1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
79 struct mem_cgroup *target_mem_cgroup;
82 * Scan pressure balancing between anon and file LRUs
84 unsigned long anon_cost;
85 unsigned long file_cost;
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
114 unsigned int hibernation_mode:1;
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
128 /* Allocation order */
131 /* Scan (total_size >> priority) pages at once */
134 /* The highest zone to isolate pages for reclaim from */
137 /* This context's GFP mask */
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
163 if ((_page)->lru.prev != _base) { \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
175 * From 0 .. 200. Higher means more swappy.
177 int vm_swappiness = 60;
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
188 task->reclaim_state = rs;
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
195 static int shrinker_nr_max;
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 static inline int shrinker_defer_size(int nr_items)
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
222 int size = map_size + defer_size;
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
253 void free_shrinker_info(struct mem_cgroup *memcg)
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280 free_shrinker_info(memcg);
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
288 up_write(&shrinker_rwsem);
293 static inline bool need_expand(int nr_max)
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
299 static int expand_shrinker_info(int new_id)
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
307 if (!need_expand(new_nr_max))
310 if (!root_mem_cgroup)
313 lockdep_assert_held(&shrinker_rwsem);
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
325 mem_cgroup_iter_break(NULL, memcg);
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 shrinker_nr_max = new_nr_max;
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
350 static DEFINE_IDR(shrinker_idr);
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 int id, ret = -ENOMEM;
356 if (mem_cgroup_disabled())
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
374 up_write(&shrinker_rwsem);
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 int id = shrinker->id;
384 lockdep_assert_held(&shrinker_rwsem);
386 idr_remove(&shrinker_idr, id);
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
392 struct shrinker_info *info;
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
401 struct shrinker_info *info;
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
414 parent = parent_mem_cgroup(memcg);
416 parent = root_mem_cgroup;
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 up_read(&shrinker_rwsem);
431 static bool cgroup_reclaim(struct scan_control *sc)
433 return sc->target_mem_cgroup;
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
449 static bool writeback_throttling_sane(struct scan_control *sc)
451 if (!cgroup_reclaim(sc))
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
481 static bool cgroup_reclaim(struct scan_control *sc)
486 static bool writeback_throttling_sane(struct scan_control *sc)
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 static bool can_demote(int nid, struct scan_control *sc)
527 if (!numa_demotion_enabled)
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
544 struct scan_control *sc)
548 * For non-memcg reclaim, is there
549 * space in any swap device?
551 if (get_nr_swap_pages() > 0)
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
560 * The page can not be swapped.
562 * Can it be reclaimed from this node via demotion?
564 return can_demote(nid, sc);
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
572 unsigned long zone_reclaimable_pages(struct zone *zone)
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 unsigned long size = 0;
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
600 if (!managed_zone(zone))
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
612 * Add a shrinker callback to be called from the vm.
614 int prealloc_shrinker(struct shrinker *shrinker)
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
638 void free_prealloced_shrinker(struct shrinker *shrinker)
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
651 void register_shrinker_prepared(struct shrinker *shrinker)
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
659 int register_shrinker(struct shrinker *shrinker)
661 int err = prealloc_shrinker(shrinker);
665 register_shrinker_prepared(shrinker);
668 EXPORT_SYMBOL(register_shrinker);
673 void unregister_shrinker(struct shrinker *shrinker)
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
688 EXPORT_SYMBOL(unregister_shrinker);
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
698 void synchronize_shrinkers(void)
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
703 EXPORT_SYMBOL(synchronize_shrinkers);
705 #define SHRINK_BATCH 128
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 struct shrinker *shrinker, int priority)
710 unsigned long freed = 0;
711 unsigned long long delta;
716 long batch_size = shrinker->batch ? shrinker->batch
718 long scanned = 0, next_deferred;
720 freeable = shrinker->count_objects(shrinker, shrinkctl);
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
729 nr = xchg_nr_deferred(shrinker, shrinkctl);
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
734 do_div(delta, shrinker->seeks);
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
741 delta = freeable / 2;
744 total_scan = nr >> priority;
746 total_scan = min(total_scan, (2 * freeable));
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 freeable, delta, total_scan, priority);
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
762 * than the total number of objects on slab (freeable), we must be
763 * scanning at high prio and therefore should try to reclaim as much as
766 while (total_scan >= batch_size ||
767 total_scan >= freeable) {
769 unsigned long nr_to_scan = min(batch_size, total_scan);
771 shrinkctl->nr_to_scan = nr_to_scan;
772 shrinkctl->nr_scanned = nr_to_scan;
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
789 * And it is capped to two times of the freeable items.
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
795 * move the unused scan count back into the shrinker in a
796 * manner that handles concurrent updates.
798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
808 struct shrinker_info *info;
809 unsigned long ret, freed = 0;
812 if (!mem_cgroup_online(memcg))
815 if (!down_read_trylock(&shrinker_rwsem))
818 info = shrinker_info_protected(memcg, nid);
822 for_each_set_bit(i, info->map, shrinker_nr_max) {
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
828 struct shrinker *shrinker;
830 shrinker = idr_find(&shrinker_idr, i);
831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
833 clear_bit(i, info->map);
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
842 ret = do_shrink_slab(&sc, shrinker, priority);
843 if (ret == SHRINK_EMPTY) {
844 clear_bit(i, info->map);
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
853 * set_shrinker_bit():
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
858 * set_bit() do_shrink_slab()
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
865 set_shrinker_bit(memcg, nid, i);
869 if (rwsem_is_contended(&shrinker_rwsem)) {
875 up_read(&shrinker_rwsem);
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
884 #endif /* CONFIG_MEMCG */
887 * shrink_slab - shrink slab caches
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
890 * @memcg: memory cgroup whose slab caches to target
891 * @priority: the reclaim priority
893 * Call the shrink functions to age shrinkable caches.
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
904 * Returns the number of reclaimed slab objects.
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
910 unsigned long ret, freed = 0;
911 struct shrinker *shrinker;
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
923 if (!down_read_trylock(&shrinker_rwsem))
926 list_for_each_entry(shrinker, &shrinker_list, list) {
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
938 * Bail out if someone want to register a new shrinker to
939 * prevent the registration from being stalled for long periods
940 * by parallel ongoing shrinking.
942 if (rwsem_is_contended(&shrinker_rwsem)) {
948 up_read(&shrinker_rwsem);
954 static void drop_slab_node(int nid)
960 struct mem_cgroup *memcg = NULL;
962 if (fatal_signal_pending(current))
966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 } while ((freed >> shift++) > 1);
977 for_each_online_node(nid)
981 static inline int is_page_cache_freeable(struct page *page)
984 * A freeable page cache page is referenced only by the caller
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
988 int page_cache_pins = thp_nr_pages(page);
989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
992 static int may_write_to_inode(struct inode *inode)
994 if (current->flags & PF_SWAPWRITE)
996 if (!inode_write_congested(inode))
998 if (inode_to_bdi(inode) == current->backing_dev_info)
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1015 static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1024 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1026 int reclaimable = 0, write_pending = 0;
1030 * If kswapd is disabled, reschedule if necessary but do not
1031 * throttle as the system is likely near OOM.
1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1037 * If there are a lot of dirty/writeback pages then do not
1038 * throttle as throttling will occur when the pages cycle
1039 * towards the end of the LRU if still under writeback.
1041 for (i = 0; i < MAX_NR_ZONES; i++) {
1042 struct zone *zone = pgdat->node_zones + i;
1044 if (!populated_zone(zone))
1047 reclaimable += zone_reclaimable_pages(zone);
1048 write_pending += zone_page_state_snapshot(zone,
1049 NR_ZONE_WRITE_PENDING);
1051 if (2 * write_pending <= reclaimable)
1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1064 * Do not throttle IO workers, kthreads other than kswapd or
1065 * workqueues. They may be required for reclaim to make
1066 * forward progress (e.g. journalling workqueues or kthreads).
1068 if (!current_is_kswapd() &&
1069 current->flags & (PF_IO_WORKER|PF_KTHREAD))
1073 * These figures are pulled out of thin air.
1074 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1075 * parallel reclaimers which is a short-lived event so the timeout is
1076 * short. Failing to make progress or waiting on writeback are
1077 * potentially long-lived events so use a longer timeout. This is shaky
1078 * logic as a failure to make progress could be due to anything from
1079 * writeback to a slow device to excessive references pages at the tail
1080 * of the inactive LRU.
1083 case VMSCAN_THROTTLE_WRITEBACK:
1086 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1087 WRITE_ONCE(pgdat->nr_reclaim_start,
1088 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1092 case VMSCAN_THROTTLE_CONGESTED:
1094 case VMSCAN_THROTTLE_NOPROGRESS:
1095 if (skip_throttle_noprogress(pgdat)) {
1103 case VMSCAN_THROTTLE_ISOLATED:
1112 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1113 ret = schedule_timeout(timeout);
1114 finish_wait(wqh, &wait);
1116 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1117 atomic_dec(&pgdat->nr_writeback_throttled);
1119 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1120 jiffies_to_usecs(timeout - ret),
1125 * Account for pages written if tasks are throttled waiting on dirty
1126 * pages to clean. If enough pages have been cleaned since throttling
1127 * started then wakeup the throttled tasks.
1129 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1132 unsigned long nr_written;
1134 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1137 * This is an inaccurate read as the per-cpu deltas may not
1138 * be synchronised. However, given that the system is
1139 * writeback throttled, it is not worth taking the penalty
1140 * of getting an accurate count. At worst, the throttle
1141 * timeout guarantees forward progress.
1143 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1144 READ_ONCE(pgdat->nr_reclaim_start);
1146 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1147 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150 /* possible outcome of pageout() */
1152 /* failed to write page out, page is locked */
1154 /* move page to the active list, page is locked */
1156 /* page has been sent to the disk successfully, page is unlocked */
1158 /* page is clean and locked */
1163 * pageout is called by shrink_page_list() for each dirty page.
1164 * Calls ->writepage().
1166 static pageout_t pageout(struct page *page, struct address_space *mapping)
1169 * If the page is dirty, only perform writeback if that write
1170 * will be non-blocking. To prevent this allocation from being
1171 * stalled by pagecache activity. But note that there may be
1172 * stalls if we need to run get_block(). We could test
1173 * PagePrivate for that.
1175 * If this process is currently in __generic_file_write_iter() against
1176 * this page's queue, we can perform writeback even if that
1179 * If the page is swapcache, write it back even if that would
1180 * block, for some throttling. This happens by accident, because
1181 * swap_backing_dev_info is bust: it doesn't reflect the
1182 * congestion state of the swapdevs. Easy to fix, if needed.
1184 if (!is_page_cache_freeable(page))
1188 * Some data journaling orphaned pages can have
1189 * page->mapping == NULL while being dirty with clean buffers.
1191 if (page_has_private(page)) {
1192 if (try_to_free_buffers(page)) {
1193 ClearPageDirty(page);
1194 pr_info("%s: orphaned page\n", __func__);
1200 if (mapping->a_ops->writepage == NULL)
1201 return PAGE_ACTIVATE;
1202 if (!may_write_to_inode(mapping->host))
1205 if (clear_page_dirty_for_io(page)) {
1207 struct writeback_control wbc = {
1208 .sync_mode = WB_SYNC_NONE,
1209 .nr_to_write = SWAP_CLUSTER_MAX,
1211 .range_end = LLONG_MAX,
1215 SetPageReclaim(page);
1216 res = mapping->a_ops->writepage(page, &wbc);
1218 handle_write_error(mapping, page, res);
1219 if (res == AOP_WRITEPAGE_ACTIVATE) {
1220 ClearPageReclaim(page);
1221 return PAGE_ACTIVATE;
1224 if (!PageWriteback(page)) {
1225 /* synchronous write or broken a_ops? */
1226 ClearPageReclaim(page);
1228 trace_mm_vmscan_writepage(page);
1229 inc_node_page_state(page, NR_VMSCAN_WRITE);
1230 return PAGE_SUCCESS;
1237 * Same as remove_mapping, but if the page is removed from the mapping, it
1238 * gets returned with a refcount of 0.
1240 static int __remove_mapping(struct address_space *mapping, struct page *page,
1241 bool reclaimed, struct mem_cgroup *target_memcg)
1244 void *shadow = NULL;
1246 BUG_ON(!PageLocked(page));
1247 BUG_ON(mapping != page_mapping(page));
1249 if (!PageSwapCache(page))
1250 spin_lock(&mapping->host->i_lock);
1251 xa_lock_irq(&mapping->i_pages);
1253 * The non racy check for a busy page.
1255 * Must be careful with the order of the tests. When someone has
1256 * a ref to the page, it may be possible that they dirty it then
1257 * drop the reference. So if PageDirty is tested before page_count
1258 * here, then the following race may occur:
1260 * get_user_pages(&page);
1261 * [user mapping goes away]
1263 * !PageDirty(page) [good]
1264 * SetPageDirty(page);
1266 * !page_count(page) [good, discard it]
1268 * [oops, our write_to data is lost]
1270 * Reversing the order of the tests ensures such a situation cannot
1271 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1272 * load is not satisfied before that of page->_refcount.
