2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include <linux/hmm.h>
48 #include "amdgpu_object.h"
49 #include "amdgpu_trace.h"
50 #include "amdgpu_amdkfd.h"
51 #include "amdgpu_sdma.h"
52 #include "bif/bif_4_1_d.h"
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 struct ttm_mem_reg *mem, unsigned num_pages,
56 uint64_t offset, unsigned window,
57 struct amdgpu_ring *ring,
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
63 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
72 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
73 * @type: The type of memory requested
74 * @man: The memory type manager for each domain
76 * This is called by ttm_bo_init_mm() when a buffer object is being
79 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
80 struct ttm_mem_type_manager *man)
82 struct amdgpu_device *adev;
84 adev = amdgpu_ttm_adev(bdev);
89 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
90 man->available_caching = TTM_PL_MASK_CACHING;
91 man->default_caching = TTM_PL_FLAG_CACHED;
95 man->func = &amdgpu_gtt_mgr_func;
96 man->gpu_offset = adev->gmc.gart_start;
97 man->available_caching = TTM_PL_MASK_CACHING;
98 man->default_caching = TTM_PL_FLAG_CACHED;
99 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
102 /* "On-card" video ram */
103 man->func = &amdgpu_vram_mgr_func;
104 man->gpu_offset = adev->gmc.vram_start;
105 man->flags = TTM_MEMTYPE_FLAG_FIXED |
106 TTM_MEMTYPE_FLAG_MAPPABLE;
107 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
108 man->default_caching = TTM_PL_FLAG_WC;
113 /* On-chip GDS memory*/
114 man->func = &ttm_bo_manager_func;
116 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
117 man->available_caching = TTM_PL_FLAG_UNCACHED;
118 man->default_caching = TTM_PL_FLAG_UNCACHED;
121 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
128 * amdgpu_evict_flags - Compute placement flags
130 * @bo: The buffer object to evict
131 * @placement: Possible destination(s) for evicted BO
133 * Fill in placement data when ttm_bo_evict() is called
135 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
136 struct ttm_placement *placement)
138 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
139 struct amdgpu_bo *abo;
140 static const struct ttm_place placements = {
143 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
146 /* Don't handle scatter gather BOs */
147 if (bo->type == ttm_bo_type_sg) {
148 placement->num_placement = 0;
149 placement->num_busy_placement = 0;
153 /* Object isn't an AMDGPU object so ignore */
154 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
155 placement->placement = &placements;
156 placement->busy_placement = &placements;
157 placement->num_placement = 1;
158 placement->num_busy_placement = 1;
162 abo = ttm_to_amdgpu_bo(bo);
163 switch (bo->mem.mem_type) {
167 placement->num_placement = 0;
168 placement->num_busy_placement = 0;
172 if (!adev->mman.buffer_funcs_enabled) {
173 /* Move to system memory */
174 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
175 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
176 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
177 amdgpu_bo_in_cpu_visible_vram(abo)) {
179 /* Try evicting to the CPU inaccessible part of VRAM
180 * first, but only set GTT as busy placement, so this
181 * BO will be evicted to GTT rather than causing other
182 * BOs to be evicted from VRAM
184 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
185 AMDGPU_GEM_DOMAIN_GTT);
186 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
187 abo->placements[0].lpfn = 0;
188 abo->placement.busy_placement = &abo->placements[1];
189 abo->placement.num_busy_placement = 1;
191 /* Move to GTT memory */
192 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
200 *placement = abo->placement;
204 * amdgpu_verify_access - Verify access for a mmap call
206 * @bo: The buffer object to map
207 * @filp: The file pointer from the process performing the mmap
209 * This is called by ttm_bo_mmap() to verify whether a process
210 * has the right to mmap a BO to their process space.
212 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
214 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
217 * Don't verify access for KFD BOs. They don't have a GEM
218 * object associated with them.
223 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
225 return drm_vma_node_verify_access(&abo->gem_base.vma_node,
230 * amdgpu_move_null - Register memory for a buffer object
232 * @bo: The bo to assign the memory to
233 * @new_mem: The memory to be assigned.
235 * Assign the memory from new_mem to the memory of the buffer object bo.
237 static void amdgpu_move_null(struct ttm_buffer_object *bo,
238 struct ttm_mem_reg *new_mem)
240 struct ttm_mem_reg *old_mem = &bo->mem;
242 BUG_ON(old_mem->mm_node != NULL);
244 new_mem->mm_node = NULL;
248 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
250 * @bo: The bo to assign the memory to.
251 * @mm_node: Memory manager node for drm allocator.
252 * @mem: The region where the bo resides.
255 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
256 struct drm_mm_node *mm_node,
257 struct ttm_mem_reg *mem)
261 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
262 addr = mm_node->start << PAGE_SHIFT;
263 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
270 * @offset. It also modifies the offset to be within the drm_mm_node returned
272 * @mem: The region where the bo resides.
273 * @offset: The offset that drm_mm_node is used for finding.
276 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
277 unsigned long *offset)
279 struct drm_mm_node *mm_node = mem->mm_node;
281 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
282 *offset -= (mm_node->size << PAGE_SHIFT);
289 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
291 * The function copies @size bytes from {src->mem + src->offset} to
292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293 * move and different for a BO to BO copy.
295 * @f: Returns the last fence if multiple jobs are submitted.
