1 // SPDX-License-Identifier: GPL-2.0
8 #define pr_fmt(fmt) "damon: " fmt
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32 static struct kmem_cache *damon_region_cache __ro_after_init;
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 struct damon_operations empty_ops = {};
39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id: Id of the damon_operations to check if registered.
48 * Return: true if the ops is set, false otherwise.
50 bool damon_is_registered_ops(enum damon_ops_id id)
54 if (id >= NR_DAMON_OPS)
56 mutex_lock(&damon_ops_lock);
57 registered = __damon_is_registered_ops(id);
58 mutex_unlock(&damon_ops_lock);
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops: monitoring operations set to register.
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
69 * Return: 0 on success, negative error code otherwise.
71 int damon_register_ops(struct damon_operations *ops)
75 if (ops->id >= NR_DAMON_OPS)
77 mutex_lock(&damon_ops_lock);
78 /* Fail for already registered ops */
79 if (__damon_is_registered_ops(ops->id)) {
83 damon_registered_ops[ops->id] = *ops;
85 mutex_unlock(&damon_ops_lock);
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx: monitoring context to use the operations.
92 * @id: id of the registered monitoring operations to select.
94 * This function finds registered monitoring operations set of @id and make
97 * Return: 0 on success, negative error code otherwise.
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
103 if (id >= NR_DAMON_OPS)
106 mutex_lock(&damon_ops_lock);
107 if (!__damon_is_registered_ops(id))
110 ctx->ops = damon_registered_ops[id];
111 mutex_unlock(&damon_ops_lock);
116 * Construct a damon_region struct
118 * Returns the pointer to the new struct if success, or NULL otherwise
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 struct damon_region *region;
124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
128 region->ar.start = start;
129 region->ar.end = end;
130 region->nr_accesses = 0;
131 INIT_LIST_HEAD(®ion->list);
134 region->last_nr_accesses = 0;
139 void damon_add_region(struct damon_region *r, struct damon_target *t)
141 list_add_tail(&r->list, &t->regions_list);
145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
151 static void damon_free_region(struct damon_region *r)
153 kmem_cache_free(damon_region_cache, r);
156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
158 damon_del_region(r, t);
159 damon_free_region(r);
163 * Check whether a region is intersecting an address range
165 * Returns true if it is.
167 static bool damon_intersect(struct damon_region *r,
168 struct damon_addr_range *re)
170 return !(r->ar.end <= re->start || re->end <= r->ar.start);
174 * Fill holes in regions with new regions.
176 static int damon_fill_regions_holes(struct damon_region *first,
177 struct damon_region *last, struct damon_target *t)
179 struct damon_region *r = first;
181 damon_for_each_region_from(r, t) {
182 struct damon_region *next, *newr;
186 next = damon_next_region(r);
187 if (r->ar.end != next->ar.start) {
188 newr = damon_new_region(r->ar.end, next->ar.start);
191 damon_insert_region(newr, r, next, t);
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t: the given target.
200 * @ranges: array of new monitoring target ranges.
201 * @nr_ranges: length of @ranges.
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
206 * Return: 0 if success, or negative error code otherwise.