1274 * Note that if SetPageDirty is always performed via set_page_dirty,
1275 * and thus under the i_pages lock, then this ordering is not required.
1277 refcount = 1 + compound_nr(page);
1278 if (!page_ref_freeze(page, refcount))
1280 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1281 if (unlikely(PageDirty(page))) {
1282 page_ref_unfreeze(page, refcount);
1286 if (PageSwapCache(page)) {
1287 swp_entry_t swap = { .val = page_private(page) };
1288 mem_cgroup_swapout(page, swap);
1289 if (reclaimed && !mapping_exiting(mapping))
1290 shadow = workingset_eviction(page, target_memcg);
1291 __delete_from_swap_cache(page, swap, shadow);
1292 xa_unlock_irq(&mapping->i_pages);
1293 put_swap_page(page, swap);
1295 void (*freepage)(struct page *);
1297 freepage = mapping->a_ops->freepage;
1299 * Remember a shadow entry for reclaimed file cache in
1300 * order to detect refaults, thus thrashing, later on.
1302 * But don't store shadows in an address space that is
1303 * already exiting. This is not just an optimization,
1304 * inode reclaim needs to empty out the radix tree or
1305 * the nodes are lost. Don't plant shadows behind its
1308 * We also don't store shadows for DAX mappings because the
1309 * only page cache pages found in these are zero pages
1310 * covering holes, and because we don't want to mix DAX
1311 * exceptional entries and shadow exceptional entries in the
1312 * same address_space.
1314 if (reclaimed && page_is_file_lru(page) &&
1315 !mapping_exiting(mapping) && !dax_mapping(mapping))
1316 shadow = workingset_eviction(page, target_memcg);
1317 __delete_from_page_cache(page, shadow);
1318 xa_unlock_irq(&mapping->i_pages);
1319 if (mapping_shrinkable(mapping))
1320 inode_add_lru(mapping->host);
1321 spin_unlock(&mapping->host->i_lock);
1323 if (freepage != NULL)
1330 xa_unlock_irq(&mapping->i_pages);
1331 if (!PageSwapCache(page))
1332 spin_unlock(&mapping->host->i_lock);
1337 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1338 * someone else has a ref on the page, abort and return 0. If it was
1339 * successfully detached, return 1. Assumes the caller has a single ref on
1342 int remove_mapping(struct address_space *mapping, struct page *page)
1344 if (__remove_mapping(mapping, page, false, NULL)) {
1346 * Unfreezing the refcount with 1 rather than 2 effectively
1347 * drops the pagecache ref for us without requiring another
1350 page_ref_unfreeze(page, 1);
1357 * putback_lru_page - put previously isolated page onto appropriate LRU list
1358 * @page: page to be put back to appropriate lru list
1360 * Add previously isolated @page to appropriate LRU list.
1361 * Page may still be unevictable for other reasons.
1363 * lru_lock must not be held, interrupts must be enabled.
1365 void putback_lru_page(struct page *page)
1367 lru_cache_add(page);
1368 put_page(page); /* drop ref from isolate */
1371 enum page_references {
1373 PAGEREF_RECLAIM_CLEAN,
1378 static enum page_references page_check_references(struct page *page,
1379 struct scan_control *sc)
1381 int referenced_ptes, referenced_page;
1382 unsigned long vm_flags;
1384 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1386 referenced_page = TestClearPageReferenced(page);
1389 * Mlock lost the isolation race with us. Let try_to_unmap()
1390 * move the page to the unevictable list.
1392 if (vm_flags & VM_LOCKED)
1393 return PAGEREF_RECLAIM;
1395 if (referenced_ptes) {
1397 * All mapped pages start out with page table
1398 * references from the instantiating fault, so we need
1399 * to look twice if a mapped file page is used more
1402 * Mark it and spare it for another trip around the
1403 * inactive list. Another page table reference will
1404 * lead to its activation.
1406 * Note: the mark is set for activated pages as well
1407 * so that recently deactivated but used pages are
1408 * quickly recovered.
1410 SetPageReferenced(page);
1412 if (referenced_page || referenced_ptes > 1)
1413 return PAGEREF_ACTIVATE;
1416 * Activate file-backed executable pages after first usage.
1418 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1419 return PAGEREF_ACTIVATE;
1421 return PAGEREF_KEEP;
1424 /* Reclaim if clean, defer dirty pages to writeback */
1425 if (referenced_page && !PageSwapBacked(page))
1426 return PAGEREF_RECLAIM_CLEAN;
1428 return PAGEREF_RECLAIM;
1431 /* Check if a page is dirty or under writeback */
1432 static void page_check_dirty_writeback(struct page *page,
1433 bool *dirty, bool *writeback)
1435 struct address_space *mapping;
1438 * Anonymous pages are not handled by flushers and must be written
1439 * from reclaim context. Do not stall reclaim based on them
1441 if (!page_is_file_lru(page) ||
1442 (PageAnon(page) && !PageSwapBacked(page))) {
1448 /* By default assume that the page flags are accurate */
1449 *dirty = PageDirty(page);
1450 *writeback = PageWriteback(page);
1452 /* Verify dirty/writeback state if the filesystem supports it */
1453 if (!page_has_private(page))
1456 mapping = page_mapping(page);
1457 if (mapping && mapping->a_ops->is_dirty_writeback)
1458 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1461 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1463 struct migration_target_control mtc = {
1465 * Allocate from 'node', or fail quickly and quietly.
1466 * When this happens, 'page' will likely just be discarded
1467 * instead of migrated.
1469 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1470 __GFP_THISNODE | __GFP_NOWARN |
1471 __GFP_NOMEMALLOC | GFP_NOWAIT,
1475 return alloc_migration_target(page, (unsigned long)&mtc);
1479 * Take pages on @demote_list and attempt to demote them to
1480 * another node. Pages which are not demoted are left on
1483 static unsigned int demote_page_list(struct list_head *demote_pages,
1484 struct pglist_data *pgdat)
1486 int target_nid = next_demotion_node(pgdat->node_id);
1487 unsigned int nr_succeeded;
1489 if (list_empty(demote_pages))
1492 if (target_nid == NUMA_NO_NODE)
1495 /* Demotion ignores all cpuset and mempolicy settings */
1496 migrate_pages(demote_pages, alloc_demote_page, NULL,
1497 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 if (current_is_kswapd())
1501 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1503 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1505 return nr_succeeded;
1509 * shrink_page_list() returns the number of reclaimed pages
1511 static unsigned int shrink_page_list(struct list_head *page_list,
1512 struct pglist_data *pgdat,
1513 struct scan_control *sc,
1514 struct reclaim_stat *stat,
1515 bool ignore_references)
1517 LIST_HEAD(ret_pages);
1518 LIST_HEAD(free_pages);
1519 LIST_HEAD(demote_pages);
1520 unsigned int nr_reclaimed = 0;
1521 unsigned int pgactivate = 0;
1522 bool do_demote_pass;
1524 memset(stat, 0, sizeof(*stat));
1526 do_demote_pass = can_demote(pgdat->node_id, sc);
1529 while (!list_empty(page_list)) {
1530 struct address_space *mapping;
1532 enum page_references references = PAGEREF_RECLAIM;
1533 bool dirty, writeback, may_enter_fs;
1534 unsigned int nr_pages;
1538 page = lru_to_page(page_list);
1539 list_del(&page->lru);
1541 if (!trylock_page(page))
1544 VM_BUG_ON_PAGE(PageActive(page), page);
1546 nr_pages = compound_nr(page);
1548 /* Account the number of base pages even though THP */
1549 sc->nr_scanned += nr_pages;
1551 if (unlikely(!page_evictable(page)))
1552 goto activate_locked;
1554 if (!sc->may_unmap && page_mapped(page))
1557 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1558 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1561 * The number of dirty pages determines if a node is marked
1562 * reclaim_congested. kswapd will stall and start writing
1563 * pages if the tail of the LRU is all dirty unqueued pages.
1565 page_check_dirty_writeback(page, &dirty, &writeback);
1566 if (dirty || writeback)
1569 if (dirty && !writeback)
1570 stat->nr_unqueued_dirty++;
1573 * Treat this page as congested if the underlying BDI is or if
1574 * pages are cycling through the LRU so quickly that the
1575 * pages marked for immediate reclaim are making it to the
1576 * end of the LRU a second time.
1578 mapping = page_mapping(page);
1579 if (((dirty || writeback) && mapping &&
1580 inode_write_congested(mapping->host)) ||
1581 (writeback && PageReclaim(page)))
1582 stat->nr_congested++;
1585 * If a page at the tail of the LRU is under writeback, there
1586 * are three cases to consider.
1588 * 1) If reclaim is encountering an excessive number of pages
1589 * under writeback and this page is both under writeback and
1590 * PageReclaim then it indicates that pages are being queued
1591 * for IO but are being recycled through the LRU before the
1592 * IO can complete. Waiting on the page itself risks an
1593 * indefinite stall if it is impossible to writeback the
1594 * page due to IO error or disconnected storage so instead
1595 * note that the LRU is being scanned too quickly and the
1596 * caller can stall after page list has been processed.
1598 * 2) Global or new memcg reclaim encounters a page that is
1599 * not marked for immediate reclaim, or the caller does not
1600 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1601 * not to fs). In this case mark the page for immediate
1602 * reclaim and continue scanning.
1604 * Require may_enter_fs because we would wait on fs, which
1605 * may not have submitted IO yet. And the loop driver might
1606 * enter reclaim, and deadlock if it waits on a page for
1607 * which it is needed to do the write (loop masks off
1608 * __GFP_IO|__GFP_FS for this reason); but more thought
1609 * would probably show more reasons.
1611 * 3) Legacy memcg encounters a page that is already marked
1612 * PageReclaim. memcg does not have any dirty pages
1613 * throttling so we could easily OOM just because too many
1614 * pages are in writeback and there is nothing else to
1615 * reclaim. Wait for the writeback to complete.
1617 * In cases 1) and 2) we activate the pages to get them out of
1618 * the way while we continue scanning for clean pages on the
1619 * inactive list and refilling from the active list. The
1620 * observation here is that waiting for disk writes is more
1621 * expensive than potentially causing reloads down the line.
1622 * Since they're marked for immediate reclaim, they won't put
1623 * memory pressure on the cache working set any longer than it
1624 * takes to write them to disk.
1626 if (PageWriteback(page)) {
1628 if (current_is_kswapd() &&
1629 PageReclaim(page) &&
1630 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1631 stat->nr_immediate++;
1632 goto activate_locked;
1635 } else if (writeback_throttling_sane(sc) ||
1636 !PageReclaim(page) || !may_enter_fs) {
1638 * This is slightly racy - end_page_writeback()
1639 * might have just cleared PageReclaim, then
1640 * setting PageReclaim here end up interpreted
1641 * as PageReadahead - but that does not matter
1642 * enough to care. What we do want is for this
1643 * page to have PageReclaim set next time memcg
1644 * reclaim reaches the tests above, so it will
1645 * then wait_on_page_writeback() to avoid OOM;
1646 * and it's also appropriate in global reclaim.
1648 SetPageReclaim(page);
1649 stat->nr_writeback++;
1650 goto activate_locked;
1655 wait_on_page_writeback(page);
1656 /* then go back and try same page again */
1657 list_add_tail(&page->lru, page_list);
1662 if (!ignore_references)
1663 references = page_check_references(page, sc);
1665 switch (references) {
1666 case PAGEREF_ACTIVATE:
1667 goto activate_locked;
1669 stat->nr_ref_keep += nr_pages;
1671 case PAGEREF_RECLAIM:
1672 case PAGEREF_RECLAIM_CLEAN:
1673 ; /* try to reclaim the page below */
1677 * Before reclaiming the page, try to relocate
1678 * its contents to another node.
1680 if (do_demote_pass &&
1681 (thp_migration_supported() || !PageTransHuge(page))) {
1682 list_add(&page->lru, &demote_pages);
1688 * Anonymous process memory has backing store?
1689 * Try to allocate it some swap space here.
1690 * Lazyfree page could be freed directly
1692 if (PageAnon(page) && PageSwapBacked(page)) {
1693 if (!PageSwapCache(page)) {
1694 if (!(sc->gfp_mask & __GFP_IO))
1696 if (page_maybe_dma_pinned(page))
1698 if (PageTransHuge(page)) {
1699 /* cannot split THP, skip it */
1700 if (!can_split_huge_page(page, NULL))
1701 goto activate_locked;
1703 * Split pages without a PMD map right
1704 * away. Chances are some or all of the
1705 * tail pages can be freed without IO.
1707 if (!compound_mapcount(page) &&
1708 split_huge_page_to_list(page,
1710 goto activate_locked;
1712 if (!add_to_swap(page)) {
1713 if (!PageTransHuge(page))
1714 goto activate_locked_split;
1715 /* Fallback to swap normal pages */
1716 if (split_huge_page_to_list(page,
1718 goto activate_locked;
1719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1720 count_vm_event(THP_SWPOUT_FALLBACK);
1722 if (!add_to_swap(page))
1723 goto activate_locked_split;
1726 may_enter_fs = true;
1728 /* Adding to swap updated mapping */
1729 mapping = page_mapping(page);
1731 } else if (unlikely(PageTransHuge(page))) {
1732 /* Split file THP */
1733 if (split_huge_page_to_list(page, page_list))
1738 * THP may get split above, need minus tail pages and update
1739 * nr_pages to avoid accounting tail pages twice.