297 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
298 struct amdgpu_copy_mem *src,
299 struct amdgpu_copy_mem *dst,
301 struct reservation_object *resv,
302 struct dma_fence **f)
304 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
305 struct drm_mm_node *src_mm, *dst_mm;
306 uint64_t src_node_start, dst_node_start, src_node_size,
307 dst_node_size, src_page_offset, dst_page_offset;
308 struct dma_fence *fence = NULL;
310 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
311 AMDGPU_GPU_PAGE_SIZE);
313 if (!adev->mman.buffer_funcs_enabled) {
314 DRM_ERROR("Trying to move memory with ring turned off.\n");
318 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
319 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
321 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
322 src_page_offset = src_node_start & (PAGE_SIZE - 1);
324 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
325 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
327 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
328 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
330 mutex_lock(&adev->mman.gtt_window_lock);
333 unsigned long cur_size;
334 uint64_t from = src_node_start, to = dst_node_start;
335 struct dma_fence *next;
337 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
338 * begins at an offset, then adjust the size accordingly
340 cur_size = min3(min(src_node_size, dst_node_size), size,
342 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
343 cur_size + dst_page_offset > GTT_MAX_BYTES)
344 cur_size -= max(src_page_offset, dst_page_offset);
346 /* Map only what needs to be accessed. Map src to window 0 and
349 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
350 r = amdgpu_map_buffer(src->bo, src->mem,
351 PFN_UP(cur_size + src_page_offset),
352 src_node_start, 0, ring,
356 /* Adjust the offset because amdgpu_map_buffer returns
357 * start of mapped page
359 from += src_page_offset;
362 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
363 r = amdgpu_map_buffer(dst->bo, dst->mem,
364 PFN_UP(cur_size + dst_page_offset),
365 dst_node_start, 1, ring,
369 to += dst_page_offset;
372 r = amdgpu_copy_buffer(ring, from, to, cur_size,
373 resv, &next, false, true);
377 dma_fence_put(fence);
384 src_node_size -= cur_size;
385 if (!src_node_size) {
386 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
388 src_node_size = (src_mm->size << PAGE_SHIFT);
390 src_node_start += cur_size;
391 src_page_offset = src_node_start & (PAGE_SIZE - 1);
393 dst_node_size -= cur_size;
394 if (!dst_node_size) {
395 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
397 dst_node_size = (dst_mm->size << PAGE_SHIFT);
399 dst_node_start += cur_size;
400 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
404 mutex_unlock(&adev->mman.gtt_window_lock);
406 *f = dma_fence_get(fence);
407 dma_fence_put(fence);
412 * amdgpu_move_blit - Copy an entire buffer to another buffer
414 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
415 * help move buffers to and from VRAM.
417 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
418 bool evict, bool no_wait_gpu,
419 struct ttm_mem_reg *new_mem,
420 struct ttm_mem_reg *old_mem)
422 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
423 struct amdgpu_copy_mem src, dst;
424 struct dma_fence *fence = NULL;
434 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
435 new_mem->num_pages << PAGE_SHIFT,
440 /* Always block for VM page tables before committing the new location */
441 if (bo->type == ttm_bo_type_kernel)
442 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
444 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
445 dma_fence_put(fence);
450 dma_fence_wait(fence, false);
451 dma_fence_put(fence);
456 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
458 * Called by amdgpu_bo_move().
460 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
461 struct ttm_operation_ctx *ctx,
462 struct ttm_mem_reg *new_mem)
464 struct amdgpu_device *adev;
465 struct ttm_mem_reg *old_mem = &bo->mem;
466 struct ttm_mem_reg tmp_mem;
467 struct ttm_place placements;
468 struct ttm_placement placement;
471 adev = amdgpu_ttm_adev(bo->bdev);
473 /* create space/pages for new_mem in GTT space */
475 tmp_mem.mm_node = NULL;
476 placement.num_placement = 1;
477 placement.placement = &placements;
478 placement.num_busy_placement = 1;
479 placement.busy_placement = &placements;
482 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
483 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
488 /* set caching flags */
489 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
494 /* Bind the memory to the GTT space */
495 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
500 /* blit VRAM to GTT */
501 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
506 /* move BO (in tmp_mem) to new_mem */
507 r = ttm_bo_move_ttm(bo, ctx, new_mem);
509 ttm_bo_mem_put(bo, &tmp_mem);
514 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
516 * Called by amdgpu_bo_move().
518 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
519 struct ttm_operation_ctx *ctx,
520 struct ttm_mem_reg *new_mem)
522 struct amdgpu_device *adev;
523 struct ttm_mem_reg *old_mem = &bo->mem;
524 struct ttm_mem_reg tmp_mem;
525 struct ttm_placement placement;
526 struct ttm_place placements;
529 adev = amdgpu_ttm_adev(bo->bdev);
531 /* make space in GTT for old_mem buffer */
533 tmp_mem.mm_node = NULL;
534 placement.num_placement = 1;
535 placement.placement = &placements;
536 placement.num_busy_placement = 1;
537 placement.busy_placement = &placements;
540 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
541 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
546 /* move/bind old memory to GTT space */
547 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
553 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
558 ttm_bo_mem_put(bo, &tmp_mem);
563 * amdgpu_bo_move - Move a buffer object to a new memory location
565 * Called by ttm_bo_handle_move_mem()
567 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
568 struct ttm_operation_ctx *ctx,
569 struct ttm_mem_reg *new_mem)
571 struct amdgpu_device *adev;
572 struct amdgpu_bo *abo;
573 struct ttm_mem_reg *old_mem = &bo->mem;
576 /* Can't move a pinned BO */
577 abo = ttm_to_amdgpu_bo(bo);
578 if (WARN_ON_ONCE(abo->pin_count > 0))
581 adev = amdgpu_ttm_adev(bo->bdev);
583 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
584 amdgpu_move_null(bo, new_mem);
587 if ((old_mem->mem_type == TTM_PL_TT &&
588 new_mem->mem_type == TTM_PL_SYSTEM) ||
589 (old_mem->mem_type == TTM_PL_SYSTEM &&
590 new_mem->mem_type == TTM_PL_TT)) {
592 amdgpu_move_null(bo, new_mem);
595 if (old_mem->mem_type == AMDGPU_PL_GDS ||
596 old_mem->mem_type == AMDGPU_PL_GWS ||
597 old_mem->mem_type == AMDGPU_PL_OA ||
598 new_mem->mem_type == AMDGPU_PL_GDS ||
599 new_mem->mem_type == AMDGPU_PL_GWS ||
600 new_mem->mem_type == AMDGPU_PL_OA) {
601 /* Nothing to save here */
602 amdgpu_move_null(bo, new_mem);
606 if (!adev->mman.buffer_funcs_enabled)
609 if (old_mem->mem_type == TTM_PL_VRAM &&
610 new_mem->mem_type == TTM_PL_SYSTEM) {
611 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
612 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
613 new_mem->mem_type == TTM_PL_VRAM) {
614 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
616 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
622 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
628 if (bo->type == ttm_bo_type_device &&
629 new_mem->mem_type == TTM_PL_VRAM &&
630 old_mem->mem_type != TTM_PL_VRAM) {
631 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
632 * accesses the BO after it's moved.
