4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
30 #include <trace/events/f2fs.h>
32 static void f2fs_read_end_io(struct bio *bio)
37 #ifdef CONFIG_F2FS_FAULT_INJECTION
38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
42 if (f2fs_bio_encrypted(bio)) {
44 fscrypt_release_ctx(bio->bi_private);
46 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
51 bio_for_each_segment_all(bvec, bio, i) {
52 struct page *page = bvec->bv_page;
55 if (!PageUptodate(page))
56 SetPageUptodate(page);
58 ClearPageUptodate(page);
66 static void f2fs_write_end_io(struct bio *bio)
68 struct f2fs_sb_info *sbi = bio->bi_private;
72 bio_for_each_segment_all(bvec, bio, i) {
73 struct page *page = bvec->bv_page;
75 fscrypt_pullback_bio_page(&page, true);
77 if (unlikely(bio->bi_error)) {
78 mapping_set_error(page->mapping, -EIO);
79 f2fs_stop_checkpoint(sbi, true);
81 end_page_writeback(page);
83 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
84 wq_has_sleeper(&sbi->cp_wait))
85 wake_up(&sbi->cp_wait);
91 * Low-level block read/write IO operations.
93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
94 int npages, bool is_read)
98 bio = f2fs_bio_alloc(npages);
100 bio->bi_bdev = sbi->sb->s_bdev;
101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
103 bio->bi_private = is_read ? NULL : sbi;
108 static inline void __submit_bio(struct f2fs_sb_info *sbi,
109 struct bio *bio, enum page_type type)
111 if (!is_read_io(bio_op(bio))) {
112 atomic_inc(&sbi->nr_wb_bios);
113 if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
114 current->plug && (type == DATA || type == NODE))
115 blk_finish_plug(current->plug);
120 static void __submit_merged_bio(struct f2fs_bio_info *io)
122 struct f2fs_io_info *fio = &io->fio;
127 if (is_read_io(fio->op))
128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
134 __submit_bio(io->sbi, io->bio, fio->type);
138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
139 struct page *page, nid_t ino)
141 struct bio_vec *bvec;
148 if (!inode && !page && !ino)
151 bio_for_each_segment_all(bvec, io->bio, i) {
153 if (bvec->bv_page->mapping)
154 target = bvec->bv_page;
156 target = fscrypt_control_page(bvec->bv_page);
158 if (inode && inode == target->mapping->host)
160 if (page && page == target)
162 if (ino && ino == ino_of_node(target))
169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
170 struct page *page, nid_t ino,
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io = &sbi->write_io[btype];
177 down_read(&io->io_rwsem);
178 ret = __has_merged_page(io, inode, page, ino);
179 up_read(&io->io_rwsem);
183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
184 struct inode *inode, struct page *page,
185 nid_t ino, enum page_type type, int rw)
187 enum page_type btype = PAGE_TYPE_OF_BIO(type);
188 struct f2fs_bio_info *io;
190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
192 down_write(&io->io_rwsem);
194 if (!__has_merged_page(io, inode, page, ino))
197 /* change META to META_FLUSH in the checkpoint procedure */
198 if (type >= META_FLUSH) {
199 io->fio.type = META_FLUSH;
200 io->fio.op = REQ_OP_WRITE;
201 io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
202 if (!test_opt(sbi, NOBARRIER))
203 io->fio.op_flags |= REQ_FUA;
205 __submit_merged_bio(io);
207 up_write(&io->io_rwsem);
210 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
213 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
216 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
217 struct inode *inode, struct page *page,
218 nid_t ino, enum page_type type, int rw)
220 if (has_merged_page(sbi, inode, page, ino, type))
221 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
224 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
226 f2fs_submit_merged_bio(sbi, DATA, WRITE);
227 f2fs_submit_merged_bio(sbi, NODE, WRITE);
228 f2fs_submit_merged_bio(sbi, META, WRITE);
232 * Fill the locked page with data located in the block address.
233 * Return unlocked page.
235 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
238 struct page *page = fio->encrypted_page ?
