2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
50 #include <drm/amdgpu_drm.h>
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
66 struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
72 uint64_t size_in_page)
74 return ttm_range_man_init(&adev->mman.bdev, type,
79 * amdgpu_evict_flags - Compute placement flags
81 * @bo: The buffer object to evict
82 * @placement: Possible destination(s) for evicted BO
84 * Fill in placement data when ttm_bo_evict() is called
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 struct ttm_placement *placement)
89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 struct amdgpu_bo *abo;
91 static const struct ttm_place placements = {
94 .mem_type = TTM_PL_SYSTEM,
98 /* Don't handle scatter gather BOs */
99 if (bo->type == ttm_bo_type_sg) {
100 placement->num_placement = 0;
101 placement->num_busy_placement = 0;
105 /* Object isn't an AMDGPU object so ignore */
106 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 placement->placement = &placements;
108 placement->busy_placement = &placements;
109 placement->num_placement = 1;
110 placement->num_busy_placement = 1;
114 abo = ttm_to_amdgpu_bo(bo);
115 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 struct dma_fence *fence;
117 struct dma_resv *resv = &bo->base._resv;
120 fence = rcu_dereference(resv->fence_excl);
121 if (fence && !fence->ops->signaled)
122 dma_fence_enable_sw_signaling(fence);
124 placement->num_placement = 0;
125 placement->num_busy_placement = 0;
130 switch (bo->resource->mem_type) {
134 placement->num_placement = 0;
135 placement->num_busy_placement = 0;
139 if (!adev->mman.buffer_funcs_enabled) {
140 /* Move to system memory */
141 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 amdgpu_bo_in_cpu_visible_vram(abo)) {
146 /* Try evicting to the CPU inaccessible part of VRAM
147 * first, but only set GTT as busy placement, so this
148 * BO will be evicted to GTT rather than causing other
149 * BOs to be evicted from VRAM
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 AMDGPU_GEM_DOMAIN_GTT);
153 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
154 abo->placements[0].lpfn = 0;
155 abo->placement.busy_placement = &abo->placements[1];
156 abo->placement.num_busy_placement = 1;
158 /* Move to GTT memory */
159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
163 case AMDGPU_PL_PREEMPT:
165 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168 *placement = abo->placement;
172 * amdgpu_ttm_map_buffer - Map memory into the GART windows
173 * @bo: buffer object to map
174 * @mem: memory object to map
175 * @mm_cur: range to map
176 * @num_pages: number of pages to map
177 * @window: which GART window to use
178 * @ring: DMA ring to use for the copy
179 * @tmz: if we should setup a TMZ enabled mapping
180 * @addr: resulting address inside the MC address space
182 * Setup one of the GART windows to access a specific piece of memory or return
183 * the physical address for local memory.
185 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
186 struct ttm_resource *mem,
187 struct amdgpu_res_cursor *mm_cur,
188 unsigned num_pages, unsigned window,
189 struct amdgpu_ring *ring, bool tmz,
192 struct amdgpu_device *adev = ring->adev;
193 struct amdgpu_job *job;
194 unsigned num_dw, num_bytes;
195 struct dma_fence *fence;
196 uint64_t src_addr, dst_addr;
202 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
203 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
204 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
206 /* Map only what can't be accessed directly */
207 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
208 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
213 *addr = adev->gmc.gart_start;
214 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
215 AMDGPU_GPU_PAGE_SIZE;
216 *addr += mm_cur->start & ~PAGE_MASK;
218 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
219 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
221 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
222 AMDGPU_IB_POOL_DELAYED, &job);
226 src_addr = num_dw * 4;
227 src_addr += job->ibs[0].gpu_addr;
229 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
230 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
231 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
232 dst_addr, num_bytes, false);
234 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
235 WARN_ON(job->ibs[0].length_dw > num_dw);
237 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
239 flags |= AMDGPU_PTE_TMZ;
241 cpu_addr = &job->ibs[0].ptr[num_dw];
243 if (mem->mem_type == TTM_PL_TT) {
244 dma_addr_t *dma_addr;
246 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
247 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
252 dma_addr_t dma_address;
254 dma_address = mm_cur->start;
255 dma_address += adev->vm_manager.vram_base_offset;
257 for (i = 0; i < num_pages; ++i) {
258 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
259 &dma_address, flags, cpu_addr);
263 dma_address += PAGE_SIZE;
267 r = amdgpu_job_submit(job, &adev->mman.entity,
268 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
272 dma_fence_put(fence);
277 amdgpu_job_free(job);
282 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
283 * @adev: amdgpu device
284 * @src: buffer/address where to read from
285 * @dst: buffer/address where to write to
286 * @size: number of bytes to copy
287 * @tmz: if a secure copy should be used
288 * @resv: resv object to sync to
289 * @f: Returns the last fence if multiple jobs are submitted.
291 * The function copies @size bytes from {src->mem + src->offset} to
292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293 * move and different for a BO to BO copy.