1741 * The tail pages that are added into swap cache successfully
1744 if ((nr_pages > 1) && !PageTransHuge(page)) {
1745 sc->nr_scanned -= (nr_pages - 1);
1750 * The page is mapped into the page tables of one or more
1751 * processes. Try to unmap it here.
1753 if (page_mapped(page)) {
1754 enum ttu_flags flags = TTU_BATCH_FLUSH;
1755 bool was_swapbacked = PageSwapBacked(page);
1757 if (unlikely(PageTransHuge(page)))
1758 flags |= TTU_SPLIT_HUGE_PMD;
1760 try_to_unmap(page, flags);
1761 if (page_mapped(page)) {
1762 stat->nr_unmap_fail += nr_pages;
1763 if (!was_swapbacked && PageSwapBacked(page))
1764 stat->nr_lazyfree_fail += nr_pages;
1765 goto activate_locked;
1769 if (PageDirty(page)) {
1771 * Only kswapd can writeback filesystem pages
1772 * to avoid risk of stack overflow. But avoid
1773 * injecting inefficient single-page IO into
1774 * flusher writeback as much as possible: only
1775 * write pages when we've encountered many
1776 * dirty pages, and when we've already scanned
1777 * the rest of the LRU for clean pages and see
1778 * the same dirty pages again (PageReclaim).
1780 if (page_is_file_lru(page) &&
1781 (!current_is_kswapd() || !PageReclaim(page) ||
1782 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1784 * Immediately reclaim when written back.
1785 * Similar in principal to deactivate_page()
1786 * except we already have the page isolated
1787 * and know it's dirty
1789 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1790 SetPageReclaim(page);
1792 goto activate_locked;
1795 if (references == PAGEREF_RECLAIM_CLEAN)
1799 if (!sc->may_writepage)
1803 * Page is dirty. Flush the TLB if a writable entry
1804 * potentially exists to avoid CPU writes after IO
1805 * starts and then write it out here.
1807 try_to_unmap_flush_dirty();
1808 switch (pageout(page, mapping)) {
1812 goto activate_locked;
1814 stat->nr_pageout += thp_nr_pages(page);
1816 if (PageWriteback(page))
1818 if (PageDirty(page))
1822 * A synchronous write - probably a ramdisk. Go
1823 * ahead and try to reclaim the page.
1825 if (!trylock_page(page))
1827 if (PageDirty(page) || PageWriteback(page))
1829 mapping = page_mapping(page);
1832 ; /* try to free the page below */
1837 * If the page has buffers, try to free the buffer mappings
1838 * associated with this page. If we succeed we try to free
1841 * We do this even if the page is PageDirty().
1842 * try_to_release_page() does not perform I/O, but it is
1843 * possible for a page to have PageDirty set, but it is actually
1844 * clean (all its buffers are clean). This happens if the
1845 * buffers were written out directly, with submit_bh(). ext3
1846 * will do this, as well as the blockdev mapping.
1847 * try_to_release_page() will discover that cleanness and will
1848 * drop the buffers and mark the page clean - it can be freed.
1850 * Rarely, pages can have buffers and no ->mapping. These are
1851 * the pages which were not successfully invalidated in
1852 * truncate_cleanup_page(). We try to drop those buffers here
1853 * and if that worked, and the page is no longer mapped into
1854 * process address space (page_count == 1) it can be freed.
1855 * Otherwise, leave the page on the LRU so it is swappable.
1857 if (page_has_private(page)) {
1858 if (!try_to_release_page(page, sc->gfp_mask))
1859 goto activate_locked;
1860 if (!mapping && page_count(page) == 1) {
1862 if (put_page_testzero(page))
1866 * rare race with speculative reference.
1867 * the speculative reference will free
1868 * this page shortly, so we may
1869 * increment nr_reclaimed here (and
1870 * leave it off the LRU).
1878 if (PageAnon(page) && !PageSwapBacked(page)) {
1879 /* follow __remove_mapping for reference */
1880 if (!page_ref_freeze(page, 1))
1883 * The page has only one reference left, which is
1884 * from the isolation. After the caller puts the
1885 * page back on lru and drops the reference, the
1886 * page will be freed anyway. It doesn't matter
1887 * which lru it goes. So we don't bother checking
1890 count_vm_event(PGLAZYFREED);
1891 count_memcg_page_event(page, PGLAZYFREED);
1892 } else if (!mapping || !__remove_mapping(mapping, page, true,
1893 sc->target_mem_cgroup))
1899 * THP may get swapped out in a whole, need account
1902 nr_reclaimed += nr_pages;
1905 * Is there need to periodically free_page_list? It would
1906 * appear not as the counts should be low
1908 if (unlikely(PageTransHuge(page)))
1909 destroy_compound_page(page);
1911 list_add(&page->lru, &free_pages);
1914 activate_locked_split:
1916 * The tail pages that are failed to add into swap cache
1917 * reach here. Fixup nr_scanned and nr_pages.
1920 sc->nr_scanned -= (nr_pages - 1);
1924 /* Not a candidate for swapping, so reclaim swap space. */
1925 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1927 try_to_free_swap(page);
1928 VM_BUG_ON_PAGE(PageActive(page), page);
1929 if (!PageMlocked(page)) {
1930 int type = page_is_file_lru(page);
1931 SetPageActive(page);
1932 stat->nr_activate[type] += nr_pages;
1933 count_memcg_page_event(page, PGACTIVATE);
1938 list_add(&page->lru, &ret_pages);
1939 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1941 /* 'page_list' is always empty here */
1943 /* Migrate pages selected for demotion */
1944 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1945 /* Pages that could not be demoted are still in @demote_pages */
1946 if (!list_empty(&demote_pages)) {
1947 /* Pages which failed to demoted go back on @page_list for retry: */
1948 list_splice_init(&demote_pages, page_list);
1949 do_demote_pass = false;
1953 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1955 mem_cgroup_uncharge_list(&free_pages);
1956 try_to_unmap_flush();
1957 free_unref_page_list(&free_pages);
1959 list_splice(&ret_pages, page_list);
1960 count_vm_events(PGACTIVATE, pgactivate);
1962 return nr_reclaimed;
1965 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1966 struct list_head *page_list)
1968 struct scan_control sc = {
1969 .gfp_mask = GFP_KERNEL,
1972 struct reclaim_stat stat;
1973 unsigned int nr_reclaimed;
1974 struct page *page, *next;
1975 LIST_HEAD(clean_pages);
1976 unsigned int noreclaim_flag;
1978 list_for_each_entry_safe(page, next, page_list, lru) {
1979 if (!PageHuge(page) && page_is_file_lru(page) &&
1980 !PageDirty(page) && !__PageMovable(page) &&
1981 !PageUnevictable(page)) {
1982 ClearPageActive(page);
1983 list_move(&page->lru, &clean_pages);
1988 * We should be safe here since we are only dealing with file pages and
1989 * we are not kswapd and therefore cannot write dirty file pages. But
1990 * call memalloc_noreclaim_save() anyway, just in case these conditions
1991 * change in the future.
1993 noreclaim_flag = memalloc_noreclaim_save();
1994 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1996 memalloc_noreclaim_restore(noreclaim_flag);
1998 list_splice(&clean_pages, page_list);
1999 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2000 -(long)nr_reclaimed);
2002 * Since lazyfree pages are isolated from file LRU from the beginning,
2003 * they will rotate back to anonymous LRU in the end if it failed to
2004 * discard so isolated count will be mismatched.
2005 * Compensate the isolated count for both LRU lists.
2007 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2008 stat.nr_lazyfree_fail);
2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2010 -(long)stat.nr_lazyfree_fail);
2011 return nr_reclaimed;
2015 * Attempt to remove the specified page from its LRU. Only take this page
2016 * if it is of the appropriate PageActive status. Pages which are being
2017 * freed elsewhere are also ignored.
2019 * page: page to consider
2020 * mode: one of the LRU isolation modes defined above
2022 * returns true on success, false on failure.
2024 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2026 /* Only take pages on the LRU. */
2030 /* Compaction should not handle unevictable pages but CMA can do so */
2031 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2035 * To minimise LRU disruption, the caller can indicate that it only
2036 * wants to isolate pages it will be able to operate on without
2037 * blocking - clean pages for the most part.
2039 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2040 * that it is possible to migrate without blocking
2042 if (mode & ISOLATE_ASYNC_MIGRATE) {
2043 /* All the caller can do on PageWriteback is block */
2044 if (PageWriteback(page))
2047 if (PageDirty(page)) {
2048 struct address_space *mapping;
2052 * Only pages without mappings or that have a
2053 * ->migratepage callback are possible to migrate
2054 * without blocking. However, we can be racing with
2055 * truncation so it's necessary to lock the page
2056 * to stabilise the mapping as truncation holds
2057 * the page lock until after the page is removed
2058 * from the page cache.
2060 if (!trylock_page(page))
2063 mapping = page_mapping(page);
2064 migrate_dirty = !mapping || mapping->a_ops->migratepage;
2071 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2078 * Update LRU sizes after isolating pages. The LRU size updates must
2079 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2081 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2082 enum lru_list lru, unsigned long *nr_zone_taken)
2086 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2087 if (!nr_zone_taken[zid])
2090 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2096 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2098 * lruvec->lru_lock is heavily contended. Some of the functions that
2099 * shrink the lists perform better by taking out a batch of pages
2100 * and working on them outside the LRU lock.
2102 * For pagecache intensive workloads, this function is the hottest
2103 * spot in the kernel (apart from copy_*_user functions).
2105 * Lru_lock must be held before calling this function.
2107 * @nr_to_scan: The number of eligible pages to look through on the list.
2108 * @lruvec: The LRU vector to pull pages from.
2109 * @dst: The temp list to put pages on to.
2110 * @nr_scanned: The number of pages that were scanned.
2111 * @sc: The scan_control struct for this reclaim session
2112 * @lru: LRU list id for isolating
2114 * returns how many pages were moved onto *@dst.
2116 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2117 struct lruvec *lruvec, struct list_head *dst,
2118 unsigned long *nr_scanned, struct scan_control *sc,
2121 struct list_head *src = &lruvec->lists[lru];
2122 unsigned long nr_taken = 0;
2123 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2124 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2125 unsigned long skipped = 0;
2126 unsigned long scan, total_scan, nr_pages;
2127 LIST_HEAD(pages_skipped);
2128 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2132 while (scan < nr_to_scan && !list_empty(src)) {
2135 page = lru_to_page(src);
2136 prefetchw_prev_lru_page(page, src, flags);
2138 nr_pages = compound_nr(page);
2139 total_scan += nr_pages;
2141 if (page_zonenum(page) > sc->reclaim_idx) {
2142 list_move(&page->lru, &pages_skipped);
2143 nr_skipped[page_zonenum(page)] += nr_pages;
2148 * Do not count skipped pages because that makes the function
2149 * return with no isolated pages if the LRU mostly contains
2150 * ineligible pages. This causes the VM to not reclaim any
2151 * pages, triggering a premature OOM.
2153 * Account all tail pages of THP. This would not cause
2154 * premature OOM since __isolate_lru_page() returns -EBUSY
2155 * only when the page is being freed somewhere else.
2158 if (!__isolate_lru_page_prepare(page, mode)) {
2159 /* It is being freed elsewhere */
2160 list_move(&page->lru, src);
2164 * Be careful not to clear PageLRU until after we're
2165 * sure the page is not being freed elsewhere -- the
2166 * page release code relies on it.
2168 if (unlikely(!get_page_unless_zero(page))) {
2169 list_move(&page->lru, src);
2173 if (!TestClearPageLRU(page)) {
2174 /* Another thread is already isolating this page */
2176 list_move(&page->lru, src);
2180 nr_taken += nr_pages;
2181 nr_zone_taken[page_zonenum(page)] += nr_pages;
2182 list_move(&page->lru, dst);
2186 * Splice any skipped pages to the start of the LRU list. Note that
2187 * this disrupts the LRU order when reclaiming for lower zones but
2188 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2189 * scanning would soon rescan the same pages to skip and put the
2190 * system at risk of premature OOM.
2192 if (!list_empty(&pages_skipped)) {
2195 list_splice(&pages_skipped, src);
2196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2197 if (!nr_skipped[zid])
2200 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2201 skipped += nr_skipped[zid];
2204 *nr_scanned = total_scan;
2205 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2206 total_scan, skipped, nr_taken, mode, lru);
2207 update_lru_sizes(lruvec, lru, nr_zone_taken);
2212 * isolate_lru_page - tries to isolate a page from its LRU list
2213 * @page: page to isolate from its LRU list
2215 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2216 * vmstat statistic corresponding to whatever LRU list the page was on.
2218 * Returns 0 if the page was removed from an LRU list.
2219 * Returns -EBUSY if the page was not on an LRU list.
2221 * The returned page will have PageLRU() cleared. If it was found on
2222 * the active list, it will have PageActive set. If it was found on
2223 * the unevictable list, it will have the PageUnevictable bit set. That flag
2224 * may need to be cleared by the caller before letting the page go.