239 fio->encrypted_page : fio->page;
241 trace_f2fs_submit_page_bio(page, fio);
242 f2fs_trace_ios(fio, 0);
244 /* Allocate a new bio */
245 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
247 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
251 bio_set_op_attrs(bio, fio->op, fio->op_flags);
253 __submit_bio(fio->sbi, bio, fio->type);
257 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
259 struct f2fs_sb_info *sbi = fio->sbi;
260 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
261 struct f2fs_bio_info *io;
262 bool is_read = is_read_io(fio->op);
263 struct page *bio_page;
265 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
267 if (fio->old_blkaddr != NEW_ADDR)
268 verify_block_addr(sbi, fio->old_blkaddr);
269 verify_block_addr(sbi, fio->new_blkaddr);
271 down_write(&io->io_rwsem);
273 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
274 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
275 __submit_merged_bio(io);
277 if (io->bio == NULL) {
278 int bio_blocks = MAX_BIO_BLOCKS(sbi);
280 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
281 bio_blocks, is_read);
285 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
287 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
289 __submit_merged_bio(io);
293 io->last_block_in_bio = fio->new_blkaddr;
294 f2fs_trace_ios(fio, 0);
296 up_write(&io->io_rwsem);
297 trace_f2fs_submit_page_mbio(fio->page, fio);
300 static void __set_data_blkaddr(struct dnode_of_data *dn)
302 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
305 /* Get physical address of data block */
306 addr_array = blkaddr_in_node(rn);
307 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
311 * Lock ordering for the change of data block address:
314 * update block addresses in the node page
316 void set_data_blkaddr(struct dnode_of_data *dn)
318 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
319 __set_data_blkaddr(dn);
320 if (set_page_dirty(dn->node_page))
321 dn->node_changed = true;
324 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
326 dn->data_blkaddr = blkaddr;
327 set_data_blkaddr(dn);
328 f2fs_update_extent_cache(dn);
331 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
332 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
334 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
339 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
341 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
344 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
345 dn->ofs_in_node, count);
347 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
349 for (; count > 0; dn->ofs_in_node++) {
351 datablock_addr(dn->node_page, dn->ofs_in_node);
352 if (blkaddr == NULL_ADDR) {
353 dn->data_blkaddr = NEW_ADDR;
354 __set_data_blkaddr(dn);
359 if (set_page_dirty(dn->node_page))
360 dn->node_changed = true;
364 /* Should keep dn->ofs_in_node unchanged */
365 int reserve_new_block(struct dnode_of_data *dn)
367 unsigned int ofs_in_node = dn->ofs_in_node;
370 ret = reserve_new_blocks(dn, 1);
371 dn->ofs_in_node = ofs_in_node;
375 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
377 bool need_put = dn->inode_page ? false : true;
380 err = get_dnode_of_data(dn, index, ALLOC_NODE);
384 if (dn->data_blkaddr == NULL_ADDR)
385 err = reserve_new_block(dn);
391 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
393 struct extent_info ei;
394 struct inode *inode = dn->inode;
396 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
397 dn->data_blkaddr = ei.blk + index - ei.fofs;
401 return f2fs_reserve_block(dn, index);
404 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
405 int op_flags, bool for_write)
407 struct address_space *mapping = inode->i_mapping;
408 struct dnode_of_data dn;
410 struct extent_info ei;
412 struct f2fs_io_info fio = {
413 .sbi = F2FS_I_SB(inode),
416 .op_flags = op_flags,
417 .encrypted_page = NULL,
420 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
421 return read_mapping_page(mapping, index, NULL);
423 page = f2fs_grab_cache_page(mapping, index, for_write);
425 return ERR_PTR(-ENOMEM);
427 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
428 dn.data_blkaddr = ei.blk + index - ei.fofs;
432 set_new_dnode(&dn, inode, NULL, NULL, 0);
433 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
438 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
443 if (PageUptodate(page)) {
449 * A new dentry page is allocated but not able to be written, since its
450 * new inode page couldn't be allocated due to -ENOSPC.
451 * In such the case, its blkaddr can be remained as NEW_ADDR.
452 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
454 if (dn.data_blkaddr == NEW_ADDR) {
455 zero_user_segment(page, 0, PAGE_SIZE);
456 if (!PageUptodate(page))
457 SetPageUptodate(page);
462 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
464 err = f2fs_submit_page_bio(&fio);
470 f2fs_put_page(page, 1);
474 struct page *find_data_page(struct inode *inode, pgoff_t index)
476 struct address_space *mapping = inode->i_mapping;
479 page = find_get_page(mapping, index);
480 if (page && PageUptodate(page))
482 f2fs_put_page(page, 0);
484 page = get_read_data_page(inode, index, 0, false);
488 if (PageUptodate(page))
491 wait_on_page_locked(page);
492 if (unlikely(!PageUptodate(page))) {
493 f2fs_put_page(page, 0);
494 return ERR_PTR(-EIO);
500 * If it tries to access a hole, return an error.
501 * Because, the callers, functions in dir.c and GC, should be able to know
502 * whether this page exists or not.
504 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
507 struct address_space *mapping = inode->i_mapping;
510 page = get_read_data_page(inode, index, 0, for_write);
514 /* wait for read completion */
516 if (unlikely(page->mapping != mapping)) {
517 f2fs_put_page(page, 1);
520 if (unlikely(!PageUptodate(page))) {
521 f2fs_put_page(page, 1);
522 return ERR_PTR(-EIO);
528 * Caller ensures that this data page is never allocated.
529 * A new zero-filled data page is allocated in the page cache.
531 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
533 * Note that, ipage is set only by make_empty_dir, and if any error occur,
534 * ipage should be released by this function.
536 struct page *get_new_data_page(struct inode *inode,
537 struct page *ipage, pgoff_t index, bool new_i_size)
539 struct address_space *mapping = inode->i_mapping;
541 struct dnode_of_data dn;
544 page = f2fs_grab_cache_page(mapping, index, true);
547 * before exiting, we should make sure ipage will be released
548 * if any error occur.
