]> Git Repo - linux.git/blob - drivers/net/can/dev.c
enetc: Migrate to PHYLINK and PCS_LYNX
[linux.git] / drivers / net / can / dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <[email protected]>
5  */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <[email protected]>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31                              8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from can_dlc with sanitized can_dlc */
34 u8 can_dlc2len(u8 can_dlc)
35 {
36         return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
41                              9, 9, 9, 9,                        /* 9 - 12 */
42                              10, 10, 10, 10,                    /* 13 - 16 */
43                              11, 11, 11, 11,                    /* 17 - 20 */
44                              12, 12, 12, 12,                    /* 21 - 24 */
45                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
46                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
47                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
48                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
49                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
52 u8 can_len2dlc(u8 len)
53 {
54         if (unlikely(len > 64))
55                 return 0xF;
56
57         return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64 /* Bit-timing calculation derived from:
65  *
66  * Code based on LinCAN sources and H8S2638 project
67  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68  * Copyright 2005      Stanislav Marek
69  * email: [email protected]
70  *
71  * Calculates proper bit-timing parameters for a specified bit-rate
72  * and sample-point, which can then be used to set the bit-timing
73  * registers of the CAN controller. You can find more information
74  * in the header file linux/can/netlink.h.
75  */
76 static int
77 can_update_sample_point(const struct can_bittiming_const *btc,
78                         unsigned int sample_point_nominal, unsigned int tseg,
79                         unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80                         unsigned int *sample_point_error_ptr)
81 {
82         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83         unsigned int sample_point, best_sample_point = 0;
84         unsigned int tseg1, tseg2;
85         int i;
86
87         for (i = 0; i <= 1; i++) {
88                 tseg2 = tseg + CAN_SYNC_SEG -
89                         (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90                         1000 - i;
91                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92                 tseg1 = tseg - tseg2;
93                 if (tseg1 > btc->tseg1_max) {
94                         tseg1 = btc->tseg1_max;
95                         tseg2 = tseg - tseg1;
96                 }
97
98                 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99                         (tseg + CAN_SYNC_SEG);
100                 sample_point_error = abs(sample_point_nominal - sample_point);
101
102                 if (sample_point <= sample_point_nominal &&
103                     sample_point_error < best_sample_point_error) {
104                         best_sample_point = sample_point;
105                         best_sample_point_error = sample_point_error;
106                         *tseg1_ptr = tseg1;
107                         *tseg2_ptr = tseg2;
108                 }
109         }
110
111         if (sample_point_error_ptr)
112                 *sample_point_error_ptr = best_sample_point_error;
113
114         return best_sample_point;
115 }
116
117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118                               const struct can_bittiming_const *btc)
119 {
120         struct can_priv *priv = netdev_priv(dev);
121         unsigned int bitrate;                   /* current bitrate */
122         unsigned int bitrate_error;             /* difference between current and nominal value */
123         unsigned int best_bitrate_error = UINT_MAX;
124         unsigned int sample_point_error;        /* difference between current and nominal value */
125         unsigned int best_sample_point_error = UINT_MAX;
126         unsigned int sample_point_nominal;      /* nominal sample point */
127         unsigned int best_tseg = 0;             /* current best value for tseg */
128         unsigned int best_brp = 0;              /* current best value for brp */
129         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130         u64 v64;
131
132         /* Use CiA recommended sample points */
133         if (bt->sample_point) {
134                 sample_point_nominal = bt->sample_point;
135         } else {
136                 if (bt->bitrate > 800000)
137                         sample_point_nominal = 750;
138                 else if (bt->bitrate > 500000)
139                         sample_point_nominal = 800;
140                 else
141                         sample_point_nominal = 875;
142         }
143
144         /* tseg even = round down, odd = round up */
145         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147                 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152                 /* choose brp step which is possible in system */
153                 brp = (brp / btc->brp_inc) * btc->brp_inc;
154                 if (brp < btc->brp_min || brp > btc->brp_max)
155                         continue;
156
157                 bitrate = priv->clock.freq / (brp * tsegall);
