]> Git Repo - linux.git/blob - arch/arm/kernel/smp.c
mm/page_isolation: unset migratetype directly for non Buddy page
[linux.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 enum ipi_msg_type {
62         IPI_WAKEUP,
63         IPI_TIMER,
64         IPI_RESCHEDULE,
65         IPI_CALL_FUNC,
66         IPI_CPU_STOP,
67         IPI_IRQ_WORK,
68         IPI_COMPLETION,
69         NR_IPI,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE = NR_IPI,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80         MAX_IPI
81 };
82
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87 static void ipi_setup(int cpu);
88
89 static DECLARE_COMPLETION(cpu_running);
90
91 static struct smp_operations smp_ops __ro_after_init;
92
93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95         if (ops)
96                 smp_ops = *ops;
97 };
98
99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102         return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104         return virt_to_phys(pgd);
105 #endif
106 }
107
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111         if (!cpu_vtable[cpu])
112                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114         return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116
117 static void secondary_biglittle_init(void)
118 {
119         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124         return 0;
125 }
126
127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131
132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134         int ret;
135
136         if (!smp_ops.smp_boot_secondary)
137                 return -ENOSYS;
138
139         ret = secondary_biglittle_prepare(cpu);
140         if (ret)
141                 return ret;
142
143         /*
144          * We need to tell the secondary core where to find
145          * its stack and the page tables.
146          */
147         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149         secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151
152 #ifdef CONFIG_MMU
153         secondary_data.pgdir = virt_to_phys(idmap_pgd);
154         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156         secondary_data.task = idle;
157         if (IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK))
158                 task_thread_info(idle)->cpu = cpu;
159
160         sync_cache_w(&secondary_data);
161
162         /*
163          * Now bring the CPU into our world.
164          */
165         ret = smp_ops.smp_boot_secondary(cpu, idle);
166         if (ret == 0) {
167                 /*
168                  * CPU was successfully started, wait for it
169                  * to come online or time out.
170                  */
171                 wait_for_completion_timeout(&cpu_running,
172                                                  msecs_to_jiffies(1000));
173
174                 if (!cpu_online(cpu)) {
175                         pr_crit("CPU%u: failed to come online\n", cpu);
176                         ret = -EIO;
177                 }
178         } else {
179                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
180         }
181
182
183         memset(&secondary_data, 0, sizeof(secondary_data));
184         return ret;
185 }
186
187 /* platform specific SMP operations */
188 void __init smp_init_cpus(void)
189 {
190         if (smp_ops.smp_init_cpus)
191                 smp_ops.smp_init_cpus();
192 }
193
194 int platform_can_secondary_boot(void)
195 {
196         return !!smp_ops.smp_boot_secondary;
197 }
198
199 int platform_can_cpu_hotplug(void)
200 {
201 #ifdef CONFIG_HOTPLUG_CPU
202         if (smp_ops.cpu_kill)
203                 return 1;
204 #endif
205
206         return 0;
207 }
208
209 #ifdef CONFIG_HOTPLUG_CPU
210 static int platform_cpu_kill(unsigned int cpu)
211 {
212         if (smp_ops.cpu_kill)
213                 return smp_ops.cpu_kill(cpu);
214         return 1;
215 }
216
217 static int platform_cpu_disable(unsigned int cpu)
218 {
219         if (smp_ops.cpu_disable)
220                 return smp_ops.cpu_disable(cpu);
221
222         return 0;
223 }
224
225 int platform_can_hotplug_cpu(unsigned int cpu)
226 {
227         /* cpu_die must be specified to support hotplug */
228         if (!smp_ops.cpu_die)
229                 return 0;
230
231         if (smp_ops.cpu_can_disable)
232                 return smp_ops.cpu_can_disable(cpu);
233
234         /*
235          * By default, allow disabling all CPUs except the first one,
236          * since this is special on a lot of platforms, e.g. because
237          * of clock tick interrupts.
238          */
239         return cpu != 0;
240 }
241
242 static void ipi_teardown(int cpu)
243 {
244         int i;
245
246         if (WARN_ON_ONCE(!ipi_irq_base))
247                 return;
248
249         for (i = 0; i < nr_ipi; i++)
250                 disable_percpu_irq(ipi_irq_base + i);
251 }
252
253 /*
254  * __cpu_disable runs on the processor to be shutdown.