296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
297 const struct amdgpu_copy_mem *src,
298 const struct amdgpu_copy_mem *dst,
299 uint64_t size, bool tmz,
300 struct dma_resv *resv,
301 struct dma_fence **f)
303 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
304 AMDGPU_GPU_PAGE_SIZE);
306 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
307 struct amdgpu_res_cursor src_mm, dst_mm;
308 struct dma_fence *fence = NULL;
311 if (!adev->mman.buffer_funcs_enabled) {
312 DRM_ERROR("Trying to move memory with ring turned off.\n");
316 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
317 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
319 mutex_lock(&adev->mman.gtt_window_lock);
320 while (src_mm.remaining) {
321 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
322 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
323 struct dma_fence *next;
327 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
328 * begins at an offset, then adjust the size accordingly
330 cur_size = max(src_page_offset, dst_page_offset);
331 cur_size = min(min3(src_mm.size, dst_mm.size, size),
332 (uint64_t)(GTT_MAX_BYTES - cur_size));
334 /* Map src to window 0 and dst to window 1. */
335 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
336 PFN_UP(cur_size + src_page_offset),
337 0, ring, tmz, &from);
341 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
342 PFN_UP(cur_size + dst_page_offset),
347 r = amdgpu_copy_buffer(ring, from, to, cur_size,
348 resv, &next, false, true, tmz);
352 dma_fence_put(fence);
355 amdgpu_res_next(&src_mm, cur_size);
356 amdgpu_res_next(&dst_mm, cur_size);
359 mutex_unlock(&adev->mman.gtt_window_lock);
361 *f = dma_fence_get(fence);
362 dma_fence_put(fence);
367 * amdgpu_move_blit - Copy an entire buffer to another buffer
369 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
370 * help move buffers to and from VRAM.
372 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
374 struct ttm_resource *new_mem,
375 struct ttm_resource *old_mem)
377 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
378 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
379 struct amdgpu_copy_mem src, dst;
380 struct dma_fence *fence = NULL;
390 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
391 new_mem->num_pages << PAGE_SHIFT,
392 amdgpu_bo_encrypted(abo),
393 bo->base.resv, &fence);
397 /* clear the space being freed */
398 if (old_mem->mem_type == TTM_PL_VRAM &&
399 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
400 struct dma_fence *wipe_fence = NULL;
402 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
406 } else if (wipe_fence) {
407 dma_fence_put(fence);
412 /* Always block for VM page tables before committing the new location */
413 if (bo->type == ttm_bo_type_kernel)
414 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
416 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
417 dma_fence_put(fence);
422 dma_fence_wait(fence, false);
423 dma_fence_put(fence);
428 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
430 * Called by amdgpu_bo_move()
432 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
433 struct ttm_resource *mem)
435 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
436 struct amdgpu_res_cursor cursor;
438 if (mem->mem_type == TTM_PL_SYSTEM ||
439 mem->mem_type == TTM_PL_TT)
441 if (mem->mem_type != TTM_PL_VRAM)
444 amdgpu_res_first(mem, 0, mem_size, &cursor);
446 /* ttm_resource_ioremap only supports contiguous memory */
447 if (cursor.size != mem_size)
450 return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
454 * amdgpu_bo_move - Move a buffer object to a new memory location
456 * Called by ttm_bo_handle_move_mem()
458 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
459 struct ttm_operation_ctx *ctx,
460 struct ttm_resource *new_mem,
461 struct ttm_place *hop)
463 struct amdgpu_device *adev;
464 struct amdgpu_bo *abo;
465 struct ttm_resource *old_mem = bo->resource;
468 if (new_mem->mem_type == TTM_PL_TT ||
469 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
470 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
475 /* Can't move a pinned BO */
476 abo = ttm_to_amdgpu_bo(bo);
477 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 adev = amdgpu_ttm_adev(bo->bdev);
482 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
483 ttm_bo_move_null(bo, new_mem);
486 if (old_mem->mem_type == TTM_PL_SYSTEM &&
487 (new_mem->mem_type == TTM_PL_TT ||
488 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
489 ttm_bo_move_null(bo, new_mem);
492 if ((old_mem->mem_type == TTM_PL_TT ||
493 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
494 new_mem->mem_type == TTM_PL_SYSTEM) {
495 r = ttm_bo_wait_ctx(bo, ctx);
499 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
500 ttm_resource_free(bo, &bo->resource);
501 ttm_bo_assign_mem(bo, new_mem);
505 if (old_mem->mem_type == AMDGPU_PL_GDS ||
506 old_mem->mem_type == AMDGPU_PL_GWS ||
507 old_mem->mem_type == AMDGPU_PL_OA ||
508 new_mem->mem_type == AMDGPU_PL_GDS ||
509 new_mem->mem_type == AMDGPU_PL_GWS ||
510 new_mem->mem_type == AMDGPU_PL_OA) {
511 /* Nothing to save here */
512 ttm_bo_move_null(bo, new_mem);
516 if (adev->mman.buffer_funcs_enabled) {
517 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 new_mem->mem_type == TTM_PL_VRAM) ||
519 (old_mem->mem_type == TTM_PL_VRAM &&
520 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->mem_type = TTM_PL_TT;
528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
534 /* Check that all memory is CPU accessible */
535 if (!amdgpu_mem_visible(adev, old_mem) ||
536 !amdgpu_mem_visible(adev, new_mem)) {
537 pr_err("Move buffer fallback to memcpy unavailable\n");
541 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
546 if (bo->type == ttm_bo_type_device &&
547 new_mem->mem_type == TTM_PL_VRAM &&
548 old_mem->mem_type != TTM_PL_VRAM) {
549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 * accesses the BO after it's moved.