208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 unsigned int nr_ranges)
211 struct damon_region *r, *next;
215 /* Remove regions which are not in the new ranges */
216 damon_for_each_region_safe(r, next, t) {
217 for (i = 0; i < nr_ranges; i++) {
218 if (damon_intersect(r, &ranges[i]))
222 damon_destroy_region(r, t);
225 r = damon_first_region(t);
226 /* Add new regions or resize existing regions to fit in the ranges */
227 for (i = 0; i < nr_ranges; i++) {
228 struct damon_region *first = NULL, *last, *newr;
229 struct damon_addr_range *range;
232 /* Get the first/last regions intersecting with the range */
233 damon_for_each_region_from(r, t) {
234 if (damon_intersect(r, range)) {
239 if (r->ar.start >= range->end)
243 /* no region intersects with this range */
244 newr = damon_new_region(
245 ALIGN_DOWN(range->start,
247 ALIGN(range->end, DAMON_MIN_REGION));
250 damon_insert_region(newr, damon_prev_region(r), r, t);
252 /* resize intersecting regions to fit in this range */
253 first->ar.start = ALIGN_DOWN(range->start,
255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
257 /* fill possible holes in the range */
258 err = damon_fill_regions_holes(first, last, t);
266 /* initialize private fields of damos_quota and return the pointer */
267 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
269 quota->total_charged_sz = 0;
270 quota->total_charged_ns = 0;
272 quota->charged_sz = 0;
273 quota->charged_from = 0;
274 quota->charge_target_from = NULL;
275 quota->charge_addr_from = 0;
279 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
280 enum damos_action action, struct damos_quota *quota,
281 struct damos_watermarks *wmarks)
283 struct damos *scheme;
285 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
288 scheme->pattern = *pattern;
289 scheme->action = action;
290 scheme->stat = (struct damos_stat){};
291 INIT_LIST_HEAD(&scheme->list);
293 scheme->quota = *(damos_quota_init_priv(quota));
295 scheme->wmarks = *wmarks;
296 scheme->wmarks.activated = true;
301 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
303 list_add_tail(&s->list, &ctx->schemes);
306 static void damon_del_scheme(struct damos *s)
311 static void damon_free_scheme(struct damos *s)
316 void damon_destroy_scheme(struct damos *s)
319 damon_free_scheme(s);
323 * Construct a damon_target struct
325 * Returns the pointer to the new struct if success, or NULL otherwise
327 struct damon_target *damon_new_target(void)
329 struct damon_target *t;
331 t = kmalloc(sizeof(*t), GFP_KERNEL);
337 INIT_LIST_HEAD(&t->regions_list);
338 INIT_LIST_HEAD(&t->list);
343 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
345 list_add_tail(&t->list, &ctx->adaptive_targets);
348 bool damon_targets_empty(struct damon_ctx *ctx)
350 return list_empty(&ctx->adaptive_targets);
353 static void damon_del_target(struct damon_target *t)
358 void damon_free_target(struct damon_target *t)
360 struct damon_region *r, *next;
362 damon_for_each_region_safe(r, next, t)
363 damon_free_region(r);
367 void damon_destroy_target(struct damon_target *t)
370 damon_free_target(t);
373 unsigned int damon_nr_regions(struct damon_target *t)
375 return t->nr_regions;
378 struct damon_ctx *damon_new_ctx(void)
380 struct damon_ctx *ctx;
382 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
386 ctx->attrs.sample_interval = 5 * 1000;
387 ctx->attrs.aggr_interval = 100 * 1000;
388 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
390 ktime_get_coarse_ts64(&ctx->last_aggregation);
391 ctx->last_ops_update = ctx->last_aggregation;
393 mutex_init(&ctx->kdamond_lock);
395 ctx->attrs.min_nr_regions = 10;
396 ctx->attrs.max_nr_regions = 1000;
398 INIT_LIST_HEAD(&ctx->adaptive_targets);
399 INIT_LIST_HEAD(&ctx->schemes);
404 static void damon_destroy_targets(struct damon_ctx *ctx)
406 struct damon_target *t, *next_t;
408 if (ctx->ops.cleanup) {
409 ctx->ops.cleanup(ctx);
413 damon_for_each_target_safe(t, next_t, ctx)
414 damon_destroy_target(t);
417 void damon_destroy_ctx(struct damon_ctx *ctx)
419 struct damos *s, *next_s;
421 damon_destroy_targets(ctx);
423 damon_for_each_scheme_safe(s, next_s, ctx)
424 damon_destroy_scheme(s);
430 * damon_set_attrs() - Set attributes for the monitoring.
431 * @ctx: monitoring context
432 * @attrs: monitoring attributes
434 * This function should not be called while the kdamond is running.
435 * Every time interval is in micro-seconds.
437 * Return: 0 on success, negative error code otherwise.
439 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
441 if (attrs->min_nr_regions < 3)
443 if (attrs->min_nr_regions > attrs->max_nr_regions)
451 * damon_set_schemes() - Set data access monitoring based operation schemes.