2226 * The vmstat statistic corresponding to the list on which the page was
2227 * found will be decremented.
2231 * (1) Must be called with an elevated refcount on the page. This is a
2232 * fundamental difference from isolate_lru_pages (which is called
2233 * without a stable reference).
2234 * (2) the lru_lock must not be held.
2235 * (3) interrupts must be enabled.
2237 int isolate_lru_page(struct page *page)
2239 struct folio *folio = page_folio(page);
2242 VM_BUG_ON_PAGE(!page_count(page), page);
2243 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2245 if (TestClearPageLRU(page)) {
2246 struct lruvec *lruvec;
2249 lruvec = folio_lruvec_lock_irq(folio);
2250 del_page_from_lru_list(page, lruvec);
2251 unlock_page_lruvec_irq(lruvec);
2259 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2260 * then get rescheduled. When there are massive number of tasks doing page
2261 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2262 * the LRU list will go small and be scanned faster than necessary, leading to
2263 * unnecessary swapping, thrashing and OOM.
2265 static int too_many_isolated(struct pglist_data *pgdat, int file,
2266 struct scan_control *sc)
2268 unsigned long inactive, isolated;
2271 if (current_is_kswapd())
2274 if (!writeback_throttling_sane(sc))
2278 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2279 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2281 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2282 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2286 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2287 * won't get blocked by normal direct-reclaimers, forming a circular
2290 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2293 too_many = isolated > inactive;
2295 /* Wake up tasks throttled due to too_many_isolated. */
2297 wake_throttle_isolated(pgdat);
2303 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2304 * On return, @list is reused as a list of pages to be freed by the caller.
2306 * Returns the number of pages moved to the given lruvec.
2308 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2309 struct list_head *list)
2311 int nr_pages, nr_moved = 0;
2312 LIST_HEAD(pages_to_free);
2315 while (!list_empty(list)) {
2316 page = lru_to_page(list);
2317 VM_BUG_ON_PAGE(PageLRU(page), page);
2318 list_del(&page->lru);
2319 if (unlikely(!page_evictable(page))) {
2320 spin_unlock_irq(&lruvec->lru_lock);
2321 putback_lru_page(page);
2322 spin_lock_irq(&lruvec->lru_lock);
2327 * The SetPageLRU needs to be kept here for list integrity.
2329 * #0 move_pages_to_lru #1 release_pages
2330 * if !put_page_testzero
2331 * if (put_page_testzero())
2332 * !PageLRU //skip lru_lock
2334 * list_add(&page->lru,)
2335 * list_add(&page->lru,)
2339 if (unlikely(put_page_testzero(page))) {
2340 __clear_page_lru_flags(page);
2342 if (unlikely(PageCompound(page))) {
2343 spin_unlock_irq(&lruvec->lru_lock);
2344 destroy_compound_page(page);
2345 spin_lock_irq(&lruvec->lru_lock);
2347 list_add(&page->lru, &pages_to_free);
2353 * All pages were isolated from the same lruvec (and isolation
2354 * inhibits memcg migration).
2356 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2357 add_page_to_lru_list(page, lruvec);
2358 nr_pages = thp_nr_pages(page);
2359 nr_moved += nr_pages;
2360 if (PageActive(page))
2361 workingset_age_nonresident(lruvec, nr_pages);
2365 * To save our caller's stack, now use input list for pages to free.
2367 list_splice(&pages_to_free, list);
2373 * If a kernel thread (such as nfsd for loop-back mounts) services
2374 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2375 * In that case we should only throttle if the backing device it is
2376 * writing to is congested. In other cases it is safe to throttle.
2378 static int current_may_throttle(void)
2380 return !(current->flags & PF_LOCAL_THROTTLE) ||
2381 current->backing_dev_info == NULL ||
2382 bdi_write_congested(current->backing_dev_info);
2386 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2387 * of reclaimed pages
2389 static unsigned long
2390 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2391 struct scan_control *sc, enum lru_list lru)
2393 LIST_HEAD(page_list);
2394 unsigned long nr_scanned;
2395 unsigned int nr_reclaimed = 0;
2396 unsigned long nr_taken;
2397 struct reclaim_stat stat;
2398 bool file = is_file_lru(lru);
2399 enum vm_event_item item;
2400 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2401 bool stalled = false;
2403 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2407 /* wait a bit for the reclaimer. */
2409 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2411 /* We are about to die and free our memory. Return now. */
2412 if (fatal_signal_pending(current))
2413 return SWAP_CLUSTER_MAX;
2418 spin_lock_irq(&lruvec->lru_lock);
2420 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2421 &nr_scanned, sc, lru);
2423 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2424 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2425 if (!cgroup_reclaim(sc))
2426 __count_vm_events(item, nr_scanned);
2427 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2428 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2430 spin_unlock_irq(&lruvec->lru_lock);
2435 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2437 spin_lock_irq(&lruvec->lru_lock);
2438 move_pages_to_lru(lruvec, &page_list);
2440 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2441 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2442 if (!cgroup_reclaim(sc))
2443 __count_vm_events(item, nr_reclaimed);
2444 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2445 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2446 spin_unlock_irq(&lruvec->lru_lock);
2448 lru_note_cost(lruvec, file, stat.nr_pageout);
2449 mem_cgroup_uncharge_list(&page_list);
2450 free_unref_page_list(&page_list);
2453 * If dirty pages are scanned that are not queued for IO, it
2454 * implies that flushers are not doing their job. This can
2455 * happen when memory pressure pushes dirty pages to the end of
2456 * the LRU before the dirty limits are breached and the dirty
2457 * data has expired. It can also happen when the proportion of
2458 * dirty pages grows not through writes but through memory
2459 * pressure reclaiming all the clean cache. And in some cases,
2460 * the flushers simply cannot keep up with the allocation
2461 * rate. Nudge the flusher threads in case they are asleep.
2463 if (stat.nr_unqueued_dirty == nr_taken)
2464 wakeup_flusher_threads(WB_REASON_VMSCAN);
2466 sc->nr.dirty += stat.nr_dirty;
2467 sc->nr.congested += stat.nr_congested;
2468 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2469 sc->nr.writeback += stat.nr_writeback;
2470 sc->nr.immediate += stat.nr_immediate;
2471 sc->nr.taken += nr_taken;
2473 sc->nr.file_taken += nr_taken;
2475 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2476 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2477 return nr_reclaimed;
2481 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2483 * We move them the other way if the page is referenced by one or more
2486 * If the pages are mostly unmapped, the processing is fast and it is
2487 * appropriate to hold lru_lock across the whole operation. But if
2488 * the pages are mapped, the processing is slow (page_referenced()), so
2489 * we should drop lru_lock around each page. It's impossible to balance
2490 * this, so instead we remove the pages from the LRU while processing them.
2491 * It is safe to rely on PG_active against the non-LRU pages in here because
2492 * nobody will play with that bit on a non-LRU page.
2494 * The downside is that we have to touch page->_refcount against each page.
2495 * But we had to alter page->flags anyway.
2497 static void shrink_active_list(unsigned long nr_to_scan,
2498 struct lruvec *lruvec,
2499 struct scan_control *sc,
2502 unsigned long nr_taken;
2503 unsigned long nr_scanned;
2504 unsigned long vm_flags;
2505 LIST_HEAD(l_hold); /* The pages which were snipped off */
2506 LIST_HEAD(l_active);
2507 LIST_HEAD(l_inactive);
2509 unsigned nr_deactivate, nr_activate;
2510 unsigned nr_rotated = 0;
2511 int file = is_file_lru(lru);
2512 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2516 spin_lock_irq(&lruvec->lru_lock);
2518 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2519 &nr_scanned, sc, lru);
2521 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2523 if (!cgroup_reclaim(sc))
2524 __count_vm_events(PGREFILL, nr_scanned);
2525 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2527 spin_unlock_irq(&lruvec->lru_lock);
2529 while (!list_empty(&l_hold)) {
2531 page = lru_to_page(&l_hold);
2532 list_del(&page->lru);
2534 if (unlikely(!page_evictable(page))) {
2535 putback_lru_page(page);
2539 if (unlikely(buffer_heads_over_limit)) {
2540 if (page_has_private(page) && trylock_page(page)) {
2541 if (page_has_private(page))
2542 try_to_release_page(page, 0);
2547 if (page_referenced(page, 0, sc->target_mem_cgroup,
2550 * Identify referenced, file-backed active pages and
2551 * give them one more trip around the active list. So
2552 * that executable code get better chances to stay in
2553 * memory under moderate memory pressure. Anon pages
2554 * are not likely to be evicted by use-once streaming
2555 * IO, plus JVM can create lots of anon VM_EXEC pages,
2556 * so we ignore them here.
2558 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2559 nr_rotated += thp_nr_pages(page);
2560 list_add(&page->lru, &l_active);
2565 ClearPageActive(page); /* we are de-activating */
2566 SetPageWorkingset(page);
2567 list_add(&page->lru, &l_inactive);
2571 * Move pages back to the lru list.
2573 spin_lock_irq(&lruvec->lru_lock);
2575 nr_activate = move_pages_to_lru(lruvec, &l_active);
2576 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2577 /* Keep all free pages in l_active list */
2578 list_splice(&l_inactive, &l_active);
2580 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2581 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2583 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2584 spin_unlock_irq(&lruvec->lru_lock);
2586 mem_cgroup_uncharge_list(&l_active);
2587 free_unref_page_list(&l_active);
2588 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2589 nr_deactivate, nr_rotated, sc->priority, file);
2592 unsigned long reclaim_pages(struct list_head *page_list)
2594 int nid = NUMA_NO_NODE;
2595 unsigned int nr_reclaimed = 0;
2596 LIST_HEAD(node_page_list);
2597 struct reclaim_stat dummy_stat;
2599 unsigned int noreclaim_flag;
2600 struct scan_control sc = {
2601 .gfp_mask = GFP_KERNEL,
2608 noreclaim_flag = memalloc_noreclaim_save();
2610 while (!list_empty(page_list)) {
2611 page = lru_to_page(page_list);
2612 if (nid == NUMA_NO_NODE) {
2613 nid = page_to_nid(page);
2614 INIT_LIST_HEAD(&node_page_list);
2617 if (nid == page_to_nid(page)) {
2618 ClearPageActive(page);
2619 list_move(&page->lru, &node_page_list);
2623 nr_reclaimed += shrink_page_list(&node_page_list,
2625 &sc, &dummy_stat, false);
2626 while (!list_empty(&node_page_list)) {
2627 page = lru_to_page(&node_page_list);
2628 list_del(&page->lru);
2629 putback_lru_page(page);
2635 if (!list_empty(&node_page_list)) {
2636 nr_reclaimed += shrink_page_list(&node_page_list,
2638 &sc, &dummy_stat, false);
2639 while (!list_empty(&node_page_list)) {
2640 page = lru_to_page(&node_page_list);
2641 list_del(&page->lru);
2642 putback_lru_page(page);
2646 memalloc_noreclaim_restore(noreclaim_flag);
2648 return nr_reclaimed;
2651 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2652 struct lruvec *lruvec, struct scan_control *sc)
2654 if (is_active_lru(lru)) {
2655 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2656 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2658 sc->skipped_deactivate = 1;
2662 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2666 * The inactive anon list should be small enough that the VM never has
2667 * to do too much work.
2669 * The inactive file list should be small enough to leave most memory
2670 * to the established workingset on the scan-resistant active list,
2671 * but large enough to avoid thrashing the aggregate readahead window.
2673 * Both inactive lists should also be large enough that each inactive
2674 * page has a chance to be referenced again before it is reclaimed.
2676 * If that fails and refaulting is observed, the inactive list grows.
2678 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2679 * on this LRU, maintained by the pageout code. An inactive_ratio
2680 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2683 * memory ratio inactive
2684 * -------------------------------------
2693 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2695 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2696 unsigned long inactive, active;
2697 unsigned long inactive_ratio;
2700 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2701 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2703 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2705 inactive_ratio = int_sqrt(10 * gb);
2709 return inactive * inactive_ratio < active;
2720 * Determine how aggressively the anon and file LRU lists should be
2721 * scanned. The relative value of each set of LRU lists is determined
2722 * by looking at the fraction of the pages scanned we did rotate back
2723 * onto the active list instead of evict.
2725 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2726 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2728 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2731 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2732 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2733 unsigned long anon_cost, file_cost, total_cost;
2734 int swappiness = mem_cgroup_swappiness(memcg);
2735 u64 fraction[ANON_AND_FILE];
2736 u64 denominator = 0; /* gcc */
2737 enum scan_balance scan_balance;
2738 unsigned long ap, fp;
2741 /* If we have no swap space, do not bother scanning anon pages. */
2742 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2743 scan_balance = SCAN_FILE;
2748 * Global reclaim will swap to prevent OOM even with no
2749 * swappiness, but memcg users want to use this knob to
2750 * disable swapping for individual groups completely when
2751 * using the memory controller's swap limit feature would be
2754 if (cgroup_reclaim(sc) && !swappiness) {
2755 scan_balance = SCAN_FILE;
2760 * Do not apply any pressure balancing cleverness when the
2761 * system is close to OOM, scan both anon and file equally
2762 * (unless the swappiness setting disagrees with swapping).