158                 bitrate_error = abs(bt->bitrate - bitrate);
159
160                 /* tseg brp biterror */
161                 if (bitrate_error > best_bitrate_error)
162                         continue;
163
164                 /* reset sample point error if we have a better bitrate */
165                 if (bitrate_error < best_bitrate_error)
166                         best_sample_point_error = UINT_MAX;
167
168                 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169                                         &tseg1, &tseg2, &sample_point_error);
170                 if (sample_point_error > best_sample_point_error)
171                         continue;
172
173                 best_sample_point_error = sample_point_error;
174                 best_bitrate_error = bitrate_error;
175                 best_tseg = tseg / 2;
176                 best_brp = brp;
177
178                 if (bitrate_error == 0 && sample_point_error == 0)
179                         break;
180         }
181
182         if (best_bitrate_error) {
183                 /* Error in one-tenth of a percent */
184                 v64 = (u64)best_bitrate_error * 1000;
185                 do_div(v64, bt->bitrate);
186                 bitrate_error = (u32)v64;
187                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188                         netdev_err(dev,
189                                    "bitrate error %d.%d%% too high\n",
190                                    bitrate_error / 10, bitrate_error % 10);
191                         return -EDOM;
192                 }
193                 netdev_warn(dev, "bitrate error %d.%d%%\n",
194                             bitrate_error / 10, bitrate_error % 10);
195         }
196
197         /* real sample point */
198         bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199                                                    best_tseg, &tseg1, &tseg2,
200                                                    NULL);
201
202         v64 = (u64)best_brp * 1000 * 1000 * 1000;
203         do_div(v64, priv->clock.freq);
204         bt->tq = (u32)v64;
205         bt->prop_seg = tseg1 / 2;
206         bt->phase_seg1 = tseg1 - bt->prop_seg;
207         bt->phase_seg2 = tseg2;
208
209         /* check for sjw user settings */
210         if (!bt->sjw || !btc->sjw_max) {
211                 bt->sjw = 1;
212         } else {
213                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214                 if (bt->sjw > btc->sjw_max)
215                         bt->sjw = btc->sjw_max;
216                 /* bt->sjw must not be higher than tseg2 */
217                 if (tseg2 < bt->sjw)
218                         bt->sjw = tseg2;
219         }
220
221         bt->brp = best_brp;
222
223         /* real bitrate */
224         bt->bitrate = priv->clock.freq /
225                 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227         return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231                               const struct can_bittiming_const *btc)
232 {
233         netdev_err(dev, "bit-timing calculation not available\n");
234         return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240  * prescaler value brp. You can find more information in the header
241  * file linux/can/netlink.h.
242  */
243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244                                const struct can_bittiming_const *btc)
245 {
246         struct can_priv *priv = netdev_priv(dev);
247         int tseg1, alltseg;
248         u64 brp64;
249
250         tseg1 = bt->prop_seg + bt->phase_seg1;
251         if (!bt->sjw)
252                 bt->sjw = 1;
253         if (bt->sjw > btc->sjw_max ||
254             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256                 return -ERANGE;
257
258         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259         if (btc->brp_inc > 1)
260                 do_div(brp64, btc->brp_inc);
261         brp64 += 500000000UL - 1;
262         do_div(brp64, 1000000000UL); /* the practicable BRP */
263         if (btc->brp_inc > 1)
264                 brp64 *= btc->brp_inc;
265         bt->brp = (u32)brp64;
266
267         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268                 return -EINVAL;
269
270         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274         return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280                      const u32 *bitrate_const,
281                      const unsigned int bitrate_const_cnt)
282 {
283         struct can_priv *priv = netdev_priv(dev);
284         unsigned int i;
285
286         for (i = 0; i < bitrate_const_cnt; i++) {
287                 if (bt->bitrate == bitrate_const[i])
288                         break;
289         }
290
291         if (i >= priv->bitrate_const_cnt)
292                 return -EINVAL;
293
294         return 0;
295 }
296
297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298                              const struct can_bittiming_const *btc,
299                              const u32 *bitrate_const,
300                              const unsigned int bitrate_const_cnt)
301 {
302         int err;
303
304         /* Depending on the given can_bittiming parameter structure the CAN
305          * timing parameters are calculated based on the provided bitrate OR
306          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307          * provided directly which are then checked and fixed up.
