]> Git Repo - linux.git/blob - net/wireless/util.c
mm/page_isolation: unset migratetype directly for non Buddy page
[linux.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <[email protected]>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546                                   const u8 *addr, enum nl80211_iftype iftype,
547                                   u8 data_offset, bool is_amsdu)
548 {
549         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550         struct {
551                 u8 hdr[ETH_ALEN] __aligned(2);
552                 __be16 proto;
553         } payload;
554         struct ethhdr tmp;
555         u16 hdrlen;
556         u8 mesh_flags = 0;
557
558         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559                 return -1;
560
561         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562         if (skb->len < hdrlen + 8)
563                 return -1;
564
565         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566          * header
567          * IEEE 802.11 address fields:
568          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569          *   0     0   DA    SA    BSSID n/a
570          *   0     1   DA    BSSID SA    n/a
571          *   1     0   BSSID SA    DA    n/a
572          *   1     1   RA    TA    DA    SA
573          */
574         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577         if (iftype == NL80211_IFTYPE_MESH_POINT)
578                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580         mesh_flags &= MESH_FLAGS_AE;
581
582         switch (hdr->frame_control &
583                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584         case cpu_to_le16(IEEE80211_FCTL_TODS):
585                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586                              iftype != NL80211_IFTYPE_AP_VLAN &&
587                              iftype != NL80211_IFTYPE_P2P_GO))
588                         return -1;
589                 break;
590         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592                              iftype != NL80211_IFTYPE_AP_VLAN &&
593                              iftype != NL80211_IFTYPE_STATION))
594                         return -1;
595                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596                         if (mesh_flags == MESH_FLAGS_AE_A4)
597                                 return -1;
598                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599                                 skb_copy_bits(skb, hdrlen +
600                                         offsetof(struct ieee80211s_hdr, eaddr1),
601                                         tmp.h_dest, 2 * ETH_ALEN);
602                         }
603                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604                 }
605                 break;
606         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607                 if ((iftype != NL80211_IFTYPE_STATION &&
608                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
609                      iftype != NL80211_IFTYPE_MESH_POINT) ||
610                     (is_multicast_ether_addr(tmp.h_dest) &&
611                      ether_addr_equal(tmp.h_source, addr)))
612                         return -1;
613                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615                                 return -1;
616                         if (mesh_flags == MESH_FLAGS_AE_A4)
617                                 skb_copy_bits(skb, hdrlen +
618                                         offsetof(struct ieee80211s_hdr, eaddr1),
619                                         tmp.h_source, ETH_ALEN);
620                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621                 }
622                 break;
623         case cpu_to_le16(0):
624                 if (iftype != NL80211_IFTYPE_ADHOC &&
625                     iftype != NL80211_IFTYPE_STATION &&
626                     iftype != NL80211_IFTYPE_OCB)
627                                 return -1;
628                 break;
629         }
630
631         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632         tmp.h_proto = payload.proto;
633
634         if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635                     tmp.h_proto != htons(ETH_P_AARP) &&
636                     tmp.h_proto != htons(ETH_P_IPX)) ||
637                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
638                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639                  * replace EtherType */
640                 hdrlen += ETH_ALEN + 2;
641         else
642                 tmp.h_proto = htons(skb->len - hdrlen);
643
644         pskb_pull(skb, hdrlen);
645
646         if (!ehdr)
647                 ehdr = skb_push(skb, sizeof(struct ethhdr));
648         memcpy(ehdr, &tmp, sizeof(tmp));
649
650         return 0;
651 }
652 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
653
654 static void
655 __frame_add_frag(struct sk_buff *skb, struct page *page,
656                  void *ptr, int len, int size)
657 {
658         struct skb_shared_info *sh = skb_shinfo(skb);
659         int page_offset;
660
661         get_page(page);
662         page_offset = ptr - page_address(page);
663         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
664 }
665
666 static void
667 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
668                             int offset, int len)
669 {
670         struct skb_shared_info *sh = skb_shinfo(skb);
671         const skb_frag_t *frag = &sh->frags[0];
672         struct page *frag_page;
673         void *frag_ptr;
674         int frag_len, frag_size;
675         int head_size = skb->len - skb->data_len;
676         int cur_len;
677
678         frag_page = virt_to_head_page(skb->head);
679         frag_ptr = skb->data;
680         frag_size = head_size;
681
682         while (offset >= frag_size) {
683                 offset -= frag_size;
684                 frag_page = skb_frag_page(frag);
685                 frag_ptr = skb_frag_address(frag);
686                 frag_size = skb_frag_size(frag);
687                 frag++;
688         }
689
690         frag_ptr += offset;
691         frag_len = frag_size - offset;
692
693         cur_len = min(len, frag_len);
694
695         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
696         len -= cur_len;
697
698         while (len > 0) {
699                 frag_len = skb_frag_size(frag);
700                 cur_len = min(len, frag_len);
701                 __frame_add_frag(frame, skb_frag_page(frag),
702                                  skb_frag_address(frag), cur_len, frag_len);
703                 len -= cur_len;
704                 frag++;
705         }
706 }
707
708 static struct sk_buff *
709 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
710                        int offset, int len, bool reuse_frag)
711 {
712         struct sk_buff *frame;
713         int cur_len = len;
714
715         if (skb->len - offset < len)
716                 return NULL;
717
718         /*
719          * When reusing framents, copy some data to the head to simplify
720          * ethernet header handling and speed up protocol header processing
721          * in the stack later.
722          */
723         if (reuse_frag)
724                 cur_len = min_t(int, len, 32);
725
726         /*
727          * Allocate and reserve two bytes more for payload
728          * alignment since sizeof(struct ethhdr) is 14.