552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
556 /* update statistics */
557 atomic64_add(bo->base.size, &adev->num_bytes_moved);
558 amdgpu_bo_move_notify(bo, evict, new_mem);
563 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
565 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
567 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
568 struct ttm_resource *mem)
570 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
571 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
573 switch (mem->mem_type) {
578 case AMDGPU_PL_PREEMPT:
581 mem->bus.offset = mem->start << PAGE_SHIFT;
582 /* check if it's visible */
583 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586 if (adev->mman.aper_base_kaddr &&
587 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
588 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591 mem->bus.offset += adev->gmc.aper_base;
592 mem->bus.is_iomem = true;
593 if (adev->gmc.xgmi.connected_to_cpu)
594 mem->bus.caching = ttm_cached;
596 mem->bus.caching = ttm_write_combined;
604 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
605 unsigned long page_offset)
607 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
608 struct amdgpu_res_cursor cursor;
610 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
616 * amdgpu_ttm_domain_start - Returns GPU start address
617 * @adev: amdgpu device object
618 * @type: type of the memory
621 * GPU start address of a memory domain
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
628 return adev->gmc.gart_start;
630 return adev->gmc.vram_start;
637 * TTM backend functions.
639 struct amdgpu_ttm_tt {
641 struct drm_gem_object *gobj;
644 struct task_struct *usertask;
647 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
648 struct hmm_range *range;
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655 * memory and start HMM tracking CPU page table update
657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658 * once afterwards to stop HMM tracking
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
662 struct ttm_tt *ttm = bo->tbo.ttm;
663 struct amdgpu_ttm_tt *gtt = (void *)ttm;
664 unsigned long start = gtt->userptr;
665 struct vm_area_struct *vma;
666 struct mm_struct *mm;
670 mm = bo->notifier.mm;
672 DRM_DEBUG_DRIVER("BO is not registered?\n");
676 /* Another get_user_pages is running at the same time?? */
677 if (WARN_ON(gtt->range))
680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
684 vma = vma_lookup(mm, start);
685 if (unlikely(!vma)) {
689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
695 readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
697 ttm->num_pages, >t->range, readonly,
700 mmap_read_unlock(mm);
707 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
708 * Check if the pages backing this ttm range have been invalidated
710 * Returns: true if pages are still valid
712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
714 struct amdgpu_ttm_tt *gtt = (void *)ttm;
717 if (!gtt || !gtt->userptr)
720 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
721 gtt->userptr, ttm->num_pages);
723 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
724 "No user pages to check\n");
728 * FIXME: Must always hold notifier_lock for this, and must
729 * not ignore the return code.
731 r = amdgpu_hmm_range_get_pages_done(gtt->range);
740 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
742 * Called by amdgpu_cs_list_validate(). This creates the page list
743 * that backs user memory and will ultimately be mapped into the device
746 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750 for (i = 0; i < ttm->num_pages; ++i)
751 ttm->pages[i] = pages ? pages[i] : NULL;
755 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
757 * Called by amdgpu_ttm_backend_bind()
759 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
762 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
763 struct amdgpu_ttm_tt *gtt = (void *)ttm;
764 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
765 enum dma_data_direction direction = write ?
766 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
769 /* Allocate an SG array and squash pages into it */
770 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
771 (u64)ttm->num_pages << PAGE_SHIFT,
776 /* Map SG to device */
777 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781 /* convert SG to linear array of pages and dma addresses */
782 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
794 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
796 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
799 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
800 struct amdgpu_ttm_tt *gtt = (void *)ttm;
801 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
802 enum dma_data_direction direction = write ?
803 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
805 /* double check that we don't free the table twice */
806 if (!ttm->sg || !ttm->sg->sgl)
809 /* unmap the pages mapped to the device */
810 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
811 sg_free_table(ttm->sg);
813 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
817 for (i = 0; i < ttm->num_pages; i++) {
819 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
823 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
828 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
829 struct ttm_buffer_object *tbo,
832 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
833 struct ttm_tt *ttm = tbo->ttm;
834 struct amdgpu_ttm_tt *gtt = (void *)ttm;
837 if (amdgpu_bo_encrypted(abo))
838 flags |= AMDGPU_PTE_TMZ;
840 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
841 uint64_t page_idx = 1;
843 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
844 gtt->ttm.dma_address, flags);
848 /* The memory type of the first page defaults to UC. Now
849 * modify the memory type to NC from the second page of
852 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
853 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
855 r = amdgpu_gart_bind(adev,
856 gtt->offset + (page_idx << PAGE_SHIFT),
857 ttm->num_pages - page_idx,
858 &(gtt->ttm.dma_address[page_idx]), flags);
860 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
861 gtt->ttm.dma_address, flags);
866 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
867 ttm->num_pages, gtt->offset);
873 * amdgpu_ttm_backend_bind - Bind GTT memory
875 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
876 * This handles binding GTT memory to the device address space.