308          */
309         if (!bt->tq && bt->bitrate && btc)
310                 err = can_calc_bittiming(dev, bt, btc);
311         else if (bt->tq && !bt->bitrate && btc)
312                 err = can_fixup_bittiming(dev, bt, btc);
313         else if (!bt->tq && bt->bitrate && bitrate_const)
314                 err = can_validate_bitrate(dev, bt, bitrate_const,
315                                            bitrate_const_cnt);
316         else
317                 err = -EINVAL;
318
319         return err;
320 }
321
322 static void can_update_state_error_stats(struct net_device *dev,
323                                          enum can_state new_state)
324 {
325         struct can_priv *priv = netdev_priv(dev);
326
327         if (new_state <= priv->state)
328                 return;
329
330         switch (new_state) {
331         case CAN_STATE_ERROR_WARNING:
332                 priv->can_stats.error_warning++;
333                 break;
334         case CAN_STATE_ERROR_PASSIVE:
335                 priv->can_stats.error_passive++;
336                 break;
337         case CAN_STATE_BUS_OFF:
338                 priv->can_stats.bus_off++;
339                 break;
340         default:
341                 break;
342         }
343 }
344
345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347         switch (state) {
348         case CAN_STATE_ERROR_ACTIVE:
349                 return CAN_ERR_CRTL_ACTIVE;
350         case CAN_STATE_ERROR_WARNING:
351                 return CAN_ERR_CRTL_TX_WARNING;
352         case CAN_STATE_ERROR_PASSIVE:
353                 return CAN_ERR_CRTL_TX_PASSIVE;
354         default:
355                 return 0;
356         }
357 }
358
359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361         switch (state) {
362         case CAN_STATE_ERROR_ACTIVE:
363                 return CAN_ERR_CRTL_ACTIVE;
364         case CAN_STATE_ERROR_WARNING:
365                 return CAN_ERR_CRTL_RX_WARNING;
366         case CAN_STATE_ERROR_PASSIVE:
367                 return CAN_ERR_CRTL_RX_PASSIVE;
368         default:
369                 return 0;
370         }
371 }
372
373 static const char *can_get_state_str(const enum can_state state)
374 {
375         switch (state) {
376         case CAN_STATE_ERROR_ACTIVE:
377                 return "Error Active";
378         case CAN_STATE_ERROR_WARNING:
379                 return "Error Warning";
380         case CAN_STATE_ERROR_PASSIVE:
381                 return "Error Passive";
382         case CAN_STATE_BUS_OFF:
383                 return "Bus Off";
384         case CAN_STATE_STOPPED:
385                 return "Stopped";
386         case CAN_STATE_SLEEPING:
387                 return "Sleeping";
388         default:
389                 return "<unknown>";
390         }
391
392         return "<unknown>";
393 }
394
395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396                       enum can_state tx_state, enum can_state rx_state)
397 {
398         struct can_priv *priv = netdev_priv(dev);
399         enum can_state new_state = max(tx_state, rx_state);
400
401         if (unlikely(new_state == priv->state)) {
402                 netdev_warn(dev, "%s: oops, state did not change", __func__);
403                 return;
404         }
405
406         netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407                    can_get_state_str(priv->state), priv->state,
408                    can_get_state_str(new_state), new_state);
409
410         can_update_state_error_stats(dev, new_state);
411         priv->state = new_state;
412
413         if (!cf)
414                 return;
415
416         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417                 cf->can_id |= CAN_ERR_BUSOFF;
418                 return;
419         }
420
421         cf->can_id |= CAN_ERR_CRTL;
422         cf->data[1] |= tx_state >= rx_state ?
423                        can_tx_state_to_frame(dev, tx_state) : 0;
424         cf->data[1] |= tx_state <= rx_state ?
425                        can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428
429 /* Local echo of CAN messages
430  *
431  * CAN network devices *should* support a local echo functionality
432  * (see Documentation/networking/can.rst). To test the handling of CAN
433  * interfaces that do not support the local echo both driver types are
434  * implemented. In the case that the driver does not support the echo
435  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436  * to perform the echo as a fallback solution.
437  */
438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440         struct can_priv *priv = netdev_priv(dev);
441         struct net_device_stats *stats = &dev->stats;
442         int i;
443
444         for (i = 0; i < priv->echo_skb_max; i++) {
445                 if (priv->echo_skb[i]) {
446                         kfree_skb(priv->echo_skb[i]);
447                         priv->echo_skb[i] = NULL;
448                         stats->tx_dropped++;
449                         stats->tx_aborted_errors++;
450                 }
451         }
452 }
453
454 /* Put the skb on the stack to be looped backed locally lateron
455  *
456  * The function is typically called in the start_xmit function
457  * of the device driver. The driver must protect access to
458  * priv->echo_skb, if necessary.
459  */
460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461                      unsigned int idx)
462 {
463         struct can_priv *priv = netdev_priv(dev);
464
465         BUG_ON(idx >= priv->echo_skb_max);
466
467         /* check flag whether this packet has to be looped back */
468         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469             (skb->protocol != htons(ETH_P_CAN) &&
470              skb->protocol != htons(ETH_P_CANFD))) {
471                 kfree_skb(skb);
472                 return 0;
473         }
474
475         if (!priv->echo_skb[idx]) {
476                 skb = can_create_echo_skb(skb);
477                 if (!skb)
478                         return -ENOMEM;
479
480                 /* make settings for echo to reduce code in irq context */
481                 skb->pkt_type = PACKET_BROADCAST;
482                 skb->ip_summed = CHECKSUM_UNNECESSARY;
483                 skb->dev = dev;
484
485                 /* save this skb for tx interrupt echo handling */
486                 priv->echo_skb[idx] = skb;
487         } else {
488                 /* locking problem with netif_stop_queue() ?? */
489                 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490                 kfree_skb(skb);
491                 return -EBUSY;
492         }
493
494         return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498 struct sk_buff *
499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501         struct can_priv *priv = netdev_priv(dev);
502
503         if (idx >= priv->echo_skb_max) {
504                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505                            __func__, idx, priv->echo_skb_max);
506                 return NULL;
507         }
508
509         if (priv->echo_skb[idx]) {
510                 /* Using "struct canfd_frame::len" for the frame
511                  * length is supported on both CAN and CANFD frames.