634 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
637 /* update statistics */
638 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
643 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
645 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
647 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
649 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
650 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
651 struct drm_mm_node *mm_node = mem->mm_node;
653 mem->bus.addr = NULL;
655 mem->bus.size = mem->num_pages << PAGE_SHIFT;
657 mem->bus.is_iomem = false;
658 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
660 switch (mem->mem_type) {
667 mem->bus.offset = mem->start << PAGE_SHIFT;
668 /* check if it's visible */
669 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
671 /* Only physically contiguous buffers apply. In a contiguous
672 * buffer, size of the first mm_node would match the number of
673 * pages in ttm_mem_reg.
675 if (adev->mman.aper_base_kaddr &&
676 (mm_node->size == mem->num_pages))
677 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
680 mem->bus.base = adev->gmc.aper_base;
681 mem->bus.is_iomem = true;
689 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
693 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
694 unsigned long page_offset)
696 struct drm_mm_node *mm;
697 unsigned long offset = (page_offset << PAGE_SHIFT);
699 mm = amdgpu_find_mm_node(&bo->mem, &offset);
700 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
701 (offset >> PAGE_SHIFT);
705 * TTM backend functions.
707 struct amdgpu_ttm_tt {
708 struct ttm_dma_tt ttm;
711 struct task_struct *usertask;
713 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
714 struct hmm_range range;
719 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
720 * memory and start HMM tracking CPU page table update
722 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
723 * once afterwards to stop HMM tracking
725 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
726 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
728 struct amdgpu_ttm_tt *gtt = (void *)ttm;
729 struct mm_struct *mm = gtt->usertask->mm;
730 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
731 struct hmm_range *range = >t->range;
734 if (!mm) /* Happens during process shutdown */
737 amdgpu_hmm_init_range(range);
739 down_read(&mm->mmap_sem);
741 range->vma = find_vma(mm, gtt->userptr);
742 if (!range_in_vma(range->vma, gtt->userptr, end))
744 else if ((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
750 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(uint64_t),
752 if (range->pfns == NULL) {
756 range->start = gtt->userptr;
759 range->pfns[0] = range->flags[HMM_PFN_VALID];
760 range->pfns[0] |= amdgpu_ttm_tt_is_readonly(ttm) ?
761 0 : range->flags[HMM_PFN_WRITE];
762 for (i = 1; i < ttm->num_pages; i++)
763 range->pfns[i] = range->pfns[0];
765 /* This may trigger page table update */
766 r = hmm_vma_fault(range, true);
770 up_read(&mm->mmap_sem);
772 for (i = 0; i < ttm->num_pages; i++)
773 pages[i] = hmm_pfn_to_page(range, range->pfns[i]);
781 up_read(&mm->mmap_sem);
786 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
787 * Check if the pages backing this ttm range have been invalidated
789 * Returns: true if pages are still valid
791 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
793 struct amdgpu_ttm_tt *gtt = (void *)ttm;
796 if (!gtt || !gtt->userptr)
799 WARN_ONCE(!gtt->range.pfns, "No user pages to check\n");
800 if (gtt->range.pfns) {
801 r = hmm_vma_range_done(>t->range);
802 kvfree(gtt->range.pfns);
803 gtt->range.pfns = NULL;
811 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
813 * Called by amdgpu_cs_list_validate(). This creates the page list
814 * that backs user memory and will ultimately be mapped into the device
817 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
821 for (i = 0; i < ttm->num_pages; ++i)
822 ttm->pages[i] = pages ? pages[i] : NULL;
826 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
828 * Called by amdgpu_ttm_backend_bind()
830 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
832 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
833 struct amdgpu_ttm_tt *gtt = (void *)ttm;
837 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
838 enum dma_data_direction direction = write ?
839 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
841 /* Allocate an SG array and squash pages into it */
842 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
843 ttm->num_pages << PAGE_SHIFT,
848 /* Map SG to device */
850 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
851 if (nents != ttm->sg->nents)
854 /* convert SG to linear array of pages and dma addresses */
855 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
856 gtt->ttm.dma_address, ttm->num_pages);
866 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
868 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
870 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
871 struct amdgpu_ttm_tt *gtt = (void *)ttm;
873 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
874 enum dma_data_direction direction = write ?
