1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/kernel.h>
20 #include <linux/debugfs.h>
21 #include <linux/remoteproc.h>
22 #include <linux/device.h>
23 #include <linux/uaccess.h>
25 #include "remoteproc_internal.h"
27 /* remoteproc debugfs parent dir */
28 static struct dentry *rproc_dbg;
31 * A coredump-configuration-to-string lookup table, for exposing a
32 * human readable configuration via debugfs. Always keep in sync with
33 * enum rproc_coredump_mechanism
35 static const char * const rproc_coredump_str[] = {
36 [RPROC_COREDUMP_DEFAULT] = "default",
37 [RPROC_COREDUMP_INLINE] = "inline",
38 [RPROC_COREDUMP_DISABLED] = "disabled",
41 /* Expose the current coredump configuration via debugfs */
42 static ssize_t rproc_coredump_read(struct file *filp, char __user *userbuf,
43 size_t count, loff_t *ppos)
45 struct rproc *rproc = filp->private_data;
49 len = scnprintf(buf, sizeof(buf), "%s\n",
50 rproc_coredump_str[rproc->dump_conf]);
52 return simple_read_from_buffer(userbuf, count, ppos, buf, len);
56 * By writing to the 'coredump' debugfs entry, we control the behavior of the
57 * coredump mechanism dynamically. The default value of this entry is "default".
59 * The 'coredump' debugfs entry supports these commands:
61 * default: This is the default coredump mechanism. When the remoteproc
62 * crashes the entire coredump will be copied to a separate buffer
63 * and exposed to userspace.
65 * inline: The coredump will not be copied to a separate buffer and the
66 * recovery process will have to wait until data is read by
67 * userspace. But this avoid usage of extra memory.
69 * disabled: This will disable coredump. Recovery will proceed without
70 * collecting any dump.
72 static ssize_t rproc_coredump_write(struct file *filp,
73 const char __user *user_buf, size_t count,
76 struct rproc *rproc = filp->private_data;
80 if (count > sizeof(buf))
83 ret = copy_from_user(buf, user_buf, count);
87 /* remove end of line */
88 if (buf[count - 1] == '\n')
89 buf[count - 1] = '\0';
91 if (rproc->state == RPROC_CRASHED) {
92 dev_err(&rproc->dev, "can't change coredump configuration\n");
97 if (!strncmp(buf, "disable", count)) {
98 rproc->dump_conf = RPROC_COREDUMP_DISABLED;
99 } else if (!strncmp(buf, "inline", count)) {
100 rproc->dump_conf = RPROC_COREDUMP_INLINE;
101 } else if (!strncmp(buf, "default", count)) {
102 rproc->dump_conf = RPROC_COREDUMP_DEFAULT;
104 dev_err(&rproc->dev, "Invalid coredump configuration\n");
108 return err ? err : count;
111 static const struct file_operations rproc_coredump_fops = {
112 .read = rproc_coredump_read,
113 .write = rproc_coredump_write,
115 .llseek = generic_file_llseek,
119 * Some remote processors may support dumping trace logs into a shared
120 * memory buffer. We expose this trace buffer using debugfs, so users
121 * can easily tell what's going on remotely.
123 * We will most probably improve the rproc tracing facilities later on,
124 * but this kind of lightweight and simple mechanism is always good to have,
125 * as it provides very early tracing with little to no dependencies at all.
127 static ssize_t rproc_trace_read(struct file *filp, char __user *userbuf,
128 size_t count, loff_t *ppos)
130 struct rproc_debug_trace *data = filp->private_data;
131 struct rproc_mem_entry *trace = &data->trace_mem;
136 va = rproc_da_to_va(data->rproc, trace->da, trace->len);
139 len = scnprintf(buf, sizeof(buf), "Trace %s not available\n",
143 len = strnlen(va, trace->len);
146 return simple_read_from_buffer(userbuf, count, ppos, va, len);
149 static const struct file_operations trace_rproc_ops = {
150 .read = rproc_trace_read,
152 .llseek = generic_file_llseek,
155 /* expose the name of the remote processor via debugfs */
156 static ssize_t rproc_name_read(struct file *filp, char __user *userbuf,
157 size_t count, loff_t *ppos)
159 struct rproc *rproc = filp->private_data;
160 /* need room for the name, a newline and a terminating null */
164 i = scnprintf(buf, sizeof(buf), "%.98s\n", rproc->name);
166 return simple_read_from_buffer(userbuf, count, ppos, buf, i);
169 static const struct file_operations rproc_name_ops = {
170 .read = rproc_name_read,
172 .llseek = generic_file_llseek,
175 /* expose recovery flag via debugfs */
176 static ssize_t rproc_recovery_read(struct file *filp, char __user *userbuf,
177 size_t count, loff_t *ppos)
179 struct rproc *rproc = filp->private_data;
180 char *buf = rproc->recovery_disabled ? "disabled\n" : "enabled\n";
182 return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
186 * By writing to the 'recovery' debugfs entry, we control the behavior of the
187 * recovery mechanism dynamically. The default value of this entry is "enabled".
