1 // SPDX-License-Identifier: GPL-2.0-only
3 * efi.c - EFI subsystem
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
25 #include <linux/kexec.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/reboot.h>
29 #include <linux/slab.h>
30 #include <linux/acpi.h>
31 #include <linux/ucs2_string.h>
32 #include <linux/memblock.h>
33 #include <linux/security.h>
35 #include <asm/early_ioremap.h>
37 struct efi __read_mostly efi = {
38 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .esrt = EFI_INVALID_TABLE_ADDR,
44 .tpm_log = EFI_INVALID_TABLE_ADDR,
45 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
49 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
50 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
51 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
53 struct mm_struct efi_mm = {
55 .mm_users = ATOMIC_INIT(2),
56 .mm_count = ATOMIC_INIT(1),
57 MMAP_LOCK_INITIALIZER(efi_mm)
58 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
59 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
60 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
63 struct workqueue_struct *efi_rts_wq;
65 static bool disable_runtime;
66 static int __init setup_noefi(char *arg)
68 disable_runtime = true;
71 early_param("noefi", setup_noefi);
73 bool efi_runtime_disabled(void)
75 return disable_runtime;
78 bool __pure __efi_soft_reserve_enabled(void)
80 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
83 static int __init parse_efi_cmdline(char *str)
86 pr_warn("need at least one option\n");
90 if (parse_option_str(str, "debug"))
91 set_bit(EFI_DBG, &efi.flags);
93 if (parse_option_str(str, "noruntime"))
94 disable_runtime = true;
96 if (parse_option_str(str, "nosoftreserve"))
97 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
101 early_param("efi", parse_efi_cmdline);
103 struct kobject *efi_kobj;
106 * Let's not leave out systab information that snuck into
108 * Note, do not add more fields in systab sysfs file as it breaks sysfs
109 * one value per file rule!
111 static ssize_t systab_show(struct kobject *kobj,
112 struct kobj_attribute *attr, char *buf)
119 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
120 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
121 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
122 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
124 * If both SMBIOS and SMBIOS3 entry points are implemented, the
125 * SMBIOS3 entry point shall be preferred, so we list it first to
126 * let applications stop parsing after the first match.
128 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
129 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
131 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
133 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
134 str = efi_systab_show_arch(str);
139 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
141 static ssize_t fw_platform_size_show(struct kobject *kobj,
142 struct kobj_attribute *attr, char *buf)
144 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
147 extern __weak struct kobj_attribute efi_attr_fw_vendor;
148 extern __weak struct kobj_attribute efi_attr_runtime;
149 extern __weak struct kobj_attribute efi_attr_config_table;
150 static struct kobj_attribute efi_attr_fw_platform_size =
151 __ATTR_RO(fw_platform_size);
153 static struct attribute *efi_subsys_attrs[] = {
154 &efi_attr_systab.attr,
155 &efi_attr_fw_platform_size.attr,
156 &efi_attr_fw_vendor.attr,
157 &efi_attr_runtime.attr,
158 &efi_attr_config_table.attr,
162 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
168 static const struct attribute_group efi_subsys_attr_group = {
169 .attrs = efi_subsys_attrs,
170 .is_visible = efi_attr_is_visible,
173 static struct efivars generic_efivars;
174 static struct efivar_operations generic_ops;
176 static int generic_ops_register(void)
178 generic_ops.get_variable = efi.get_variable;
179 generic_ops.get_next_variable = efi.get_next_variable;
180 generic_ops.query_variable_store = efi_query_variable_store;
182 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
183 generic_ops.set_variable = efi.set_variable;
184 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
186 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
189 static void generic_ops_unregister(void)
191 efivars_unregister(&generic_efivars);
194 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
195 #define EFIVAR_SSDT_NAME_MAX 16
196 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
197 static int __init efivar_ssdt_setup(char *str)
199 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
204 if (strlen(str) < sizeof(efivar_ssdt))
205 memcpy(efivar_ssdt, str, strlen(str));
207 pr_warn("efivar_ssdt: name too long: %s\n", str);
210 __setup("efivar_ssdt=", efivar_ssdt_setup);
212 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
213 unsigned long name_size, void *data)
215 struct efivar_entry *entry;
216 struct list_head *list = data;