550 f2fs_put_page(ipage, 1);
551 return ERR_PTR(-ENOMEM);
554 set_new_dnode(&dn, inode, ipage, NULL, 0);
555 err = f2fs_reserve_block(&dn, index);
557 f2fs_put_page(page, 1);
563 if (PageUptodate(page))
566 if (dn.data_blkaddr == NEW_ADDR) {
567 zero_user_segment(page, 0, PAGE_SIZE);
568 if (!PageUptodate(page))
569 SetPageUptodate(page);
571 f2fs_put_page(page, 1);
573 /* if ipage exists, blkaddr should be NEW_ADDR */
574 f2fs_bug_on(F2FS_I_SB(inode), ipage);
575 page = get_lock_data_page(inode, index, true);
580 if (new_i_size && i_size_read(inode) <
581 ((loff_t)(index + 1) << PAGE_SHIFT))
582 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
586 static int __allocate_data_block(struct dnode_of_data *dn)
588 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
589 struct f2fs_summary sum;
591 int seg = CURSEG_WARM_DATA;
595 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
598 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
599 if (dn->data_blkaddr == NEW_ADDR)
602 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
606 get_node_info(sbi, dn->nid, &ni);
607 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
609 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
610 seg = CURSEG_DIRECT_IO;
612 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
614 set_data_blkaddr(dn);
617 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
619 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
620 f2fs_i_size_write(dn->inode,
621 ((loff_t)(fofs + 1) << PAGE_SHIFT));
625 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
627 struct inode *inode = file_inode(iocb->ki_filp);
628 struct f2fs_map_blocks map;
631 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
632 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
633 if (map.m_len > map.m_lblk)
634 map.m_len -= map.m_lblk;
638 map.m_next_pgofs = NULL;
640 if (iocb->ki_flags & IOCB_DIRECT) {
641 ret = f2fs_convert_inline_inode(inode);
644 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
646 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
647 ret = f2fs_convert_inline_inode(inode);
651 if (!f2fs_has_inline_data(inode))
652 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
657 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
658 * f2fs_map_blocks structure.
659 * If original data blocks are allocated, then give them to blockdev.
661 * a. preallocate requested block addresses
662 * b. do not use extent cache for better performance
663 * c. give the block addresses to blockdev
665 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
666 int create, int flag)
668 unsigned int maxblocks = map->m_len;
669 struct dnode_of_data dn;
670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
672 pgoff_t pgofs, end_offset, end;
673 int err = 0, ofs = 1;
674 unsigned int ofs_in_node, last_ofs_in_node;
676 struct extent_info ei;
677 bool allocated = false;
686 /* it only supports block size == page size */
687 pgofs = (pgoff_t)map->m_lblk;
688 end = pgofs + maxblocks;
690 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
691 map->m_pblk = ei.blk + pgofs - ei.fofs;
692 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
693 map->m_flags = F2FS_MAP_MAPPED;
701 /* When reading holes, we need its node page */
702 set_new_dnode(&dn, inode, NULL, NULL, 0);
703 err = get_dnode_of_data(&dn, pgofs, mode);
705 if (flag == F2FS_GET_BLOCK_BMAP)
707 if (err == -ENOENT) {
709 if (map->m_next_pgofs)
711 get_next_page_offset(&dn, pgofs);
717 ofs_in_node = dn.ofs_in_node;
718 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
721 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
723 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
725 if (unlikely(f2fs_cp_error(sbi))) {
729 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
730 if (blkaddr == NULL_ADDR) {
732 last_ofs_in_node = dn.ofs_in_node;
735 err = __allocate_data_block(&dn);
737 set_inode_flag(inode, FI_APPEND_WRITE);
743 map->m_flags = F2FS_MAP_NEW;
744 blkaddr = dn.data_blkaddr;
746 if (flag == F2FS_GET_BLOCK_BMAP) {
750 if (flag == F2FS_GET_BLOCK_FIEMAP &&
751 blkaddr == NULL_ADDR) {
752 if (map->m_next_pgofs)
753 *map->m_next_pgofs = pgofs + 1;
755 if (flag != F2FS_GET_BLOCK_FIEMAP ||
761 if (flag == F2FS_GET_BLOCK_PRE_AIO)
764 if (map->m_len == 0) {
765 /* preallocated unwritten block should be mapped for fiemap. */
766 if (blkaddr == NEW_ADDR)
767 map->m_flags |= F2FS_MAP_UNWRITTEN;
768 map->m_flags |= F2FS_MAP_MAPPED;
770 map->m_pblk = blkaddr;
772 } else if ((map->m_pblk != NEW_ADDR &&
773 blkaddr == (map->m_pblk + ofs)) ||
774 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
775 flag == F2FS_GET_BLOCK_PRE_DIO) {
786 /* preallocate blocks in batch for one dnode page */
787 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
788 (pgofs == end || dn.ofs_in_node == end_offset)) {
790 dn.ofs_in_node = ofs_in_node;
791 err = reserve_new_blocks(&dn, prealloc);
794 allocated = dn.node_changed;