189 * The 'recovery' debugfs entry supports these commands:
191 * enabled: When enabled, the remote processor will be automatically
192 * recovered whenever it crashes. Moreover, if the remote
193 * processor crashes while recovery is disabled, it will
194 * be automatically recovered too as soon as recovery is enabled.
196 * disabled: When disabled, a remote processor will remain in a crashed
197 * state if it crashes. This is useful for debugging purposes;
198 * without it, debugging a crash is substantially harder.
200 * recover: This function will trigger an immediate recovery if the
201 * remote processor is in a crashed state, without changing
202 * or checking the recovery state (enabled/disabled).
203 * This is useful during debugging sessions, when one expects
204 * additional crashes to happen after enabling recovery. In this
205 * case, enabling recovery will make it hard to debug subsequent
206 * crashes, so it's recommended to keep recovery disabled, and
207 * instead use the "recover" command as needed.
210 rproc_recovery_write(struct file *filp, const char __user *user_buf,
211 size_t count, loff_t *ppos)
213 struct rproc *rproc = filp->private_data;
217 if (count < 1 || count > sizeof(buf))
220 ret = copy_from_user(buf, user_buf, count);
224 /* remove end of line */
225 if (buf[count - 1] == '\n')
226 buf[count - 1] = '\0';
228 if (!strncmp(buf, "enabled", count)) {
229 /* change the flag and begin the recovery process if needed */
230 rproc->recovery_disabled = false;
231 rproc_trigger_recovery(rproc);
232 } else if (!strncmp(buf, "disabled", count)) {
233 rproc->recovery_disabled = true;
234 } else if (!strncmp(buf, "recover", count)) {
235 /* begin the recovery process without changing the flag */
236 rproc_trigger_recovery(rproc);
244 static const struct file_operations rproc_recovery_ops = {
245 .read = rproc_recovery_read,
246 .write = rproc_recovery_write,
248 .llseek = generic_file_llseek,
251 /* expose the crash trigger via debugfs */
253 rproc_crash_write(struct file *filp, const char __user *user_buf,
254 size_t count, loff_t *ppos)
256 struct rproc *rproc = filp->private_data;
260 ret = kstrtouint_from_user(user_buf, count, 0, &type);
264 rproc_report_crash(rproc, type);
269 static const struct file_operations rproc_crash_ops = {
270 .write = rproc_crash_write,
272 .llseek = generic_file_llseek,
275 /* Expose resource table content via debugfs */
276 static int rproc_rsc_table_show(struct seq_file *seq, void *p)
278 static const char * const types[] = {"carveout", "devmem", "trace", "vdev"};
279 struct rproc *rproc = seq->private;
280 struct resource_table *table = rproc->table_ptr;
281 struct fw_rsc_carveout *c;
282 struct fw_rsc_devmem *d;
283 struct fw_rsc_trace *t;
284 struct fw_rsc_vdev *v;
288 seq_puts(seq, "No resource table found\n");
292 for (i = 0; i < table->num; i++) {
293 int offset = table->offset[i];
294 struct fw_rsc_hdr *hdr = (void *)table + offset;
295 void *rsc = (void *)hdr + sizeof(*hdr);
300 seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
301 seq_printf(seq, " Device Address 0x%x\n", c->da);
302 seq_printf(seq, " Physical Address 0x%x\n", c->pa);
303 seq_printf(seq, " Length 0x%x Bytes\n", c->len);
304 seq_printf(seq, " Flags 0x%x\n", c->flags);
305 seq_printf(seq, " Reserved (should be zero) [%d]\n", c->reserved);
306 seq_printf(seq, " Name %s\n\n", c->name);
310 seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
311 seq_printf(seq, " Device Address 0x%x\n", d->da);
312 seq_printf(seq, " Physical Address 0x%x\n", d->pa);
313 seq_printf(seq, " Length 0x%x Bytes\n", d->len);