878 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 struct ttm_resource *bo_mem)
882 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
883 struct amdgpu_ttm_tt *gtt = (void*)ttm;
894 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 DRM_ERROR("failed to pin userptr\n");
899 } else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
901 struct dma_buf_attachment *attach;
902 struct sg_table *sgt;
904 attach = gtt->gobj->import_attach;
905 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
912 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
916 if (!ttm->num_pages) {
917 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
918 ttm->num_pages, bo_mem, ttm);
921 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
922 bo_mem->mem_type == AMDGPU_PL_GWS ||
923 bo_mem->mem_type == AMDGPU_PL_OA)
926 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
927 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
931 /* compute PTE flags relevant to this BO memory */
932 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
934 /* bind pages into GART page tables */
935 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
936 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
937 gtt->ttm.dma_address, flags);
940 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
941 ttm->num_pages, gtt->offset);
947 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
948 * through AGP or GART aperture.
950 * If bo is accessible through AGP aperture, then use AGP aperture
951 * to access bo; otherwise allocate logical space in GART aperture
952 * and map bo to GART aperture.
954 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
956 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
957 struct ttm_operation_ctx ctx = { false, false };
958 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
959 struct ttm_placement placement;
960 struct ttm_place placements;
961 struct ttm_resource *tmp;
962 uint64_t addr, flags;
965 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968 addr = amdgpu_gmc_agp_addr(bo);
969 if (addr != AMDGPU_BO_INVALID_OFFSET) {
970 bo->resource->start = addr >> PAGE_SHIFT;
974 /* allocate GART space */
975 placement.num_placement = 1;
976 placement.placement = &placements;
977 placement.num_busy_placement = 1;
978 placement.busy_placement = &placements;
980 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
981 placements.mem_type = TTM_PL_TT;
982 placements.flags = bo->resource->placement;
984 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
988 /* compute PTE flags for this buffer object */
989 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
992 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
993 r = amdgpu_ttm_gart_bind(adev, bo, flags);
995 ttm_resource_free(bo, &tmp);
999 amdgpu_gart_invalidate_tlb(adev);
1000 ttm_resource_free(bo, &bo->resource);
1001 ttm_bo_assign_mem(bo, tmp);
1007 * amdgpu_ttm_recover_gart - Rebind GTT pages
1009 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1010 * rebind GTT pages during a GPU reset.
1012 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1014 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1021 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1022 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1028 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1030 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1033 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1036 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1037 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1040 /* if the pages have userptr pinning then clear that first */
1042 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1043 } else if (ttm->sg && gtt->gobj->import_attach) {
1044 struct dma_buf_attachment *attach;
1046 attach = gtt->gobj->import_attach;
1047 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1054 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1057 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1058 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1060 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1061 gtt->ttm.num_pages, gtt->offset);
1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1068 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1070 amdgpu_ttm_backend_unbind(bdev, ttm);
1071 ttm_tt_destroy_common(bdev, ttm);
1073 put_task_struct(gtt->usertask);
1075 ttm_tt_fini(>t->ttm);
1080 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1082 * @bo: The buffer object to create a GTT ttm_tt object around
1083 * @page_flags: Page flags to be added to the ttm_tt object
1085 * Called by ttm_tt_create().
1087 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1088 uint32_t page_flags)
1090 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1091 struct amdgpu_ttm_tt *gtt;
1092 enum ttm_caching caching;
1094 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1098 gtt->gobj = &bo->base;
1100 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1101 caching = ttm_write_combined;
1103 caching = ttm_cached;
1105 /* allocate space for the uninitialized page entries */
1106 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1114 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1116 * Map the pages of a ttm_tt object to an address space visible
1117 * to the underlying device.
1119 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1121 struct ttm_operation_ctx *ctx)
1123 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1124 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1126 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1127 if (gtt && gtt->userptr) {
1128 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1134 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1137 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1141 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1143 * Unmaps pages of a ttm_tt object from the device address space and
1144 * unpopulates the page array backing it.
1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1149 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1150 struct amdgpu_device *adev;
1152 if (gtt && gtt->userptr) {
1153 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1159 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1162 adev = amdgpu_ttm_adev(bdev);
1163 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1167 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1170 * @bo: The ttm_buffer_object to bind this userptr to
1171 * @addr: The address in the current tasks VM space to use
1172 * @flags: Requirements of userptr object.
1174 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1177 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1178 uint64_t addr, uint32_t flags)
1180 struct amdgpu_ttm_tt *gtt;
1183 /* TODO: We want a separate TTM object type for userptrs */
1184 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1185 if (bo->ttm == NULL)
1189 /* Set TTM_PAGE_FLAG_SG before populate but after create. */
1190 bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1192 gtt = (void *)bo->ttm;
1193 gtt->userptr = addr;
1194 gtt->userflags = flags;
1197 put_task_struct(gtt->usertask);
1198 gtt->usertask = current->group_leader;
1199 get_task_struct(gtt->usertask);
1205 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1207 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1209 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1214 if (gtt->usertask == NULL)
1217 return gtt->usertask->mm;
1221 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1222 * address range for the current task.