452 * @ctx: monitoring context
453 * @schemes: array of the schemes
454 * @nr_schemes: number of entries in @schemes
456 * This function should not be called while the kdamond of the context is
459 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
462 struct damos *s, *next;
465 damon_for_each_scheme_safe(s, next, ctx)
466 damon_destroy_scheme(s);
467 for (i = 0; i < nr_schemes; i++)
468 damon_add_scheme(ctx, schemes[i]);
472 * damon_nr_running_ctxs() - Return number of currently running contexts.
474 int damon_nr_running_ctxs(void)
478 mutex_lock(&damon_lock);
479 nr_ctxs = nr_running_ctxs;
480 mutex_unlock(&damon_lock);
485 /* Returns the size upper limit for each monitoring region */
486 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
488 struct damon_target *t;
489 struct damon_region *r;
490 unsigned long sz = 0;
492 damon_for_each_target(t, ctx) {
493 damon_for_each_region(r, t)
494 sz += damon_sz_region(r);
497 if (ctx->attrs.min_nr_regions)
498 sz /= ctx->attrs.min_nr_regions;
499 if (sz < DAMON_MIN_REGION)
500 sz = DAMON_MIN_REGION;
505 static int kdamond_fn(void *data);
508 * __damon_start() - Starts monitoring with given context.
509 * @ctx: monitoring context
511 * This function should be called while damon_lock is hold.
513 * Return: 0 on success, negative error code otherwise.
515 static int __damon_start(struct damon_ctx *ctx)
519 mutex_lock(&ctx->kdamond_lock);
522 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
524 if (IS_ERR(ctx->kdamond)) {
525 err = PTR_ERR(ctx->kdamond);
529 mutex_unlock(&ctx->kdamond_lock);
535 * damon_start() - Starts the monitorings for a given group of contexts.
536 * @ctxs: an array of the pointers for contexts to start monitoring
537 * @nr_ctxs: size of @ctxs
538 * @exclusive: exclusiveness of this contexts group
540 * This function starts a group of monitoring threads for a group of monitoring
541 * contexts. One thread per each context is created and run in parallel. The
542 * caller should handle synchronization between the threads by itself. If
543 * @exclusive is true and a group of threads that created by other
544 * 'damon_start()' call is currently running, this function does nothing but
547 * Return: 0 on success, negative error code otherwise.
549 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
554 mutex_lock(&damon_lock);
555 if ((exclusive && nr_running_ctxs) ||
556 (!exclusive && running_exclusive_ctxs)) {
557 mutex_unlock(&damon_lock);
561 for (i = 0; i < nr_ctxs; i++) {
562 err = __damon_start(ctxs[i]);
567 if (exclusive && nr_running_ctxs)
568 running_exclusive_ctxs = true;
569 mutex_unlock(&damon_lock);
575 * __damon_stop() - Stops monitoring of a given context.
576 * @ctx: monitoring context
578 * Return: 0 on success, negative error code otherwise.
580 static int __damon_stop(struct damon_ctx *ctx)
582 struct task_struct *tsk;
584 mutex_lock(&ctx->kdamond_lock);
587 get_task_struct(tsk);
588 mutex_unlock(&ctx->kdamond_lock);
590 put_task_struct(tsk);
593 mutex_unlock(&ctx->kdamond_lock);
599 * damon_stop() - Stops the monitorings for a given group of contexts.
600 * @ctxs: an array of the pointers for contexts to stop monitoring
601 * @nr_ctxs: size of @ctxs
603 * Return: 0 on success, negative error code otherwise.
605 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
609 for (i = 0; i < nr_ctxs; i++) {
610 /* nr_running_ctxs is decremented in kdamond_fn */
611 err = __damon_stop(ctxs[i]);
619 * damon_check_reset_time_interval() - Check if a time interval is elapsed.
620 * @baseline: the time to check whether the interval has elapsed since
621 * @interval: the time interval (microseconds)
623 * See whether the given time interval has passed since the given baseline
624 * time. If so, it also updates the baseline to current time for next check.
626 * Return: true if the time interval has passed, or false otherwise.