314 seq_printf(seq, " Flags 0x%x\n", d->flags);
315 seq_printf(seq, " Reserved (should be zero) [%d]\n", d->reserved);
316 seq_printf(seq, " Name %s\n\n", d->name);
320 seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
321 seq_printf(seq, " Device Address 0x%x\n", t->da);
322 seq_printf(seq, " Length 0x%x Bytes\n", t->len);
323 seq_printf(seq, " Reserved (should be zero) [%d]\n", t->reserved);
324 seq_printf(seq, " Name %s\n\n", t->name);
328 seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
330 seq_printf(seq, " ID %d\n", v->id);
331 seq_printf(seq, " Notify ID %d\n", v->notifyid);
332 seq_printf(seq, " Device features 0x%x\n", v->dfeatures);
333 seq_printf(seq, " Guest features 0x%x\n", v->gfeatures);
334 seq_printf(seq, " Config length 0x%x\n", v->config_len);
335 seq_printf(seq, " Status 0x%x\n", v->status);
336 seq_printf(seq, " Number of vrings %d\n", v->num_of_vrings);
337 seq_printf(seq, " Reserved (should be zero) [%d][%d]\n\n",
338 v->reserved[0], v->reserved[1]);
340 for (j = 0; j < v->num_of_vrings; j++) {
341 seq_printf(seq, " Vring %d\n", j);
342 seq_printf(seq, " Device Address 0x%x\n", v->vring[j].da);
343 seq_printf(seq, " Alignment %d\n", v->vring[j].align);
344 seq_printf(seq, " Number of buffers %d\n", v->vring[j].num);
345 seq_printf(seq, " Notify ID %d\n", v->vring[j].notifyid);
346 seq_printf(seq, " Physical Address 0x%x\n\n",
351 seq_printf(seq, "Unknown resource type found: %d [hdr: %pK]\n",
360 DEFINE_SHOW_ATTRIBUTE(rproc_rsc_table);
362 /* Expose carveout content via debugfs */
363 static int rproc_carveouts_show(struct seq_file *seq, void *p)
365 struct rproc *rproc = seq->private;
366 struct rproc_mem_entry *carveout;
368 list_for_each_entry(carveout, &rproc->carveouts, node) {
369 seq_puts(seq, "Carveout memory entry:\n");
370 seq_printf(seq, "\tName: %s\n", carveout->name);
371 seq_printf(seq, "\tVirtual address: %pK\n", carveout->va);
372 seq_printf(seq, "\tDMA address: %pad\n", &carveout->dma);
373 seq_printf(seq, "\tDevice address: 0x%x\n", carveout->da);
374 seq_printf(seq, "\tLength: 0x%zx Bytes\n\n", carveout->len);
380 DEFINE_SHOW_ATTRIBUTE(rproc_carveouts);
382 void rproc_remove_trace_file(struct dentry *tfile)
384 debugfs_remove(tfile);
387 struct dentry *rproc_create_trace_file(const char *name, struct rproc *rproc,
388 struct rproc_debug_trace *trace)
390 struct dentry *tfile;
392 tfile = debugfs_create_file(name, 0400, rproc->dbg_dir, trace,
395 dev_err(&rproc->dev, "failed to create debugfs trace entry\n");
402 void rproc_delete_debug_dir(struct rproc *rproc)
404 debugfs_remove_recursive(rproc->dbg_dir);
407 void rproc_create_debug_dir(struct rproc *rproc)
409 struct device *dev = &rproc->dev;
414 rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg);
418 debugfs_create_file("name", 0400, rproc->dbg_dir,
419 rproc, &rproc_name_ops);
420 debugfs_create_file("recovery", 0600, rproc->dbg_dir,
421 rproc, &rproc_recovery_ops);
422 debugfs_create_file("crash", 0200, rproc->dbg_dir,
423 rproc, &rproc_crash_ops);
424 debugfs_create_file("resource_table", 0400, rproc->dbg_dir,
425 rproc, &rproc_rsc_table_fops);
426 debugfs_create_file("carveout_memories", 0400, rproc->dbg_dir,
427 rproc, &rproc_carveouts_fops);
428 debugfs_create_file("coredump", 0600, rproc->dbg_dir,
429 rproc, &rproc_coredump_fops);
432 void __init rproc_init_debugfs(void)
434 if (debugfs_initialized()) {
435 rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
437 pr_err("can't create debugfs dir\n");
441 void __exit rproc_exit_debugfs(void)
443 debugfs_remove(rproc_dbg);