729          */
730         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731         if (!frame)
732                 return NULL;
733
734         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
735         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
736
737         len -= cur_len;
738         if (!len)
739                 return frame;
740
741         offset += cur_len;
742         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
743
744         return frame;
745 }
746
747 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
748                               const u8 *addr, enum nl80211_iftype iftype,
749                               const unsigned int extra_headroom,
750                               const u8 *check_da, const u8 *check_sa)
751 {
752         unsigned int hlen = ALIGN(extra_headroom, 4);
753         struct sk_buff *frame = NULL;
754         u16 ethertype;
755         u8 *payload;
756         int offset = 0, remaining;
757         struct ethhdr eth;
758         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
759         bool reuse_skb = false;
760         bool last = false;
761
762         while (!last) {
763                 unsigned int subframe_len;
764                 int len;
765                 u8 padding;
766
767                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
768                 len = ntohs(eth.h_proto);
769                 subframe_len = sizeof(struct ethhdr) + len;
770                 padding = (4 - subframe_len) & 0x3;
771
772                 /* the last MSDU has no padding */
773                 remaining = skb->len - offset;
774                 if (subframe_len > remaining)
775                         goto purge;
776                 /* mitigate A-MSDU aggregation injection attacks */
777                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
778                         goto purge;
779
780                 offset += sizeof(struct ethhdr);
781                 last = remaining <= subframe_len + padding;
782
783                 /* FIXME: should we really accept multicast DA? */
784                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
785                      !ether_addr_equal(check_da, eth.h_dest)) ||
786                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
787                         offset += len + padding;
788                         continue;
789                 }
790
791                 /* reuse skb for the last subframe */
792                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
793                         skb_pull(skb, offset);
794                         frame = skb;
795                         reuse_skb = true;
796                 } else {
797                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
798                                                        reuse_frag);
799                         if (!frame)
800                                 goto purge;
801
802                         offset += len + padding;
803                 }
804
805                 skb_reset_network_header(frame);
806                 frame->dev = skb->dev;
807                 frame->priority = skb->priority;
808
809                 payload = frame->data;
810                 ethertype = (payload[6] << 8) | payload[7];
811                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
812                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
813                            ether_addr_equal(payload, bridge_tunnel_header))) {
814                         eth.h_proto = htons(ethertype);
815                         skb_pull(frame, ETH_ALEN + 2);
816                 }
817
818                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
819                 __skb_queue_tail(list, frame);
820         }
821
822         if (!reuse_skb)
823                 dev_kfree_skb(skb);
824
825         return;
826
827  purge:
828         __skb_queue_purge(list);
829         dev_kfree_skb(skb);
830 }
831 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
832
833 /* Given a data frame determine the 802.1p/1d tag to use. */
834 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
835                                     struct cfg80211_qos_map *qos_map)
836 {
837         unsigned int dscp;
838         unsigned char vlan_priority;
839         unsigned int ret;
840
841         /* skb->priority values from 256->263 are magic values to
842          * directly indicate a specific 802.1d priority.  This is used
843          * to allow 802.1d priority to be passed directly in from VLAN
844          * tags, etc.
845          */
846         if (skb->priority >= 256 && skb->priority <= 263) {
847                 ret = skb->priority - 256;
848                 goto out;
849         }
850
851         if (skb_vlan_tag_present(skb)) {
852                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
853                         >> VLAN_PRIO_SHIFT;
854                 if (vlan_priority > 0) {
855                         ret = vlan_priority;
856                         goto out;
857                 }
858         }
859
860         switch (skb->protocol) {
861         case htons(ETH_P_IP):
862                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
863                 break;
864         case htons(ETH_P_IPV6):
865                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
866                 break;
867         case htons(ETH_P_MPLS_UC):
868         case htons(ETH_P_MPLS_MC): {
869                 struct mpls_label mpls_tmp, *mpls;
870
871                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
872                                           sizeof(*mpls), &mpls_tmp);
873                 if (!mpls)
874                         return 0;
875
876                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
877                         >> MPLS_LS_TC_SHIFT;
878                 goto out;
879         }
880         case htons(ETH_P_80221):
881                 /* 802.21 is always network control traffic */
882                 return 7;
883         default:
884                 return 0;
885         }
886
887         if (qos_map) {
888                 unsigned int i, tmp_dscp = dscp >> 2;
889
890                 for (i = 0; i < qos_map->num_des; i++) {
891                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
892                                 ret = qos_map->dscp_exception[i].up;
893                                 goto out;
894                         }
895                 }
896
897                 for (i = 0; i < 8; i++) {
898                         if (tmp_dscp >= qos_map->up[i].low &&
899                             tmp_dscp <= qos_map->up[i].high) {
900                                 ret = i;
901                                 goto out;
902                         }
903                 }
904         }
905
906         ret = dscp >> 5;
907 out:
908         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
909 }
910 EXPORT_SYMBOL(cfg80211_classify8021d);
911
912 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
913 {
914         const struct cfg80211_bss_ies *ies;
915
916         ies = rcu_dereference(bss->ies);
917         if (!ies)
918                 return NULL;
919
920         return cfg80211_find_elem(id, ies->data, ies->len);
921 }
922 EXPORT_SYMBOL(ieee80211_bss_get_elem);
923
924 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
925 {
926         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
927         struct net_device *dev = wdev->netdev;
928         int i;
929
930         if (!wdev->connect_keys)
931                 return;
932
933         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
934                 if (!wdev->connect_keys->params[i].cipher)
935                         continue;
936                 if (rdev_add_key(rdev, dev, i, false, NULL,
937                                  &wdev->connect_keys->params[i])) {
938                         netdev_err(dev, "failed to set key %d\n", i);
939                         continue;
940                 }
941                 if (wdev->connect_keys->def == i &&
942                     rdev_set_default_key(rdev, dev, i, true, true)) {
943                         netdev_err(dev, "failed to set defkey %d\n", i);
944                         continue;
945                 }
946         }
947
948         kfree_sensitive(wdev->connect_keys);
949         wdev->connect_keys = NULL;
950 }
951
952 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
953 {
954         struct cfg80211_event *ev;
955         unsigned long flags;
956
957         spin_lock_irqsave(&wdev->event_lock, flags);
958         while (!list_empty(&wdev->event_list)) {