628 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
629 unsigned long interval)
631 struct timespec64 now;
633 ktime_get_coarse_ts64(&now);
634 if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
642 * Check whether it is time to flush the aggregated information
644 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
646 return damon_check_reset_time_interval(&ctx->last_aggregation,
647 ctx->attrs.aggr_interval);
651 * Reset the aggregated monitoring results ('nr_accesses' of each region).
653 static void kdamond_reset_aggregated(struct damon_ctx *c)
655 struct damon_target *t;
656 unsigned int ti = 0; /* target's index */
658 damon_for_each_target(t, c) {
659 struct damon_region *r;
661 damon_for_each_region(r, t) {
662 trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
663 r->last_nr_accesses = r->nr_accesses;
670 static void damon_split_region_at(struct damon_target *t,
671 struct damon_region *r, unsigned long sz_r);
673 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
677 sz = damon_sz_region(r);
678 return s->pattern.min_sz_region <= sz &&
679 sz <= s->pattern.max_sz_region &&
680 s->pattern.min_nr_accesses <= r->nr_accesses &&
681 r->nr_accesses <= s->pattern.max_nr_accesses &&
682 s->pattern.min_age_region <= r->age &&
683 r->age <= s->pattern.max_age_region;
686 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
687 struct damon_region *r, struct damos *s)
689 bool ret = __damos_valid_target(r, s);
691 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
694 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
697 static void damon_do_apply_schemes(struct damon_ctx *c,
698 struct damon_target *t,
699 struct damon_region *r)
703 damon_for_each_scheme(s, c) {
704 struct damos_quota *quota = &s->quota;
705 unsigned long sz = damon_sz_region(r);
706 struct timespec64 begin, end;
707 unsigned long sz_applied = 0;
709 if (!s->wmarks.activated)
712 /* Check the quota */
713 if (quota->esz && quota->charged_sz >= quota->esz)
716 /* Skip previously charged regions */
717 if (quota->charge_target_from) {
718 if (t != quota->charge_target_from)
720 if (r == damon_last_region(t)) {
721 quota->charge_target_from = NULL;
722 quota->charge_addr_from = 0;
725 if (quota->charge_addr_from &&
726 r->ar.end <= quota->charge_addr_from)
729 if (quota->charge_addr_from && r->ar.start <
730 quota->charge_addr_from) {
731 sz = ALIGN_DOWN(quota->charge_addr_from -
732 r->ar.start, DAMON_MIN_REGION);
734 if (damon_sz_region(r) <=
737 sz = DAMON_MIN_REGION;
739 damon_split_region_at(t, r, sz);
740 r = damon_next_region(r);
741 sz = damon_sz_region(r);
743 quota->charge_target_from = NULL;
744 quota->charge_addr_from = 0;
747 if (!damos_valid_target(c, t, r, s))
750 /* Apply the scheme */
751 if (c->ops.apply_scheme) {
753 quota->charged_sz + sz > quota->esz) {
754 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
758 damon_split_region_at(t, r, sz);
760 ktime_get_coarse_ts64(&begin);
761 sz_applied = c->ops.apply_scheme(c, t, r, s);
762 ktime_get_coarse_ts64(&end);
763 quota->total_charged_ns += timespec64_to_ns(&end) -
764 timespec64_to_ns(&begin);
765 quota->charged_sz += sz;
766 if (quota->esz && quota->charged_sz >= quota->esz) {
767 quota->charge_target_from = t;
768 quota->charge_addr_from = r->ar.end + 1;
771 if (s->action != DAMOS_STAT)
776 s->stat.sz_tried += sz;
778 s->stat.nr_applied++;
779 s->stat.sz_applied += sz_applied;
783 /* Shouldn't be called if quota->ms and quota->sz are zero */
784 static void damos_set_effective_quota(struct damos_quota *quota)
786 unsigned long throughput;
790 quota->esz = quota->sz;
794 if (quota->total_charged_ns)
795 throughput = quota->total_charged_sz * 1000000 /
796 quota->total_charged_ns;
798 throughput = PAGE_SIZE * 1024;
799 esz = throughput * quota->ms;
801 if (quota->sz && quota->sz < esz)
806 static void kdamond_apply_schemes(struct damon_ctx *c)
808 struct damon_target *t;
809 struct damon_region *r, *next_r;
812 damon_for_each_scheme(s, c) {
813 struct damos_quota *quota = &s->quota;
814 unsigned long cumulated_sz;
815 unsigned int score, max_score = 0;
817 if (!s->wmarks.activated)
820 if (!quota->ms && !quota->sz)
823 /* New charge window starts */
824 if (time_after_eq(jiffies, quota->charged_from +
826 quota->reset_interval))) {
827 if (quota->esz && quota->charged_sz >= quota->esz)
828 s->stat.qt_exceeds++;
829 quota->total_charged_sz += quota->charged_sz;
830 quota->charged_from = jiffies;
831 quota->charged_sz = 0;
832 damos_set_effective_quota(quota);
835 if (!c->ops.get_scheme_score)
838 /* Fill up the score histogram */