796 map->m_len += dn.ofs_in_node - ofs_in_node;
797 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
801 dn.ofs_in_node = end_offset;
806 else if (dn.ofs_in_node < end_offset)
813 f2fs_balance_fs(sbi, allocated);
823 f2fs_balance_fs(sbi, allocated);
826 trace_f2fs_map_blocks(inode, map, err);
830 static int __get_data_block(struct inode *inode, sector_t iblock,
831 struct buffer_head *bh, int create, int flag,
834 struct f2fs_map_blocks map;
838 map.m_len = bh->b_size >> inode->i_blkbits;
839 map.m_next_pgofs = next_pgofs;
841 ret = f2fs_map_blocks(inode, &map, create, flag);
843 map_bh(bh, inode->i_sb, map.m_pblk);
844 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
845 bh->b_size = map.m_len << inode->i_blkbits;
850 static int get_data_block(struct inode *inode, sector_t iblock,
851 struct buffer_head *bh_result, int create, int flag,
854 return __get_data_block(inode, iblock, bh_result, create,
858 static int get_data_block_dio(struct inode *inode, sector_t iblock,
859 struct buffer_head *bh_result, int create)
861 return __get_data_block(inode, iblock, bh_result, create,
862 F2FS_GET_BLOCK_DIO, NULL);
865 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
866 struct buffer_head *bh_result, int create)
868 /* Block number less than F2FS MAX BLOCKS */
869 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
872 return __get_data_block(inode, iblock, bh_result, create,
873 F2FS_GET_BLOCK_BMAP, NULL);
876 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
878 return (offset >> inode->i_blkbits);
881 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
883 return (blk << inode->i_blkbits);
886 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
889 struct buffer_head map_bh;
890 sector_t start_blk, last_blk;
893 u64 logical = 0, phys = 0, size = 0;
897 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
901 if (f2fs_has_inline_data(inode)) {
902 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
909 isize = i_size_read(inode);
913 if (start + len > isize)
916 if (logical_to_blk(inode, len) == 0)
917 len = blk_to_logical(inode, 1);
919 start_blk = logical_to_blk(inode, start);
920 last_blk = logical_to_blk(inode, start + len - 1);
923 memset(&map_bh, 0, sizeof(struct buffer_head));
926 ret = get_data_block(inode, start_blk, &map_bh, 0,
927 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
932 if (!buffer_mapped(&map_bh)) {
933 start_blk = next_pgofs;
934 /* Go through holes util pass the EOF */
935 if (blk_to_logical(inode, start_blk) < isize)
937 /* Found a hole beyond isize means no more extents.
938 * Note that the premise is that filesystems don't
939 * punch holes beyond isize and keep size unchanged.
941 flags |= FIEMAP_EXTENT_LAST;
945 if (f2fs_encrypted_inode(inode))
946 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
948 ret = fiemap_fill_next_extent(fieinfo, logical,
952 if (start_blk > last_blk || ret)
955 logical = blk_to_logical(inode, start_blk);
956 phys = blk_to_logical(inode, map_bh.b_blocknr);
957 size = map_bh.b_size;
959 if (buffer_unwritten(&map_bh))
960 flags = FIEMAP_EXTENT_UNWRITTEN;
962 start_blk += logical_to_blk(inode, size);
966 if (fatal_signal_pending(current))
978 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 struct fscrypt_ctx *ctx = NULL;
983 struct block_device *bdev = sbi->sb->s_bdev;
986 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
987 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
989 return ERR_CAST(ctx);
991 /* wait the page to be moved by cleaning */
992 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
995 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
998 fscrypt_release_ctx(ctx);
999 return ERR_PTR(-ENOMEM);
1001 bio->bi_bdev = bdev;
1002 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
1003 bio->bi_end_io = f2fs_read_end_io;
1004 bio->bi_private = ctx;
1010 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1011 * Major change was from block_size == page_size in f2fs by default.
1013 static int f2fs_mpage_readpages(struct address_space *mapping,
1014 struct list_head *pages, struct page *page,
1017 struct bio *bio = NULL;
1019 sector_t last_block_in_bio = 0;
1020 struct inode *inode = mapping->host;
1021 const unsigned blkbits = inode->i_blkbits;
1022 const unsigned blocksize = 1 << blkbits;
1023 sector_t block_in_file;
1024 sector_t last_block;
1025 sector_t last_block_in_file;
1027 struct f2fs_map_blocks map;
1033 map.m_next_pgofs = NULL;
1035 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1037 prefetchw(&page->flags);
1039 page = list_entry(pages->prev, struct page, lru);
1040 list_del(&page->lru);
1041 if (add_to_page_cache_lru(page, mapping,
1043 readahead_gfp_mask(mapping)))
1047 block_in_file = (sector_t)page->index;
1048 last_block = block_in_file + nr_pages;
1049 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1051 if (last_block > last_block_in_file)
1052 last_block = last_block_in_file;
1055 * Map blocks using the previous result first.