1225 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1228 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1231 if (gtt == NULL || !gtt->userptr)
1234 /* Return false if no part of the ttm_tt object lies within
1237 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1238 if (gtt->userptr > end || gtt->userptr + size <= start)
1245 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1247 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1249 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1251 if (gtt == NULL || !gtt->userptr)
1258 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1260 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1262 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1267 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1271 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1273 * @ttm: The ttm_tt object to compute the flags for
1274 * @mem: The memory registry backing this ttm_tt object
1276 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1278 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1282 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1283 flags |= AMDGPU_PTE_VALID;
1285 if (mem && (mem->mem_type == TTM_PL_TT ||
1286 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1287 flags |= AMDGPU_PTE_SYSTEM;
1289 if (ttm->caching == ttm_cached)
1290 flags |= AMDGPU_PTE_SNOOPED;
1293 if (mem && mem->mem_type == TTM_PL_VRAM &&
1294 mem->bus.caching == ttm_cached)
1295 flags |= AMDGPU_PTE_SNOOPED;
1301 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1303 * @adev: amdgpu_device pointer
1304 * @ttm: The ttm_tt object to compute the flags for
1305 * @mem: The memory registry backing this ttm_tt object
1307 * Figure out the flags to use for a VM PTE (Page Table Entry).
1309 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1310 struct ttm_resource *mem)
1312 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1314 flags |= adev->gart.gart_pte_flags;
1315 flags |= AMDGPU_PTE_READABLE;
1317 if (!amdgpu_ttm_tt_is_readonly(ttm))
1318 flags |= AMDGPU_PTE_WRITEABLE;
1324 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1327 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1328 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1329 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1330 * used to clean out a memory space.
1332 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1333 const struct ttm_place *place)
1335 unsigned long num_pages = bo->resource->num_pages;
1336 struct amdgpu_res_cursor cursor;
1337 struct dma_resv_list *flist;
1338 struct dma_fence *f;
1342 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1345 if (bo->type == ttm_bo_type_kernel &&
1346 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1349 /* If bo is a KFD BO, check if the bo belongs to the current process.
1350 * If true, then return false as any KFD process needs all its BOs to
1351 * be resident to run successfully
1353 flist = dma_resv_shared_list(bo->base.resv);
1355 for (i = 0; i < flist->shared_count; ++i) {
1356 f = rcu_dereference_protected(flist->shared[i],
1357 dma_resv_held(bo->base.resv));
1358 if (amdkfd_fence_check_mm(f, current->mm))
1363 switch (bo->resource->mem_type) {
1364 case AMDGPU_PL_PREEMPT:
1365 /* Preemptible BOs don't own system resources managed by the
1366 * driver (pages, VRAM, GART space). They point to resources
1367 * owned by someone else (e.g. pageable memory in user mode
1368 * or a DMABuf). They are used in a preemptible context so we
1369 * can guarantee no deadlocks and good QoS in case of MMU
1370 * notifiers or DMABuf move notifiers from the resource owner.
1374 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1375 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1380 /* Check each drm MM node individually */
1381 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1383 while (cursor.remaining) {
1384 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1386 place->lpfn <= PFN_DOWN(cursor.start)))
1389 amdgpu_res_next(&cursor, cursor.size);
1397 return ttm_bo_eviction_valuable(bo, place);
1401 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1403 * @bo: The buffer object to read/write
1404 * @offset: Offset into buffer object
1405 * @buf: Secondary buffer to write/read from
1406 * @len: Length in bytes of access
1407 * @write: true if writing
1409 * This is used to access VRAM that backs a buffer object via MMIO
1410 * access for debugging purposes.
1412 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1413 unsigned long offset, void *buf, int len,
1416 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1417 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1418 struct amdgpu_res_cursor cursor;
1419 unsigned long flags;
1423 if (bo->resource->mem_type != TTM_PL_VRAM)
1426 amdgpu_res_first(bo->resource, offset, len, &cursor);
1427 while (cursor.remaining) {
1428 uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1429 uint64_t bytes = 4 - (cursor.start & 3);
1430 uint32_t shift = (cursor.start & 3) * 8;
1431 uint32_t mask = 0xffffffff << shift;
1433 if (cursor.size < bytes) {
1434 mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1435 bytes = cursor.size;
1438 if (mask != 0xffffffff) {
1439 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1440 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1441 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1442 value = RREG32_NO_KIQ(mmMM_DATA);
1445 value |= (*(uint32_t *)buf << shift) & mask;
1446 WREG32_NO_KIQ(mmMM_DATA, value);
1448 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1450 value = (value & mask) >> shift;
1451 memcpy(buf, &value, bytes);
1454 bytes = cursor.size & ~0x3ULL;
1455 amdgpu_device_vram_access(adev, cursor.start,
1456 (uint32_t *)buf, bytes,
1461 buf = (uint8_t *)buf + bytes;
1462 amdgpu_res_next(&cursor, bytes);
1469 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1471 amdgpu_bo_move_notify(bo, false, NULL);
1474 static struct ttm_device_funcs amdgpu_bo_driver = {
1475 .ttm_tt_create = &amdgpu_ttm_tt_create,
1476 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1477 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1478 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1479 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1480 .evict_flags = &amdgpu_evict_flags,
1481 .move = &amdgpu_bo_move,
1482 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1483 .release_notify = &amdgpu_bo_release_notify,
1484 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1485 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1486 .access_memory = &amdgpu_ttm_access_memory,
1487 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1491 * Firmware Reservation functions
1494 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1496 * @adev: amdgpu_device pointer
1498 * free fw reserved vram if it has been reserved.
1500 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1502 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1503 NULL, &adev->mman.fw_vram_usage_va);
1507 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1509 * @adev: amdgpu_device pointer
1511 * create bo vram reservation from fw.