959                 ev = list_first_entry(&wdev->event_list,
960                                       struct cfg80211_event, list);
961                 list_del(&ev->list);
962                 spin_unlock_irqrestore(&wdev->event_lock, flags);
963
964                 wdev_lock(wdev);
965                 switch (ev->type) {
966                 case EVENT_CONNECT_RESULT:
967                         __cfg80211_connect_result(
968                                 wdev->netdev,
969                                 &ev->cr,
970                                 ev->cr.status == WLAN_STATUS_SUCCESS);
971                         break;
972                 case EVENT_ROAMED:
973                         __cfg80211_roamed(wdev, &ev->rm);
974                         break;
975                 case EVENT_DISCONNECTED:
976                         __cfg80211_disconnected(wdev->netdev,
977                                                 ev->dc.ie, ev->dc.ie_len,
978                                                 ev->dc.reason,
979                                                 !ev->dc.locally_generated);
980                         break;
981                 case EVENT_IBSS_JOINED:
982                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
983                                                ev->ij.channel);
984                         break;
985                 case EVENT_STOPPED:
986                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
987                         break;
988                 case EVENT_PORT_AUTHORIZED:
989                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
990                         break;
991                 }
992                 wdev_unlock(wdev);
993
994                 kfree(ev);
995
996                 spin_lock_irqsave(&wdev->event_lock, flags);
997         }
998         spin_unlock_irqrestore(&wdev->event_lock, flags);
999 }
1000
1001 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1002 {
1003         struct wireless_dev *wdev;
1004
1005         lockdep_assert_held(&rdev->wiphy.mtx);
1006
1007         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1008                 cfg80211_process_wdev_events(wdev);
1009 }
1010
1011 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1012                           struct net_device *dev, enum nl80211_iftype ntype,
1013                           struct vif_params *params)
1014 {
1015         int err;
1016         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1017
1018         lockdep_assert_held(&rdev->wiphy.mtx);
1019
1020         /* don't support changing VLANs, you just re-create them */
1021         if (otype == NL80211_IFTYPE_AP_VLAN)
1022                 return -EOPNOTSUPP;
1023
1024         /* cannot change into P2P device or NAN */
1025         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1026             ntype == NL80211_IFTYPE_NAN)
1027                 return -EOPNOTSUPP;
1028
1029         if (!rdev->ops->change_virtual_intf ||
1030             !(rdev->wiphy.interface_modes & (1 << ntype)))
1031                 return -EOPNOTSUPP;
1032
1033         if (ntype != otype) {
1034                 /* if it's part of a bridge, reject changing type to station/ibss */
1035                 if (netif_is_bridge_port(dev) &&
1036                     (ntype == NL80211_IFTYPE_ADHOC ||
1037                      ntype == NL80211_IFTYPE_STATION ||
1038                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1039                         return -EBUSY;
1040
1041                 dev->ieee80211_ptr->use_4addr = false;
1042                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1043                 wdev_lock(dev->ieee80211_ptr);
1044                 rdev_set_qos_map(rdev, dev, NULL);
1045                 wdev_unlock(dev->ieee80211_ptr);
1046
1047                 switch (otype) {
1048                 case NL80211_IFTYPE_AP:
1049                 case NL80211_IFTYPE_P2P_GO:
1050                         cfg80211_stop_ap(rdev, dev, true);
1051                         break;
1052                 case NL80211_IFTYPE_ADHOC:
1053                         cfg80211_leave_ibss(rdev, dev, false);
1054                         break;
1055                 case NL80211_IFTYPE_STATION:
1056                 case NL80211_IFTYPE_P2P_CLIENT:
1057                         wdev_lock(dev->ieee80211_ptr);
1058                         cfg80211_disconnect(rdev, dev,
1059                                             WLAN_REASON_DEAUTH_LEAVING, true);
1060                         wdev_unlock(dev->ieee80211_ptr);
1061                         break;
1062                 case NL80211_IFTYPE_MESH_POINT:
1063                         /* mesh should be handled? */
1064                         break;
1065                 case NL80211_IFTYPE_OCB:
1066                         cfg80211_leave_ocb(rdev, dev);
1067                         break;
1068                 default:
1069                         break;
1070                 }
1071
1072                 cfg80211_process_rdev_events(rdev);
1073                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1074         }
1075
1076         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1077
1078         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1079
1080         if (!err && params && params->use_4addr != -1)
1081                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1082
1083         if (!err) {
1084                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1085                 switch (ntype) {
1086                 case NL80211_IFTYPE_STATION:
1087                         if (dev->ieee80211_ptr->use_4addr)
1088                                 break;
1089                         fallthrough;
1090                 case NL80211_IFTYPE_OCB:
1091                 case NL80211_IFTYPE_P2P_CLIENT:
1092                 case NL80211_IFTYPE_ADHOC:
1093                         dev->priv_flags |= IFF_DONT_BRIDGE;
1094                         break;
1095                 case NL80211_IFTYPE_P2P_GO:
1096                 case NL80211_IFTYPE_AP:
1097                 case NL80211_IFTYPE_AP_VLAN:
1098                 case NL80211_IFTYPE_MESH_POINT:
1099                         /* bridging OK */
1100                         break;
1101                 case NL80211_IFTYPE_MONITOR:
1102                         /* monitor can't bridge anyway */
1103                         break;
1104                 case NL80211_IFTYPE_UNSPECIFIED:
1105                 case NUM_NL80211_IFTYPES:
1106                         /* not happening */
1107                         break;
1108                 case NL80211_IFTYPE_P2P_DEVICE:
1109                 case NL80211_IFTYPE_WDS:
1110                 case NL80211_IFTYPE_NAN:
1111                         WARN_ON(1);
1112                         break;
1113                 }
1114         }
1115
1116         if (!err && ntype != otype && netif_running(dev)) {
1117                 cfg80211_update_iface_num(rdev, ntype, 1);
1118                 cfg80211_update_iface_num(rdev, otype, -1);
1119         }
1120
1121         return err;
1122 }
1123
1124 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1125 {
1126         int modulation, streams, bitrate;
1127
1128         /* the formula below does only work for MCS values smaller than 32 */
1129         if (WARN_ON_ONCE(rate->mcs >= 32))
1130                 return 0;
1131
1132         modulation = rate->mcs & 7;
1133         streams = (rate->mcs >> 3) + 1;
1134
1135         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1136
1137         if (modulation < 4)
1138                 bitrate *= (modulation + 1);
1139         else if (modulation == 4)
1140                 bitrate *= (modulation + 2);
1141         else
1142                 bitrate *= (modulation + 3);
1143
1144         bitrate *= streams;
1145
1146         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1147                 bitrate = (bitrate / 9) * 10;
1148
1149         /* do NOT round down here */
1150         return (bitrate + 50000) / 100000;
1151 }
1152
1153 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1154 {
1155         static const u32 __mcs2bitrate[] = {
1156                 /* control PHY */
1157                 [0] =   275,
1158                 /* SC PHY */
1159                 [1] =  3850,
1160                 [2] =  7700,
1161                 [3] =  9625,
1162                 [4] = 11550,
1163                 [5] = 12512, /* 1251.25 mbps */
1164                 [6] = 15400,
1165                 [7] = 19250,
1166                 [8] = 23100,
1167                 [9] = 25025,
1168                 [10] = 30800,