839 memset(quota->histogram, 0, sizeof(quota->histogram));
840 damon_for_each_target(t, c) {
841 damon_for_each_region(r, t) {
842 if (!__damos_valid_target(r, s))
844 score = c->ops.get_scheme_score(
846 quota->histogram[score] += damon_sz_region(r);
847 if (score > max_score)
852 /* Set the min score limit */
853 for (cumulated_sz = 0, score = max_score; ; score--) {
854 cumulated_sz += quota->histogram[score];
855 if (cumulated_sz >= quota->esz || !score)
858 quota->min_score = score;
861 damon_for_each_target(t, c) {
862 damon_for_each_region_safe(r, next_r, t)
863 damon_do_apply_schemes(c, t, r);
868 * Merge two adjacent regions into one region
870 static void damon_merge_two_regions(struct damon_target *t,
871 struct damon_region *l, struct damon_region *r)
873 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
875 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
877 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
878 l->ar.end = r->ar.end;
879 damon_destroy_region(r, t);
883 * Merge adjacent regions having similar access frequencies
885 * t target affected by this merge operation
886 * thres '->nr_accesses' diff threshold for the merge
887 * sz_limit size upper limit of each region
889 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
890 unsigned long sz_limit)
892 struct damon_region *r, *prev = NULL, *next;
894 damon_for_each_region_safe(r, next, t) {
895 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
900 if (prev && prev->ar.end == r->ar.start &&
901 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
902 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
903 damon_merge_two_regions(t, prev, r);
910 * Merge adjacent regions having similar access frequencies
912 * threshold '->nr_accesses' diff threshold for the merge
913 * sz_limit size upper limit of each region
915 * This function merges monitoring target regions which are adjacent and their
916 * access frequencies are similar. This is for minimizing the monitoring
917 * overhead under the dynamically changeable access pattern. If a merge was
918 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
920 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
921 unsigned long sz_limit)
923 struct damon_target *t;
925 damon_for_each_target(t, c)
926 damon_merge_regions_of(t, threshold, sz_limit);
930 * Split a region in two
932 * r the region to be split
933 * sz_r size of the first sub-region that will be made
935 static void damon_split_region_at(struct damon_target *t,
936 struct damon_region *r, unsigned long sz_r)
938 struct damon_region *new;
940 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
944 r->ar.end = new->ar.start;
947 new->last_nr_accesses = r->last_nr_accesses;
949 damon_insert_region(new, r, damon_next_region(r), t);
952 /* Split every region in the given target into 'nr_subs' regions */
953 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
955 struct damon_region *r, *next;
956 unsigned long sz_region, sz_sub = 0;
959 damon_for_each_region_safe(r, next, t) {
960 sz_region = damon_sz_region(r);
962 for (i = 0; i < nr_subs - 1 &&
963 sz_region > 2 * DAMON_MIN_REGION; i++) {
965 * Randomly select size of left sub-region to be at
966 * least 10 percent and at most 90% of original region
968 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
969 sz_region / 10, DAMON_MIN_REGION);
970 /* Do not allow blank region */
971 if (sz_sub == 0 || sz_sub >= sz_region)
974 damon_split_region_at(t, r, sz_sub);
981 * Split every target region into randomly-sized small regions
983 * This function splits every target region into random-sized small regions if
984 * current total number of the regions is equal or smaller than half of the
985 * user-specified maximum number of regions. This is for maximizing the
986 * monitoring accuracy under the dynamically changeable access patterns. If a
987 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
990 static void kdamond_split_regions(struct damon_ctx *ctx)
992 struct damon_target *t;
993 unsigned int nr_regions = 0;
994 static unsigned int last_nr_regions;
995 int nr_subregions = 2;
997 damon_for_each_target(t, ctx)
998 nr_regions += damon_nr_regions(t);
1000 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1003 /* Maybe the middle of the region has different access frequency */
1004 if (last_nr_regions == nr_regions &&
1005 nr_regions < ctx->attrs.max_nr_regions / 3)
1008 damon_for_each_target(t, ctx)
1009 damon_split_regions_of(t, nr_subregions);
1011 last_nr_regions = nr_regions;
1015 * Check whether it is time to check and apply the operations-related data
1018 * Returns true if it is.
