741                 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1742         device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1743
1744         if (xcp_switch_supported)
1745                 device_remove_file(adev->dev,
1746                                    &dev_attr_available_compute_partition);
1747 }
1748
1749 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1750 {
1751         int r;
1752
1753         r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1754         if (r)
1755                 return r;
1756         if (adev->gfx.enable_cleaner_shader)
1757                 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1758
1759         return r;
1760 }
1761
1762 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1763 {
1764         device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1765         if (adev->gfx.enable_cleaner_shader)
1766                 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1767 }
1768
1769 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev)
1770 {
1771         int r = 0;
1772
1773         if (!amdgpu_gpu_recovery)
1774                 return r;
1775
1776         if (adev->gfx.num_gfx_rings) {
1777                 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask);
1778                 if (r)
1779                         return r;
1780         }
1781
1782         if (adev->gfx.num_compute_rings) {
1783                 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask);
1784                 if (r)
1785                         return r;
1786         }
1787
1788         return r;
1789 }
1790
1791 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev)
1792 {
1793         if (!amdgpu_gpu_recovery)
1794                 return;
1795
1796         if (adev->gfx.num_gfx_rings)
1797                 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask);
1798
1799         if (adev->gfx.num_compute_rings)
1800                 device_remove_file(adev->dev, &dev_attr_compute_reset_mask);
1801 }
1802
1803 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1804 {
1805         int r;
1806
1807         r = amdgpu_gfx_sysfs_xcp_init(adev);
1808         if (r) {
1809                 dev_err(adev->dev, "failed to create xcp sysfs files");
1810                 return r;
1811         }
1812
1813         r = amdgpu_gfx_sysfs_isolation_shader_init(adev);
1814         if (r)
1815                 dev_err(adev->dev, "failed to create isolation sysfs files");
1816
1817         r = amdgpu_gfx_sysfs_reset_mask_init(adev);
1818         if (r)
1819                 dev_err(adev->dev, "failed to create reset mask sysfs files");
1820
1821         return r;
1822 }
1823
1824 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1825 {
1826         if (adev->dev->kobj.sd) {
1827                 amdgpu_gfx_sysfs_xcp_fini(adev);
1828                 amdgpu_gfx_sysfs_isolation_shader_fini(adev);
1829                 amdgpu_gfx_sysfs_reset_mask_fini(adev);
1830         }
1831 }
1832
1833 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1834                                       unsigned int cleaner_shader_size)
1835 {
1836         if (!adev->gfx.enable_cleaner_shader)
1837                 return -EOPNOTSUPP;
1838
1839         return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1840                                        AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1841                                        &adev->gfx.cleaner_shader_obj,
1842                                        &adev->gfx.cleaner_shader_gpu_addr,
1843                                        (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1844 }
1845
1846 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1847 {
1848         if (!adev->gfx.enable_cleaner_shader)
1849                 return;
1850
1851         amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1852                               &adev->gfx.cleaner_shader_gpu_addr,
1853                               (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1854 }
1855
1856 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1857                                     unsigned int cleaner_shader_size,
1858                                     const void *cleaner_shader_ptr)
1859 {
1860         if (!adev->gfx.enable_cleaner_shader)
1861                 return;
1862
1863         if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1864                 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1865                             cleaner_shader_size);
1866 }
1867
1868 /**
1869  * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1870  * @adev: amdgpu_device pointer
1871  * @idx: Index of the scheduler to control
1872  * @enable: Whether to enable or disable the KFD scheduler
1873  *
1874  * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1875  * from the KGD. It is part of the cleaner shader feature. This function plays
1876  * a key role in enforcing process isolation on the GPU.
1877  *
1878  * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1879  * track of the number of requests to enable the KFD scheduler. When a request
1880  * to enable the KFD scheduler is made, the reference count is decremented.
1881  * When the reference count reaches zero, a delayed work is scheduled to
1882  * enforce isolation after a delay of GFX_SLICE_PERIOD.