1169                 [11] = 38500,
1170                 [12] = 46200,
1171                 /* OFDM PHY */
1172                 [13] =  6930,
1173                 [14] =  8662, /* 866.25 mbps */
1174                 [15] = 13860,
1175                 [16] = 17325,
1176                 [17] = 20790,
1177                 [18] = 27720,
1178                 [19] = 34650,
1179                 [20] = 41580,
1180                 [21] = 45045,
1181                 [22] = 51975,
1182                 [23] = 62370,
1183                 [24] = 67568, /* 6756.75 mbps */
1184                 /* LP-SC PHY */
1185                 [25] =  6260,
1186                 [26] =  8340,
1187                 [27] = 11120,
1188                 [28] = 12510,
1189                 [29] = 16680,
1190                 [30] = 22240,
1191                 [31] = 25030,
1192         };
1193
1194         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1195                 return 0;
1196
1197         return __mcs2bitrate[rate->mcs];
1198 }
1199
1200 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1201 {
1202         static const u32 __mcs2bitrate[] = {
1203                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1204                 [7 - 6] = 50050, /* MCS 12.1 */
1205                 [8 - 6] = 53900,
1206                 [9 - 6] = 57750,
1207                 [10 - 6] = 63900,
1208                 [11 - 6] = 75075,
1209                 [12 - 6] = 80850,
1210         };
1211
1212         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1213         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1214                 return 0;
1215
1216         return __mcs2bitrate[rate->mcs - 6];
1217 }
1218
1219 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1220 {
1221         static const u32 __mcs2bitrate[] = {
1222                 /* control PHY */
1223                 [0] =   275,
1224                 /* SC PHY */
1225                 [1] =  3850,
1226                 [2] =  7700,
1227                 [3] =  9625,
1228                 [4] = 11550,
1229                 [5] = 12512, /* 1251.25 mbps */
1230                 [6] = 13475,
1231                 [7] = 15400,
1232                 [8] = 19250,
1233                 [9] = 23100,
1234                 [10] = 25025,
1235                 [11] = 26950,
1236                 [12] = 30800,
1237                 [13] = 38500,
1238                 [14] = 46200,
1239                 [15] = 50050,
1240                 [16] = 53900,
1241                 [17] = 57750,
1242                 [18] = 69300,
1243                 [19] = 75075,
1244                 [20] = 80850,
1245         };
1246
1247         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1248                 return 0;
1249
1250         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1251 }
1252
1253 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1254 {
1255         static const u32 base[4][12] = {
1256                 {   6500000,
1257                    13000000,
1258                    19500000,
1259                    26000000,
1260                    39000000,
1261                    52000000,
1262                    58500000,
1263                    65000000,
1264                    78000000,
1265                 /* not in the spec, but some devices use this: */
1266                    86700000,
1267                    97500000,
1268                   108300000,
1269                 },
1270                 {  13500000,
1271                    27000000,
1272                    40500000,
1273                    54000000,
1274                    81000000,
1275                   108000000,
1276                   121500000,
1277                   135000000,
1278                   162000000,
1279                   180000000,
1280                   202500000,
1281                   225000000,
1282                 },
1283                 {  29300000,
1284                    58500000,
1285                    87800000,
1286                   117000000,
1287                   175500000,
1288                   234000000,
1289                   263300000,
1290                   292500000,
1291                   351000000,
1292                   390000000,
1293                   438800000,
1294                   487500000,
1295                 },
1296                 {  58500000,
1297                   117000000,
1298                   175500000,
1299                   234000000,
1300                   351000000,
1301                   468000000,
1302                   526500000,
1303                   585000000,
1304                   702000000,
1305                   780000000,
1306                   877500000,
1307                   975000000,
1308                 },
1309         };
1310         u32 bitrate;
1311         int idx;
1312
1313         if (rate->mcs > 11)
1314                 goto warn;
1315
1316         switch (rate->bw) {
1317         case RATE_INFO_BW_160:
1318                 idx = 3;
1319                 break;
1320         case RATE_INFO_BW_80:
1321                 idx = 2;
1322                 break;
1323         case RATE_INFO_BW_40:
1324                 idx = 1;
1325                 break;
1326         case RATE_INFO_BW_5:
1327         case RATE_INFO_BW_10:
1328         default:
1329                 goto warn;
1330         case RATE_INFO_BW_20:
1331                 idx = 0;
1332         }
1333
1334         bitrate = base[idx][rate->mcs];
1335         bitrate *= rate->nss;
1336
1337         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1338                 bitrate = (bitrate / 9) * 10;
1339
1340         /* do NOT round down here */
1341         return (bitrate + 50000) / 100000;
1342  warn:
1343         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1344                   rate->bw, rate->mcs, rate->nss);
1345         return 0;
1346 }
1347
1348 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1349 {
1350 #define SCALE 6144
1351         u32 mcs_divisors[14] = {
1352                 102399, /* 16.666666... */
1353                  51201, /*  8.333333... */
1354                  34134, /*  5.555555... */
1355                  25599, /*  4.166666... */
1356                  17067, /*  2.777777... */
1357                  12801, /*  2.083333... */
1358                  11769, /*  1.851851... */
1359                  10239, /*  1.666666... */
1360                   8532, /*  1.388888... */
1361                   7680, /*  1.250000... */
1362                   6828, /*  1.111111... */
1363                   6144, /*  1.000000... */
1364                   5690, /*  0.926106... */
1365                   5120, /*  0.833333... */
1366         };
1367         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1368         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1369         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1370         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1371         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1372         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1373         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1374         u64 tmp;
1375         u32 result;
1376
1377         if (WARN_ON_ONCE(rate->mcs > 13))
1378                 return 0;
1379
1380         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1381                 return 0;
1382         if (WARN_ON_ONCE(rate->he_ru_alloc >
1383                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1384                 return 0;
1385         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1386                 return 0;
1387
1388         if (rate->bw == RATE_INFO_BW_160)
1389                 result = rates_160M[rate->he_gi];
1390         else if (rate->bw == RATE_INFO_BW_80 ||
1391                  (rate->bw == RATE_INFO_BW_HE_RU &&
1392                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1393                 result = rates_969[rate->he_gi];
1394         else if (rate->bw == RATE_INFO_BW_40 ||
1395                  (rate->bw == RATE_INFO_BW_HE_RU &&
1396                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1397                 result = rates_484[rate->he_gi];
1398         else if (rate->bw == RATE_INFO_BW_20 ||
1399                  (rate->bw == RATE_INFO_BW_HE_RU &&
1400                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1401                 result = rates_242[rate->he_gi];
1402         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1403                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1404                 result = rates_106[rate->he_gi];