2764 if (!sc->priority && swappiness) {
2765 scan_balance = SCAN_EQUAL;
2770 * If the system is almost out of file pages, force-scan anon.
2772 if (sc->file_is_tiny) {
2773 scan_balance = SCAN_ANON;
2778 * If there is enough inactive page cache, we do not reclaim
2779 * anything from the anonymous working right now.
2781 if (sc->cache_trim_mode) {
2782 scan_balance = SCAN_FILE;
2786 scan_balance = SCAN_FRACT;
2788 * Calculate the pressure balance between anon and file pages.
2790 * The amount of pressure we put on each LRU is inversely
2791 * proportional to the cost of reclaiming each list, as
2792 * determined by the share of pages that are refaulting, times
2793 * the relative IO cost of bringing back a swapped out
2794 * anonymous page vs reloading a filesystem page (swappiness).
2796 * Although we limit that influence to ensure no list gets
2797 * left behind completely: at least a third of the pressure is
2798 * applied, before swappiness.
2800 * With swappiness at 100, anon and file have equal IO cost.
2802 total_cost = sc->anon_cost + sc->file_cost;
2803 anon_cost = total_cost + sc->anon_cost;
2804 file_cost = total_cost + sc->file_cost;
2805 total_cost = anon_cost + file_cost;
2807 ap = swappiness * (total_cost + 1);
2808 ap /= anon_cost + 1;
2810 fp = (200 - swappiness) * (total_cost + 1);
2811 fp /= file_cost + 1;
2815 denominator = ap + fp;
2817 for_each_evictable_lru(lru) {
2818 int file = is_file_lru(lru);
2819 unsigned long lruvec_size;
2820 unsigned long low, min;
2823 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2824 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2829 * Scale a cgroup's reclaim pressure by proportioning
2830 * its current usage to its memory.low or memory.min
2833 * This is important, as otherwise scanning aggression
2834 * becomes extremely binary -- from nothing as we
2835 * approach the memory protection threshold, to totally
2836 * nominal as we exceed it. This results in requiring
2837 * setting extremely liberal protection thresholds. It
2838 * also means we simply get no protection at all if we
2839 * set it too low, which is not ideal.
2841 * If there is any protection in place, we reduce scan
2842 * pressure by how much of the total memory used is
2843 * within protection thresholds.
2845 * There is one special case: in the first reclaim pass,
2846 * we skip over all groups that are within their low
2847 * protection. If that fails to reclaim enough pages to
2848 * satisfy the reclaim goal, we come back and override
2849 * the best-effort low protection. However, we still
2850 * ideally want to honor how well-behaved groups are in
2851 * that case instead of simply punishing them all
2852 * equally. As such, we reclaim them based on how much
2853 * memory they are using, reducing the scan pressure
2854 * again by how much of the total memory used is under
2857 unsigned long cgroup_size = mem_cgroup_size(memcg);
2858 unsigned long protection;
2860 /* memory.low scaling, make sure we retry before OOM */
2861 if (!sc->memcg_low_reclaim && low > min) {
2863 sc->memcg_low_skipped = 1;
2868 /* Avoid TOCTOU with earlier protection check */
2869 cgroup_size = max(cgroup_size, protection);
2871 scan = lruvec_size - lruvec_size * protection /
2875 * Minimally target SWAP_CLUSTER_MAX pages to keep
2876 * reclaim moving forwards, avoiding decrementing
2877 * sc->priority further than desirable.
2879 scan = max(scan, SWAP_CLUSTER_MAX);
2884 scan >>= sc->priority;
2887 * If the cgroup's already been deleted, make sure to
2888 * scrape out the remaining cache.
2890 if (!scan && !mem_cgroup_online(memcg))
2891 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2893 switch (scan_balance) {
2895 /* Scan lists relative to size */
2899 * Scan types proportional to swappiness and
2900 * their relative recent reclaim efficiency.
2901 * Make sure we don't miss the last page on
2902 * the offlined memory cgroups because of a
2905 scan = mem_cgroup_online(memcg) ?
2906 div64_u64(scan * fraction[file], denominator) :
2907 DIV64_U64_ROUND_UP(scan * fraction[file],
2912 /* Scan one type exclusively */
2913 if ((scan_balance == SCAN_FILE) != file)
2917 /* Look ma, no brain */
2926 * Anonymous LRU management is a waste if there is
2927 * ultimately no way to reclaim the memory.
2929 static bool can_age_anon_pages(struct pglist_data *pgdat,
2930 struct scan_control *sc)
2932 /* Aging the anon LRU is valuable if swap is present: */
2933 if (total_swap_pages > 0)
2936 /* Also valuable if anon pages can be demoted: */
2937 return can_demote(pgdat->node_id, sc);
2940 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2942 unsigned long nr[NR_LRU_LISTS];
2943 unsigned long targets[NR_LRU_LISTS];
2944 unsigned long nr_to_scan;
2946 unsigned long nr_reclaimed = 0;
2947 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2948 struct blk_plug plug;
2951 get_scan_count(lruvec, sc, nr);
2953 /* Record the original scan target for proportional adjustments later */
2954 memcpy(targets, nr, sizeof(nr));
2957 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2958 * event that can occur when there is little memory pressure e.g.
2959 * multiple streaming readers/writers. Hence, we do not abort scanning
2960 * when the requested number of pages are reclaimed when scanning at
2961 * DEF_PRIORITY on the assumption that the fact we are direct
2962 * reclaiming implies that kswapd is not keeping up and it is best to
2963 * do a batch of work at once. For memcg reclaim one check is made to
2964 * abort proportional reclaim if either the file or anon lru has already
2965 * dropped to zero at the first pass.
2967 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2968 sc->priority == DEF_PRIORITY);
2970 blk_start_plug(&plug);
2971 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2972 nr[LRU_INACTIVE_FILE]) {
2973 unsigned long nr_anon, nr_file, percentage;
2974 unsigned long nr_scanned;
2976 for_each_evictable_lru(lru) {
2978 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2979 nr[lru] -= nr_to_scan;
2981 nr_reclaimed += shrink_list(lru, nr_to_scan,
2988 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2992 * For kswapd and memcg, reclaim at least the number of pages
2993 * requested. Ensure that the anon and file LRUs are scanned
2994 * proportionally what was requested by get_scan_count(). We
2995 * stop reclaiming one LRU and reduce the amount scanning
2996 * proportional to the original scan target.
2998 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2999 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3002 * It's just vindictive to attack the larger once the smaller
3003 * has gone to zero. And given the way we stop scanning the
3004 * smaller below, this makes sure that we only make one nudge
3005 * towards proportionality once we've got nr_to_reclaim.
3007 if (!nr_file || !nr_anon)
3010 if (nr_file > nr_anon) {
3011 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3012 targets[LRU_ACTIVE_ANON] + 1;
3014 percentage = nr_anon * 100 / scan_target;
3016 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3017 targets[LRU_ACTIVE_FILE] + 1;
3019 percentage = nr_file * 100 / scan_target;
3022 /* Stop scanning the smaller of the LRU */
3024 nr[lru + LRU_ACTIVE] = 0;
3027 * Recalculate the other LRU scan count based on its original
3028 * scan target and the percentage scanning already complete
3030 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3031 nr_scanned = targets[lru] - nr[lru];
3032 nr[lru] = targets[lru] * (100 - percentage) / 100;
3033 nr[lru] -= min(nr[lru], nr_scanned);
3036 nr_scanned = targets[lru] - nr[lru];
3037 nr[lru] = targets[lru] * (100 - percentage) / 100;
3038 nr[lru] -= min(nr[lru], nr_scanned);
3040 scan_adjusted = true;
3042 blk_finish_plug(&plug);
3043 sc->nr_reclaimed += nr_reclaimed;
3046 * Even if we did not try to evict anon pages at all, we want to
3047 * rebalance the anon lru active/inactive ratio.
3049 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3050 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3051 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3052 sc, LRU_ACTIVE_ANON);
3055 /* Use reclaim/compaction for costly allocs or under memory pressure */
3056 static bool in_reclaim_compaction(struct scan_control *sc)
3058 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3059 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3060 sc->priority < DEF_PRIORITY - 2))
3067 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3068 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3069 * true if more pages should be reclaimed such that when the page allocator
3070 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3071 * It will give up earlier than that if there is difficulty reclaiming pages.
3073 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3074 unsigned long nr_reclaimed,
3075 struct scan_control *sc)
3077 unsigned long pages_for_compaction;
3078 unsigned long inactive_lru_pages;
3081 /* If not in reclaim/compaction mode, stop */
3082 if (!in_reclaim_compaction(sc))
3086 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3087 * number of pages that were scanned. This will return to the caller
3088 * with the risk reclaim/compaction and the resulting allocation attempt
3089 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3090 * allocations through requiring that the full LRU list has been scanned
3091 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3092 * scan, but that approximation was wrong, and there were corner cases
3093 * where always a non-zero amount of pages were scanned.
3098 /* If compaction would go ahead or the allocation would succeed, stop */
3099 for (z = 0; z <= sc->reclaim_idx; z++) {
3100 struct zone *zone = &pgdat->node_zones[z];
3101 if (!managed_zone(zone))
3104 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3105 case COMPACT_SUCCESS:
3106 case COMPACT_CONTINUE:
3109 /* check next zone */
3115 * If we have not reclaimed enough pages for compaction and the
3116 * inactive lists are large enough, continue reclaiming
3118 pages_for_compaction = compact_gap(sc->order);
3119 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3120 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3121 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3123 return inactive_lru_pages > pages_for_compaction;
3126 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3128 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3129 struct mem_cgroup *memcg;
3131 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3133 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3134 unsigned long reclaimed;
3135 unsigned long scanned;
3138 * This loop can become CPU-bound when target memcgs
3139 * aren't eligible for reclaim - either because they
3140 * don't have any reclaimable pages, or because their
3141 * memory is explicitly protected. Avoid soft lockups.
3145 mem_cgroup_calculate_protection(target_memcg, memcg);
3147 if (mem_cgroup_below_min(memcg)) {
3150 * If there is no reclaimable memory, OOM.
3153 } else if (mem_cgroup_below_low(memcg)) {
3156 * Respect the protection only as long as
3157 * there is an unprotected supply
3158 * of reclaimable memory from other cgroups.
3160 if (!sc->memcg_low_reclaim) {
3161 sc->memcg_low_skipped = 1;
3164 memcg_memory_event(memcg, MEMCG_LOW);
3167 reclaimed = sc->nr_reclaimed;
3168 scanned = sc->nr_scanned;
3170 shrink_lruvec(lruvec, sc);
3172 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3175 /* Record the group's reclaim efficiency */
3176 vmpressure(sc->gfp_mask, memcg, false,
3177 sc->nr_scanned - scanned,
3178 sc->nr_reclaimed - reclaimed);
3180 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3183 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3185 struct reclaim_state *reclaim_state = current->reclaim_state;
3186 unsigned long nr_reclaimed, nr_scanned;
3187 struct lruvec *target_lruvec;
3188 bool reclaimable = false;
3191 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3195 * Flush the memory cgroup stats, so that we read accurate per-memcg
3196 * lruvec stats for heuristics.
3198 mem_cgroup_flush_stats();
3200 memset(&sc->nr, 0, sizeof(sc->nr));
3202 nr_reclaimed = sc->nr_reclaimed;
3203 nr_scanned = sc->nr_scanned;
3206 * Determine the scan balance between anon and file LRUs.
3208 spin_lock_irq(&target_lruvec->lru_lock);
3209 sc->anon_cost = target_lruvec->anon_cost;
3210 sc->file_cost = target_lruvec->file_cost;
3211 spin_unlock_irq(&target_lruvec->lru_lock);
3214 * Target desirable inactive:active list ratios for the anon
3215 * and file LRU lists.
3217 if (!sc->force_deactivate) {
3218 unsigned long refaults;
3220 refaults = lruvec_page_state(target_lruvec,
3221 WORKINGSET_ACTIVATE_ANON);
3222 if (refaults != target_lruvec->refaults[0] ||
3223 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3224 sc->may_deactivate |= DEACTIVATE_ANON;
3226 sc->may_deactivate &= ~DEACTIVATE_ANON;
3229 * When refaults are being observed, it means a new
3230 * workingset is being established. Deactivate to get
3231 * rid of any stale active pages quickly.
3233 refaults = lruvec_page_state(target_lruvec,
3234 WORKINGSET_ACTIVATE_FILE);
3235 if (refaults != target_lruvec->refaults[1] ||
3236 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3237 sc->may_deactivate |= DEACTIVATE_FILE;
3239 sc->may_deactivate &= ~DEACTIVATE_FILE;
3241 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3244 * If we have plenty of inactive file pages that aren't
3245 * thrashing, try to reclaim those first before touching
3248 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3249 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3250 sc->cache_trim_mode = 1;
3252 sc->cache_trim_mode = 0;
3255 * Prevent the reclaimer from falling into the cache trap: as
3256 * cache pages start out inactive, every cache fault will tip
3257 * the scan balance towards the file LRU. And as the file LRU
3258 * shrinks, so does the window for rotation from references.