1057 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1058 block_in_file > map.m_lblk &&
1059 block_in_file < (map.m_lblk + map.m_len))
1063 * Then do more f2fs_map_blocks() calls until we are
1064 * done with this page.
1068 if (block_in_file < last_block) {
1069 map.m_lblk = block_in_file;
1070 map.m_len = last_block - block_in_file;
1072 if (f2fs_map_blocks(inode, &map, 0,
1073 F2FS_GET_BLOCK_READ))
1074 goto set_error_page;
1077 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1078 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1079 SetPageMappedToDisk(page);
1081 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1082 SetPageUptodate(page);
1086 zero_user_segment(page, 0, PAGE_SIZE);
1087 if (!PageUptodate(page))
1088 SetPageUptodate(page);
1094 * This page will go to BIO. Do we need to send this
1097 if (bio && (last_block_in_bio != block_nr - 1)) {
1099 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1103 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1106 goto set_error_page;
1108 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1111 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1112 goto submit_and_realloc;
1114 last_block_in_bio = block_nr;
1118 zero_user_segment(page, 0, PAGE_SIZE);
1123 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1131 BUG_ON(pages && !list_empty(pages));
1133 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1137 static int f2fs_read_data_page(struct file *file, struct page *page)
1139 struct inode *inode = page->mapping->host;
1142 trace_f2fs_readpage(page, DATA);
1144 /* If the file has inline data, try to read it directly */
1145 if (f2fs_has_inline_data(inode))
1146 ret = f2fs_read_inline_data(inode, page);
1148 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1152 static int f2fs_read_data_pages(struct file *file,
1153 struct address_space *mapping,
1154 struct list_head *pages, unsigned nr_pages)
1156 struct inode *inode = file->f_mapping->host;
1157 struct page *page = list_entry(pages->prev, struct page, lru);
1159 trace_f2fs_readpages(inode, page, nr_pages);
1161 /* If the file has inline data, skip readpages */
1162 if (f2fs_has_inline_data(inode))
1165 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1168 int do_write_data_page(struct f2fs_io_info *fio)
1170 struct page *page = fio->page;
1171 struct inode *inode = page->mapping->host;
1172 struct dnode_of_data dn;
1175 set_new_dnode(&dn, inode, NULL, NULL, 0);
1176 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1180 fio->old_blkaddr = dn.data_blkaddr;
1182 /* This page is already truncated */
1183 if (fio->old_blkaddr == NULL_ADDR) {
1184 ClearPageUptodate(page);
1188 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1189 gfp_t gfp_flags = GFP_NOFS;
1191 /* wait for GCed encrypted page writeback */
1192 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1195 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1197 if (IS_ERR(fio->encrypted_page)) {
1198 err = PTR_ERR(fio->encrypted_page);
1199 if (err == -ENOMEM) {
1200 /* flush pending ios and wait for a while */
1201 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1202 congestion_wait(BLK_RW_ASYNC, HZ/50);
1203 gfp_flags |= __GFP_NOFAIL;
1211 set_page_writeback(page);
1214 * If current allocation needs SSR,
1215 * it had better in-place writes for updated data.
1217 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1218 !is_cold_data(page) &&
1219 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1220 need_inplace_update(inode))) {
1221 rewrite_data_page(fio);
1222 set_inode_flag(inode, FI_UPDATE_WRITE);
1223 trace_f2fs_do_write_data_page(page, IPU);
1225 write_data_page(&dn, fio);
1226 trace_f2fs_do_write_data_page(page, OPU);
1227 set_inode_flag(inode, FI_APPEND_WRITE);
1228 if (page->index == 0)
1229 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1232 f2fs_put_dnode(&dn);
1236 static int f2fs_write_data_page(struct page *page,
1237 struct writeback_control *wbc)
1239 struct inode *inode = page->mapping->host;
1240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1241 loff_t i_size = i_size_read(inode);
1242 const pgoff_t end_index = ((unsigned long long) i_size)
1244 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1245 unsigned offset = 0;
1246 bool need_balance_fs = false;
1248 struct f2fs_io_info fio = {
1252 .op_flags = wbc_to_write_flags(wbc),
1254 .encrypted_page = NULL,
1257 trace_f2fs_writepage(page, DATA);
1259 if (page->index < end_index)
1263 * If the offset is out-of-range of file size,
1264 * this page does not have to be written to disk.