512                  */
513                 struct sk_buff *skb = priv->echo_skb[idx];
514                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515                 u8 len = cf->len;
516
517                 *len_ptr = len;
518                 priv->echo_skb[idx] = NULL;
519
520                 return skb;
521         }
522
523         return NULL;
524 }
525
526 /* Get the skb from the stack and loop it back locally
527  *
528  * The function is typically called when the TX done interrupt
529  * is handled in the device driver. The driver must protect
530  * access to priv->echo_skb, if necessary.
531  */
532 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
533 {
534         struct sk_buff *skb;
535         u8 len;
536
537         skb = __can_get_echo_skb(dev, idx, &len);
538         if (!skb)
539                 return 0;
540
541         netif_rx(skb);
542
543         return len;
544 }
545 EXPORT_SYMBOL_GPL(can_get_echo_skb);
546
547 /* Remove the skb from the stack and free it.
548  *
549  * The function is typically called when TX failed.
550  */
551 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
552 {
553         struct can_priv *priv = netdev_priv(dev);
554
555         BUG_ON(idx >= priv->echo_skb_max);
556
557         if (priv->echo_skb[idx]) {
558                 dev_kfree_skb_any(priv->echo_skb[idx]);
559                 priv->echo_skb[idx] = NULL;
560         }
561 }
562 EXPORT_SYMBOL_GPL(can_free_echo_skb);
563
564 /* CAN device restart for bus-off recovery */
565 static void can_restart(struct net_device *dev)
566 {
567         struct can_priv *priv = netdev_priv(dev);
568         struct net_device_stats *stats = &dev->stats;
569         struct sk_buff *skb;
570         struct can_frame *cf;
571         int err;
572
573         BUG_ON(netif_carrier_ok(dev));
574
575         /* No synchronization needed because the device is bus-off and
576          * no messages can come in or go out.
577          */
578         can_flush_echo_skb(dev);
579
580         /* send restart message upstream */
581         skb = alloc_can_err_skb(dev, &cf);
582         if (!skb)
583                 goto restart;
584
585         cf->can_id |= CAN_ERR_RESTARTED;
586
587         netif_rx(skb);
588
589         stats->rx_packets++;
590         stats->rx_bytes += cf->can_dlc;
591
592 restart:
593         netdev_dbg(dev, "restarted\n");
594         priv->can_stats.restarts++;
595
596         /* Now restart the device */
597         err = priv->do_set_mode(dev, CAN_MODE_START);
598
599         netif_carrier_on(dev);
600         if (err)
601                 netdev_err(dev, "Error %d during restart", err);
602 }
603
604 static void can_restart_work(struct work_struct *work)
605 {
606         struct delayed_work *dwork = to_delayed_work(work);
607         struct can_priv *priv = container_of(dwork, struct can_priv,
608                                              restart_work);
609
610         can_restart(priv->dev);
611 }
612
613 int can_restart_now(struct net_device *dev)
614 {
615         struct can_priv *priv = netdev_priv(dev);
616
617         /* A manual restart is only permitted if automatic restart is
618          * disabled and the device is in the bus-off state
619          */
620         if (priv->restart_ms)
621                 return -EINVAL;
622         if (priv->state != CAN_STATE_BUS_OFF)
623                 return -EBUSY;
624
625         cancel_delayed_work_sync(&priv->restart_work);
626         can_restart(dev);
627
628         return 0;
629 }
630
631 /* CAN bus-off
632  *
633  * This functions should be called when the device goes bus-off to
634  * tell the netif layer that no more packets can be sent or received.
635  * If enabled, a timer is started to trigger bus-off recovery.