1405         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1406                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1407                 result = rates_52[rate->he_gi];
1408         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1409                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1410                 result = rates_26[rate->he_gi];
1411         else {
1412                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1413                      rate->bw, rate->he_ru_alloc);
1414                 return 0;
1415         }
1416
1417         /* now scale to the appropriate MCS */
1418         tmp = result;
1419         tmp *= SCALE;
1420         do_div(tmp, mcs_divisors[rate->mcs]);
1421         result = tmp;
1422
1423         /* and take NSS, DCM into account */
1424         result = (result * rate->nss) / 8;
1425         if (rate->he_dcm)
1426                 result /= 2;
1427
1428         return result / 10000;
1429 }
1430
1431 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1432 {
1433         if (rate->flags & RATE_INFO_FLAGS_MCS)
1434                 return cfg80211_calculate_bitrate_ht(rate);
1435         if (rate->flags & RATE_INFO_FLAGS_DMG)
1436                 return cfg80211_calculate_bitrate_dmg(rate);
1437         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1438                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1439         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1440                 return cfg80211_calculate_bitrate_edmg(rate);
1441         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1442                 return cfg80211_calculate_bitrate_vht(rate);
1443         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1444                 return cfg80211_calculate_bitrate_he(rate);
1445
1446         return rate->legacy;
1447 }
1448 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1449
1450 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1451                           enum ieee80211_p2p_attr_id attr,
1452                           u8 *buf, unsigned int bufsize)
1453 {
1454         u8 *out = buf;
1455         u16 attr_remaining = 0;
1456         bool desired_attr = false;
1457         u16 desired_len = 0;
1458
1459         while (len > 0) {
1460                 unsigned int iedatalen;
1461                 unsigned int copy;
1462                 const u8 *iedata;
1463
1464                 if (len < 2)
1465                         return -EILSEQ;
1466                 iedatalen = ies[1];
1467                 if (iedatalen + 2 > len)
1468                         return -EILSEQ;
1469
1470                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1471                         goto cont;
1472
1473                 if (iedatalen < 4)
1474                         goto cont;
1475
1476                 iedata = ies + 2;
1477
1478                 /* check WFA OUI, P2P subtype */
1479                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1480                     iedata[2] != 0x9a || iedata[3] != 0x09)
1481                         goto cont;
1482
1483                 iedatalen -= 4;
1484                 iedata += 4;
1485
1486                 /* check attribute continuation into this IE */
1487                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1488                 if (copy && desired_attr) {
1489                         desired_len += copy;
1490                         if (out) {
1491                                 memcpy(out, iedata, min(bufsize, copy));
1492                                 out += min(bufsize, copy);
1493                                 bufsize -= min(bufsize, copy);
1494                         }
1495
1496
1497                         if (copy == attr_remaining)
1498                                 return desired_len;
1499                 }
1500
1501                 attr_remaining -= copy;
1502                 if (attr_remaining)
1503                         goto cont;
1504
1505                 iedatalen -= copy;
1506                 iedata += copy;
1507
1508                 while (iedatalen > 0) {
1509                         u16 attr_len;
1510
1511                         /* P2P attribute ID & size must fit */
1512                         if (iedatalen < 3)
1513                                 return -EILSEQ;
1514                         desired_attr = iedata[0] == attr;
1515                         attr_len = get_unaligned_le16(iedata + 1);
1516                         iedatalen -= 3;
1517                         iedata += 3;
1518
1519                         copy = min_t(unsigned int, attr_len, iedatalen);
1520
1521                         if (desired_attr) {
1522                                 desired_len += copy;
1523                                 if (out) {
1524                                         memcpy(out, iedata, min(bufsize, copy));
1525                                         out += min(bufsize, copy);
1526                                         bufsize -= min(bufsize, copy);
1527                                 }
1528
1529                                 if (copy == attr_len)
1530                                         return desired_len;
1531                         }
1532
1533                         iedata += copy;
1534                         iedatalen -= copy;
1535                         attr_remaining = attr_len - copy;
1536                 }
1537
1538  cont:
1539                 len -= ies[1] + 2;
1540                 ies += ies[1] + 2;
1541         }
1542
1543         if (attr_remaining && desired_attr)
1544                 return -EILSEQ;
1545
1546         return -ENOENT;
1547 }
1548 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1549
1550 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1551 {
1552         int i;
1553
1554         /* Make sure array values are legal */
1555         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1556                 return false;
1557
1558         i = 0;
1559         while (i < n_ids) {
1560                 if (ids[i] == WLAN_EID_EXTENSION) {
1561                         if (id_ext && (ids[i + 1] == id))
1562                                 return true;
1563
1564                         i += 2;
1565                         continue;
1566                 }
1567
1568                 if (ids[i] == id && !id_ext)
1569                         return true;
1570
1571                 i++;
1572         }
1573         return false;
1574 }
1575
1576 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1577 {
1578         /* we assume a validly formed IEs buffer */
1579         u8 len = ies[pos + 1];
1580
1581         pos += 2 + len;
1582
1583         /* the IE itself must have 255 bytes for fragments to follow */
1584         if (len < 255)
1585                 return pos;
1586
1587         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1588                 len = ies[pos + 1];
1589                 pos += 2 + len;
1590         }
1591
1592         return pos;
1593 }
1594
1595 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1596                               const u8 *ids, int n_ids,
1597                               const u8 *after_ric, int n_after_ric,
1598                               size_t offset)
1599 {
1600         size_t pos = offset;
1601
1602         while (pos < ielen) {
1603                 u8 ext = 0;
1604
1605                 if (ies[pos] == WLAN_EID_EXTENSION)
1606                         ext = 2;
1607                 if ((pos + ext) >= ielen)
1608                         break;
1609
1610                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1611                                           ies[pos] == WLAN_EID_EXTENSION))
1612                         break;
1613
1614                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1615                         pos = skip_ie(ies, ielen, pos);
1616
1617                         while (pos < ielen) {
1618                                 if (ies[pos] == WLAN_EID_EXTENSION)
1619                                         ext = 2;
1620                                 else
1621                                         ext = 0;
1622
1623                                 if ((pos + ext) >= ielen)
1624                                         break;
1625
1626                                 if (!ieee80211_id_in_list(after_ric,
1627                                                           n_after_ric,
1628                                                           ies[pos + ext],
1629                                                           ext == 2))
1630                                         pos = skip_ie(ies, ielen, pos);
1631                                 else
1632                                         break;
1633                         }