1020 static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1022 return damon_check_reset_time_interval(&ctx->last_ops_update,
1023 ctx->attrs.ops_update_interval);
1027 * Check whether current monitoring should be stopped
1029 * The monitoring is stopped when either the user requested to stop, or all
1030 * monitoring targets are invalid.
1032 * Returns true if need to stop current monitoring.
1034 static bool kdamond_need_stop(struct damon_ctx *ctx)
1036 struct damon_target *t;
1038 if (kthread_should_stop())
1041 if (!ctx->ops.target_valid)
1044 damon_for_each_target(t, ctx) {
1045 if (ctx->ops.target_valid(t))
1052 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1057 case DAMOS_WMARK_FREE_MEM_RATE:
1059 return i.freeram * 1000 / i.totalram;
1067 * Returns zero if the scheme is active. Else, returns time to wait for next
1068 * watermark check in micro-seconds.
1070 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1072 unsigned long metric;
1074 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1077 metric = damos_wmark_metric_value(scheme->wmarks.metric);
1078 /* higher than high watermark or lower than low watermark */
1079 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1080 if (scheme->wmarks.activated)
1081 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1083 metric > scheme->wmarks.high ?
1085 scheme->wmarks.activated = false;
1086 return scheme->wmarks.interval;
1089 /* inactive and higher than middle watermark */
1090 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1091 !scheme->wmarks.activated)
1092 return scheme->wmarks.interval;
1094 if (!scheme->wmarks.activated)
1095 pr_debug("activate a scheme (%d)\n", scheme->action);
1096 scheme->wmarks.activated = true;
1100 static void kdamond_usleep(unsigned long usecs)
1102 /* See Documentation/timers/timers-howto.rst for the thresholds */
1103 if (usecs > 20 * USEC_PER_MSEC)
1104 schedule_timeout_idle(usecs_to_jiffies(usecs));
1106 usleep_idle_range(usecs, usecs + 1);
1109 /* Returns negative error code if it's not activated but should return */
1110 static int kdamond_wait_activation(struct damon_ctx *ctx)
1113 unsigned long wait_time;
1114 unsigned long min_wait_time = 0;
1115 bool init_wait_time = false;
1117 while (!kdamond_need_stop(ctx)) {
1118 damon_for_each_scheme(s, ctx) {
1119 wait_time = damos_wmark_wait_us(s);
1120 if (!init_wait_time || wait_time < min_wait_time) {
1121 init_wait_time = true;
1122 min_wait_time = wait_time;
1128 kdamond_usleep(min_wait_time);
1130 if (ctx->callback.after_wmarks_check &&
1131 ctx->callback.after_wmarks_check(ctx))
1138 * The monitoring daemon that runs as a kernel thread
1140 static int kdamond_fn(void *data)
1142 struct damon_ctx *ctx = data;
1143 struct damon_target *t;
1144 struct damon_region *r, *next;
1145 unsigned int max_nr_accesses = 0;
1146 unsigned long sz_limit = 0;
1148 pr_debug("kdamond (%d) starts\n", current->pid);
1152 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1155 sz_limit = damon_region_sz_limit(ctx);
1157 while (!kdamond_need_stop(ctx)) {
1158 if (kdamond_wait_activation(ctx))
1161 if (ctx->ops.prepare_access_checks)
1162 ctx->ops.prepare_access_checks(ctx);
1163 if (ctx->callback.after_sampling &&
1164 ctx->callback.after_sampling(ctx))
1167 kdamond_usleep(ctx->attrs.sample_interval);