255  */
256 int __cpu_disable(void)
257 {
258         unsigned int cpu = smp_processor_id();
259         int ret;
260
261         ret = platform_cpu_disable(cpu);
262         if (ret)
263                 return ret;
264
265 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
266         remove_cpu_topology(cpu);
267 #endif
268
269         /*
270          * Take this CPU offline.  Once we clear this, we can't return,
271          * and we must not schedule until we're ready to give up the cpu.
272          */
273         set_cpu_online(cpu, false);
274         ipi_teardown(cpu);
275
276         /*
277          * OK - migrate IRQs away from this CPU
278          */
279         irq_migrate_all_off_this_cpu();
280
281         /*
282          * Flush user cache and TLB mappings, and then remove this CPU
283          * from the vm mask set of all processes.
284          *
285          * Caches are flushed to the Level of Unification Inner Shareable
286          * to write-back dirty lines to unified caches shared by all CPUs.
287          */
288         flush_cache_louis();
289         local_flush_tlb_all();
290
291         return 0;
292 }
293
294 /*
295  * called on the thread which is asking for a CPU to be shutdown -
296  * waits until shutdown has completed, or it is timed out.
297  */
298 void __cpu_die(unsigned int cpu)
299 {
300         if (!cpu_wait_death(cpu, 5)) {
301                 pr_err("CPU%u: cpu didn't die\n", cpu);
302                 return;
303         }
304         pr_debug("CPU%u: shutdown\n", cpu);
305
306         clear_tasks_mm_cpumask(cpu);
307         /*
308          * platform_cpu_kill() is generally expected to do the powering off
309          * and/or cutting of clocks to the dying CPU.  Optionally, this may
310          * be done by the CPU which is dying in preference to supporting
311          * this call, but that means there is _no_ synchronisation between
312          * the requesting CPU and the dying CPU actually losing power.
313          */
314         if (!platform_cpu_kill(cpu))
315                 pr_err("CPU%u: unable to kill\n", cpu);
316 }
317
318 /*
319  * Called from the idle thread for the CPU which has been shutdown.
320  *
321  * Note that we disable IRQs here, but do not re-enable them
322  * before returning to the caller. This is also the behaviour
323  * of the other hotplug-cpu capable cores, so presumably coming
324  * out of idle fixes this.
325  */
326 void arch_cpu_idle_dead(void)
327 {
328         unsigned int cpu = smp_processor_id();
329
330         idle_task_exit();
331
332         local_irq_disable();
333
334         /*
335          * Flush the data out of the L1 cache for this CPU.  This must be
336          * before the completion to ensure that data is safely written out
337          * before platform_cpu_kill() gets called - which may disable
338          * *this* CPU and power down its cache.
339          */
340         flush_cache_louis();
341
342         /*
343          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
344          * this returns, power and/or clocks can be removed at any point
345          * from this CPU and its cache by platform_cpu_kill().
346          */
347         (void)cpu_report_death();
348
349         /*
350          * Ensure that the cache lines associated with that completion are
351          * written out.  This covers the case where _this_ CPU is doing the
352          * powering down, to ensure that the completion is visible to the
353          * CPU waiting for this one.
354          */
355         flush_cache_louis();
356
357         /*
358          * The actual CPU shutdown procedure is at least platform (if not
359          * CPU) specific.  This may remove power, or it may simply spin.
360          *
361          * Platforms are generally expected *NOT* to return from this call,
362          * although there are some which do because they have no way to
363          * power down the CPU.  These platforms are the _only_ reason we
364          * have a return path which uses the fragment of assembly below.
365          *
366          * The return path should not be used for platforms which can
367          * power off the CPU.
368          */
369         if (smp_ops.cpu_die)
370                 smp_ops.cpu_die(cpu);
371
372         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
373                 cpu);
374
375         /*
376          * Do not return to the idle loop - jump back to the secondary
377          * cpu initialisation.  There's some initialisation which needs
378          * to be repeated to undo the effects of taking the CPU offline.
379          */
380         __asm__("mov    sp, %0\n"
381         "       mov     fp, #0\n"
382         "       mov     r0, %1\n"
383         "       b       secondary_start_kernel"
384                 :
385                 : "r" (task_stack_page(current) + THREAD_SIZE - 8),
386                   "r" (current)
387                 : "r0");
388 }
389 #endif /* CONFIG_HOTPLUG_CPU */
390
391 /*
392  * Called by both boot and secondaries to move global data into
393  * per-processor storage.