1634                 } else {
1635                         pos = skip_ie(ies, ielen, pos);
1636                 }
1637         }
1638
1639         return pos;
1640 }
1641 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1642
1643 bool ieee80211_operating_class_to_band(u8 operating_class,
1644                                        enum nl80211_band *band)
1645 {
1646         switch (operating_class) {
1647         case 112:
1648         case 115 ... 127:
1649         case 128 ... 130:
1650                 *band = NL80211_BAND_5GHZ;
1651                 return true;
1652         case 131 ... 135:
1653                 *band = NL80211_BAND_6GHZ;
1654                 return true;
1655         case 81:
1656         case 82:
1657         case 83:
1658         case 84:
1659                 *band = NL80211_BAND_2GHZ;
1660                 return true;
1661         case 180:
1662                 *band = NL80211_BAND_60GHZ;
1663                 return true;
1664         }
1665
1666         return false;
1667 }
1668 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1669
1670 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1671                                           u8 *op_class)
1672 {
1673         u8 vht_opclass;
1674         u32 freq = chandef->center_freq1;
1675
1676         if (freq >= 2412 && freq <= 2472) {
1677                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1678                         return false;
1679
1680                 /* 2.407 GHz, channels 1..13 */
1681                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1682                         if (freq > chandef->chan->center_freq)
1683                                 *op_class = 83; /* HT40+ */
1684                         else
1685                                 *op_class = 84; /* HT40- */
1686                 } else {
1687                         *op_class = 81;
1688                 }
1689
1690                 return true;
1691         }
1692
1693         if (freq == 2484) {
1694                 /* channel 14 is only for IEEE 802.11b */
1695                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1696                         return false;
1697
1698                 *op_class = 82; /* channel 14 */
1699                 return true;
1700         }
1701
1702         switch (chandef->width) {
1703         case NL80211_CHAN_WIDTH_80:
1704                 vht_opclass = 128;
1705                 break;
1706         case NL80211_CHAN_WIDTH_160:
1707                 vht_opclass = 129;
1708                 break;
1709         case NL80211_CHAN_WIDTH_80P80:
1710                 vht_opclass = 130;
1711                 break;
1712         case NL80211_CHAN_WIDTH_10:
1713         case NL80211_CHAN_WIDTH_5:
1714                 return false; /* unsupported for now */
1715         default:
1716                 vht_opclass = 0;
1717                 break;
1718         }
1719
1720         /* 5 GHz, channels 36..48 */
1721         if (freq >= 5180 && freq <= 5240) {
1722                 if (vht_opclass) {
1723                         *op_class = vht_opclass;
1724                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1725                         if (freq > chandef->chan->center_freq)
1726                                 *op_class = 116;
1727                         else
1728                                 *op_class = 117;
1729                 } else {
1730                         *op_class = 115;
1731                 }
1732
1733                 return true;
1734         }
1735
1736         /* 5 GHz, channels 52..64 */
1737         if (freq >= 5260 && freq <= 5320) {
1738                 if (vht_opclass) {
1739                         *op_class = vht_opclass;
1740                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1741                         if (freq > chandef->chan->center_freq)
1742                                 *op_class = 119;
1743                         else
1744                                 *op_class = 120;
1745                 } else {
1746                         *op_class = 118;
1747                 }
1748
1749                 return true;
1750         }
1751
1752         /* 5 GHz, channels 100..144 */
1753         if (freq >= 5500 && freq <= 5720) {
1754                 if (vht_opclass) {
1755                         *op_class = vht_opclass;
1756                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1757                         if (freq > chandef->chan->center_freq)
1758                                 *op_class = 122;
1759                         else
1760                                 *op_class = 123;
1761                 } else {
1762                         *op_class = 121;
1763                 }
1764
1765                 return true;
1766         }
1767
1768         /* 5 GHz, channels 149..169 */
1769         if (freq >= 5745 && freq <= 5845) {
1770                 if (vht_opclass) {
1771                         *op_class = vht_opclass;
1772                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1773                         if (freq > chandef->chan->center_freq)
1774                                 *op_class = 126;
1775                         else
1776                                 *op_class = 127;
1777                 } else if (freq <= 5805) {
1778                         *op_class = 124;
1779                 } else {
1780                         *op_class = 125;
1781                 }
1782
1783                 return true;
1784         }
1785
1786         /* 56.16 GHz, channel 1..4 */
1787         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1788                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1789                         return false;
1790
1791                 *op_class = 180;
1792                 return true;
1793         }
1794
1795         /* not supported yet */
1796         return false;
1797 }
1798 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1799
1800 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1801                                        u32 *beacon_int_gcd,
1802                                        bool *beacon_int_different)
1803 {
1804         struct wireless_dev *wdev;
1805
1806         *beacon_int_gcd = 0;
1807         *beacon_int_different = false;
1808
1809         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1810                 if (!wdev->beacon_interval)
1811                         continue;
1812
1813                 if (!*beacon_int_gcd) {
1814                         *beacon_int_gcd = wdev->beacon_interval;
1815                         continue;
1816                 }
1817
1818                 if (wdev->beacon_interval == *beacon_int_gcd)
1819                         continue;
1820
1821                 *beacon_int_different = true;
1822                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1823         }
1824
1825         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1826                 if (*beacon_int_gcd)
1827                         *beacon_int_different = true;
1828                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1829         }
1830 }
1831
1832 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1833                                  enum nl80211_iftype iftype, u32 beacon_int)
1834 {
1835         /*
1836          * This is just a basic pre-condition check; if interface combinations
1837          * are possible the driver must already be checking those with a call
1838          * to cfg80211_check_combinations(), in which case we'll validate more
1839          * through the cfg80211_calculate_bi_data() call and code in
1840          * cfg80211_iter_combinations().
1841          */
1842
1843         if (beacon_int < 10 || beacon_int > 10000)
1844                 return -EINVAL;
1845
1846         return 0;
1847 }
1848
1849 int cfg80211_iter_combinations(struct wiphy *wiphy,
1850                                struct iface_combination_params *params,
1851                                void (*iter)(const struct ieee80211_iface_combination *c,
1852                                             void *data),
1853                                void *data)
1854 {
1855         const struct ieee80211_regdomain *regdom;
1856         enum nl80211_dfs_regions region = 0;
1857         int i, j, iftype;
1858         int num_interfaces = 0;
1859         u32 used_iftypes = 0;
1860         u32 beacon_int_gcd;
1861         bool beacon_int_different;
1862
1863         /*
1864          * This is a bit strange, since the iteration used to rely only on
1865          * the data given by the driver, but here it now relies on context,
1866          * in form of the currently operating interfaces.