3259 * This means we have a runaway feedback loop where a tiny
3260 * thrashing file LRU becomes infinitely more attractive than
3261 * anon pages. Try to detect this based on file LRU size.
3263 if (!cgroup_reclaim(sc)) {
3264 unsigned long total_high_wmark = 0;
3265 unsigned long free, anon;
3268 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3269 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3270 node_page_state(pgdat, NR_INACTIVE_FILE);
3272 for (z = 0; z < MAX_NR_ZONES; z++) {
3273 struct zone *zone = &pgdat->node_zones[z];
3274 if (!managed_zone(zone))
3277 total_high_wmark += high_wmark_pages(zone);
3281 * Consider anon: if that's low too, this isn't a
3282 * runaway file reclaim problem, but rather just
3283 * extreme pressure. Reclaim as per usual then.
3285 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3288 file + free <= total_high_wmark &&
3289 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3290 anon >> sc->priority;
3293 shrink_node_memcgs(pgdat, sc);
3295 if (reclaim_state) {
3296 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3297 reclaim_state->reclaimed_slab = 0;
3300 /* Record the subtree's reclaim efficiency */
3301 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3302 sc->nr_scanned - nr_scanned,
3303 sc->nr_reclaimed - nr_reclaimed);
3305 if (sc->nr_reclaimed - nr_reclaimed)
3308 if (current_is_kswapd()) {
3310 * If reclaim is isolating dirty pages under writeback,
3311 * it implies that the long-lived page allocation rate
3312 * is exceeding the page laundering rate. Either the
3313 * global limits are not being effective at throttling
3314 * processes due to the page distribution throughout
3315 * zones or there is heavy usage of a slow backing
3316 * device. The only option is to throttle from reclaim
3317 * context which is not ideal as there is no guarantee
3318 * the dirtying process is throttled in the same way
3319 * balance_dirty_pages() manages.
3321 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3322 * count the number of pages under pages flagged for
3323 * immediate reclaim and stall if any are encountered
3324 * in the nr_immediate check below.
3326 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3327 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3329 /* Allow kswapd to start writing pages during reclaim.*/
3330 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3331 set_bit(PGDAT_DIRTY, &pgdat->flags);
3334 * If kswapd scans pages marked for immediate
3335 * reclaim and under writeback (nr_immediate), it
3336 * implies that pages are cycling through the LRU
3337 * faster than they are written so forcibly stall
3338 * until some pages complete writeback.
3340 if (sc->nr.immediate)
3341 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3345 * Tag a node/memcg as congested if all the dirty pages were marked
3346 * for writeback and immediate reclaim (counted in nr.congested).
3348 * Legacy memcg will stall in page writeback so avoid forcibly
3349 * stalling in reclaim_throttle().
3351 if ((current_is_kswapd() ||
3352 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3353 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3354 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3357 * Stall direct reclaim for IO completions if the lruvec is
3358 * node is congested. Allow kswapd to continue until it
3359 * starts encountering unqueued dirty pages or cycling through
3360 * the LRU too quickly.
3362 if (!current_is_kswapd() && current_may_throttle() &&
3363 !sc->hibernation_mode &&
3364 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3365 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3367 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3372 * Kswapd gives up on balancing particular nodes after too
3373 * many failures to reclaim anything from them and goes to
3374 * sleep. On reclaim progress, reset the failure counter. A
3375 * successful direct reclaim run will revive a dormant kswapd.
3378 pgdat->kswapd_failures = 0;
3382 * Returns true if compaction should go ahead for a costly-order request, or
3383 * the allocation would already succeed without compaction. Return false if we
3384 * should reclaim first.
3386 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3388 unsigned long watermark;
3389 enum compact_result suitable;
3391 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3392 if (suitable == COMPACT_SUCCESS)
3393 /* Allocation should succeed already. Don't reclaim. */
3395 if (suitable == COMPACT_SKIPPED)
3396 /* Compaction cannot yet proceed. Do reclaim. */
3400 * Compaction is already possible, but it takes time to run and there
3401 * are potentially other callers using the pages just freed. So proceed
3402 * with reclaim to make a buffer of free pages available to give
3403 * compaction a reasonable chance of completing and allocating the page.
3404 * Note that we won't actually reclaim the whole buffer in one attempt
3405 * as the target watermark in should_continue_reclaim() is lower. But if
3406 * we are already above the high+gap watermark, don't reclaim at all.
3408 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3410 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3413 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3416 * If reclaim is making progress greater than 12% efficiency then
3417 * wake all the NOPROGRESS throttled tasks.
3419 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3420 wait_queue_head_t *wqh;
3422 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3423 if (waitqueue_active(wqh))
3430 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3431 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3432 * under writeback and marked for immediate reclaim at the tail of the
3435 if (current_is_kswapd() || cgroup_reclaim(sc))
3438 /* Throttle if making no progress at high prioities. */
3439 if (sc->priority == 1 && !sc->nr_reclaimed)
3440 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3444 * This is the direct reclaim path, for page-allocating processes. We only
3445 * try to reclaim pages from zones which will satisfy the caller's allocation
3448 * If a zone is deemed to be full of pinned pages then just give it a light
3449 * scan then give up on it.
3451 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3455 unsigned long nr_soft_reclaimed;
3456 unsigned long nr_soft_scanned;
3458 pg_data_t *last_pgdat = NULL;
3459 pg_data_t *first_pgdat = NULL;
3462 * If the number of buffer_heads in the machine exceeds the maximum
3463 * allowed level, force direct reclaim to scan the highmem zone as
3464 * highmem pages could be pinning lowmem pages storing buffer_heads
3466 orig_mask = sc->gfp_mask;
3467 if (buffer_heads_over_limit) {
3468 sc->gfp_mask |= __GFP_HIGHMEM;
3469 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3472 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3473 sc->reclaim_idx, sc->nodemask) {
3475 * Take care memory controller reclaiming has small influence
3478 if (!cgroup_reclaim(sc)) {
3479 if (!cpuset_zone_allowed(zone,
3480 GFP_KERNEL | __GFP_HARDWALL))
3484 * If we already have plenty of memory free for
3485 * compaction in this zone, don't free any more.
3486 * Even though compaction is invoked for any
3487 * non-zero order, only frequent costly order
3488 * reclamation is disruptive enough to become a
3489 * noticeable problem, like transparent huge
3492 if (IS_ENABLED(CONFIG_COMPACTION) &&
3493 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3494 compaction_ready(zone, sc)) {
3495 sc->compaction_ready = true;
3500 * Shrink each node in the zonelist once. If the
3501 * zonelist is ordered by zone (not the default) then a
3502 * node may be shrunk multiple times but in that case
3503 * the user prefers lower zones being preserved.
3505 if (zone->zone_pgdat == last_pgdat)
3509 * This steals pages from memory cgroups over softlimit
3510 * and returns the number of reclaimed pages and
3511 * scanned pages. This works for global memory pressure
3512 * and balancing, not for a memcg's limit.
3514 nr_soft_scanned = 0;
3515 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3516 sc->order, sc->gfp_mask,
3518 sc->nr_reclaimed += nr_soft_reclaimed;
3519 sc->nr_scanned += nr_soft_scanned;
3520 /* need some check for avoid more shrink_zone() */
3524 first_pgdat = zone->zone_pgdat;
3526 /* See comment about same check for global reclaim above */
3527 if (zone->zone_pgdat == last_pgdat)
3529 last_pgdat = zone->zone_pgdat;
3530 shrink_node(zone->zone_pgdat, sc);
3534 consider_reclaim_throttle(first_pgdat, sc);
3537 * Restore to original mask to avoid the impact on the caller if we
3538 * promoted it to __GFP_HIGHMEM.
3540 sc->gfp_mask = orig_mask;
3543 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3545 struct lruvec *target_lruvec;
3546 unsigned long refaults;
3548 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3549 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3550 target_lruvec->refaults[0] = refaults;
3551 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3552 target_lruvec->refaults[1] = refaults;
3556 * This is the main entry point to direct page reclaim.
3558 * If a full scan of the inactive list fails to free enough memory then we
3559 * are "out of memory" and something needs to be killed.
3561 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3562 * high - the zone may be full of dirty or under-writeback pages, which this
3563 * caller can't do much about. We kick the writeback threads and take explicit
3564 * naps in the hope that some of these pages can be written. But if the
3565 * allocating task holds filesystem locks which prevent writeout this might not
3566 * work, and the allocation attempt will fail.
3568 * returns: 0, if no pages reclaimed
3569 * else, the number of pages reclaimed
3571 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3572 struct scan_control *sc)
3574 int initial_priority = sc->priority;
3575 pg_data_t *last_pgdat;
3579 delayacct_freepages_start();
3581 if (!cgroup_reclaim(sc))
3582 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3585 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3588 shrink_zones(zonelist, sc);
3590 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3593 if (sc->compaction_ready)
3597 * If we're getting trouble reclaiming, start doing
3598 * writepage even in laptop mode.
3600 if (sc->priority < DEF_PRIORITY - 2)
3601 sc->may_writepage = 1;
3602 } while (--sc->priority >= 0);
3605 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3607 if (zone->zone_pgdat == last_pgdat)
3609 last_pgdat = zone->zone_pgdat;
3611 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3613 if (cgroup_reclaim(sc)) {
3614 struct lruvec *lruvec;
3616 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3618 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3622 delayacct_freepages_end();
3624 if (sc->nr_reclaimed)
3625 return sc->nr_reclaimed;
3627 /* Aborted reclaim to try compaction? don't OOM, then */
3628 if (sc->compaction_ready)
3632 * We make inactive:active ratio decisions based on the node's
3633 * composition of memory, but a restrictive reclaim_idx or a
3634 * memory.low cgroup setting can exempt large amounts of
3635 * memory from reclaim. Neither of which are very common, so
3636 * instead of doing costly eligibility calculations of the
3637 * entire cgroup subtree up front, we assume the estimates are
3638 * good, and retry with forcible deactivation if that fails.
3640 if (sc->skipped_deactivate) {
3641 sc->priority = initial_priority;
3642 sc->force_deactivate = 1;
3643 sc->skipped_deactivate = 0;
3647 /* Untapped cgroup reserves? Don't OOM, retry. */
3648 if (sc->memcg_low_skipped) {
3649 sc->priority = initial_priority;
3650 sc->force_deactivate = 0;
3651 sc->memcg_low_reclaim = 1;
3652 sc->memcg_low_skipped = 0;
3659 static bool allow_direct_reclaim(pg_data_t *pgdat)
3662 unsigned long pfmemalloc_reserve = 0;
3663 unsigned long free_pages = 0;
3667 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 for (i = 0; i <= ZONE_NORMAL; i++) {
3671 zone = &pgdat->node_zones[i];
3672 if (!managed_zone(zone))
3675 if (!zone_reclaimable_pages(zone))
3678 pfmemalloc_reserve += min_wmark_pages(zone);
3679 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3682 /* If there are no reserves (unexpected config) then do not throttle */
3683 if (!pfmemalloc_reserve)
3686 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3688 /* kswapd must be awake if processes are being throttled */
3689 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3690 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3691 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3693 wake_up_interruptible(&pgdat->kswapd_wait);
3700 * Throttle direct reclaimers if backing storage is backed by the network
3701 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3702 * depleted. kswapd will continue to make progress and wake the processes
3703 * when the low watermark is reached.
3705 * Returns true if a fatal signal was delivered during throttling. If this
3706 * happens, the page allocator should not consider triggering the OOM killer.
3708 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3709 nodemask_t *nodemask)
3713 pg_data_t *pgdat = NULL;
3716 * Kernel threads should not be throttled as they may be indirectly
3717 * responsible for cleaning pages necessary for reclaim to make forward
3718 * progress. kjournald for example may enter direct reclaim while
3719 * committing a transaction where throttling it could forcing other
3720 * processes to block on log_wait_commit().
3722 if (current->flags & PF_KTHREAD)
3726 * If a fatal signal is pending, this process should not throttle.
3727 * It should return quickly so it can exit and free its memory
3729 if (fatal_signal_pending(current))
3733 * Check if the pfmemalloc reserves are ok by finding the first node
3734 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3735 * GFP_KERNEL will be required for allocating network buffers when
3736 * swapping over the network so ZONE_HIGHMEM is unusable.
3738 * Throttling is based on the first usable node and throttled processes
3739 * wait on a queue until kswapd makes progress and wakes them. There
3740 * is an affinity then between processes waking up and where reclaim
3741 * progress has been made assuming the process wakes on the same node.
3742 * More importantly, processes running on remote nodes will not compete
3743 * for remote pfmemalloc reserves and processes on different nodes
3744 * should make reasonable progress.
3746 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3747 gfp_zone(gfp_mask), nodemask) {
3748 if (zone_idx(zone) > ZONE_NORMAL)
3751 /* Throttle based on the first usable node */
3752 pgdat = zone->zone_pgdat;
3753 if (allow_direct_reclaim(pgdat))
3758 /* If no zone was usable by the allocation flags then do not throttle */
3762 /* Account for the throttling */
3763 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3766 * If the caller cannot enter the filesystem, it's possible that it
3767 * is due to the caller holding an FS lock or performing a journal
3768 * transaction in the case of a filesystem like ext[3|4]. In this case,
3769 * it is not safe to block on pfmemalloc_wait as kswapd could be
3770 * blocked waiting on the same lock. Instead, throttle for up to a
3771 * second before continuing.