217 char utf8_name[EFIVAR_SSDT_NAME_MAX];
218 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
220 ucs2_as_utf8(utf8_name, name, limit - 1);
221 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
224 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
228 memcpy(entry->var.VariableName, name, name_size);
229 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
231 efivar_entry_add(entry, list);
236 static __init int efivar_ssdt_load(void)
239 struct efivar_entry *entry, *aux;
247 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
249 list_for_each_entry_safe(entry, aux, &entries, list) {
250 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
251 &entry->var.VendorGuid);
253 list_del(&entry->list);
255 ret = efivar_entry_size(entry, &size);
257 pr_err("failed to get var size\n");
261 data = kmalloc(size, GFP_KERNEL);
267 ret = efivar_entry_get(entry, NULL, &size, data);
269 pr_err("failed to get var data\n");
273 ret = acpi_load_table(data, NULL);
275 pr_err("failed to load table: %d\n", ret);
291 static inline int efivar_ssdt_load(void) { return 0; }
294 #ifdef CONFIG_DEBUG_FS
296 #define EFI_DEBUGFS_MAX_BLOBS 32
298 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
300 static void __init efi_debugfs_init(void)
302 struct dentry *efi_debugfs;
303 efi_memory_desc_t *md;
305 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
308 efi_debugfs = debugfs_create_dir("efi", NULL);
309 if (IS_ERR_OR_NULL(efi_debugfs))
312 for_each_efi_memory_desc(md) {
314 case EFI_BOOT_SERVICES_CODE:
315 snprintf(name, sizeof(name), "boot_services_code%d",
316 type_count[md->type]++);
318 case EFI_BOOT_SERVICES_DATA:
319 snprintf(name, sizeof(name), "boot_services_data%d",
320 type_count[md->type]++);
326 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
327 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
328 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
332 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
333 debugfs_blob[i].data = memremap(md->phys_addr,
334 debugfs_blob[i].size,
336 if (!debugfs_blob[i].data)
339 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
344 static inline void efi_debugfs_init(void) {}
348 * We register the efi subsystem with the firmware subsystem and the
349 * efivars subsystem with the efi subsystem, if the system was booted with
352 static int __init efisubsys_init(void)
356 if (!efi_enabled(EFI_RUNTIME_SERVICES))
357 efi.runtime_supported_mask = 0;
359 if (!efi_enabled(EFI_BOOT))
362 if (efi.runtime_supported_mask) {
364 * Since we process only one efi_runtime_service() at a time, an
365 * ordered workqueue (which creates only one execution context)
366 * should suffice for all our needs.
368 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
370 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
371 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
372 efi.runtime_supported_mask = 0;
377 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
378 platform_device_register_simple("rtc-efi", 0, NULL, 0);
380 /* We register the efi directory at /sys/firmware/efi */
381 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
383 pr_err("efi: Firmware registration failed.\n");
384 destroy_workqueue(efi_rts_wq);
388 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
389 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
391 error = generic_ops_register();
394 platform_device_register_simple("efivars", 0, NULL, 0);
397 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
399 pr_err("efi: Sysfs attribute export failed with error %d.\n",
404 error = efi_runtime_map_init(efi_kobj);
406 goto err_remove_group;
408 /* and the standard mountpoint for efivarfs */
409 error = sysfs_create_mount_point(efi_kobj, "efivars");
411 pr_err("efivars: Subsystem registration failed.\n");
412 goto err_remove_group;
415 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
421 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
423 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
424 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
425 generic_ops_unregister();
427 kobject_put(efi_kobj);
428 destroy_workqueue(efi_rts_wq);
432 subsys_initcall(efisubsys_init);
435 * Find the efi memory descriptor for a given physical address. Given a
436 * physical address, determine if it exists within an EFI Memory Map entry,
437 * and if so, populate the supplied memory descriptor with the appropriate
440 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
442 efi_memory_desc_t *md;
444 if (!efi_enabled(EFI_MEMMAP)) {
445 pr_err_once("EFI_MEMMAP is not enabled.\n");
450 pr_err_once("out_md is null.\n");
454 for_each_efi_memory_desc(md) {
458 size = md->num_pages << EFI_PAGE_SHIFT;
459 end = md->phys_addr + size;
460 if (phys_addr >= md->phys_addr && phys_addr < end) {
461 memcpy(out_md, md, sizeof(*out_md));
469 * Calculate the highest address of an efi memory descriptor.