1883  *
1884  * When a request to disable the KFD scheduler is made, the function first
1885  * checks if the reference count is zero. If it is, it cancels the delayed work
1886  * for enforcing isolation and checks if the KFD scheduler is active. If the
1887  * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1888  * sets the KFD scheduler state to inactive. Then, it increments the reference
1889  * count.
1890  *
1891  * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1892  * scheduler state and reference count are updated atomically.
1893  *
1894  * Note: If the reference count is already zero when a request to enable the
1895  * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1896  * function triggers a warning in this case.
1897  */
1898 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1899                                     bool enable)
1900 {
1901         mutex_lock(&adev->gfx.kfd_sch_mutex);
1902
1903         if (enable) {
1904                 /* If the count is already 0, it means there's an imbalance bug somewhere.
1905                  * Note that the bug may be in a different caller than the one which triggers the
1906                  * WARN_ON_ONCE.
1907                  */
1908                 if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1909                         dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1910                         goto unlock;
1911                 }
1912
1913                 adev->gfx.kfd_sch_req_count[idx]--;
1914
1915                 if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1916                     adev->gfx.kfd_sch_inactive[idx]) {
1917                         schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1918                                               msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
1919                 }
1920         } else {
1921                 if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1922                         cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1923                         if (!adev->gfx.kfd_sch_inactive[idx]) {
1924                                 amdgpu_amdkfd_stop_sched(adev, idx);
1925                                 adev->gfx.kfd_sch_inactive[idx] = true;
1926                         }
1927                 }
1928
1929                 adev->gfx.kfd_sch_req_count[idx]++;
1930         }
1931
1932 unlock:
1933         mutex_unlock(&adev->gfx.kfd_sch_mutex);
1934 }
1935
1936 /**
1937  * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1938  *
1939  * @work: work_struct.
1940  *
1941  * This function is the work handler for enforcing shader isolation on AMD GPUs.
1942  * It counts the number of emitted fences for each GFX and compute ring. If there
1943  * are any fences, it schedules the `enforce_isolation_work` to be run after a
1944  * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1945  * Driver (KFD) to resume the runqueue. The function is synchronized using the
1946  * `enforce_isolation_mutex`.
1947  */
1948 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1949 {
1950         struct amdgpu_isolation_work *isolation_work =
1951                 container_of(work, struct amdgpu_isolation_work, work.work);
1952         struct amdgpu_device *adev = isolation_work->adev;
1953         u32 i, idx, fences = 0;
1954
1955         if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1956                 idx = 0;
1957         else
1958                 idx = isolation_work->xcp_id;
1959
1960         if (idx >= MAX_XCP)
1961                 return;
1962
1963         mutex_lock(&adev->enforce_isolation_mutex);
1964         for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1965                 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1966                         fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1967         }
1968         for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1969                 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1970                         fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1971         }
1972         if (fences) {
1973                 /* we've already had our timeslice, so let's wrap this up */
1974                 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1975                                       msecs_to_jiffies(1));
1976         } else {
1977                 /* Tell KFD to resume the runqueue */
1978                 if (adev->kfd.init_complete) {
1979                         WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
1980                         WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
1981                                 amdgpu_amdkfd_start_sched(adev, idx);
1982                                 adev->gfx.kfd_sch_inactive[idx] = false;
1983                 }
1984         }
1985         mutex_unlock(&adev->enforce_isolation_mutex);
1986 }
1987
1988 /**
1989  * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation
1990  * @adev: amdgpu_device pointer
1991  * @idx: Index of the GPU partition
1992  *
1993  * When kernel submissions come in, the jobs are given a time slice and once
1994  * that time slice is up, if there are KFD user queues active, kernel
1995  * submissions are blocked until KFD has had its time slice. Once the KFD time
1996  * slice is up, KFD user queues are preempted and kernel submissions are
1997  * unblocked and allowed to run again.