3773 if (!(gfp_mask & __GFP_FS))
3774 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3775 allow_direct_reclaim(pgdat), HZ);
3777 /* Throttle until kswapd wakes the process */
3778 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3779 allow_direct_reclaim(pgdat));
3781 if (fatal_signal_pending(current))
3788 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3789 gfp_t gfp_mask, nodemask_t *nodemask)
3791 unsigned long nr_reclaimed;
3792 struct scan_control sc = {
3793 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3794 .gfp_mask = current_gfp_context(gfp_mask),
3795 .reclaim_idx = gfp_zone(gfp_mask),
3797 .nodemask = nodemask,
3798 .priority = DEF_PRIORITY,
3799 .may_writepage = !laptop_mode,
3805 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3806 * Confirm they are large enough for max values.
3808 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3809 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3810 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3813 * Do not enter reclaim if fatal signal was delivered while throttled.
3814 * 1 is returned so that the page allocator does not OOM kill at this
3817 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3820 set_task_reclaim_state(current, &sc.reclaim_state);
3821 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3823 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3825 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3826 set_task_reclaim_state(current, NULL);
3828 return nr_reclaimed;
3833 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3834 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3835 gfp_t gfp_mask, bool noswap,
3837 unsigned long *nr_scanned)
3839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3840 struct scan_control sc = {
3841 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3842 .target_mem_cgroup = memcg,
3843 .may_writepage = !laptop_mode,
3845 .reclaim_idx = MAX_NR_ZONES - 1,
3846 .may_swap = !noswap,
3849 WARN_ON_ONCE(!current->reclaim_state);
3851 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3852 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3854 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3858 * NOTE: Although we can get the priority field, using it
3859 * here is not a good idea, since it limits the pages we can scan.
3860 * if we don't reclaim here, the shrink_node from balance_pgdat
3861 * will pick up pages from other mem cgroup's as well. We hack
3862 * the priority and make it zero.
3864 shrink_lruvec(lruvec, &sc);
3866 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3868 *nr_scanned = sc.nr_scanned;
3870 return sc.nr_reclaimed;
3873 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3874 unsigned long nr_pages,
3878 unsigned long nr_reclaimed;
3879 unsigned int noreclaim_flag;
3880 struct scan_control sc = {
3881 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3882 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3883 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3884 .reclaim_idx = MAX_NR_ZONES - 1,
3885 .target_mem_cgroup = memcg,
3886 .priority = DEF_PRIORITY,
3887 .may_writepage = !laptop_mode,
3889 .may_swap = may_swap,
3892 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3893 * equal pressure on all the nodes. This is based on the assumption that
3894 * the reclaim does not bail out early.
3896 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3898 set_task_reclaim_state(current, &sc.reclaim_state);
3899 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3900 noreclaim_flag = memalloc_noreclaim_save();
3902 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3904 memalloc_noreclaim_restore(noreclaim_flag);
3905 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3906 set_task_reclaim_state(current, NULL);
3908 return nr_reclaimed;
3912 static void age_active_anon(struct pglist_data *pgdat,
3913 struct scan_control *sc)
3915 struct mem_cgroup *memcg;
3916 struct lruvec *lruvec;
3918 if (!can_age_anon_pages(pgdat, sc))
3921 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3922 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3925 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3927 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3928 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3929 sc, LRU_ACTIVE_ANON);
3930 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3934 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3940 * Check for watermark boosts top-down as the higher zones
3941 * are more likely to be boosted. Both watermarks and boosts
3942 * should not be checked at the same time as reclaim would
3943 * start prematurely when there is no boosting and a lower
3946 for (i = highest_zoneidx; i >= 0; i--) {
3947 zone = pgdat->node_zones + i;
3948 if (!managed_zone(zone))
3951 if (zone->watermark_boost)
3959 * Returns true if there is an eligible zone balanced for the request order
3960 * and highest_zoneidx
3962 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3965 unsigned long mark = -1;
3969 * Check watermarks bottom-up as lower zones are more likely to
3972 for (i = 0; i <= highest_zoneidx; i++) {
3973 zone = pgdat->node_zones + i;
3975 if (!managed_zone(zone))
3978 mark = high_wmark_pages(zone);
3979 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3984 * If a node has no populated zone within highest_zoneidx, it does not
3985 * need balancing by definition. This can happen if a zone-restricted
3986 * allocation tries to wake a remote kswapd.
3994 /* Clear pgdat state for congested, dirty or under writeback. */
3995 static void clear_pgdat_congested(pg_data_t *pgdat)
3997 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3999 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4000 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4001 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4005 * Prepare kswapd for sleeping. This verifies that there are no processes
4006 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4008 * Returns true if kswapd is ready to sleep
4010 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4011 int highest_zoneidx)
4014 * The throttled processes are normally woken up in balance_pgdat() as
4015 * soon as allow_direct_reclaim() is true. But there is a potential
4016 * race between when kswapd checks the watermarks and a process gets
4017 * throttled. There is also a potential race if processes get
4018 * throttled, kswapd wakes, a large process exits thereby balancing the
4019 * zones, which causes kswapd to exit balance_pgdat() before reaching
4020 * the wake up checks. If kswapd is going to sleep, no process should
4021 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4022 * the wake up is premature, processes will wake kswapd and get
4023 * throttled again. The difference from wake ups in balance_pgdat() is
4024 * that here we are under prepare_to_wait().
4026 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4027 wake_up_all(&pgdat->pfmemalloc_wait);
4029 /* Hopeless node, leave it to direct reclaim */
4030 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4033 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4034 clear_pgdat_congested(pgdat);
4042 * kswapd shrinks a node of pages that are at or below the highest usable
4043 * zone that is currently unbalanced.
4045 * Returns true if kswapd scanned at least the requested number of pages to
4046 * reclaim or if the lack of progress was due to pages under writeback.
4047 * This is used to determine if the scanning priority needs to be raised.
4049 static bool kswapd_shrink_node(pg_data_t *pgdat,
4050 struct scan_control *sc)
4055 /* Reclaim a number of pages proportional to the number of zones */
4056 sc->nr_to_reclaim = 0;
4057 for (z = 0; z <= sc->reclaim_idx; z++) {
4058 zone = pgdat->node_zones + z;
4059 if (!managed_zone(zone))
4062 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4066 * Historically care was taken to put equal pressure on all zones but
4067 * now pressure is applied based on node LRU order.
4069 shrink_node(pgdat, sc);
4072 * Fragmentation may mean that the system cannot be rebalanced for
4073 * high-order allocations. If twice the allocation size has been
4074 * reclaimed then recheck watermarks only at order-0 to prevent
4075 * excessive reclaim. Assume that a process requested a high-order
4076 * can direct reclaim/compact.
4078 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4081 return sc->nr_scanned >= sc->nr_to_reclaim;
4084 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4086 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4091 for (i = 0; i <= highest_zoneidx; i++) {
4092 zone = pgdat->node_zones + i;
4094 if (!managed_zone(zone))
4098 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4100 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4105 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4107 update_reclaim_active(pgdat, highest_zoneidx, true);
4111 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4113 update_reclaim_active(pgdat, highest_zoneidx, false);
4117 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4118 * that are eligible for use by the caller until at least one zone is
4121 * Returns the order kswapd finished reclaiming at.
4123 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4124 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4125 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4126 * or lower is eligible for reclaim until at least one usable zone is
4129 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4132 unsigned long nr_soft_reclaimed;
4133 unsigned long nr_soft_scanned;
4134 unsigned long pflags;
4135 unsigned long nr_boost_reclaim;
4136 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4139 struct scan_control sc = {
4140 .gfp_mask = GFP_KERNEL,
4145 set_task_reclaim_state(current, &sc.reclaim_state);
4146 psi_memstall_enter(&pflags);
4147 __fs_reclaim_acquire(_THIS_IP_);
4149 count_vm_event(PAGEOUTRUN);
4152 * Account for the reclaim boost. Note that the zone boost is left in
4153 * place so that parallel allocations that are near the watermark will
4154 * stall or direct reclaim until kswapd is finished.
4156 nr_boost_reclaim = 0;
4157 for (i = 0; i <= highest_zoneidx; i++) {
4158 zone = pgdat->node_zones + i;
4159 if (!managed_zone(zone))
4162 nr_boost_reclaim += zone->watermark_boost;
4163 zone_boosts[i] = zone->watermark_boost;
4165 boosted = nr_boost_reclaim;
4168 set_reclaim_active(pgdat, highest_zoneidx);
4169 sc.priority = DEF_PRIORITY;
4171 unsigned long nr_reclaimed = sc.nr_reclaimed;
4172 bool raise_priority = true;
4176 sc.reclaim_idx = highest_zoneidx;
4179 * If the number of buffer_heads exceeds the maximum allowed
4180 * then consider reclaiming from all zones. This has a dual
4181 * purpose -- on 64-bit systems it is expected that
4182 * buffer_heads are stripped during active rotation. On 32-bit
4183 * systems, highmem pages can pin lowmem memory and shrinking
4184 * buffers can relieve lowmem pressure. Reclaim may still not
4185 * go ahead if all eligible zones for the original allocation
4186 * request are balanced to avoid excessive reclaim from kswapd.
4188 if (buffer_heads_over_limit) {
4189 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4190 zone = pgdat->node_zones + i;
4191 if (!managed_zone(zone))
4200 * If the pgdat is imbalanced then ignore boosting and preserve
4201 * the watermarks for a later time and restart. Note that the
4202 * zone watermarks will be still reset at the end of balancing
4203 * on the grounds that the normal reclaim should be enough to
4204 * re-evaluate if boosting is required when kswapd next wakes.
4206 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4207 if (!balanced && nr_boost_reclaim) {
4208 nr_boost_reclaim = 0;
4213 * If boosting is not active then only reclaim if there are no
4214 * eligible zones. Note that sc.reclaim_idx is not used as
4215 * buffer_heads_over_limit may have adjusted it.
4217 if (!nr_boost_reclaim && balanced)
4220 /* Limit the priority of boosting to avoid reclaim writeback */
4221 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4222 raise_priority = false;
4225 * Do not writeback or swap pages for boosted reclaim. The
4226 * intent is to relieve pressure not issue sub-optimal IO
4227 * from reclaim context. If no pages are reclaimed, the
4228 * reclaim will be aborted.
4230 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4231 sc.may_swap = !nr_boost_reclaim;
4234 * Do some background aging of the anon list, to give
4235 * pages a chance to be referenced before reclaiming. All
4236 * pages are rotated regardless of classzone as this is
4237 * about consistent aging.
4239 age_active_anon(pgdat, &sc);
4242 * If we're getting trouble reclaiming, start doing writepage
4243 * even in laptop mode.
4245 if (sc.priority < DEF_PRIORITY - 2)
4246 sc.may_writepage = 1;
4248 /* Call soft limit reclaim before calling shrink_node. */
4250 nr_soft_scanned = 0;
4251 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4252 sc.gfp_mask, &nr_soft_scanned);
4253 sc.nr_reclaimed += nr_soft_reclaimed;
4256 * There should be no need to raise the scanning priority if
4257 * enough pages are already being scanned that that high
4258 * watermark would be met at 100% efficiency.
4260 if (kswapd_shrink_node(pgdat, &sc))
4261 raise_priority = false;
4264 * If the low watermark is met there is no need for processes
4265 * to be throttled on pfmemalloc_wait as they should not be
4266 * able to safely make forward progress. Wake them
4268 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4269 allow_direct_reclaim(pgdat))
4270 wake_up_all(&pgdat->pfmemalloc_wait);
4272 /* Check if kswapd should be suspending */
4273 __fs_reclaim_release(_THIS_IP_);
4274 ret = try_to_freeze();
4275 __fs_reclaim_acquire(_THIS_IP_);
4276 if (ret || kthread_should_stop())
4280 * Raise priority if scanning rate is too low or there was no
4281 * progress in reclaiming pages
4283 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4284 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4287 * If reclaim made no progress for a boost, stop reclaim as
4288 * IO cannot be queued and it could be an infinite loop in
4289 * extreme circumstances.
4291 if (nr_boost_reclaim && !nr_reclaimed)
4294 if (raise_priority || !nr_reclaimed)
4296 } while (sc.priority >= 1);
4298 if (!sc.nr_reclaimed)
4299 pgdat->kswapd_failures++;
4302 clear_reclaim_active(pgdat, highest_zoneidx);
4304 /* If reclaim was boosted, account for the reclaim done in this pass */
4306 unsigned long flags;
4308 for (i = 0; i <= highest_zoneidx; i++) {
4309 if (!zone_boosts[i])
4312 /* Increments are under the zone lock */
4313 zone = pgdat->node_zones + i;
4314 spin_lock_irqsave(&zone->lock, flags);
4315 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4316 spin_unlock_irqrestore(&zone->lock, flags);
4320 * As there is now likely space, wakeup kcompact to defragment
4323 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4326 snapshot_refaults(NULL, pgdat);
4327 __fs_reclaim_release(_THIS_IP_);
4328 psi_memstall_leave(&pflags);
4329 set_task_reclaim_state(current, NULL);
4332 * Return the order kswapd stopped reclaiming at as
4333 * prepare_kswapd_sleep() takes it into account. If another caller
4334 * entered the allocator slow path while kswapd was awake, order will
4335 * remain at the higher level.