1266 offset = i_size & (PAGE_SIZE - 1);
1267 if ((page->index >= end_index + 1) || !offset)
1270 zero_user_segment(page, offset, PAGE_SIZE);
1272 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1274 if (f2fs_is_drop_cache(inode))
1276 /* we should not write 0'th page having journal header */
1277 if (f2fs_is_volatile_file(inode) && (!page->index ||
1278 (!wbc->for_reclaim &&
1279 available_free_memory(sbi, BASE_CHECK))))
1282 /* we should bypass data pages to proceed the kworkder jobs */
1283 if (unlikely(f2fs_cp_error(sbi))) {
1284 mapping_set_error(page->mapping, -EIO);
1288 /* Dentry blocks are controlled by checkpoint */
1289 if (S_ISDIR(inode->i_mode)) {
1290 err = do_write_data_page(&fio);
1294 if (!wbc->for_reclaim)
1295 need_balance_fs = true;
1296 else if (has_not_enough_free_secs(sbi, 0, 0))
1301 if (f2fs_has_inline_data(inode))
1302 err = f2fs_write_inline_data(inode, page);
1304 err = do_write_data_page(&fio);
1305 if (F2FS_I(inode)->last_disk_size < psize)
1306 F2FS_I(inode)->last_disk_size = psize;
1307 f2fs_unlock_op(sbi);
1309 if (err && err != -ENOENT)
1312 clear_cold_data(page);
1314 inode_dec_dirty_pages(inode);
1316 ClearPageUptodate(page);
1318 if (wbc->for_reclaim) {
1319 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1320 remove_dirty_inode(inode);
1324 f2fs_balance_fs(sbi, need_balance_fs);
1326 if (unlikely(f2fs_cp_error(sbi)))
1327 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1332 redirty_page_for_writepage(wbc, page);
1338 * This function was copied from write_cche_pages from mm/page-writeback.c.
1339 * The major change is making write step of cold data page separately from
1340 * warm/hot data page.
1342 static int f2fs_write_cache_pages(struct address_space *mapping,
1343 struct writeback_control *wbc)
1347 struct pagevec pvec;
1349 pgoff_t uninitialized_var(writeback_index);
1351 pgoff_t end; /* Inclusive */
1354 int range_whole = 0;
1358 pagevec_init(&pvec, 0);
1360 if (wbc->range_cyclic) {
1361 writeback_index = mapping->writeback_index; /* prev offset */
1362 index = writeback_index;
1369 index = wbc->range_start >> PAGE_SHIFT;
1370 end = wbc->range_end >> PAGE_SHIFT;
1371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1373 cycled = 1; /* ignore range_cyclic tests */
1375 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1376 tag = PAGECACHE_TAG_TOWRITE;
1378 tag = PAGECACHE_TAG_DIRTY;
1380 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1381 tag_pages_for_writeback(mapping, index, end);
1383 while (!done && (index <= end)) {
1386 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1387 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1391 for (i = 0; i < nr_pages; i++) {
1392 struct page *page = pvec.pages[i];
1394 if (page->index > end) {
1399 done_index = page->index;
1403 if (unlikely(page->mapping != mapping)) {
1409 if (!PageDirty(page)) {
1410 /* someone wrote it for us */
1411 goto continue_unlock;
1414 if (PageWriteback(page)) {
1415 if (wbc->sync_mode != WB_SYNC_NONE)
1416 f2fs_wait_on_page_writeback(page,
1419 goto continue_unlock;
1422 BUG_ON(PageWriteback(page));
1423 if (!clear_page_dirty_for_io(page))
1424 goto continue_unlock;
1426 ret = mapping->a_ops->writepage(page, wbc);
1427 if (unlikely(ret)) {
1428 done_index = page->index + 1;
1435 if (--wbc->nr_to_write <= 0 &&
1436 wbc->sync_mode == WB_SYNC_NONE) {
1441 pagevec_release(&pvec);
1445 if (!cycled && !done) {
1448 end = writeback_index - 1;
1451 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1452 mapping->writeback_index = done_index;
1455 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1456 NULL, 0, DATA, WRITE);
1461 static int f2fs_write_data_pages(struct address_space *mapping,
1462 struct writeback_control *wbc)
1464 struct inode *inode = mapping->host;
1465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1466 struct blk_plug plug;
1469 /* deal with chardevs and other special file */
1470 if (!mapping->a_ops->writepage)
1473 /* skip writing if there is no dirty page in this inode */
1474 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1477 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1478 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1479 available_free_memory(sbi, DIRTY_DENTS))
1482 /* skip writing during file defragment */
1483 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1486 /* during POR, we don't need to trigger writepage at all. */
1487 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1490 trace_f2fs_writepages(mapping->host, wbc, DATA);
1492 blk_start_plug(&plug);
1493 ret = f2fs_write_cache_pages(mapping, wbc);
1494 blk_finish_plug(&plug);
1496 * if some pages were truncated, we cannot guarantee its mapping->host
1497 * to detect pending bios.
1500 remove_dirty_inode(inode);
1504 wbc->pages_skipped += get_dirty_pages(inode);
1505 trace_f2fs_writepages(mapping->host, wbc, DATA);
1509 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1511 struct inode *inode = mapping->host;
1512 loff_t i_size = i_size_read(inode);
1515 truncate_pagecache(inode, i_size);
1516 truncate_blocks(inode, i_size, true);
1520 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1521 struct page *page, loff_t pos, unsigned len,
1522 block_t *blk_addr, bool *node_changed)
1524 struct inode *inode = page->mapping->host;
1525 pgoff_t index = page->index;
1526 struct dnode_of_data dn;
1528 bool locked = false;
1529 struct extent_info ei;
1533 * we already allocated all the blocks, so we don't need to get
1534 * the block addresses when there is no need to fill the page.