1998  */
1999 static void
2000 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
2001                                           u32 idx)
2002 {
2003         unsigned long cjiffies;
2004         bool wait = false;
2005
2006         mutex_lock(&adev->enforce_isolation_mutex);
2007         if (adev->enforce_isolation[idx]) {
2008                 /* set the initial values if nothing is set */
2009                 if (!adev->gfx.enforce_isolation_jiffies[idx]) {
2010                         adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2011                         adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2012                 }
2013                 /* Make sure KFD gets a chance to run */
2014                 if (amdgpu_amdkfd_compute_active(adev, idx)) {
2015                         cjiffies = jiffies;
2016                         if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
2017                                 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
2018                                 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
2019                                         /* if our time is up, let KGD work drain before scheduling more */
2020                                         wait = true;
2021                                         /* reset the timer period */
2022                                         adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2023                                 } else {
2024                                         /* set the timer period to what's left in our time slice */
2025                                         adev->gfx.enforce_isolation_time[idx] =
2026                                                 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
2027                                 }
2028                         } else {
2029                                 /* if jiffies wrap around we will just wait a little longer */
2030                                 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2031                         }
2032                 } else {
2033                         /* if there is no KFD work, then set the full slice period */
2034                         adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2035                         adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2036                 }
2037         }
2038         mutex_unlock(&adev->enforce_isolation_mutex);
2039
2040         if (wait)
2041                 msleep(GFX_SLICE_PERIOD_MS);
2042 }
2043
2044 /**
2045  * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation
2046  * @ring: Pointer to the amdgpu_ring structure
2047  *
2048  * Ring begin_use helper implementation for gfx which serializes access to the
2049  * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2050  * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2051  * each get a time slice when both are active.
2052  */
2053 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
2054 {
2055         struct amdgpu_device *adev = ring->adev;
2056         u32 idx;
2057         bool sched_work = false;
2058
2059         if (!adev->gfx.enable_cleaner_shader)
2060                 return;
2061
2062         if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2063                 idx = 0;
2064         else
2065                 idx = ring->xcp_id;
2066
2067         if (idx >= MAX_XCP)
2068                 return;
2069
2070         /* Don't submit more work until KFD has had some time */
2071         amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);
2072
2073         mutex_lock(&adev->enforce_isolation_mutex);
2074         if (adev->enforce_isolation[idx]) {
2075                 if (adev->kfd.init_complete)
2076                         sched_work = true;
2077         }
2078         mutex_unlock(&adev->enforce_isolation_mutex);
2079
2080         if (sched_work)
2081                 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
2082 }
2083
2084 /**
2085  * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation
2086  * @ring: Pointer to the amdgpu_ring structure
2087  *
2088  * Ring end_use helper implementation for gfx which serializes access to the
2089  * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2090  * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2091  * each get a time slice when both are active.
2092  */
2093 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
2094 {
2095         struct amdgpu_device *adev = ring->adev;
2096         u32 idx;
2097         bool sched_work = false;
2098
2099         if (!adev->gfx.enable_cleaner_shader)
2100                 return;
2101
2102         if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2103                 idx = 0;
2104         else
2105                 idx = ring->xcp_id;
2106
2107         if (idx >= MAX_XCP)
2108                 return;
2109
2110         mutex_lock(&adev->enforce_isolation_mutex);
2111         if (adev->enforce_isolation[idx]) {
2112                 if (adev->kfd.init_complete)
2113                         sched_work = true;
2114         }
2115         mutex_unlock(&adev->enforce_isolation_mutex);
2116
2117         if (sched_work)
2118                 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
2119 }
2120
2121 /*
2122  * debugfs for to enable/disable gfx job submission to specific core.