471 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
473 u64 size = md->num_pages << EFI_PAGE_SHIFT;
474 u64 end = md->phys_addr + size;
478 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
481 * efi_mem_reserve - Reserve an EFI memory region
482 * @addr: Physical address to reserve
483 * @size: Size of reservation
485 * Mark a region as reserved from general kernel allocation and
486 * prevent it being released by efi_free_boot_services().
488 * This function should be called drivers once they've parsed EFI
489 * configuration tables to figure out where their data lives, e.g.
492 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
494 if (!memblock_is_region_reserved(addr, size))
495 memblock_reserve(addr, size);
498 * Some architectures (x86) reserve all boot services ranges
499 * until efi_free_boot_services() because of buggy firmware
500 * implementations. This means the above memblock_reserve() is
501 * superfluous on x86 and instead what it needs to do is
502 * ensure the @start, @size is not freed.
504 efi_arch_mem_reserve(addr, size);
507 static const efi_config_table_type_t common_tables[] __initconst = {
508 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
509 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
510 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
511 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
512 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
513 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
514 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
515 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
516 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
517 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
518 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
519 #ifdef CONFIG_EFI_RCI2_TABLE
520 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
525 static __init int match_config_table(const efi_guid_t *guid,
527 const efi_config_table_type_t *table_types)
531 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
532 if (!efi_guidcmp(*guid, table_types[i].guid)) {
533 *(table_types[i].ptr) = table;
534 if (table_types[i].name[0])
536 table_types[i].name, table);
544 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
546 const efi_config_table_type_t *arch_tables)
548 const efi_config_table_64_t *tbl64 = (void *)config_tables;
549 const efi_config_table_32_t *tbl32 = (void *)config_tables;
550 const efi_guid_t *guid;
555 for (i = 0; i < count; i++) {
556 if (!IS_ENABLED(CONFIG_X86)) {
557 guid = &config_tables[i].guid;
558 table = (unsigned long)config_tables[i].table;
559 } else if (efi_enabled(EFI_64BIT)) {
560 guid = &tbl64[i].guid;
561 table = tbl64[i].table;
563 if (IS_ENABLED(CONFIG_X86_32) &&
564 tbl64[i].table > U32_MAX) {
566 pr_err("Table located above 4GB, disabling EFI.\n");
570 guid = &tbl32[i].guid;
571 table = tbl32[i].table;
574 if (!match_config_table(guid, table, common_tables) && arch_tables)
575 match_config_table(guid, table, arch_tables);
578 set_bit(EFI_CONFIG_TABLES, &efi.flags);
580 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
581 struct linux_efi_random_seed *seed;
584 seed = early_memremap(efi_rng_seed, sizeof(*seed));
586 size = READ_ONCE(seed->size);
587 early_memunmap(seed, sizeof(*seed));
589 pr_err("Could not map UEFI random seed!\n");
592 seed = early_memremap(efi_rng_seed,
593 sizeof(*seed) + size);
595 pr_notice("seeding entropy pool\n");
596 add_bootloader_randomness(seed->bits, size);
597 early_memunmap(seed, sizeof(*seed) + size);
599 pr_err("Could not map UEFI random seed!\n");
604 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
607 efi_tpm_eventlog_init();
609 if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
610 unsigned long prsv = mem_reserve;
613 struct linux_efi_memreserve *rsv;
617 * Just map a full page: that is what we will get
618 * anyway, and it permits us to map the entire entry
619 * before knowing its size.