1867          * This is OK for all current users, and saves us from having to
1868          * push the GCD calculations into all the drivers.
1869          * In the future, this should probably rely more on data that's in
1870          * cfg80211 already - the only thing not would appear to be any new
1871          * interfaces (while being brought up) and channel/radar data.
1872          */
1873         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1874                                    &beacon_int_gcd, &beacon_int_different);
1875
1876         if (params->radar_detect) {
1877                 rcu_read_lock();
1878                 regdom = rcu_dereference(cfg80211_regdomain);
1879                 if (regdom)
1880                         region = regdom->dfs_region;
1881                 rcu_read_unlock();
1882         }
1883
1884         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1885                 num_interfaces += params->iftype_num[iftype];
1886                 if (params->iftype_num[iftype] > 0 &&
1887                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1888                         used_iftypes |= BIT(iftype);
1889         }
1890
1891         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1892                 const struct ieee80211_iface_combination *c;
1893                 struct ieee80211_iface_limit *limits;
1894                 u32 all_iftypes = 0;
1895
1896                 c = &wiphy->iface_combinations[i];
1897
1898                 if (num_interfaces > c->max_interfaces)
1899                         continue;
1900                 if (params->num_different_channels > c->num_different_channels)
1901                         continue;
1902
1903                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1904                                  GFP_KERNEL);
1905                 if (!limits)
1906                         return -ENOMEM;
1907
1908                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1909                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1910                                 continue;
1911                         for (j = 0; j < c->n_limits; j++) {
1912                                 all_iftypes |= limits[j].types;
1913                                 if (!(limits[j].types & BIT(iftype)))
1914                                         continue;
1915                                 if (limits[j].max < params->iftype_num[iftype])
1916                                         goto cont;
1917                                 limits[j].max -= params->iftype_num[iftype];
1918                         }
1919                 }
1920
1921                 if (params->radar_detect !=
1922                         (c->radar_detect_widths & params->radar_detect))
1923                         goto cont;
1924
1925                 if (params->radar_detect && c->radar_detect_regions &&
1926                     !(c->radar_detect_regions & BIT(region)))
1927                         goto cont;
1928
1929                 /* Finally check that all iftypes that we're currently
1930                  * using are actually part of this combination. If they
1931                  * aren't then we can't use this combination and have
1932                  * to continue to the next.
1933                  */
1934                 if ((all_iftypes & used_iftypes) != used_iftypes)
1935                         goto cont;
1936
1937                 if (beacon_int_gcd) {
1938                         if (c->beacon_int_min_gcd &&
1939                             beacon_int_gcd < c->beacon_int_min_gcd)
1940                                 goto cont;
1941                         if (!c->beacon_int_min_gcd && beacon_int_different)
1942                                 goto cont;
1943                 }
1944
1945                 /* This combination covered all interface types and
1946                  * supported the requested numbers, so we're good.
1947                  */
1948
1949                 (*iter)(c, data);
1950  cont:
1951                 kfree(limits);
1952         }
1953
1954         return 0;
1955 }
1956 EXPORT_SYMBOL(cfg80211_iter_combinations);
1957
1958 static void
1959 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1960                           void *data)
1961 {
1962         int *num = data;
1963         (*num)++;
1964 }
1965
1966 int cfg80211_check_combinations(struct wiphy *wiphy,
1967                                 struct iface_combination_params *params)
1968 {
1969         int err, num = 0;
1970
1971         err = cfg80211_iter_combinations(wiphy, params,
1972                                          cfg80211_iter_sum_ifcombs, &num);
1973         if (err)
1974                 return err;
1975         if (num == 0)
1976                 return -EBUSY;
1977
1978         return 0;
1979 }
1980 EXPORT_SYMBOL(cfg80211_check_combinations);
1981
1982 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1983                            const u8 *rates, unsigned int n_rates,
1984                            u32 *mask)
1985 {
1986         int i, j;
1987
1988         if (!sband)
1989                 return -EINVAL;
1990
1991         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1992                 return -EINVAL;
1993
1994         *mask = 0;
1995
1996         for (i = 0; i < n_rates; i++) {
1997                 int rate = (rates[i] & 0x7f) * 5;
1998                 bool found = false;
1999
2000                 for (j = 0; j < sband->n_bitrates; j++) {
2001                         if (sband->bitrates[j].bitrate == rate) {
2002                                 found = true;
2003                                 *mask |= BIT(j);
2004                                 break;
2005                         }
2006                 }
2007                 if (!found)
2008                         return -EINVAL;
2009         }
2010
2011         /*
2012          * mask must have at least one bit set here since we
2013          * didn't accept a 0-length rates array nor allowed
2014          * entries in the array that didn't exist
2015          */
2016
2017         return 0;
2018 }
2019
2020 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2021 {
2022         enum nl80211_band band;
2023         unsigned int n_channels = 0;
2024
2025         for (band = 0; band < NUM_NL80211_BANDS; band++)
2026                 if (wiphy->bands[band])
2027                         n_channels += wiphy->bands[band]->n_channels;
2028
2029         return n_channels;
2030 }
2031 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2032
2033 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2034                          struct station_info *sinfo)
2035 {
2036         struct cfg80211_registered_device *rdev;
2037         struct wireless_dev *wdev;
2038
2039         wdev = dev->ieee80211_ptr;
2040         if (!wdev)
2041                 return -EOPNOTSUPP;
2042
2043         rdev = wiphy_to_rdev(wdev->wiphy);
2044         if (!rdev->ops->get_station)
2045                 return -EOPNOTSUPP;
2046
2047         memset(sinfo, 0, sizeof(*sinfo));
2048
2049         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2050 }
2051 EXPORT_SYMBOL(cfg80211_get_station);
2052
2053 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2054 {
2055         int i;
2056
2057         if (!f)
2058                 return;
2059
2060         kfree(f->serv_spec_info);
2061         kfree(f->srf_bf);
2062         kfree(f->srf_macs);
2063         for (i = 0; i < f->num_rx_filters; i++)
2064                 kfree(f->rx_filters[i].filter);
2065
2066         for (i = 0; i < f->num_tx_filters; i++)
2067                 kfree(f->tx_filters[i].filter);
2068
2069         kfree(f->rx_filters);
2070         kfree(f->tx_filters);
2071         kfree(f);
2072 }
2073 EXPORT_SYMBOL(cfg80211_free_nan_func);
2074
2075 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2076                                 u32 center_freq_khz, u32 bw_khz)
2077 {
2078         u32 start_freq_khz, end_freq_khz;
2079
2080         start_freq_khz = center_freq_khz - (bw_khz / 2);
2081         end_freq_khz = center_freq_khz + (bw_khz / 2);
2082