2123  */
2124 #if defined(CONFIG_DEBUG_FS)
2125 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val)
2126 {
2127         struct amdgpu_device *adev = (struct amdgpu_device *)data;
2128         u32 i;
2129         u64 mask = 0;
2130         struct amdgpu_ring *ring;
2131
2132         if (!adev)
2133                 return -ENODEV;
2134
2135         mask = (1ULL << adev->gfx.num_gfx_rings) - 1;
2136         if ((val & mask) == 0)
2137                 return -EINVAL;
2138
2139         for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2140                 ring = &adev->gfx.gfx_ring[i];
2141                 if (val & (1 << i))
2142                         ring->sched.ready = true;
2143                 else
2144                         ring->sched.ready = false;
2145         }
2146         /* publish sched.ready flag update effective immediately across smp */
2147         smp_rmb();
2148         return 0;
2149 }
2150
2151 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val)
2152 {
2153         struct amdgpu_device *adev = (struct amdgpu_device *)data;
2154         u32 i;
2155         u64 mask = 0;
2156         struct amdgpu_ring *ring;
2157
2158         if (!adev)
2159                 return -ENODEV;
2160         for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2161                 ring = &adev->gfx.gfx_ring[i];
2162                 if (ring->sched.ready)
2163                         mask |= 1ULL << i;
2164         }
2165
2166         *val = mask;
2167         return 0;
2168 }
2169
2170 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops,
2171                          amdgpu_debugfs_gfx_sched_mask_get,
2172                          amdgpu_debugfs_gfx_sched_mask_set, "%llx\n");
2173
2174 #endif
2175
2176 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev)
2177 {
2178 #if defined(CONFIG_DEBUG_FS)
2179         struct drm_minor *minor = adev_to_drm(adev)->primary;
2180         struct dentry *root = minor->debugfs_root;
2181         char name[32];
2182
2183         if (!(adev->gfx.num_gfx_rings > 1))
2184                 return;
2185         sprintf(name, "amdgpu_gfx_sched_mask");
2186         debugfs_create_file(name, 0600, root, adev,
2187                             &amdgpu_debugfs_gfx_sched_mask_fops);
2188 #endif
2189 }
2190
2191 /*
2192  * debugfs for to enable/disable compute job submission to specific core.
2193  */
2194 #if defined(CONFIG_DEBUG_FS)
2195 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val)
2196 {
2197         struct amdgpu_device *adev = (struct amdgpu_device *)data;
2198         u32 i;
2199         u64 mask = 0;
2200         struct amdgpu_ring *ring;
2201
2202         if (!adev)
2203                 return -ENODEV;
2204
2205         mask = (1ULL << adev->gfx.num_compute_rings) - 1;
2206         if ((val & mask) == 0)
2207                 return -EINVAL;
2208
2209         for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2210                 ring = &adev->gfx.compute_ring[i];
2211                 if (val & (1 << i))
2212                         ring->sched.ready = true;
2213                 else
2214                         ring->sched.ready = false;
2215         }
2216
2217         /* publish sched.ready flag update effective immediately across smp */
2218         smp_rmb();
2219         return 0;
2220 }
2221
2222 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val)
2223 {
2224         struct amdgpu_device *adev = (struct amdgpu_device *)data;
2225         u32 i;
2226         u64 mask = 0;
2227         struct amdgpu_ring *ring;
2228
2229         if (!adev)
2230                 return -ENODEV;
2231         for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2232                 ring = &adev->gfx.compute_ring[i];
2233                 if (ring->sched.ready)
2234                         mask |= 1ULL << i;
2235         }
2236
2237         *val = mask;
2238         return 0;
2239 }
2240
2241 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops,
2242                          amdgpu_debugfs_compute_sched_mask_get,
2243                          amdgpu_debugfs_compute_sched_mask_set, "%llx\n");
2244
2245 #endif
2246
2247 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev)
2248 {
2249 #if defined(CONFIG_DEBUG_FS)
2250         struct drm_minor *minor = adev_to_drm(adev)->primary;
2251         struct dentry *root = minor->debugfs_root;
2252         char name[32];
2253
2254         if (!(adev->gfx.num_compute_rings > 1))
2255                 return;
2256         sprintf(name, "amdgpu_compute_sched_mask");
2257         debugfs_create_file(name, 0600, root, adev,
2258                             &amdgpu_debugfs_compute_sched_mask_fops);
2259 #endif
2260 }
This page took 0.164666 seconds and 4 git commands to generate.