875 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
877 /* double check that we don't free the table twice */
881 /* unmap the pages mapped to the device */
882 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
884 sg_free_table(ttm->sg);
886 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
887 if (gtt->range.pfns &&
888 ttm->pages[0] == hmm_pfn_to_page(>t->range, gtt->range.pfns[0]))
889 WARN_ONCE(1, "Missing get_user_page_done\n");
893 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
894 struct ttm_buffer_object *tbo,
897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
898 struct ttm_tt *ttm = tbo->ttm;
899 struct amdgpu_ttm_tt *gtt = (void *)ttm;
902 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
903 uint64_t page_idx = 1;
905 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
906 ttm->pages, gtt->ttm.dma_address, flags);
910 /* Patch mtype of the second part BO */
911 flags &= ~AMDGPU_PTE_MTYPE_MASK;
912 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
914 r = amdgpu_gart_bind(adev,
915 gtt->offset + (page_idx << PAGE_SHIFT),
916 ttm->num_pages - page_idx,
917 &ttm->pages[page_idx],
918 &(gtt->ttm.dma_address[page_idx]), flags);
920 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
921 ttm->pages, gtt->ttm.dma_address, flags);
926 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
927 ttm->num_pages, gtt->offset);
933 * amdgpu_ttm_backend_bind - Bind GTT memory
935 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
936 * This handles binding GTT memory to the device address space.
938 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
939 struct ttm_mem_reg *bo_mem)
941 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
942 struct amdgpu_ttm_tt *gtt = (void*)ttm;
947 r = amdgpu_ttm_tt_pin_userptr(ttm);
949 DRM_ERROR("failed to pin userptr\n");
953 if (!ttm->num_pages) {
954 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
955 ttm->num_pages, bo_mem, ttm);
958 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
959 bo_mem->mem_type == AMDGPU_PL_GWS ||
960 bo_mem->mem_type == AMDGPU_PL_OA)
963 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
964 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
968 /* compute PTE flags relevant to this BO memory */
969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
971 /* bind pages into GART page tables */
972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
973 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
974 ttm->pages, gtt->ttm.dma_address, flags);
977 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
978 ttm->num_pages, gtt->offset);
983 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
985 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
987 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
988 struct ttm_operation_ctx ctx = { false, false };
989 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
990 struct ttm_mem_reg tmp;
991 struct ttm_placement placement;
992 struct ttm_place placements;
993 uint64_t addr, flags;
996 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
999 addr = amdgpu_gmc_agp_addr(bo);
1000 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1001 bo->mem.start = addr >> PAGE_SHIFT;
1004 /* allocate GART space */
1007 placement.num_placement = 1;
1008 placement.placement = &placements;
1009 placement.num_busy_placement = 1;
1010 placement.busy_placement = &placements;
1011 placements.fpfn = 0;
1012 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1013 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1016 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1020 /* compute PTE flags for this buffer object */
1021 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1024 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1025 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1027 ttm_bo_mem_put(bo, &tmp);
1031 ttm_bo_mem_put(bo, &bo->mem);
1035 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1036 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1042 * amdgpu_ttm_recover_gart - Rebind GTT pages
1044 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1045 * rebind GTT pages during a GPU reset.
1047 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1049 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1056 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1057 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1063 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1065 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1068 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1070 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1071 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1074 /* if the pages have userptr pinning then clear that first */
1076 amdgpu_ttm_tt_unpin_userptr(ttm);
1078 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1081 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1082 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1084 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1085 gtt->ttm.ttm.num_pages, gtt->offset);
1089 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1091 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1094 put_task_struct(gtt->usertask);
1096 ttm_dma_tt_fini(>t->ttm);
1100 static struct ttm_backend_func amdgpu_backend_func = {
1101 .bind = &amdgpu_ttm_backend_bind,
1102 .unbind = &amdgpu_ttm_backend_unbind,
1103 .destroy = &amdgpu_ttm_backend_destroy,
1107 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1109 * @bo: The buffer object to create a GTT ttm_tt object around
1111 * Called by ttm_tt_create().
1113 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1114 uint32_t page_flags)
1116 struct amdgpu_device *adev;
1117 struct amdgpu_ttm_tt *gtt;
1119 adev = amdgpu_ttm_adev(bo->bdev);
1121 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1125 gtt->ttm.ttm.func = &amdgpu_backend_func;
1127 /* allocate space for the uninitialized page entries */
1128 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1132 return >t->ttm.ttm;
1136 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1138 * Map the pages of a ttm_tt object to an address space visible
1139 * to the underlying device.
1141 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1142 struct ttm_operation_ctx *ctx)
1144 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1145 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1146 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1148 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1149 if (gtt && gtt->userptr) {
1150 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1154 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1155 ttm->state = tt_unbound;
1159 if (slave && ttm->sg) {
1160 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1161 gtt->ttm.dma_address,
1163 ttm->state = tt_unbound;
1167 #ifdef CONFIG_SWIOTLB
1168 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1169 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1173 /* fall back to generic helper to populate the page array
1174 * and map them to the device */
1175 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1179 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1181 * Unmaps pages of a ttm_tt object from the device address space and
1182 * unpopulates the page array backing it.
1184 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1186 struct amdgpu_device *adev;
1187 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1188 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1190 if (gtt && gtt->userptr) {
1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1193 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1200 adev = amdgpu_ttm_adev(ttm->bdev);
1202 #ifdef CONFIG_SWIOTLB
1203 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1204 ttm_dma_unpopulate(>t->ttm, adev->dev);
1209 /* fall back to generic helper to unmap and unpopulate array */
1210 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1214 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1217 * @ttm: The ttm_tt object to bind this userptr object to
1218 * @addr: The address in the current tasks VM space to use
1219 * @flags: Requirements of userptr object.