636  */
637 void can_bus_off(struct net_device *dev)
638 {
639         struct can_priv *priv = netdev_priv(dev);
640
641         if (priv->restart_ms)
642                 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
643                             priv->restart_ms);
644         else
645                 netdev_info(dev, "bus-off\n");
646
647         netif_carrier_off(dev);
648
649         if (priv->restart_ms)
650                 schedule_delayed_work(&priv->restart_work,
651                                       msecs_to_jiffies(priv->restart_ms));
652 }
653 EXPORT_SYMBOL_GPL(can_bus_off);
654
655 static void can_setup(struct net_device *dev)
656 {
657         dev->type = ARPHRD_CAN;
658         dev->mtu = CAN_MTU;
659         dev->hard_header_len = 0;
660         dev->addr_len = 0;
661         dev->tx_queue_len = 10;
662
663         /* New-style flags. */
664         dev->flags = IFF_NOARP;
665         dev->features = NETIF_F_HW_CSUM;
666 }
667
668 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
669 {
670         struct sk_buff *skb;
671
672         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
673                                sizeof(struct can_frame));
674         if (unlikely(!skb))
675                 return NULL;
676
677         skb->protocol = htons(ETH_P_CAN);
678         skb->pkt_type = PACKET_BROADCAST;
679         skb->ip_summed = CHECKSUM_UNNECESSARY;
680
681         skb_reset_mac_header(skb);
682         skb_reset_network_header(skb);
683         skb_reset_transport_header(skb);
684
685         can_skb_reserve(skb);
686         can_skb_prv(skb)->ifindex = dev->ifindex;
687         can_skb_prv(skb)->skbcnt = 0;
688
689         *cf = skb_put_zero(skb, sizeof(struct can_frame));
690
691         return skb;
692 }
693 EXPORT_SYMBOL_GPL(alloc_can_skb);
694
695 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
696                                 struct canfd_frame **cfd)
697 {
698         struct sk_buff *skb;
699
700         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
701                                sizeof(struct canfd_frame));
702         if (unlikely(!skb))
703                 return NULL;
704
705         skb->protocol = htons(ETH_P_CANFD);
706         skb->pkt_type = PACKET_BROADCAST;
707         skb->ip_summed = CHECKSUM_UNNECESSARY;
708
709         skb_reset_mac_header(skb);
710         skb_reset_network_header(skb);
711         skb_reset_transport_header(skb);
712
713         can_skb_reserve(skb);
714         can_skb_prv(skb)->ifindex = dev->ifindex;
715         can_skb_prv(skb)->skbcnt = 0;
716
717         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
718
719         return skb;
720 }
721 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
722
723 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
724 {
725         struct sk_buff *skb;
726
727         skb = alloc_can_skb(dev, cf);
728         if (unlikely(!skb))
729                 return NULL;
730
731         (*cf)->can_id = CAN_ERR_FLAG;
732         (*cf)->can_dlc = CAN_ERR_DLC;
733
734         return skb;
735 }
736 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
737
738 /* Allocate and setup space for the CAN network device */
739 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
740                                     unsigned int txqs, unsigned int rxqs)
741 {
742         struct net_device *dev;
743         struct can_priv *priv;
744         int size;
745
746         /* We put the driver's priv, the CAN mid layer priv and the
747          * echo skb into the netdevice's priv. The memory layout for
748          * the netdev_priv is like this:
749          *
750          * +-------------------------+
751          * | driver's priv           |
752          * +-------------------------+
753          * | struct can_ml_priv      |
754          * +-------------------------+
755          * | array of struct sk_buff |
756          * +-------------------------+
757          */
758
759         size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
760
761         if (echo_skb_max)
762                 size = ALIGN(size, sizeof(struct sk_buff *)) +
763                         echo_skb_max * sizeof(struct sk_buff *);
764
765         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
766                                txqs, rxqs);
767         if (!dev)
768                 return NULL;
769
770         priv = netdev_priv(dev);
771         priv->dev = dev;
772
773         dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
774
775         if (echo_skb_max) {
776                 priv->echo_skb_max = echo_skb_max;
777                 priv->echo_skb = (void *)priv +
778                         (size - echo_skb_max * sizeof(struct sk_buff *));
779         }
780
781         priv->state = CAN_STATE_STOPPED;
782
783         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
784
785         return dev;
786 }
787 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
788
789 /* Free space of the CAN network device */
790 void free_candev(struct net_device *dev)
791 {
792         free_netdev(dev);
793 }
794 EXPORT_SYMBOL_GPL(free_candev);
795
796 /* changing MTU and control mode for CAN/CANFD devices */
797 int can_change_mtu(struct net_device *dev, int new_mtu)
798 {
799         struct can_priv *priv = netdev_priv(dev);
800
801         /* Do not allow changing the MTU while running */
802         if (dev->flags & IFF_UP)
803                 return -EBUSY;
804
805         /* allow change of MTU according to the CANFD ability of the device */
806         switch (new_mtu) {
807         case CAN_MTU:
808                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
809                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
810                         return -EINVAL;
811
812                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
813                 break;
814
815         case CANFD_MTU:
816                 /* check for potential CANFD ability */
817                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
818                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
819                         return -EINVAL;
820
821                 priv->ctrlmode |= CAN_CTRLMODE_FD;
822                 break;
823
824         default:
825                 return -EINVAL;
826         }
827
828         dev->mtu = new_mtu;
829         return 0;
830 }
831 EXPORT_SYMBOL_GPL(can_change_mtu);
832
833 /* Common open function when the device gets opened.
834  *
835  * This function should be called in the open function of the device
836  * driver.