394  */
395 static void smp_store_cpu_info(unsigned int cpuid)
396 {
397         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
398
399         cpu_info->loops_per_jiffy = loops_per_jiffy;
400         cpu_info->cpuid = read_cpuid_id();
401
402         store_cpu_topology(cpuid);
403         check_cpu_icache_size(cpuid);
404 }
405
406 /*
407  * This is the secondary CPU boot entry.  We're using this CPUs
408  * idle thread stack, but a set of temporary page tables.
409  */
410 asmlinkage void secondary_start_kernel(struct task_struct *task)
411 {
412         struct mm_struct *mm = &init_mm;
413         unsigned int cpu;
414
415         set_current(task);
416
417         secondary_biglittle_init();
418
419         /*
420          * The identity mapping is uncached (strongly ordered), so
421          * switch away from it before attempting any exclusive accesses.
422          */
423         cpu_switch_mm(mm->pgd, mm);
424         local_flush_bp_all();
425         enter_lazy_tlb(mm, current);
426         local_flush_tlb_all();
427
428         /*
429          * All kernel threads share the same mm context; grab a
430          * reference and switch to it.
431          */
432         cpu = smp_processor_id();
433         mmgrab(mm);
434         current->active_mm = mm;
435         cpumask_set_cpu(cpu, mm_cpumask(mm));
436
437         cpu_init();
438
439 #ifndef CONFIG_MMU
440         setup_vectors_base();
441 #endif
442         pr_debug("CPU%u: Booted secondary processor\n", cpu);
443
444         trace_hardirqs_off();
445
446         /*
447          * Give the platform a chance to do its own initialisation.
448          */
449         if (smp_ops.smp_secondary_init)
450                 smp_ops.smp_secondary_init(cpu);
451
452         notify_cpu_starting(cpu);
453
454         ipi_setup(cpu);
455
456         calibrate_delay();
457
458         smp_store_cpu_info(cpu);
459
460         /*
461          * OK, now it's safe to let the boot CPU continue.  Wait for
462          * the CPU migration code to notice that the CPU is online
463          * before we continue - which happens after __cpu_up returns.
464          */
465         set_cpu_online(cpu, true);
466
467         check_other_bugs();
468
469         complete(&cpu_running);
470
471         local_irq_enable();
472         local_fiq_enable();
473         local_abt_enable();
474
475         /*
476          * OK, it's off to the idle thread for us
477          */
478         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
479 }
480
481 void __init smp_cpus_done(unsigned int max_cpus)
482 {
483         int cpu;
484         unsigned long bogosum = 0;
485
486         for_each_online_cpu(cpu)
487                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
488
489         printk(KERN_INFO "SMP: Total of %d processors activated "
490                "(%lu.%02lu BogoMIPS).\n",
491                num_online_cpus(),
492                bogosum / (500000/HZ),
493                (bogosum / (5000/HZ)) % 100);
494
495         hyp_mode_check();
496 }
497
498 void __init smp_prepare_boot_cpu(void)
499 {
500         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
501 }
502
503 void __init smp_prepare_cpus(unsigned int max_cpus)
504 {
505         unsigned int ncores = num_possible_cpus();
506
507         init_cpu_topology();
508
509         smp_store_cpu_info(smp_processor_id());
510
511         /*
512          * are we trying to boot more cores than exist?
513          */
514         if (max_cpus > ncores)
515                 max_cpus = ncores;
516         if (ncores > 1 && max_cpus) {
517                 /*
518                  * Initialise the present map, which describes the set of CPUs
519                  * actually populated at the present time. A platform should
520                  * re-initialize the map in the platforms smp_prepare_cpus()
521                  * if present != possible (e.g. physical hotplug).
522                  */
523                 init_cpu_present(cpu_possible_mask);
524
525                 /*
526                  * Initialise the SCU if there are more than one CPU
527                  * and let them know where to start.