1513 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1515 uint64_t vram_size = adev->gmc.visible_vram_size;
1517 adev->mman.fw_vram_usage_va = NULL;
1518 adev->mman.fw_vram_usage_reserved_bo = NULL;
1520 if (adev->mman.fw_vram_usage_size == 0 ||
1521 adev->mman.fw_vram_usage_size > vram_size)
1524 return amdgpu_bo_create_kernel_at(adev,
1525 adev->mman.fw_vram_usage_start_offset,
1526 adev->mman.fw_vram_usage_size,
1527 AMDGPU_GEM_DOMAIN_VRAM,
1528 &adev->mman.fw_vram_usage_reserved_bo,
1529 &adev->mman.fw_vram_usage_va);
1533 * Memoy training reservation functions
1537 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1539 * @adev: amdgpu_device pointer
1541 * free memory training reserved vram if it has been reserved.
1543 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1545 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1547 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1548 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1554 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1556 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1558 memset(ctx, 0, sizeof(*ctx));
1560 ctx->c2p_train_data_offset =
1561 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1562 ctx->p2c_train_data_offset =
1563 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1564 ctx->train_data_size =
1565 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1567 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1568 ctx->train_data_size,
1569 ctx->p2c_train_data_offset,
1570 ctx->c2p_train_data_offset);
1574 * reserve TMR memory at the top of VRAM which holds
1575 * IP Discovery data and is protected by PSP.
1577 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1580 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1581 bool mem_train_support = false;
1583 if (!amdgpu_sriov_vf(adev)) {
1584 if (amdgpu_atomfirmware_mem_training_supported(adev))
1585 mem_train_support = true;
1587 DRM_DEBUG("memory training does not support!\n");
1591 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1592 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1594 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1595 * discovery data and G6 memory training data respectively
1597 adev->mman.discovery_tmr_size =
1598 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1599 if (!adev->mman.discovery_tmr_size)
1600 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1602 if (mem_train_support) {
1603 /* reserve vram for mem train according to TMR location */
1604 amdgpu_ttm_training_data_block_init(adev);
1605 ret = amdgpu_bo_create_kernel_at(adev,
1606 ctx->c2p_train_data_offset,
1607 ctx->train_data_size,
1608 AMDGPU_GEM_DOMAIN_VRAM,
1612 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1613 amdgpu_ttm_training_reserve_vram_fini(adev);
1616 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1619 ret = amdgpu_bo_create_kernel_at(adev,
1620 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1621 adev->mman.discovery_tmr_size,
1622 AMDGPU_GEM_DOMAIN_VRAM,
1623 &adev->mman.discovery_memory,
1626 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1627 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1635 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1636 * gtt/vram related fields.
1638 * This initializes all of the memory space pools that the TTM layer
1639 * will need such as the GTT space (system memory mapped to the device),
1640 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1641 * can be mapped per VMID.
1643 int amdgpu_ttm_init(struct amdgpu_device *adev)
1649 mutex_init(&adev->mman.gtt_window_lock);
1651 /* No others user of address space so set it to 0 */
1652 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1653 adev_to_drm(adev)->anon_inode->i_mapping,
1654 adev_to_drm(adev)->vma_offset_manager,
1656 dma_addressing_limited(adev->dev));
1658 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1661 adev->mman.initialized = true;
1663 /* Initialize VRAM pool with all of VRAM divided into pages */
1664 r = amdgpu_vram_mgr_init(adev);
1666 DRM_ERROR("Failed initializing VRAM heap.\n");
1670 /* Reduce size of CPU-visible VRAM if requested */
1671 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1672 if (amdgpu_vis_vram_limit > 0 &&
1673 vis_vram_limit <= adev->gmc.visible_vram_size)
1674 adev->gmc.visible_vram_size = vis_vram_limit;
1676 /* Change the size here instead of the init above so only lpfn is affected */
1677 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1680 if (adev->gmc.xgmi.connected_to_cpu)
1681 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1682 adev->gmc.visible_vram_size);
1686 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1687 adev->gmc.visible_vram_size);
1691 *The reserved vram for firmware must be pinned to the specified
1692 *place on the VRAM, so reserve it early.
1694 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1700 * only NAVI10 and onwards ASIC support for IP discovery.
1701 * If IP discovery enabled, a block of memory should be
1702 * reserved for IP discovey.