1221 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1224 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1227 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1232 gtt->userptr = addr;
1233 gtt->userflags = flags;
1236 put_task_struct(gtt->usertask);
1237 gtt->usertask = current->group_leader;
1238 get_task_struct(gtt->usertask);
1244 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1246 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1248 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1253 if (gtt->usertask == NULL)
1256 return gtt->usertask->mm;
1260 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1261 * address range for the current task.
1264 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1267 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1270 if (gtt == NULL || !gtt->userptr)
1273 /* Return false if no part of the ttm_tt object lies within
1276 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1277 if (gtt->userptr > end || gtt->userptr + size <= start)
1284 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1286 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1288 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1290 if (gtt == NULL || !gtt->userptr)
1297 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1299 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1301 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1306 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1310 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1312 * @ttm: The ttm_tt object to compute the flags for
1313 * @mem: The memory registry backing this ttm_tt object
1315 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1317 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1321 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1322 flags |= AMDGPU_PTE_VALID;
1324 if (mem && mem->mem_type == TTM_PL_TT) {
1325 flags |= AMDGPU_PTE_SYSTEM;
1327 if (ttm->caching_state == tt_cached)
1328 flags |= AMDGPU_PTE_SNOOPED;
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1337 * @ttm: The ttm_tt object to compute the flags for
1338 * @mem: The memory registry backing this ttm_tt object
1340 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1343 struct ttm_mem_reg *mem)
1345 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347 flags |= adev->gart.gart_pte_flags;
1348 flags |= AMDGPU_PTE_READABLE;
1350 if (!amdgpu_ttm_tt_is_readonly(ttm))
1351 flags |= AMDGPU_PTE_WRITEABLE;
1357 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1360 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1361 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1362 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1363 * used to clean out a memory space.
1365 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1366 const struct ttm_place *place)
1368 unsigned long num_pages = bo->mem.num_pages;
1369 struct drm_mm_node *node = bo->mem.mm_node;
1370 struct reservation_object_list *flist;
1371 struct dma_fence *f;
1374 /* If bo is a KFD BO, check if the bo belongs to the current process.
1375 * If true, then return false as any KFD process needs all its BOs to
1376 * be resident to run successfully
1378 flist = reservation_object_get_list(bo->resv);
1380 for (i = 0; i < flist->shared_count; ++i) {
1381 f = rcu_dereference_protected(flist->shared[i],
1382 reservation_object_held(bo->resv));
1383 if (amdkfd_fence_check_mm(f, current->mm))
1388 switch (bo->mem.mem_type) {
1393 /* Check each drm MM node individually */
1395 if (place->fpfn < (node->start + node->size) &&
1396 !(place->lpfn && place->lpfn <= node->start))
1399 num_pages -= node->size;
1408 return ttm_bo_eviction_valuable(bo, place);
1412 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1414 * @bo: The buffer object to read/write
1415 * @offset: Offset into buffer object
1416 * @buf: Secondary buffer to write/read from
1417 * @len: Length in bytes of access
1418 * @write: true if writing
1420 * This is used to access VRAM that backs a buffer object via MMIO
1421 * access for debugging purposes.
1423 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1424 unsigned long offset,
1425 void *buf, int len, int write)
1427 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1428 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1429 struct drm_mm_node *nodes;
1433 unsigned long flags;
1435 if (bo->mem.mem_type != TTM_PL_VRAM)
1438 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1439 pos = (nodes->start << PAGE_SHIFT) + offset;
1441 while (len && pos < adev->gmc.mc_vram_size) {
1442 uint64_t aligned_pos = pos & ~(uint64_t)3;
1443 uint32_t bytes = 4 - (pos & 3);
1444 uint32_t shift = (pos & 3) * 8;
1445 uint32_t mask = 0xffffffff << shift;
1448 mask &= 0xffffffff >> (bytes - len) * 8;
1452 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1453 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1454 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1455 if (!write || mask != 0xffffffff)
1456 value = RREG32_NO_KIQ(mmMM_DATA);
1459 value |= (*(uint32_t *)buf << shift) & mask;
1460 WREG32_NO_KIQ(mmMM_DATA, value);
1462 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1464 value = (value & mask) >> shift;
1465 memcpy(buf, &value, bytes);
1469 buf = (uint8_t *)buf + bytes;
1472 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1474 pos = (nodes->start << PAGE_SHIFT);
1481 static struct ttm_bo_driver amdgpu_bo_driver = {
1482 .ttm_tt_create = &amdgpu_ttm_tt_create,
1483 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1484 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1485 .invalidate_caches = &amdgpu_invalidate_caches,
1486 .init_mem_type = &amdgpu_init_mem_type,
1487 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1488 .evict_flags = &amdgpu_evict_flags,
1489 .move = &amdgpu_bo_move,
1490 .verify_access = &amdgpu_verify_access,
1491 .move_notify = &amdgpu_bo_move_notify,
1492 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1493 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1494 .io_mem_free = &amdgpu_ttm_io_mem_free,
1495 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1496 .access_memory = &amdgpu_ttm_access_memory,
1497 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1501 * Firmware Reservation functions
1504 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1506 * @adev: amdgpu_device pointer
1508 * free fw reserved vram if it has been reserved.
1510 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1512 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1513 NULL, &adev->fw_vram_usage.va);
1517 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1519 * @adev: amdgpu_device pointer
1521 * create bo vram reservation from fw.