621 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
624 pr_err("Could not map UEFI memreserve entry!\n");
628 rsv = (void *)(p + prsv % PAGE_SIZE);
630 /* reserve the entry itself */
631 memblock_reserve(prsv,
632 struct_size(rsv, entry, rsv->size));
634 for (i = 0; i < atomic_read(&rsv->count); i++) {
635 memblock_reserve(rsv->entry[i].base,
640 early_memunmap(p, PAGE_SIZE);
644 if (rt_prop != EFI_INVALID_TABLE_ADDR) {
645 efi_rt_properties_table_t *tbl;
647 tbl = early_memremap(rt_prop, sizeof(*tbl));
649 efi.runtime_supported_mask &= tbl->runtime_services_supported;
650 early_memunmap(tbl, sizeof(*tbl));
657 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
658 int min_major_version)
660 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
661 pr_err("System table signature incorrect!\n");
665 if ((systab_hdr->revision >> 16) < min_major_version)
666 pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
667 systab_hdr->revision >> 16,
668 systab_hdr->revision & 0xffff,
675 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
678 const efi_char16_t *ret;
680 ret = early_memremap_ro(fw_vendor, size);
682 pr_err("Could not map the firmware vendor!\n");
686 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
688 early_memunmap((void *)fw_vendor, size);
691 #define map_fw_vendor(p, s) __va(p)
692 #define unmap_fw_vendor(v, s)
695 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
696 unsigned long fw_vendor)
698 char vendor[100] = "unknown";
699 const efi_char16_t *c16;
702 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
704 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
708 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
711 pr_info("EFI v%u.%.02u by %s\n",
712 systab_hdr->revision >> 16,
713 systab_hdr->revision & 0xffff,
717 static __initdata char memory_type_name[][20] = {
725 "Conventional Memory",
727 "ACPI Reclaim Memory",
735 char * __init efi_md_typeattr_format(char *buf, size_t size,
736 const efi_memory_desc_t *md)
743 if (md->type >= ARRAY_SIZE(memory_type_name))
744 type_len = snprintf(pos, size, "[type=%u", md->type);
746 type_len = snprintf(pos, size, "[%-*s",
747 (int)(sizeof(memory_type_name[0]) - 1),
748 memory_type_name[md->type]);
749 if (type_len >= size)
755 attr = md->attribute;
756 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
757 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
758 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
759 EFI_MEMORY_NV | EFI_MEMORY_SP |
760 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
761 snprintf(pos, size, "|attr=0x%016llx]",
762 (unsigned long long)attr);
765 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
766 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
767 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
768 attr & EFI_MEMORY_SP ? "SP" : "",
769 attr & EFI_MEMORY_NV ? "NV" : "",
770 attr & EFI_MEMORY_XP ? "XP" : "",
771 attr & EFI_MEMORY_RP ? "RP" : "",
772 attr & EFI_MEMORY_WP ? "WP" : "",
773 attr & EFI_MEMORY_RO ? "RO" : "",
774 attr & EFI_MEMORY_UCE ? "UCE" : "",
775 attr & EFI_MEMORY_WB ? "WB" : "",
776 attr & EFI_MEMORY_WT ? "WT" : "",
777 attr & EFI_MEMORY_WC ? "WC" : "",
778 attr & EFI_MEMORY_UC ? "UC" : "");
783 * IA64 has a funky EFI memory map that doesn't work the same way as
784 * other architectures.
788 * efi_mem_attributes - lookup memmap attributes for physical address
789 * @phys_addr: the physical address to lookup
791 * Search in the EFI memory map for the region covering
792 * @phys_addr. Returns the EFI memory attributes if the region
793 * was found in the memory map, 0 otherwise.