837  */
838 int open_candev(struct net_device *dev)
839 {
840         struct can_priv *priv = netdev_priv(dev);
841
842         if (!priv->bittiming.bitrate) {
843                 netdev_err(dev, "bit-timing not yet defined\n");
844                 return -EINVAL;
845         }
846
847         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
848         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
849             (!priv->data_bittiming.bitrate ||
850              priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
851                 netdev_err(dev, "incorrect/missing data bit-timing\n");
852                 return -EINVAL;
853         }
854
855         /* Switch carrier on if device was stopped while in bus-off state */
856         if (!netif_carrier_ok(dev))
857                 netif_carrier_on(dev);
858
859         return 0;
860 }
861 EXPORT_SYMBOL_GPL(open_candev);
862
863 #ifdef CONFIG_OF
864 /* Common function that can be used to understand the limitation of
865  * a transceiver when it provides no means to determine these limitations
866  * at runtime.
867  */
868 void of_can_transceiver(struct net_device *dev)
869 {
870         struct device_node *dn;
871         struct can_priv *priv = netdev_priv(dev);
872         struct device_node *np = dev->dev.parent->of_node;
873         int ret;
874
875         dn = of_get_child_by_name(np, "can-transceiver");
876         if (!dn)
877                 return;
878
879         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
880         of_node_put(dn);
881         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
882                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
883 }
884 EXPORT_SYMBOL_GPL(of_can_transceiver);
885 #endif
886
887 /* Common close function for cleanup before the device gets closed.
888  *
889  * This function should be called in the close function of the device
890  * driver.
891  */
892 void close_candev(struct net_device *dev)
893 {
894         struct can_priv *priv = netdev_priv(dev);
895
896         cancel_delayed_work_sync(&priv->restart_work);
897         can_flush_echo_skb(dev);
898 }
899 EXPORT_SYMBOL_GPL(close_candev);
900
901 /* CAN netlink interface */
902 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
903         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
904         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
905         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
906         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
907         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
908         [IFLA_CAN_BITTIMING_CONST]
909                                 = { .len = sizeof(struct can_bittiming_const) },
910         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
911         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
912         [IFLA_CAN_DATA_BITTIMING]
913                                 = { .len = sizeof(struct can_bittiming) },
914         [IFLA_CAN_DATA_BITTIMING_CONST]
915                                 = { .len = sizeof(struct can_bittiming_const) },
916         [IFLA_CAN_TERMINATION]  = { .type = NLA_U16 },
917 };
918
919 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
920                         struct netlink_ext_ack *extack)
921 {
922         bool is_can_fd = false;
923
924         /* Make sure that valid CAN FD configurations always consist of
925          * - nominal/arbitration bittiming
926          * - data bittiming
927          * - control mode with CAN_CTRLMODE_FD set
928          */
929
930         if (!data)
931                 return 0;
932
933         if (data[IFLA_CAN_CTRLMODE]) {
934                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
935
936                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
937         }
938
939         if (is_can_fd) {
940                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
941                         return -EOPNOTSUPP;
942         }
943
944         if (data[IFLA_CAN_DATA_BITTIMING]) {
945                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
946                         return -EOPNOTSUPP;
947         }
948
949         return 0;
950 }
951
952 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
953                           struct nlattr *data[],
954                           struct netlink_ext_ack *extack)
955 {
956         struct can_priv *priv = netdev_priv(dev);
957         int err;
958
959         /* We need synchronization with dev->stop() */
960         ASSERT_RTNL();
961
962         if (data[IFLA_CAN_BITTIMING]) {
963                 struct can_bittiming bt;
964
965                 /* Do not allow changing bittiming while running */
966                 if (dev->flags & IFF_UP)
967                         return -EBUSY;
968
969                 /* Calculate bittiming parameters based on
970                  * bittiming_const if set, otherwise pass bitrate
971                  * directly via do_set_bitrate(). Bail out if neither
972                  * is given.