1523 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1525 struct ttm_operation_ctx ctx = { false, false };
1526 struct amdgpu_bo_param bp;
1529 u64 vram_size = adev->gmc.visible_vram_size;
1530 u64 offset = adev->fw_vram_usage.start_offset;
1531 u64 size = adev->fw_vram_usage.size;
1532 struct amdgpu_bo *bo;
1534 memset(&bp, 0, sizeof(bp));
1535 bp.size = adev->fw_vram_usage.size;
1536 bp.byte_align = PAGE_SIZE;
1537 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1538 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1539 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1540 bp.type = ttm_bo_type_kernel;
1542 adev->fw_vram_usage.va = NULL;
1543 adev->fw_vram_usage.reserved_bo = NULL;
1545 if (adev->fw_vram_usage.size > 0 &&
1546 adev->fw_vram_usage.size <= vram_size) {
1548 r = amdgpu_bo_create(adev, &bp,
1549 &adev->fw_vram_usage.reserved_bo);
1553 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1557 /* remove the original mem node and create a new one at the
1560 bo = adev->fw_vram_usage.reserved_bo;
1561 offset = ALIGN(offset, PAGE_SIZE);
1562 for (i = 0; i < bo->placement.num_placement; ++i) {
1563 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1564 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1567 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1568 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1569 &bo->tbo.mem, &ctx);
1573 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1574 AMDGPU_GEM_DOMAIN_VRAM,
1575 adev->fw_vram_usage.start_offset,
1576 (adev->fw_vram_usage.start_offset +
1577 adev->fw_vram_usage.size));
1580 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1581 &adev->fw_vram_usage.va);
1585 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1590 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1592 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1594 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1596 adev->fw_vram_usage.va = NULL;
1597 adev->fw_vram_usage.reserved_bo = NULL;
1601 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1602 * gtt/vram related fields.
1604 * This initializes all of the memory space pools that the TTM layer
1605 * will need such as the GTT space (system memory mapped to the device),
1606 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1607 * can be mapped per VMID.
1609 int amdgpu_ttm_init(struct amdgpu_device *adev)
1615 mutex_init(&adev->mman.gtt_window_lock);
1617 /* No others user of address space so set it to 0 */
1618 r = ttm_bo_device_init(&adev->mman.bdev,
1620 adev->ddev->anon_inode->i_mapping,
1623 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1626 adev->mman.initialized = true;
1628 /* We opt to avoid OOM on system pages allocations */
1629 adev->mman.bdev.no_retry = true;
1631 /* Initialize VRAM pool with all of VRAM divided into pages */
1632 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1633 adev->gmc.real_vram_size >> PAGE_SHIFT);
1635 DRM_ERROR("Failed initializing VRAM heap.\n");
1639 /* Reduce size of CPU-visible VRAM if requested */
1640 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1641 if (amdgpu_vis_vram_limit > 0 &&
1642 vis_vram_limit <= adev->gmc.visible_vram_size)
1643 adev->gmc.visible_vram_size = vis_vram_limit;
1645 /* Change the size here instead of the init above so only lpfn is affected */
1646 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1648 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1649 adev->gmc.visible_vram_size);
1653 *The reserved vram for firmware must be pinned to the specified
1654 *place on the VRAM, so reserve it early.
1656 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1661 /* allocate memory as required for VGA
1662 * This is used for VGA emulation and pre-OS scanout buffers to
1663 * avoid display artifacts while transitioning between pre-OS
1665 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1666 AMDGPU_GEM_DOMAIN_VRAM,
1667 &adev->stolen_vga_memory,
1671 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1672 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1674 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1675 * or whatever the user passed on module init */
1676 if (amdgpu_gtt_size == -1) {
1680 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1681 adev->gmc.mc_vram_size),
1682 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1685 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1687 /* Initialize GTT memory pool */
1688 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1690 DRM_ERROR("Failed initializing GTT heap.\n");
1693 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1694 (unsigned)(gtt_size / (1024 * 1024)));
1696 /* Initialize various on-chip memory pools */
1697 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1698 adev->gds.mem.total_size);
1700 DRM_ERROR("Failed initializing GDS heap.\n");
1704 r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1705 4, AMDGPU_GEM_DOMAIN_GDS,
1706 &adev->gds.gds_gfx_bo, NULL, NULL);
1710 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1711 adev->gds.gws.total_size);
1713 DRM_ERROR("Failed initializing gws heap.\n");
1717 r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1718 1, AMDGPU_GEM_DOMAIN_GWS,
1719 &adev->gds.gws_gfx_bo, NULL, NULL);
1723 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1724 adev->gds.oa.total_size);
1726 DRM_ERROR("Failed initializing oa heap.\n");
1730 r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1731 1, AMDGPU_GEM_DOMAIN_OA,
1732 &adev->gds.oa_gfx_bo, NULL, NULL);
1736 /* Register debugfs entries for amdgpu_ttm */
1737 r = amdgpu_ttm_debugfs_init(adev);
1739 DRM_ERROR("Failed to init debugfs\n");
1746 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1748 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1750 /* return the VGA stolen memory (if any) back to VRAM */
1751 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1755 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1757 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1759 if (!adev->mman.initialized)
1762 amdgpu_ttm_debugfs_fini(adev);
1763 amdgpu_ttm_fw_reserve_vram_fini(adev);
1764 if (adev->mman.aper_base_kaddr)
1765 iounmap(adev->mman.aper_base_kaddr);
1766 adev->mman.aper_base_kaddr = NULL;
1768 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1769 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1770 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1771 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1772 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1773 ttm_bo_device_release(&adev->mman.bdev);
1774 adev->mman.initialized = false;
1775 DRM_INFO("amdgpu: ttm finalized\n");
1779 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1781 * @adev: amdgpu_device pointer
1782 * @enable: true when we can use buffer functions.