528                  */
529                 if (smp_ops.smp_prepare_cpus)
530                         smp_ops.smp_prepare_cpus(max_cpus);
531         }
532 }
533
534 static const char *ipi_types[NR_IPI] __tracepoint_string = {
535         [IPI_WAKEUP]            = "CPU wakeup interrupts",
536         [IPI_TIMER]             = "Timer broadcast interrupts",
537         [IPI_RESCHEDULE]        = "Rescheduling interrupts",
538         [IPI_CALL_FUNC]         = "Function call interrupts",
539         [IPI_CPU_STOP]          = "CPU stop interrupts",
540         [IPI_IRQ_WORK]          = "IRQ work interrupts",
541         [IPI_COMPLETION]        = "completion interrupts",
542 };
543
544 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
545
546 void show_ipi_list(struct seq_file *p, int prec)
547 {
548         unsigned int cpu, i;
549
550         for (i = 0; i < NR_IPI; i++) {
551                 if (!ipi_desc[i])
552                         continue;
553
554                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
555
556                 for_each_online_cpu(cpu)
557                         seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
558
559                 seq_printf(p, " %s\n", ipi_types[i]);
560         }
561 }
562
563 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
564 {
565         smp_cross_call(mask, IPI_CALL_FUNC);
566 }
567
568 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
569 {
570         smp_cross_call(mask, IPI_WAKEUP);
571 }
572
573 void arch_send_call_function_single_ipi(int cpu)
574 {
575         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
576 }
577
578 #ifdef CONFIG_IRQ_WORK
579 void arch_irq_work_raise(void)
580 {
581         if (arch_irq_work_has_interrupt())
582                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
583 }
584 #endif
585
586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
587 void tick_broadcast(const struct cpumask *mask)
588 {
589         smp_cross_call(mask, IPI_TIMER);
590 }
591 #endif
592
593 static DEFINE_RAW_SPINLOCK(stop_lock);
594
595 /*
596  * ipi_cpu_stop - handle IPI from smp_send_stop()
597  */
598 static void ipi_cpu_stop(unsigned int cpu)
599 {
600         if (system_state <= SYSTEM_RUNNING) {
601                 raw_spin_lock(&stop_lock);
602                 pr_crit("CPU%u: stopping\n", cpu);
603                 dump_stack();
604                 raw_spin_unlock(&stop_lock);
605         }
606
607         set_cpu_online(cpu, false);
608
609         local_fiq_disable();
610         local_irq_disable();
611
612         while (1) {
613                 cpu_relax();
614                 wfe();
615         }
616 }
617
618 static DEFINE_PER_CPU(struct completion *, cpu_completion);
619
620 int register_ipi_completion(struct completion *completion, int cpu)
621 {
622         per_cpu(cpu_completion, cpu) = completion;
623         return IPI_COMPLETION;
624 }
625
626 static void ipi_complete(unsigned int cpu)
627 {
628         complete(per_cpu(cpu_completion, cpu));
629 }
630
631 /*
632  * Main handler for inter-processor interrupts
633  */
634 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
635 {
636         handle_IPI(ipinr, regs);
637 }
638
639 static void do_handle_IPI(int ipinr)
640 {
641         unsigned int cpu = smp_processor_id();
642
643         if ((unsigned)ipinr < NR_IPI)
644                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
645
646         switch (ipinr) {
647         case IPI_WAKEUP:
648                 break;
649
650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
651         case IPI_TIMER:
652                 tick_receive_broadcast();
653                 break;
654 #endif
655
656         case IPI_RESCHEDULE:
657                 scheduler_ipi();
658                 break;
659
660         case IPI_CALL_FUNC:
661                 generic_smp_call_function_interrupt();
662                 break;
663
664         case IPI_CPU_STOP:
665                 ipi_cpu_stop(cpu);
666                 break;
667
668 #ifdef CONFIG_IRQ_WORK
669         case IPI_IRQ_WORK:
670                 irq_work_run();
671                 break;
672 #endif
673
674         case IPI_COMPLETION:
675                 ipi_complete(cpu);
676                 break;
677
678         case IPI_CPU_BACKTRACE:
679                 printk_deferred_enter();
680                 nmi_cpu_backtrace(get_irq_regs());
681                 printk_deferred_exit();
682                 break;
683
684         default:
685                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
686                         cpu, ipinr);
687                 break;
688         }
689
690         if ((unsigned)ipinr < NR_IPI)
691                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
692 }
693
694 /* Legacy version, should go away once all irqchips have been converted */
695 void handle_IPI(int ipinr, struct pt_regs *regs)
696 {
697         struct pt_regs *old_regs = set_irq_regs(regs);
698
699         irq_enter();
700         do_handle_IPI(ipinr);
701         irq_exit();
702
703         set_irq_regs(old_regs);
704 }
705
706 static irqreturn_t ipi_handler(int irq, void *data)
707 {
708         do_handle_IPI(irq - ipi_irq_base);