1704 if (adev->mman.discovery_bin) {
1705 r = amdgpu_ttm_reserve_tmr(adev);
1710 /* allocate memory as required for VGA
1711 * This is used for VGA emulation and pre-OS scanout buffers to
1712 * avoid display artifacts while transitioning between pre-OS
1714 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1715 AMDGPU_GEM_DOMAIN_VRAM,
1716 &adev->mman.stolen_vga_memory,
1720 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1721 adev->mman.stolen_extended_size,
1722 AMDGPU_GEM_DOMAIN_VRAM,
1723 &adev->mman.stolen_extended_memory,
1727 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1728 adev->mman.stolen_reserved_size,
1729 AMDGPU_GEM_DOMAIN_VRAM,
1730 &adev->mman.stolen_reserved_memory,
1735 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1736 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1738 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1739 * or whatever the user passed on module init */
1740 if (amdgpu_gtt_size == -1) {
1744 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1745 adev->gmc.mc_vram_size),
1746 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1749 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1751 /* Initialize GTT memory pool */
1752 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1754 DRM_ERROR("Failed initializing GTT heap.\n");
1757 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1758 (unsigned)(gtt_size / (1024 * 1024)));
1760 /* Initialize preemptible memory pool */
1761 r = amdgpu_preempt_mgr_init(adev);
1763 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1767 /* Initialize various on-chip memory pools */
1768 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1770 DRM_ERROR("Failed initializing GDS heap.\n");
1774 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1776 DRM_ERROR("Failed initializing gws heap.\n");
1780 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1782 DRM_ERROR("Failed initializing oa heap.\n");
1790 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1792 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1794 if (!adev->mman.initialized)
1797 amdgpu_ttm_training_reserve_vram_fini(adev);
1798 /* return the stolen vga memory back to VRAM */
1799 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1800 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1801 /* return the IP Discovery TMR memory back to VRAM */
1802 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1803 if (adev->mman.stolen_reserved_size)
1804 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1806 amdgpu_ttm_fw_reserve_vram_fini(adev);
1808 amdgpu_vram_mgr_fini(adev);
1809 amdgpu_gtt_mgr_fini(adev);
1810 amdgpu_preempt_mgr_fini(adev);
1811 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1812 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1813 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1814 ttm_device_fini(&adev->mman.bdev);
1815 adev->mman.initialized = false;
1816 DRM_INFO("amdgpu: ttm finalized\n");
1820 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1822 * @adev: amdgpu_device pointer
1823 * @enable: true when we can use buffer functions.
1825 * Enable/disable use of buffer functions during suspend/resume. This should
1826 * only be called at bootup or when userspace isn't running.
1828 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1830 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1834 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1835 adev->mman.buffer_funcs_enabled == enable)
1839 struct amdgpu_ring *ring;
1840 struct drm_gpu_scheduler *sched;
1842 ring = adev->mman.buffer_funcs_ring;
1843 sched = &ring->sched;
1844 r = drm_sched_entity_init(&adev->mman.entity,
1845 DRM_SCHED_PRIORITY_KERNEL, &sched,
1848 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1853 drm_sched_entity_destroy(&adev->mman.entity);
1854 dma_fence_put(man->move);
1858 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1860 size = adev->gmc.real_vram_size;
1862 size = adev->gmc.visible_vram_size;
1863 man->size = size >> PAGE_SHIFT;
1864 adev->mman.buffer_funcs_enabled = enable;
1867 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1868 uint64_t dst_offset, uint32_t byte_count,
1869 struct dma_resv *resv,
1870 struct dma_fence **fence, bool direct_submit,
1871 bool vm_needs_flush, bool tmz)
1873 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1874 AMDGPU_IB_POOL_DELAYED;
1875 struct amdgpu_device *adev = ring->adev;
1876 struct amdgpu_job *job;
1879 unsigned num_loops, num_dw;
1883 if (direct_submit && !ring->sched.ready) {
1884 DRM_ERROR("Trying to move memory with ring turned off.\n");
1888 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1889 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1890 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1892 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1896 if (vm_needs_flush) {
1897 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1898 adev->gmc.pdb0_bo : adev->gart.bo);
1899 job->vm_needs_flush = true;
1902 r = amdgpu_sync_resv(adev, &job->sync, resv,
1904 AMDGPU_FENCE_OWNER_UNDEFINED);
1906 DRM_ERROR("sync failed (%d).\n", r);
1911 for (i = 0; i < num_loops; i++) {
1912 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1914 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1915 dst_offset, cur_size_in_bytes, tmz);
1917 src_offset += cur_size_in_bytes;
1918 dst_offset += cur_size_in_bytes;
1919 byte_count -= cur_size_in_bytes;
1922 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1923 WARN_ON(job->ibs[0].length_dw > num_dw);
1925 r = amdgpu_job_submit_direct(job, ring, fence);
1927 r = amdgpu_job_submit(job, &adev->mman.entity,
1928 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1935 amdgpu_job_free(job);
1936 DRM_ERROR("Error scheduling IBs (%d)\n", r);
1940 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1942 struct dma_resv *resv,
1943 struct dma_fence **fence)
1945 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1946 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1947 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1949 struct amdgpu_res_cursor cursor;
1950 unsigned int num_loops, num_dw;
1953 struct amdgpu_job *job;
1956 if (!adev->mman.buffer_funcs_enabled) {
1957 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1961 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1962 DRM_ERROR("Trying to clear preemptible memory.\n");
1966 if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1967 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1972 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1975 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1976 while (cursor.remaining) {
1977 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1978 amdgpu_res_next(&cursor, cursor.size);
1980 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1982 /* for IB padding */
1985 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1991 r = amdgpu_sync_resv(adev, &job->sync, resv,
1993 AMDGPU_FENCE_OWNER_UNDEFINED);
1995 DRM_ERROR("sync failed (%d).\n", r);
2000 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2001 while (cursor.remaining) {
2002 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2003 uint64_t dst_addr = cursor.start;
2005 dst_addr += amdgpu_ttm_domain_start(adev,
2006 bo->tbo.resource->mem_type);
2007 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2010 amdgpu_res_next(&cursor, cur_size);
2013 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2014 WARN_ON(job->ibs[0].length_dw > num_dw);
2015 r = amdgpu_job_submit(job, &adev->mman.entity,
2016 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2023 amdgpu_job_free(job);
2027 #if defined(CONFIG_DEBUG_FS)
2029 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2031 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2032 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2034 struct drm_printer p = drm_seq_file_printer(m);
2036 man->func->debug(man, &p);
2040 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2042 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2044 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2047 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2049 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2050 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2052 struct drm_printer p = drm_seq_file_printer(m);
2054 man->func->debug(man, &p);
2058 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2060 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2061 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2063 struct drm_printer p = drm_seq_file_printer(m);
2065 man->func->debug(man, &p);
2069 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2071 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2072 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2074 struct drm_printer p = drm_seq_file_printer(m);
2076 man->func->debug(man, &p);
2080 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2082 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2083 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2085 struct drm_printer p = drm_seq_file_printer(m);
2087 man->func->debug(man, &p);
2091 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2092 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2093 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2094 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2095 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2096 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2099 * amdgpu_ttm_vram_read - Linear read access to VRAM
2101 * Accesses VRAM via MMIO for debugging purposes.