1784 * Enable/disable use of buffer functions during suspend/resume. This should
1785 * only be called at bootup or when userspace isn't running.
1787 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1789 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1793 if (!adev->mman.initialized || adev->in_gpu_reset ||
1794 adev->mman.buffer_funcs_enabled == enable)
1798 struct amdgpu_ring *ring;
1799 struct drm_sched_rq *rq;
1801 ring = adev->mman.buffer_funcs_ring;
1802 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1803 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1805 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1810 drm_sched_entity_destroy(&adev->mman.entity);
1811 dma_fence_put(man->move);
1815 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1817 size = adev->gmc.real_vram_size;
1819 size = adev->gmc.visible_vram_size;
1820 man->size = size >> PAGE_SHIFT;
1821 adev->mman.buffer_funcs_enabled = enable;
1824 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1826 struct drm_file *file_priv = filp->private_data;
1827 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1832 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1835 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1836 struct ttm_mem_reg *mem, unsigned num_pages,
1837 uint64_t offset, unsigned window,
1838 struct amdgpu_ring *ring,
1841 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1842 struct amdgpu_device *adev = ring->adev;
1843 struct ttm_tt *ttm = bo->ttm;
1844 struct amdgpu_job *job;
1845 unsigned num_dw, num_bytes;
1846 dma_addr_t *dma_address;
1847 struct dma_fence *fence;
1848 uint64_t src_addr, dst_addr;
1852 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1853 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1855 *addr = adev->gmc.gart_start;
1856 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1857 AMDGPU_GPU_PAGE_SIZE;
1859 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1860 while (num_dw & 0x7)
1863 num_bytes = num_pages * 8;
1865 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1869 src_addr = num_dw * 4;
1870 src_addr += job->ibs[0].gpu_addr;
1872 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1873 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1874 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1875 dst_addr, num_bytes);
1877 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1878 WARN_ON(job->ibs[0].length_dw > num_dw);
1880 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
1881 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1882 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1883 &job->ibs[0].ptr[num_dw]);
1887 r = amdgpu_job_submit(job, &adev->mman.entity,
1888 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1892 dma_fence_put(fence);
1897 amdgpu_job_free(job);
1901 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1902 uint64_t dst_offset, uint32_t byte_count,
1903 struct reservation_object *resv,
1904 struct dma_fence **fence, bool direct_submit,
1905 bool vm_needs_flush)
1907 struct amdgpu_device *adev = ring->adev;
1908 struct amdgpu_job *job;
1911 unsigned num_loops, num_dw;
1915 if (direct_submit && !ring->sched.ready) {
1916 DRM_ERROR("Trying to move memory with ring turned off.\n");
1920 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1921 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1922 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1924 /* for IB padding */
1925 while (num_dw & 0x7)
1928 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1932 if (vm_needs_flush) {
1933 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1934 job->vm_needs_flush = true;
1937 r = amdgpu_sync_resv(adev, &job->sync, resv,
1938 AMDGPU_FENCE_OWNER_UNDEFINED,
1941 DRM_ERROR("sync failed (%d).\n", r);
1946 for (i = 0; i < num_loops; i++) {
1947 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1949 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1950 dst_offset, cur_size_in_bytes);
1952 src_offset += cur_size_in_bytes;
1953 dst_offset += cur_size_in_bytes;
1954 byte_count -= cur_size_in_bytes;
1957 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1958 WARN_ON(job->ibs[0].length_dw > num_dw);
1960 r = amdgpu_job_submit_direct(job, ring, fence);
1962 r = amdgpu_job_submit(job, &adev->mman.entity,
1963 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1970 amdgpu_job_free(job);
1971 DRM_ERROR("Error scheduling IBs (%d)\n", r);
1975 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1977 struct reservation_object *resv,
1978 struct dma_fence **fence)
1980 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1981 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1982 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1984 struct drm_mm_node *mm_node;
1985 unsigned long num_pages;
1986 unsigned int num_loops, num_dw;
1988 struct amdgpu_job *job;
1991 if (!adev->mman.buffer_funcs_enabled) {
1992 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1996 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
1997 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2002 num_pages = bo->tbo.num_pages;
2003 mm_node = bo->tbo.mem.mm_node;
2006 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2008 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2009 num_pages -= mm_node->size;
2012 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2014 /* for IB padding */
2017 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2022 r = amdgpu_sync_resv(adev, &job->sync, resv,
2023 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2025 DRM_ERROR("sync failed (%d).\n", r);
2030 num_pages = bo->tbo.num_pages;
2031 mm_node = bo->tbo.mem.mm_node;
2034 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2037 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2038 while (byte_count) {
2039 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2041 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2042 dst_addr, cur_size_in_bytes);
2044 dst_addr += cur_size_in_bytes;
2045 byte_count -= cur_size_in_bytes;
2048 num_pages -= mm_node->size;
2052 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2053 WARN_ON(job->ibs[0].length_dw > num_dw);
2054 r = amdgpu_job_submit(job, &adev->mman.entity,
2055 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2062 amdgpu_job_free(job);
2066 #if defined(CONFIG_DEBUG_FS)
2068 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2070 struct drm_info_node *node = (struct drm_info_node *)m->private;
2071 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2072 struct drm_device *dev = node->minor->dev;
2073 struct amdgpu_device *adev = dev->dev_private;
2074 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2075 struct drm_printer p = drm_seq_file_printer(m);
2077 man->func->debug(man, &p);
2081 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2082 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2083 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2084 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2085 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2086 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2087 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2088 #ifdef CONFIG_SWIOTLB
2089 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2094 * amdgpu_ttm_vram_read - Linear read access to VRAM
2096 * Accesses VRAM via MMIO for debugging purposes.