709         return IRQ_HANDLED;
710 }
711
712 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
713 {
714         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
715         __ipi_send_mask(ipi_desc[ipinr], target);
716 }
717
718 static void ipi_setup(int cpu)
719 {
720         int i;
721
722         if (WARN_ON_ONCE(!ipi_irq_base))
723                 return;
724
725         for (i = 0; i < nr_ipi; i++)
726                 enable_percpu_irq(ipi_irq_base + i, 0);
727 }
728
729 void __init set_smp_ipi_range(int ipi_base, int n)
730 {
731         int i;
732
733         WARN_ON(n < MAX_IPI);
734         nr_ipi = min(n, MAX_IPI);
735
736         for (i = 0; i < nr_ipi; i++) {
737                 int err;
738
739                 err = request_percpu_irq(ipi_base + i, ipi_handler,
740                                          "IPI", &irq_stat);
741                 WARN_ON(err);
742
743                 ipi_desc[i] = irq_to_desc(ipi_base + i);
744                 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
745         }
746
747         ipi_irq_base = ipi_base;
748
749         /* Setup the boot CPU immediately */
750         ipi_setup(smp_processor_id());
751 }
752
753 void smp_send_reschedule(int cpu)
754 {
755         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
756 }
757
758 void smp_send_stop(void)
759 {
760         unsigned long timeout;
761         struct cpumask mask;
762
763         cpumask_copy(&mask, cpu_online_mask);
764         cpumask_clear_cpu(smp_processor_id(), &mask);
765         if (!cpumask_empty(&mask))
766                 smp_cross_call(&mask, IPI_CPU_STOP);
767
768         /* Wait up to one second for other CPUs to stop */
769         timeout = USEC_PER_SEC;
770         while (num_online_cpus() > 1 && timeout--)
771                 udelay(1);
772
773         if (num_online_cpus() > 1)
774                 pr_warn("SMP: failed to stop secondary CPUs\n");
775 }
776
777 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
778  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
779  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
780  * kdump fails. So split out the panic_smp_self_stop() and add
781  * set_cpu_online(smp_processor_id(), false).
782  */
783 void panic_smp_self_stop(void)
784 {
785         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
786                  smp_processor_id());
787         set_cpu_online(smp_processor_id(), false);
788         while (1)
789                 cpu_relax();
790 }
791
792 /*
793  * not supported here
794  */
795 int setup_profiling_timer(unsigned int multiplier)
796 {
797         return -EINVAL;
798 }
799
800 #ifdef CONFIG_CPU_FREQ
801
802 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
803 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
804 static unsigned long global_l_p_j_ref;
805 static unsigned long global_l_p_j_ref_freq;
806
807 static int cpufreq_callback(struct notifier_block *nb,
808                                         unsigned long val, void *data)
809 {
810         struct cpufreq_freqs *freq = data;
811         struct cpumask *cpus = freq->policy->cpus;
812         int cpu, first = cpumask_first(cpus);
813         unsigned int lpj;
814
815         if (freq->flags & CPUFREQ_CONST_LOOPS)
816                 return NOTIFY_OK;
817
818         if (!per_cpu(l_p_j_ref, first)) {
819                 for_each_cpu(cpu, cpus) {
820                         per_cpu(l_p_j_ref, cpu) =
821                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
822                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
823                 }
824
825                 if (!global_l_p_j_ref) {
826                         global_l_p_j_ref = loops_per_jiffy;
827                         global_l_p_j_ref_freq = freq->old;
828                 }
829         }
830
831         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
832             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
833                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
834                                                 global_l_p_j_ref_freq,
835                                                 freq->new);
836
837                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
838                                     per_cpu(l_p_j_ref_freq, first), freq->new);
839                 for_each_cpu(cpu, cpus)
840                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
841         }
842         return NOTIFY_OK;
843 }
844
845 static struct notifier_block cpufreq_notifier = {
846         .notifier_call  = cpufreq_callback,
847 };
848
849 static int __init register_cpufreq_notifier(void)
850 {
851         return cpufreq_register_notifier(&cpufreq_notifier,
852                                                 CPUFREQ_TRANSITION_NOTIFIER);
853 }
854 core_initcall(register_cpufreq_notifier);
855
856 #endif
857
858 static void raise_nmi(cpumask_t *mask)
859 {
860         __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
861 }
862
863 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
864 {
865         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
866 }
This page took 0.082835 seconds and 4 git commands to generate.