1536 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1539 if (f2fs_has_inline_data(inode) ||
1540 (pos & PAGE_MASK) >= i_size_read(inode)) {
1545 /* check inline_data */
1546 ipage = get_node_page(sbi, inode->i_ino);
1547 if (IS_ERR(ipage)) {
1548 err = PTR_ERR(ipage);
1552 set_new_dnode(&dn, inode, ipage, ipage, 0);
1554 if (f2fs_has_inline_data(inode)) {
1555 if (pos + len <= MAX_INLINE_DATA) {
1556 read_inline_data(page, ipage);
1557 set_inode_flag(inode, FI_DATA_EXIST);
1559 set_inline_node(ipage);
1561 err = f2fs_convert_inline_page(&dn, page);
1564 if (dn.data_blkaddr == NULL_ADDR)
1565 err = f2fs_get_block(&dn, index);
1567 } else if (locked) {
1568 err = f2fs_get_block(&dn, index);
1570 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1571 dn.data_blkaddr = ei.blk + index - ei.fofs;
1574 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1575 if (err || dn.data_blkaddr == NULL_ADDR) {
1576 f2fs_put_dnode(&dn);
1584 /* convert_inline_page can make node_changed */
1585 *blk_addr = dn.data_blkaddr;
1586 *node_changed = dn.node_changed;
1588 f2fs_put_dnode(&dn);
1591 f2fs_unlock_op(sbi);
1595 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1596 loff_t pos, unsigned len, unsigned flags,
1597 struct page **pagep, void **fsdata)
1599 struct inode *inode = mapping->host;
1600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601 struct page *page = NULL;
1602 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1603 bool need_balance = false;
1604 block_t blkaddr = NULL_ADDR;
1607 trace_f2fs_write_begin(inode, pos, len, flags);
1610 * We should check this at this moment to avoid deadlock on inode page
1611 * and #0 page. The locking rule for inline_data conversion should be:
1612 * lock_page(page #0) -> lock_page(inode_page)
1615 err = f2fs_convert_inline_inode(inode);
1620 page = grab_cache_page_write_begin(mapping, index, flags);
1628 err = prepare_write_begin(sbi, page, pos, len,
1629 &blkaddr, &need_balance);
1633 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1635 f2fs_balance_fs(sbi, true);
1637 if (page->mapping != mapping) {
1638 /* The page got truncated from under us */
1639 f2fs_put_page(page, 1);
1644 f2fs_wait_on_page_writeback(page, DATA, false);
1646 /* wait for GCed encrypted page writeback */
1647 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1648 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1650 if (len == PAGE_SIZE || PageUptodate(page))
1653 if (blkaddr == NEW_ADDR) {
1654 zero_user_segment(page, 0, PAGE_SIZE);
1655 SetPageUptodate(page);
1659 bio = f2fs_grab_bio(inode, blkaddr, 1);
1664 bio->bi_opf = REQ_OP_READ;
1665 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1671 __submit_bio(sbi, bio, DATA);
1674 if (unlikely(page->mapping != mapping)) {
1675 f2fs_put_page(page, 1);
1678 if (unlikely(!PageUptodate(page))) {
1686 f2fs_put_page(page, 1);
1687 f2fs_write_failed(mapping, pos + len);
1691 static int f2fs_write_end(struct file *file,
1692 struct address_space *mapping,
1693 loff_t pos, unsigned len, unsigned copied,
1694 struct page *page, void *fsdata)
1696 struct inode *inode = page->mapping->host;
1698 trace_f2fs_write_end(inode, pos, len, copied);
1701 * This should be come from len == PAGE_SIZE, and we expect copied
1702 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1703 * let generic_perform_write() try to copy data again through copied=0.