973                  */
974                 if (!priv->bittiming_const && !priv->do_set_bittiming)
975                         return -EOPNOTSUPP;
976
977                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
978                 err = can_get_bittiming(dev, &bt,
979                                         priv->bittiming_const,
980                                         priv->bitrate_const,
981                                         priv->bitrate_const_cnt);
982                 if (err)
983                         return err;
984
985                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
986                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
987                                    priv->bitrate_max);
988                         return -EINVAL;
989                 }
990
991                 memcpy(&priv->bittiming, &bt, sizeof(bt));
992
993                 if (priv->do_set_bittiming) {
994                         /* Finally, set the bit-timing registers */
995                         err = priv->do_set_bittiming(dev);
996                         if (err)
997                                 return err;
998                 }
999         }
1000
1001         if (data[IFLA_CAN_CTRLMODE]) {
1002                 struct can_ctrlmode *cm;
1003                 u32 ctrlstatic;
1004                 u32 maskedflags;
1005
1006                 /* Do not allow changing controller mode while running */
1007                 if (dev->flags & IFF_UP)
1008                         return -EBUSY;
1009                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1010                 ctrlstatic = priv->ctrlmode_static;
1011                 maskedflags = cm->flags & cm->mask;
1012
1013                 /* check whether provided bits are allowed to be passed */
1014                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1015                         return -EOPNOTSUPP;
1016
1017                 /* do not check for static fd-non-iso if 'fd' is disabled */
1018                 if (!(maskedflags & CAN_CTRLMODE_FD))
1019                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1020
1021                 /* make sure static options are provided by configuration */
1022                 if ((maskedflags & ctrlstatic) != ctrlstatic)
1023                         return -EOPNOTSUPP;
1024
1025                 /* clear bits to be modified and copy the flag values */
1026                 priv->ctrlmode &= ~cm->mask;
1027                 priv->ctrlmode |= maskedflags;
1028
1029                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1030                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1031                         dev->mtu = CANFD_MTU;
1032                 else
1033                         dev->mtu = CAN_MTU;
1034         }
1035
1036         if (data[IFLA_CAN_RESTART_MS]) {
1037                 /* Do not allow changing restart delay while running */
1038                 if (dev->flags & IFF_UP)
1039                         return -EBUSY;
1040                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1041         }
1042
1043         if (data[IFLA_CAN_RESTART]) {
1044                 /* Do not allow a restart while not running */
1045                 if (!(dev->flags & IFF_UP))
1046                         return -EINVAL;
1047                 err = can_restart_now(dev);
1048                 if (err)
1049                         return err;
1050         }
1051
1052         if (data[IFLA_CAN_DATA_BITTIMING]) {
1053                 struct can_bittiming dbt;
1054
1055                 /* Do not allow changing bittiming while running */
1056                 if (dev->flags & IFF_UP)
1057                         return -EBUSY;
1058
1059                 /* Calculate bittiming parameters based on
1060                  * data_bittiming_const if set, otherwise pass bitrate
1061                  * directly via do_set_bitrate(). Bail out if neither
1062                  * is given.
1063                  */
1064                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1065                         return -EOPNOTSUPP;
1066
1067                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1068                        sizeof(dbt));
1069                 err = can_get_bittiming(dev, &dbt,
1070                                         priv->data_bittiming_const,
1071                                         priv->data_bitrate_const,
1072                                         priv->data_bitrate_const_cnt);
1073                 if (err)
1074                         return err;
1075
1076                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1077                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1078                                    priv->bitrate_max);
1079                         return -EINVAL;
1080                 }
1081
1082                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1083
1084                 if (priv->do_set_data_bittiming) {
1085                         /* Finally, set the bit-timing registers */
1086                         err = priv->do_set_data_bittiming(dev);
1087                         if (err)
1088                                 return err;
1089                 }
1090         }
1091
1092         if (data[IFLA_CAN_TERMINATION]) {
1093                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1094                 const unsigned int num_term = priv->termination_const_cnt;
1095                 unsigned int i;
1096
1097                 if (!priv->do_set_termination)
1098                         return -EOPNOTSUPP;
1099
1100                 /* check whether given value is supported by the interface */
1101                 for (i = 0; i < num_term; i++) {
1102                         if (termval == priv->termination_const[i])
1103                                 break;
1104                 }
1105                 if (i >= num_term)
1106                         return -EINVAL;
1107
1108                 /* Finally, set the termination value */
1109                 err = priv->do_set_termination(dev, termval);
1110                 if (err)
1111                         return err;
1112
1113                 priv->termination = termval;
1114         }
1115
1116         return 0;
1117 }
1118
1119 static size_t can_get_size(const struct net_device *dev)
1120 {
1121         struct can_priv *priv = netdev_priv(dev);
1122         size_t size = 0;
1123
1124         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1125                 size += nla_total_size(sizeof(struct can_bittiming));
1126         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1127                 size += nla_total_size(sizeof(struct can_bittiming_const));
1128         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1129         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1130         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1131         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1132         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1133                 size += nla_total_size(sizeof(struct can_berr_counter));
1134         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1135                 size += nla_total_size(sizeof(struct can_bittiming));