4341 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4342 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4343 * not a valid index then either kswapd runs for first time or kswapd couldn't
4344 * sleep after previous reclaim attempt (node is still unbalanced). In that
4345 * case return the zone index of the previous kswapd reclaim cycle.
4347 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4348 enum zone_type prev_highest_zoneidx)
4350 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4352 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4355 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4356 unsigned int highest_zoneidx)
4361 if (freezing(current) || kthread_should_stop())
4364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4367 * Try to sleep for a short interval. Note that kcompactd will only be
4368 * woken if it is possible to sleep for a short interval. This is
4369 * deliberate on the assumption that if reclaim cannot keep an
4370 * eligible zone balanced that it's also unlikely that compaction will
4373 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4375 * Compaction records what page blocks it recently failed to
4376 * isolate pages from and skips them in the future scanning.
4377 * When kswapd is going to sleep, it is reasonable to assume
4378 * that pages and compaction may succeed so reset the cache.
4380 reset_isolation_suitable(pgdat);
4383 * We have freed the memory, now we should compact it to make
4384 * allocation of the requested order possible.
4386 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4388 remaining = schedule_timeout(HZ/10);
4391 * If woken prematurely then reset kswapd_highest_zoneidx and
4392 * order. The values will either be from a wakeup request or
4393 * the previous request that slept prematurely.
4396 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4397 kswapd_highest_zoneidx(pgdat,
4400 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4401 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4404 finish_wait(&pgdat->kswapd_wait, &wait);
4405 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4409 * After a short sleep, check if it was a premature sleep. If not, then
4410 * go fully to sleep until explicitly woken up.
4413 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4414 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4417 * vmstat counters are not perfectly accurate and the estimated
4418 * value for counters such as NR_FREE_PAGES can deviate from the
4419 * true value by nr_online_cpus * threshold. To avoid the zone
4420 * watermarks being breached while under pressure, we reduce the
4421 * per-cpu vmstat threshold while kswapd is awake and restore
4422 * them before going back to sleep.
4424 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4426 if (!kthread_should_stop())
4429 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4432 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4434 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4436 finish_wait(&pgdat->kswapd_wait, &wait);
4440 * The background pageout daemon, started as a kernel thread
4441 * from the init process.
4443 * This basically trickles out pages so that we have _some_
4444 * free memory available even if there is no other activity
4445 * that frees anything up. This is needed for things like routing
4446 * etc, where we otherwise might have all activity going on in
4447 * asynchronous contexts that cannot page things out.
4449 * If there are applications that are active memory-allocators
4450 * (most normal use), this basically shouldn't matter.
4452 static int kswapd(void *p)
4454 unsigned int alloc_order, reclaim_order;
4455 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4456 pg_data_t *pgdat = (pg_data_t *)p;
4457 struct task_struct *tsk = current;
4458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4460 if (!cpumask_empty(cpumask))
4461 set_cpus_allowed_ptr(tsk, cpumask);
4464 * Tell the memory management that we're a "memory allocator",
4465 * and that if we need more memory we should get access to it
4466 * regardless (see "__alloc_pages()"). "kswapd" should
4467 * never get caught in the normal page freeing logic.
4469 * (Kswapd normally doesn't need memory anyway, but sometimes
4470 * you need a small amount of memory in order to be able to
4471 * page out something else, and this flag essentially protects
4472 * us from recursively trying to free more memory as we're
4473 * trying to free the first piece of memory in the first place).
4475 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4478 WRITE_ONCE(pgdat->kswapd_order, 0);
4479 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4480 atomic_set(&pgdat->nr_writeback_throttled, 0);
4484 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4485 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4489 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4492 /* Read the new order and highest_zoneidx */
4493 alloc_order = READ_ONCE(pgdat->kswapd_order);
4494 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4496 WRITE_ONCE(pgdat->kswapd_order, 0);
4497 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4499 ret = try_to_freeze();
4500 if (kthread_should_stop())
4504 * We can speed up thawing tasks if we don't call balance_pgdat
4505 * after returning from the refrigerator
4511 * Reclaim begins at the requested order but if a high-order
4512 * reclaim fails then kswapd falls back to reclaiming for
4513 * order-0. If that happens, kswapd will consider sleeping
4514 * for the order it finished reclaiming at (reclaim_order)
4515 * but kcompactd is woken to compact for the original
4516 * request (alloc_order).
4518 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4520 reclaim_order = balance_pgdat(pgdat, alloc_order,
4522 if (reclaim_order < alloc_order)
4523 goto kswapd_try_sleep;
4526 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4532 * A zone is low on free memory or too fragmented for high-order memory. If
4533 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4534 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4535 * has failed or is not needed, still wake up kcompactd if only compaction is
4538 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4539 enum zone_type highest_zoneidx)
4542 enum zone_type curr_idx;
4544 if (!managed_zone(zone))
4547 if (!cpuset_zone_allowed(zone, gfp_flags))
4550 pgdat = zone->zone_pgdat;
4551 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4553 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4554 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4556 if (READ_ONCE(pgdat->kswapd_order) < order)
4557 WRITE_ONCE(pgdat->kswapd_order, order);
4559 if (!waitqueue_active(&pgdat->kswapd_wait))
4562 /* Hopeless node, leave it to direct reclaim if possible */
4563 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4564 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4565 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4567 * There may be plenty of free memory available, but it's too
4568 * fragmented for high-order allocations. Wake up kcompactd
4569 * and rely on compaction_suitable() to determine if it's
4570 * needed. If it fails, it will defer subsequent attempts to
4571 * ratelimit its work.
4573 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4574 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4578 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4580 wake_up_interruptible(&pgdat->kswapd_wait);
4583 #ifdef CONFIG_HIBERNATION
4585 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4588 * Rather than trying to age LRUs the aim is to preserve the overall
4589 * LRU order by reclaiming preferentially
4590 * inactive > active > active referenced > active mapped
4592 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4594 struct scan_control sc = {
4595 .nr_to_reclaim = nr_to_reclaim,
4596 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4597 .reclaim_idx = MAX_NR_ZONES - 1,
4598 .priority = DEF_PRIORITY,
4602 .hibernation_mode = 1,
4604 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4605 unsigned long nr_reclaimed;
4606 unsigned int noreclaim_flag;
4608 fs_reclaim_acquire(sc.gfp_mask);
4609 noreclaim_flag = memalloc_noreclaim_save();
4610 set_task_reclaim_state(current, &sc.reclaim_state);
4612 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4614 set_task_reclaim_state(current, NULL);
4615 memalloc_noreclaim_restore(noreclaim_flag);
4616 fs_reclaim_release(sc.gfp_mask);
4618 return nr_reclaimed;
4620 #endif /* CONFIG_HIBERNATION */
4623 * This kswapd start function will be called by init and node-hot-add.
4624 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4626 void kswapd_run(int nid)
4628 pg_data_t *pgdat = NODE_DATA(nid);
4633 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4634 if (IS_ERR(pgdat->kswapd)) {
4635 /* failure at boot is fatal */
4636 BUG_ON(system_state < SYSTEM_RUNNING);
4637 pr_err("Failed to start kswapd on node %d\n", nid);
4638 pgdat->kswapd = NULL;
4643 * Called by memory hotplug when all memory in a node is offlined. Caller must
4644 * hold mem_hotplug_begin/end().
4646 void kswapd_stop(int nid)
4648 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4651 kthread_stop(kswapd);
4652 NODE_DATA(nid)->kswapd = NULL;
4656 static int __init kswapd_init(void)
4661 for_each_node_state(nid, N_MEMORY)
4666 module_init(kswapd_init)
4672 * If non-zero call node_reclaim when the number of free pages falls below
4675 int node_reclaim_mode __read_mostly;
4678 * Priority for NODE_RECLAIM. This determines the fraction of pages
4679 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4682 #define NODE_RECLAIM_PRIORITY 4
4685 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4688 int sysctl_min_unmapped_ratio = 1;
4691 * If the number of slab pages in a zone grows beyond this percentage then
4692 * slab reclaim needs to occur.
4694 int sysctl_min_slab_ratio = 5;
4696 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4698 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4699 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4700 node_page_state(pgdat, NR_ACTIVE_FILE);
4703 * It's possible for there to be more file mapped pages than
4704 * accounted for by the pages on the file LRU lists because
4705 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4707 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4710 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4711 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4713 unsigned long nr_pagecache_reclaimable;
4714 unsigned long delta = 0;
4717 * If RECLAIM_UNMAP is set, then all file pages are considered
4718 * potentially reclaimable. Otherwise, we have to worry about
4719 * pages like swapcache and node_unmapped_file_pages() provides
4722 if (node_reclaim_mode & RECLAIM_UNMAP)
4723 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4725 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4727 /* If we can't clean pages, remove dirty pages from consideration */
4728 if (!(node_reclaim_mode & RECLAIM_WRITE))
4729 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4731 /* Watch for any possible underflows due to delta */
4732 if (unlikely(delta > nr_pagecache_reclaimable))
4733 delta = nr_pagecache_reclaimable;
4735 return nr_pagecache_reclaimable - delta;
4739 * Try to free up some pages from this node through reclaim.
4741 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4743 /* Minimum pages needed in order to stay on node */
4744 const unsigned long nr_pages = 1 << order;
4745 struct task_struct *p = current;
4746 unsigned int noreclaim_flag;
4747 struct scan_control sc = {
4748 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4749 .gfp_mask = current_gfp_context(gfp_mask),
4751 .priority = NODE_RECLAIM_PRIORITY,
4752 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4753 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4755 .reclaim_idx = gfp_zone(gfp_mask),
4757 unsigned long pflags;
4759 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4763 psi_memstall_enter(&pflags);
4764 fs_reclaim_acquire(sc.gfp_mask);
4766 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4767 * and we also need to be able to write out pages for RECLAIM_WRITE
4768 * and RECLAIM_UNMAP.
4770 noreclaim_flag = memalloc_noreclaim_save();
4771 p->flags |= PF_SWAPWRITE;
4772 set_task_reclaim_state(p, &sc.reclaim_state);
4774 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4776 * Free memory by calling shrink node with increasing
4777 * priorities until we have enough memory freed.
4780 shrink_node(pgdat, &sc);
4781 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4784 set_task_reclaim_state(p, NULL);
4785 current->flags &= ~PF_SWAPWRITE;
4786 memalloc_noreclaim_restore(noreclaim_flag);
4787 fs_reclaim_release(sc.gfp_mask);
4788 psi_memstall_leave(&pflags);
4790 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4792 return sc.nr_reclaimed >= nr_pages;
4795 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4800 * Node reclaim reclaims unmapped file backed pages and
4801 * slab pages if we are over the defined limits.
4803 * A small portion of unmapped file backed pages is needed for
4804 * file I/O otherwise pages read by file I/O will be immediately
4805 * thrown out if the node is overallocated. So we do not reclaim
4806 * if less than a specified percentage of the node is used by
4807 * unmapped file backed pages.
4809 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4810 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4811 pgdat->min_slab_pages)
4812 return NODE_RECLAIM_FULL;
4815 * Do not scan if the allocation should not be delayed.
4817 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4818 return NODE_RECLAIM_NOSCAN;
4821 * Only run node reclaim on the local node or on nodes that do not
4822 * have associated processors. This will favor the local processor
4823 * over remote processors and spread off node memory allocations
4824 * as wide as possible.
4826 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4827 return NODE_RECLAIM_NOSCAN;
4829 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4830 return NODE_RECLAIM_NOSCAN;
4832 ret = __node_reclaim(pgdat, gfp_mask, order);
4833 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4836 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4843 * check_move_unevictable_pages - check pages for evictability and move to
4844 * appropriate zone lru list
4845 * @pvec: pagevec with lru pages to check
4847 * Checks pages for evictability, if an evictable page is in the unevictable
4848 * lru list, moves it to the appropriate evictable lru list. This function
4849 * should be only used for lru pages.
4851 void check_move_unevictable_pages(struct pagevec *pvec)
4853 struct lruvec *lruvec = NULL;
4858 for (i = 0; i < pvec->nr; i++) {
4859 struct page *page = pvec->pages[i];
4860 struct folio *folio = page_folio(page);
4863 if (PageTransTail(page))
4866 nr_pages = thp_nr_pages(page);
4867 pgscanned += nr_pages;
4869 /* block memcg migration during page moving between lru */
4870 if (!TestClearPageLRU(page))
4873 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4874 if (page_evictable(page) && PageUnevictable(page)) {
4875 del_page_from_lru_list(page, lruvec);
4876 ClearPageUnevictable(page);
4877 add_page_to_lru_list(page, lruvec);
4878 pgrescued += nr_pages;
4884 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4885 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4886 unlock_page_lruvec_irq(lruvec);
4887 } else if (pgscanned) {
4888 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4891 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);