1705 if (!PageUptodate(page)) {
1706 if (unlikely(copied != PAGE_SIZE))
1709 SetPageUptodate(page);
1714 set_page_dirty(page);
1715 clear_cold_data(page);
1717 if (pos + copied > i_size_read(inode))
1718 f2fs_i_size_write(inode, pos + copied);
1720 f2fs_put_page(page, 1);
1721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1725 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1728 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1730 if (offset & blocksize_mask)
1733 if (iov_iter_alignment(iter) & blocksize_mask)
1739 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1741 struct address_space *mapping = iocb->ki_filp->f_mapping;
1742 struct inode *inode = mapping->host;
1743 size_t count = iov_iter_count(iter);
1744 loff_t offset = iocb->ki_pos;
1745 int rw = iov_iter_rw(iter);
1748 err = check_direct_IO(inode, iter, offset);
1752 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1754 if (test_opt(F2FS_I_SB(inode), LFS))
1757 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1759 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1760 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1761 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1765 set_inode_flag(inode, FI_UPDATE_WRITE);
1767 f2fs_write_failed(mapping, offset + count);
1770 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1775 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1776 unsigned int length)
1778 struct inode *inode = page->mapping->host;
1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1782 (offset % PAGE_SIZE || length != PAGE_SIZE))
1785 if (PageDirty(page)) {
1786 if (inode->i_ino == F2FS_META_INO(sbi))
1787 dec_page_count(sbi, F2FS_DIRTY_META);
1788 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1789 dec_page_count(sbi, F2FS_DIRTY_NODES);
1791 inode_dec_dirty_pages(inode);
1794 /* This is atomic written page, keep Private */
1795 if (IS_ATOMIC_WRITTEN_PAGE(page))
1798 set_page_private(page, 0);
1799 ClearPagePrivate(page);
1802 int f2fs_release_page(struct page *page, gfp_t wait)
1804 /* If this is dirty page, keep PagePrivate */
1805 if (PageDirty(page))
1808 /* This is atomic written page, keep Private */
1809 if (IS_ATOMIC_WRITTEN_PAGE(page))
1812 set_page_private(page, 0);
1813 ClearPagePrivate(page);
1818 * This was copied from __set_page_dirty_buffers which gives higher performance
1819 * in very high speed storages. (e.g., pmem)
1821 void f2fs_set_page_dirty_nobuffers(struct page *page)
1823 struct address_space *mapping = page->mapping;
1824 unsigned long flags;
1826 if (unlikely(!mapping))
1829 spin_lock(&mapping->private_lock);
1830 lock_page_memcg(page);
1832 spin_unlock(&mapping->private_lock);
1834 spin_lock_irqsave(&mapping->tree_lock, flags);
1835 WARN_ON_ONCE(!PageUptodate(page));
1836 account_page_dirtied(page, mapping);
1837 radix_tree_tag_set(&mapping->page_tree,
1838 page_index(page), PAGECACHE_TAG_DIRTY);
1839 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1840 unlock_page_memcg(page);
1842 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1846 static int f2fs_set_data_page_dirty(struct page *page)
1848 struct address_space *mapping = page->mapping;
1849 struct inode *inode = mapping->host;
1851 trace_f2fs_set_page_dirty(page, DATA);
1853 if (!PageUptodate(page))
1854 SetPageUptodate(page);
1856 if (f2fs_is_atomic_file(inode)) {
1857 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1858 register_inmem_page(inode, page);
1862 * Previously, this page has been registered, we just
1868 if (!PageDirty(page)) {
1869 f2fs_set_page_dirty_nobuffers(page);
1870 update_dirty_page(inode, page);
1876 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1878 struct inode *inode = mapping->host;
1880 if (f2fs_has_inline_data(inode))
1883 /* make sure allocating whole blocks */
1884 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1885 filemap_write_and_wait(mapping);
1887 return generic_block_bmap(mapping, block, get_data_block_bmap);
1890 #ifdef CONFIG_MIGRATION
1891 #include <linux/migrate.h>
1893 int f2fs_migrate_page(struct address_space *mapping,
1894 struct page *newpage, struct page *page, enum migrate_mode mode)
1896 int rc, extra_count;
1897 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1898 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1900 BUG_ON(PageWriteback(page));
1902 /* migrating an atomic written page is safe with the inmem_lock hold */
1903 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1907 * A reference is expected if PagePrivate set when move mapping,
1908 * however F2FS breaks this for maintaining dirty page counts when
1909 * truncating pages. So here adjusting the 'extra_count' make it work.
1911 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1912 rc = migrate_page_move_mapping(mapping, newpage,
1913 page, NULL, mode, extra_count);
1914 if (rc != MIGRATEPAGE_SUCCESS) {
1916 mutex_unlock(&fi->inmem_lock);
1920 if (atomic_written) {
1921 struct inmem_pages *cur;
1922 list_for_each_entry(cur, &fi->inmem_pages, list)
1923 if (cur->page == page) {
1924 cur->page = newpage;
1927 mutex_unlock(&fi->inmem_lock);
1932 if (PagePrivate(page))
1933 SetPagePrivate(newpage);
1934 set_page_private(newpage, page_private(page));
1936 migrate_page_copy(newpage, page);
1938 return MIGRATEPAGE_SUCCESS;
1942 const struct address_space_operations f2fs_dblock_aops = {
1943 .readpage = f2fs_read_data_page,
1944 .readpages = f2fs_read_data_pages,
1945 .writepage = f2fs_write_data_page,
1946 .writepages = f2fs_write_data_pages,
1947 .write_begin = f2fs_write_begin,
1948 .write_end = f2fs_write_end,
1949 .set_page_dirty = f2fs_set_data_page_dirty,
1950 .invalidatepage = f2fs_invalidate_page,
1951 .releasepage = f2fs_release_page,
1952 .direct_IO = f2fs_direct_IO,
1954 #ifdef CONFIG_MIGRATION
1955 .migratepage = f2fs_migrate_page,