2103 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2104 size_t size, loff_t *pos)
2106 struct amdgpu_device *adev = file_inode(f)->i_private;
2109 if (size & 0x3 || *pos & 0x3)
2112 if (*pos >= adev->gmc.mc_vram_size)
2115 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2117 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2118 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2120 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2121 if (copy_to_user(buf, value, bytes))
2134 * amdgpu_ttm_vram_write - Linear write access to VRAM
2136 * Accesses VRAM via MMIO for debugging purposes.
2138 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2139 size_t size, loff_t *pos)
2141 struct amdgpu_device *adev = file_inode(f)->i_private;
2145 if (size & 0x3 || *pos & 0x3)
2148 if (*pos >= adev->gmc.mc_vram_size)
2152 unsigned long flags;
2155 if (*pos >= adev->gmc.mc_vram_size)
2158 r = get_user(value, (uint32_t *)buf);
2162 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2163 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2164 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2165 WREG32_NO_KIQ(mmMM_DATA, value);
2166 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2177 static const struct file_operations amdgpu_ttm_vram_fops = {
2178 .owner = THIS_MODULE,
2179 .read = amdgpu_ttm_vram_read,
2180 .write = amdgpu_ttm_vram_write,
2181 .llseek = default_llseek,
2185 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2187 * This function is used to read memory that has been mapped to the
2188 * GPU and the known addresses are not physical addresses but instead
2189 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2191 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2192 size_t size, loff_t *pos)
2194 struct amdgpu_device *adev = file_inode(f)->i_private;
2195 struct iommu_domain *dom;
2199 /* retrieve the IOMMU domain if any for this device */
2200 dom = iommu_get_domain_for_dev(adev->dev);
2203 phys_addr_t addr = *pos & PAGE_MASK;
2204 loff_t off = *pos & ~PAGE_MASK;
2205 size_t bytes = PAGE_SIZE - off;
2210 bytes = bytes < size ? bytes : size;
2212 /* Translate the bus address to a physical address. If
2213 * the domain is NULL it means there is no IOMMU active
2214 * and the address translation is the identity
2216 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2218 pfn = addr >> PAGE_SHIFT;
2219 if (!pfn_valid(pfn))
2222 p = pfn_to_page(pfn);
2223 if (p->mapping != adev->mman.bdev.dev_mapping)
2227 r = copy_to_user(buf, ptr + off, bytes);
2241 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2243 * This function is used to write memory that has been mapped to the
2244 * GPU and the known addresses are not physical addresses but instead
2245 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2247 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2248 size_t size, loff_t *pos)
2250 struct amdgpu_device *adev = file_inode(f)->i_private;
2251 struct iommu_domain *dom;
2255 dom = iommu_get_domain_for_dev(adev->dev);
2258 phys_addr_t addr = *pos & PAGE_MASK;
2259 loff_t off = *pos & ~PAGE_MASK;
2260 size_t bytes = PAGE_SIZE - off;
2265 bytes = bytes < size ? bytes : size;
2267 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2269 pfn = addr >> PAGE_SHIFT;
2270 if (!pfn_valid(pfn))
2273 p = pfn_to_page(pfn);
2274 if (p->mapping != adev->mman.bdev.dev_mapping)
2278 r = copy_from_user(ptr + off, buf, bytes);
2291 static const struct file_operations amdgpu_ttm_iomem_fops = {
2292 .owner = THIS_MODULE,
2293 .read = amdgpu_iomem_read,
2294 .write = amdgpu_iomem_write,
2295 .llseek = default_llseek
2300 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2302 #if defined(CONFIG_DEBUG_FS)
2303 struct drm_minor *minor = adev_to_drm(adev)->primary;
2304 struct dentry *root = minor->debugfs_root;
2306 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2307 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2308 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2309 &amdgpu_ttm_iomem_fops);
2310 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2311 &amdgpu_mm_vram_table_fops);
2312 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2313 &amdgpu_mm_tt_table_fops);
2314 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2315 &amdgpu_mm_gds_table_fops);
2316 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2317 &amdgpu_mm_gws_table_fops);
2318 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2319 &amdgpu_mm_oa_table_fops);
2320 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2321 &amdgpu_ttm_page_pool_fops);