1136         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1137                 size += nla_total_size(sizeof(struct can_bittiming_const));
1138         if (priv->termination_const) {
1139                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1140                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1141                                        priv->termination_const_cnt);
1142         }
1143         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1144                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1145                                        priv->bitrate_const_cnt);
1146         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1147                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1148                                        priv->data_bitrate_const_cnt);
1149         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1150
1151         return size;
1152 }
1153
1154 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1155 {
1156         struct can_priv *priv = netdev_priv(dev);
1157         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1158         struct can_berr_counter bec;
1159         enum can_state state = priv->state;
1160
1161         if (priv->do_get_state)
1162                 priv->do_get_state(dev, &state);
1163
1164         if ((priv->bittiming.bitrate &&
1165              nla_put(skb, IFLA_CAN_BITTIMING,
1166                      sizeof(priv->bittiming), &priv->bittiming)) ||
1167
1168             (priv->bittiming_const &&
1169              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1170                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1171
1172             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1173             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1174             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1175             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1176
1177             (priv->do_get_berr_counter &&
1178              !priv->do_get_berr_counter(dev, &bec) &&
1179              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1180
1181             (priv->data_bittiming.bitrate &&
1182              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1183                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1184
1185             (priv->data_bittiming_const &&
1186              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1187                      sizeof(*priv->data_bittiming_const),
1188                      priv->data_bittiming_const)) ||
1189
1190             (priv->termination_const &&
1191              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1192               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1193                       sizeof(*priv->termination_const) *
1194                       priv->termination_const_cnt,
1195                       priv->termination_const))) ||
1196
1197             (priv->bitrate_const &&
1198              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1199                      sizeof(*priv->bitrate_const) *
1200                      priv->bitrate_const_cnt,
1201                      priv->bitrate_const)) ||
1202
1203             (priv->data_bitrate_const &&
1204              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1205                      sizeof(*priv->data_bitrate_const) *
1206                      priv->data_bitrate_const_cnt,
1207                      priv->data_bitrate_const)) ||
1208
1209             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1210                      sizeof(priv->bitrate_max),
1211                      &priv->bitrate_max))
1212             )
1213
1214                 return -EMSGSIZE;
1215
1216         return 0;
1217 }
1218
1219 static size_t can_get_xstats_size(const struct net_device *dev)
1220 {
1221         return sizeof(struct can_device_stats);
1222 }
1223
1224 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1225 {
1226         struct can_priv *priv = netdev_priv(dev);
1227
1228         if (nla_put(skb, IFLA_INFO_XSTATS,
1229                     sizeof(priv->can_stats), &priv->can_stats))
1230                 goto nla_put_failure;
1231         return 0;
1232
1233 nla_put_failure:
1234         return -EMSGSIZE;
1235 }
1236
1237 static int can_newlink(struct net *src_net, struct net_device *dev,
1238                        struct nlattr *tb[], struct nlattr *data[],
1239                        struct netlink_ext_ack *extack)
1240 {
1241         return -EOPNOTSUPP;
1242 }
1243
1244 static void can_dellink(struct net_device *dev, struct list_head *head)
1245 {
1246 }
1247
1248 static struct rtnl_link_ops can_link_ops __read_mostly = {
1249         .kind           = "can",
1250         .maxtype        = IFLA_CAN_MAX,
1251         .policy         = can_policy,
1252         .setup          = can_setup,
1253         .validate       = can_validate,
1254         .newlink        = can_newlink,
1255         .changelink     = can_changelink,
1256         .dellink        = can_dellink,
1257         .get_size       = can_get_size,
1258         .fill_info      = can_fill_info,
1259         .get_xstats_size = can_get_xstats_size,
1260         .fill_xstats    = can_fill_xstats,
1261 };
1262
1263 /* Register the CAN network device */
1264 int register_candev(struct net_device *dev)
1265 {
1266         struct can_priv *priv = netdev_priv(dev);
1267
1268         /* Ensure termination_const, termination_const_cnt and
1269          * do_set_termination consistency. All must be either set or
1270          * unset.
1271          */
1272         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1273             (!priv->termination_const != !priv->do_set_termination))
1274                 return -EINVAL;
1275
1276         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1277                 return -EINVAL;
1278
1279         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1280                 return -EINVAL;
1281
1282         dev->rtnl_link_ops = &can_link_ops;
1283         netif_carrier_off(dev);
1284
1285         return register_netdev(dev);
1286 }
1287 EXPORT_SYMBOL_GPL(register_candev);
1288
1289 /* Unregister the CAN network device */
1290 void unregister_candev(struct net_device *dev)
1291 {
1292         unregister_netdev(dev);
1293 }
1294 EXPORT_SYMBOL_GPL(unregister_candev);
1295
1296 /* Test if a network device is a candev based device
1297  * and return the can_priv* if so.
1298  */
1299 struct can_priv *safe_candev_priv(struct net_device *dev)
1300 {
1301         if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1302                 return NULL;
1303
1304         return netdev_priv(dev);
1305 }
1306 EXPORT_SYMBOL_GPL(safe_candev_priv);
1307
1308 static __init int can_dev_init(void)
1309 {
1310         int err;
1311
1312         can_led_notifier_init();
1313
1314         err = rtnl_link_register(&can_link_ops);
1315         if (!err)
1316                 pr_info(MOD_DESC "\n");
1317
1318         return err;
1319 }
1320 module_init(can_dev_init);
1321
1322 static __exit void can_dev_exit(void)
1323 {
1324         rtnl_link_unregister(&can_link_ops);
1325
1326         can_led_notifier_exit();
1327 }
1328 module_exit(can_dev_exit);
1329
1330 MODULE_ALIAS_RTNL_LINK("can");
This page took 0.107911 seconds and 4 git commands to generate.