795 u64 efi_mem_attributes(unsigned long phys_addr)
797 efi_memory_desc_t *md;
799 if (!efi_enabled(EFI_MEMMAP))
802 for_each_efi_memory_desc(md) {
803 if ((md->phys_addr <= phys_addr) &&
804 (phys_addr < (md->phys_addr +
805 (md->num_pages << EFI_PAGE_SHIFT))))
806 return md->attribute;
812 * efi_mem_type - lookup memmap type for physical address
813 * @phys_addr: the physical address to lookup
815 * Search in the EFI memory map for the region covering @phys_addr.
816 * Returns the EFI memory type if the region was found in the memory
817 * map, -EINVAL otherwise.
819 int efi_mem_type(unsigned long phys_addr)
821 const efi_memory_desc_t *md;
823 if (!efi_enabled(EFI_MEMMAP))
826 for_each_efi_memory_desc(md) {
827 if ((md->phys_addr <= phys_addr) &&
828 (phys_addr < (md->phys_addr +
829 (md->num_pages << EFI_PAGE_SHIFT))))
836 int efi_status_to_err(efi_status_t status)
844 case EFI_INVALID_PARAMETER:
847 case EFI_OUT_OF_RESOURCES:
850 case EFI_DEVICE_ERROR:
853 case EFI_WRITE_PROTECTED:
856 case EFI_SECURITY_VIOLATION:
872 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
873 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
875 static int __init efi_memreserve_map_root(void)
877 if (mem_reserve == EFI_INVALID_TABLE_ADDR)
880 efi_memreserve_root = memremap(mem_reserve,
881 sizeof(*efi_memreserve_root),
883 if (WARN_ON_ONCE(!efi_memreserve_root))
888 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
890 struct resource *res, *parent;
892 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
896 res->name = "reserved";
897 res->flags = IORESOURCE_MEM;
899 res->end = addr + size - 1;
901 /* we expect a conflict with a 'System RAM' region */
902 parent = request_resource_conflict(&iomem_resource, res);
903 return parent ? request_resource(parent, res) : 0;
906 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
908 struct linux_efi_memreserve *rsv;
912 if (efi_memreserve_root == (void *)ULONG_MAX)
915 if (!efi_memreserve_root) {
916 rc = efi_memreserve_map_root();
921 /* first try to find a slot in an existing linked list entry */
922 for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
923 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
924 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
925 if (index < rsv->size) {
926 rsv->entry[index].base = addr;
927 rsv->entry[index].size = size;
930 return efi_mem_reserve_iomem(addr, size);
935 /* no slot found - allocate a new linked list entry */
936 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
940 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
942 free_page((unsigned long)rsv);
947 * The memremap() call above assumes that a linux_efi_memreserve entry
948 * never crosses a page boundary, so let's ensure that this remains true
949 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
950 * using SZ_4K explicitly in the size calculation below.
952 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
953 atomic_set(&rsv->count, 1);
954 rsv->entry[0].base = addr;
955 rsv->entry[0].size = size;
957 spin_lock(&efi_mem_reserve_persistent_lock);
958 rsv->next = efi_memreserve_root->next;
959 efi_memreserve_root->next = __pa(rsv);
960 spin_unlock(&efi_mem_reserve_persistent_lock);
962 return efi_mem_reserve_iomem(addr, size);
965 static int __init efi_memreserve_root_init(void)
967 if (efi_memreserve_root)
969 if (efi_memreserve_map_root())
970 efi_memreserve_root = (void *)ULONG_MAX;
973 early_initcall(efi_memreserve_root_init);
976 static int update_efi_random_seed(struct notifier_block *nb,
977 unsigned long code, void *unused)
979 struct linux_efi_random_seed *seed;
982 if (!kexec_in_progress)
985 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
987 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
990 pr_err("Could not map UEFI random seed!\n");
993 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
997 get_random_bytes(seed->bits, seed->size);
1000 pr_err("Could not map UEFI random seed!\n");
1006 static struct notifier_block efi_random_seed_nb = {
1007 .notifier_call = update_efi_random_seed,
1010 static int __init register_update_efi_random_seed(void)
1012 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1014 return register_reboot_notifier(&efi_random_seed_nb);
1016 late_initcall(register_update_efi_random_seed);