2098 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2099 size_t size, loff_t *pos)
2101 struct amdgpu_device *adev = file_inode(f)->i_private;
2105 if (size & 0x3 || *pos & 0x3)
2108 if (*pos >= adev->gmc.mc_vram_size)
2112 unsigned long flags;
2115 if (*pos >= adev->gmc.mc_vram_size)
2118 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2119 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2120 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2121 value = RREG32_NO_KIQ(mmMM_DATA);
2122 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2124 r = put_user(value, (uint32_t *)buf);
2138 * amdgpu_ttm_vram_write - Linear write access to VRAM
2140 * Accesses VRAM via MMIO for debugging purposes.
2142 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2143 size_t size, loff_t *pos)
2145 struct amdgpu_device *adev = file_inode(f)->i_private;
2149 if (size & 0x3 || *pos & 0x3)
2152 if (*pos >= adev->gmc.mc_vram_size)
2156 unsigned long flags;
2159 if (*pos >= adev->gmc.mc_vram_size)
2162 r = get_user(value, (uint32_t *)buf);
2166 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2167 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2168 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2169 WREG32_NO_KIQ(mmMM_DATA, value);
2170 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2181 static const struct file_operations amdgpu_ttm_vram_fops = {
2182 .owner = THIS_MODULE,
2183 .read = amdgpu_ttm_vram_read,
2184 .write = amdgpu_ttm_vram_write,
2185 .llseek = default_llseek,
2188 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2191 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2193 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2194 size_t size, loff_t *pos)
2196 struct amdgpu_device *adev = file_inode(f)->i_private;
2201 loff_t p = *pos / PAGE_SIZE;
2202 unsigned off = *pos & ~PAGE_MASK;
2203 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2207 if (p >= adev->gart.num_cpu_pages)
2210 page = adev->gart.pages[p];
2215 r = copy_to_user(buf, ptr, cur_size);
2216 kunmap(adev->gart.pages[p]);
2218 r = clear_user(buf, cur_size);
2232 static const struct file_operations amdgpu_ttm_gtt_fops = {
2233 .owner = THIS_MODULE,
2234 .read = amdgpu_ttm_gtt_read,
2235 .llseek = default_llseek
2241 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2243 * This function is used to read memory that has been mapped to the
2244 * GPU and the known addresses are not physical addresses but instead
2245 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2247 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2248 size_t size, loff_t *pos)
2250 struct amdgpu_device *adev = file_inode(f)->i_private;
2251 struct iommu_domain *dom;
2255 /* retrieve the IOMMU domain if any for this device */
2256 dom = iommu_get_domain_for_dev(adev->dev);
2259 phys_addr_t addr = *pos & PAGE_MASK;
2260 loff_t off = *pos & ~PAGE_MASK;
2261 size_t bytes = PAGE_SIZE - off;
2266 bytes = bytes < size ? bytes : size;
2268 /* Translate the bus address to a physical address. If
2269 * the domain is NULL it means there is no IOMMU active
2270 * and the address translation is the identity
2272 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2274 pfn = addr >> PAGE_SHIFT;
2275 if (!pfn_valid(pfn))
2278 p = pfn_to_page(pfn);
2279 if (p->mapping != adev->mman.bdev.dev_mapping)
2283 r = copy_to_user(buf, ptr + off, bytes);
2297 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2299 * This function is used to write memory that has been mapped to the
2300 * GPU and the known addresses are not physical addresses but instead
2301 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2303 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2304 size_t size, loff_t *pos)
2306 struct amdgpu_device *adev = file_inode(f)->i_private;
2307 struct iommu_domain *dom;
2311 dom = iommu_get_domain_for_dev(adev->dev);
2314 phys_addr_t addr = *pos & PAGE_MASK;
2315 loff_t off = *pos & ~PAGE_MASK;
2316 size_t bytes = PAGE_SIZE - off;
2321 bytes = bytes < size ? bytes : size;
2323 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2325 pfn = addr >> PAGE_SHIFT;
2326 if (!pfn_valid(pfn))
2329 p = pfn_to_page(pfn);
2330 if (p->mapping != adev->mman.bdev.dev_mapping)
2334 r = copy_from_user(ptr + off, buf, bytes);
2347 static const struct file_operations amdgpu_ttm_iomem_fops = {
2348 .owner = THIS_MODULE,
2349 .read = amdgpu_iomem_read,
2350 .write = amdgpu_iomem_write,
2351 .llseek = default_llseek
2354 static const struct {
2356 const struct file_operations *fops;
2358 } ttm_debugfs_entries[] = {
2359 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2360 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2361 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2363 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2368 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2370 #if defined(CONFIG_DEBUG_FS)
2373 struct drm_minor *minor = adev->ddev->primary;
2374 struct dentry *ent, *root = minor->debugfs_root;
2376 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2377 ent = debugfs_create_file(
2378 ttm_debugfs_entries[count].name,
2379 S_IFREG | S_IRUGO, root,
2381 ttm_debugfs_entries[count].fops);
2383 return PTR_ERR(ent);
2384 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2385 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2386 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2387 i_size_write(ent->d_inode, adev->gmc.gart_size);
2388 adev->mman.debugfs_entries[count] = ent;
2391 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2393 #ifdef CONFIG_SWIOTLB
2394 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2398 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2404 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2406 #if defined(CONFIG_DEBUG_FS)
2409 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2410 debugfs_remove(adev->mman.debugfs_entries[i]);