1169 if (ctx->ops.check_accesses)
1170 max_nr_accesses = ctx->ops.check_accesses(ctx);
1172 if (kdamond_aggregate_interval_passed(ctx)) {
1173 kdamond_merge_regions(ctx,
1174 max_nr_accesses / 10,
1176 if (ctx->callback.after_aggregation &&
1177 ctx->callback.after_aggregation(ctx))
1179 kdamond_apply_schemes(ctx);
1180 kdamond_reset_aggregated(ctx);
1181 kdamond_split_regions(ctx);
1182 if (ctx->ops.reset_aggregated)
1183 ctx->ops.reset_aggregated(ctx);
1186 if (kdamond_need_update_operations(ctx)) {
1187 if (ctx->ops.update)
1188 ctx->ops.update(ctx);
1189 sz_limit = damon_region_sz_limit(ctx);
1193 damon_for_each_target(t, ctx) {
1194 damon_for_each_region_safe(r, next, t)
1195 damon_destroy_region(r, t);
1198 if (ctx->callback.before_terminate)
1199 ctx->callback.before_terminate(ctx);
1200 if (ctx->ops.cleanup)
1201 ctx->ops.cleanup(ctx);
1203 pr_debug("kdamond (%d) finishes\n", current->pid);
1204 mutex_lock(&ctx->kdamond_lock);
1205 ctx->kdamond = NULL;
1206 mutex_unlock(&ctx->kdamond_lock);
1208 mutex_lock(&damon_lock);
1210 if (!nr_running_ctxs && running_exclusive_ctxs)
1211 running_exclusive_ctxs = false;
1212 mutex_unlock(&damon_lock);
1218 * struct damon_system_ram_region - System RAM resource address region of
1220 * @start: Start address of the region (inclusive).
1221 * @end: End address of the region (exclusive).
1223 struct damon_system_ram_region {
1224 unsigned long start;
1228 static int walk_system_ram(struct resource *res, void *arg)
1230 struct damon_system_ram_region *a = arg;
1232 if (a->end - a->start < resource_size(res)) {
1233 a->start = res->start;
1240 * Find biggest 'System RAM' resource and store its start and end address in
1241 * @start and @end, respectively. If no System RAM is found, returns false.
1243 static bool damon_find_biggest_system_ram(unsigned long *start,
1247 struct damon_system_ram_region arg = {};
1249 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1250 if (arg.end <= arg.start)
1259 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1260 * monitoring target as requested, or biggest 'System RAM'.
1261 * @t: The monitoring target to set the region.
1262 * @start: The pointer to the start address of the region.
1263 * @end: The pointer to the end address of the region.
1265 * This function sets the region of @t as requested by @start and @end. If the
1266 * values of @start and @end are zero, however, this function finds the biggest
1267 * 'System RAM' resource and sets the region to cover the resource. In the
1268 * latter case, this function saves the start and end addresses of the resource
1269 * in @start and @end, respectively.
1271 * Return: 0 on success, negative error code otherwise.
1273 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1274 unsigned long *start, unsigned long *end)
1276 struct damon_addr_range addr_range;
1281 if (!*start && !*end &&
1282 !damon_find_biggest_system_ram(start, end))
1285 addr_range.start = *start;
1286 addr_range.end = *end;
1287 return damon_set_regions(t, &addr_range, 1);
1290 static int __init damon_init(void)
1292 damon_region_cache = KMEM_CACHE(damon_region, 0);
1293 if (unlikely(!damon_region_cache)) {
1294 pr_err("creating damon_region_cache fails\n");
1301 subsys_initcall(damon_init);
1303 #include "core-test.h"