2083         if (start_freq_khz >= freq_range->start_freq_khz &&
2084             end_freq_khz <= freq_range->end_freq_khz)
2085                 return true;
2086
2087         return false;
2088 }
2089
2090 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2091 {
2092         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2093                                 sizeof(*(sinfo->pertid)),
2094                                 gfp);
2095         if (!sinfo->pertid)
2096                 return -ENOMEM;
2097
2098         return 0;
2099 }
2100 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2101
2102 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2103 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2104 const unsigned char rfc1042_header[] __aligned(2) =
2105         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2106 EXPORT_SYMBOL(rfc1042_header);
2107
2108 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2109 const unsigned char bridge_tunnel_header[] __aligned(2) =
2110         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2111 EXPORT_SYMBOL(bridge_tunnel_header);
2112
2113 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2114 struct iapp_layer2_update {
2115         u8 da[ETH_ALEN];        /* broadcast */
2116         u8 sa[ETH_ALEN];        /* STA addr */
2117         __be16 len;             /* 6 */
2118         u8 dsap;                /* 0 */
2119         u8 ssap;                /* 0 */
2120         u8 control;
2121         u8 xid_info[3];
2122 } __packed;
2123
2124 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2125 {
2126         struct iapp_layer2_update *msg;
2127         struct sk_buff *skb;
2128
2129         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2130          * bridge devices */
2131
2132         skb = dev_alloc_skb(sizeof(*msg));
2133         if (!skb)
2134                 return;
2135         msg = skb_put(skb, sizeof(*msg));
2136
2137         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2138          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2139
2140         eth_broadcast_addr(msg->da);
2141         ether_addr_copy(msg->sa, addr);
2142         msg->len = htons(6);
2143         msg->dsap = 0;
2144         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2145         msg->control = 0xaf;    /* XID response lsb.1111F101.
2146                                  * F=0 (no poll command; unsolicited frame) */
2147         msg->xid_info[0] = 0x81;        /* XID format identifier */
2148         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2149         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2150
2151         skb->dev = dev;
2152         skb->protocol = eth_type_trans(skb, dev);
2153         memset(skb->cb, 0, sizeof(skb->cb));
2154         netif_rx_ni(skb);
2155 }
2156 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2157
2158 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2159                               enum ieee80211_vht_chanwidth bw,
2160                               int mcs, bool ext_nss_bw_capable,
2161                               unsigned int max_vht_nss)
2162 {
2163         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2164         int ext_nss_bw;
2165         int supp_width;
2166         int i, mcs_encoding;
2167
2168         if (map == 0xffff)
2169                 return 0;
2170
2171         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2172                 return 0;
2173         if (mcs <= 7)
2174                 mcs_encoding = 0;
2175         else if (mcs == 8)
2176                 mcs_encoding = 1;
2177         else
2178                 mcs_encoding = 2;
2179
2180         if (!max_vht_nss) {
2181                 /* find max_vht_nss for the given MCS */
2182                 for (i = 7; i >= 0; i--) {
2183                         int supp = (map >> (2 * i)) & 3;
2184
2185                         if (supp == 3)
2186                                 continue;
2187
2188                         if (supp >= mcs_encoding) {
2189                                 max_vht_nss = i + 1;
2190                                 break;
2191                         }
2192                 }
2193         }
2194
2195         if (!(cap->supp_mcs.tx_mcs_map &
2196                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2197                 return max_vht_nss;
2198
2199         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2200                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2201         supp_width = le32_get_bits(cap->vht_cap_info,
2202                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2203
2204         /* if not capable, treat ext_nss_bw as 0 */
2205         if (!ext_nss_bw_capable)
2206                 ext_nss_bw = 0;
2207
2208         /* This is invalid */
2209         if (supp_width == 3)
2210                 return 0;
2211
2212         /* This is an invalid combination so pretend nothing is supported */
2213         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2214                 return 0;
2215
2216         /*
2217          * Cover all the special cases according to IEEE 802.11-2016
2218          * Table 9-250. All other cases are either factor of 1 or not
2219          * valid/supported.
2220          */
2221         switch (bw) {
2222         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2223         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2224                 if ((supp_width == 1 || supp_width == 2) &&
2225                     ext_nss_bw == 3)
2226                         return 2 * max_vht_nss;
2227                 break;
2228         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2229                 if (supp_width == 0 &&
2230                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2231                         return max_vht_nss / 2;
2232                 if (supp_width == 0 &&
2233                     ext_nss_bw == 3)
2234                         return (3 * max_vht_nss) / 4;
2235                 if (supp_width == 1 &&
2236                     ext_nss_bw == 3)
2237                         return 2 * max_vht_nss;
2238                 break;
2239         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2240                 if (supp_width == 0 && ext_nss_bw == 1)
2241                         return 0; /* not possible */
2242                 if (supp_width == 0 &&
2243                     ext_nss_bw == 2)
2244                         return max_vht_nss / 2;
2245                 if (supp_width == 0 &&
2246                     ext_nss_bw == 3)
2247                         return (3 * max_vht_nss) / 4;
2248                 if (supp_width == 1 &&
2249                     ext_nss_bw == 0)
2250                         return 0; /* not possible */
2251                 if (supp_width == 1 &&
2252                     ext_nss_bw == 1)
2253                         return max_vht_nss / 2;
2254                 if (supp_width == 1 &&
2255                     ext_nss_bw == 2)
2256                         return (3 * max_vht_nss) / 4;
2257                 break;
2258         }
2259
2260         /* not covered or invalid combination received */
2261         return max_vht_nss;
2262 }
2263 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2264
2265 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2266                              bool is_4addr, u8 check_swif)
2267
2268 {
2269         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2270
2271         switch (check_swif) {
2272         case 0:
2273                 if (is_vlan && is_4addr)
2274                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2275                 return wiphy->interface_modes & BIT(iftype);
2276         case 1:
2277                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2278                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2279                 return wiphy->software_iftypes & BIT(iftype);
2280         default:
2281                 break;
2282         }
2283
2284         return false;
2285 }
2286 EXPORT_SYMBOL(cfg80211_iftype_allowed);
This page took 0.162525 seconds and 4 git commands to generate.