]> Git Repo - linux.git/blob - arch/x86/platform/efi/efi_64.c
enetc: Migrate to PHYLINK and PCS_LYNX
[linux.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <[email protected]>
8  *      Bibo Mao <[email protected]>
9  *      Chandramouli Narayanan <[email protected]>
10  *      Huang Ying <[email protected]>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56
57 struct efi_scratch efi_scratch;
58
59 EXPORT_SYMBOL_GPL(efi_mm);
60
61 /*
62  * We need our own copy of the higher levels of the page tables
63  * because we want to avoid inserting EFI region mappings (EFI_VA_END
64  * to EFI_VA_START) into the standard kernel page tables. Everything
65  * else can be shared, see efi_sync_low_kernel_mappings().
66  *
67  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
68  * allocation.
69  */
70 int __init efi_alloc_page_tables(void)
71 {
72         pgd_t *pgd, *efi_pgd;
73         p4d_t *p4d;
74         pud_t *pud;
75         gfp_t gfp_mask;
76
77         gfp_mask = GFP_KERNEL | __GFP_ZERO;
78         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
79         if (!efi_pgd)
80                 return -ENOMEM;
81
82         pgd = efi_pgd + pgd_index(EFI_VA_END);
83         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
84         if (!p4d) {
85                 free_page((unsigned long)efi_pgd);
86                 return -ENOMEM;
87         }
88
89         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
90         if (!pud) {
91                 if (pgtable_l5_enabled())
92                         free_page((unsigned long) pgd_page_vaddr(*pgd));
93                 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
94                 return -ENOMEM;
95         }
96
97         efi_mm.pgd = efi_pgd;
98         mm_init_cpumask(&efi_mm);
99         init_new_context(NULL, &efi_mm);
100
101         return 0;
102 }
103
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109         unsigned num_entries;
110         pgd_t *pgd_k, *pgd_efi;
111         p4d_t *p4d_k, *p4d_efi;
112         pud_t *pud_k, *pud_efi;
113         pgd_t *efi_pgd = efi_mm.pgd;
114
115         /*
116          * We can share all PGD entries apart from the one entry that
117          * covers the EFI runtime mapping space.
118          *
119          * Make sure the EFI runtime region mappings are guaranteed to
120          * only span a single PGD entry and that the entry also maps
121          * other important kernel regions.
122          */
123         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
124         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
125                         (EFI_VA_END & PGDIR_MASK));
126
127         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
128         pgd_k = pgd_offset_k(PAGE_OFFSET);
129
130         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
131         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
132
133         /*
134          * As with PGDs, we share all P4D entries apart from the one entry
135          * that covers the EFI runtime mapping space.
136          */
137         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
138         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
139
140         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
141         pgd_k = pgd_offset_k(EFI_VA_END);
142         p4d_efi = p4d_offset(pgd_efi, 0);
143         p4d_k = p4d_offset(pgd_k, 0);
144
145         num_entries = p4d_index(EFI_VA_END);
146         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
147
148         /*
149          * We share all the PUD entries apart from those that map the
150          * EFI regions. Copy around them.
151          */
152         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
153         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
154
155         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
156         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
157         pud_efi = pud_offset(p4d_efi, 0);
158         pud_k = pud_offset(p4d_k, 0);
159
160         num_entries = pud_index(EFI_VA_END);
161         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
162
163         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
164         pud_k = pud_offset(p4d_k, EFI_VA_START);
165
166         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
167         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
168 }
169
170 /*
171  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
172  */
173 static inline phys_addr_t
174 virt_to_phys_or_null_size(void *va, unsigned long size)
175 {
176         phys_addr_t pa;
177
178         if (!va)
179                 return 0;
180
181         if (virt_addr_valid(va))
182                 return virt_to_phys(va);
183
184         pa = slow_virt_to_phys(va);
185
186         /* check if the object crosses a page boundary */
187         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
188                 return 0;
189
190         return pa;
191 }
192
193 #define virt_to_phys_or_null(addr)                              \
194         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
195
196 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
197 {
198         unsigned long pfn, text, pf, rodata;
199         struct page *page;
200         unsigned npages;
201         pgd_t *pgd = efi_mm.pgd;
202
203         /*
204          * It can happen that the physical address of new_memmap lands in memory
205          * which is not mapped in the EFI page table. Therefore we need to go
206          * and ident-map those pages containing the map before calling
207          * phys_efi_set_virtual_address_map().
208          */
209         pfn = pa_memmap >> PAGE_SHIFT;
210         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
211         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
212                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
213                 return 1;
214         }
215
216         /*
217          * Certain firmware versions are way too sentimential and still believe
218          * they are exclusive and unquestionable owners of the first physical page,
219          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
220          * (but then write-access it later during SetVirtualAddressMap()).
221          *
222          * Create a 1:1 mapping for this page, to avoid triple faults during early
223          * boot with such firmware. We are free to hand this page to the BIOS,
224          * as trim_bios_range() will reserve the first page and isolate it away
225          * from memory allocators anyway.
226          */
227         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
228                 pr_err("Failed to create 1:1 mapping for the first page!\n");
229                 return 1;
230         }
231
232         /*
233          * When making calls to the firmware everything needs to be 1:1
234          * mapped and addressable with 32-bit pointers. Map the kernel
235          * text and allocate a new stack because we can't rely on the
236          * stack pointer being < 4GB.
237          */
238         if (!efi_is_mixed())
239                 return 0;
240
241         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
242         if (!page) {
243                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
244                 return 1;
245         }
246
247         efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
248
249         npages = (_etext - _text) >> PAGE_SHIFT;
250         text = __pa(_text);
251         pfn = text >> PAGE_SHIFT;
252
253         pf = _PAGE_ENC;
254         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
255                 pr_err("Failed to map kernel text 1:1\n");
256                 return 1;
257         }
258
259         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
260         rodata = __pa(__start_rodata);
261         pfn = rodata >> PAGE_SHIFT;
262
263         pf = _PAGE_NX | _PAGE_ENC;
264         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
265                 pr_err("Failed to map kernel rodata 1:1\n");
266                 return 1;
267         }
268
269         return 0;
270 }
271
272 static void __init __map_region(efi_memory_desc_t *md, u64 va)
273 {
274         unsigned long flags = _PAGE_RW;
275         unsigned long pfn;
276         pgd_t *pgd = efi_mm.pgd;
277
278         /*
279          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
280          * executable images in memory that consist of both R-X and
281          * RW- sections, so we cannot apply read-only or non-exec
282          * permissions just yet. However, modern EFI systems provide
283          * a memory attributes table that describes those sections
284          * with the appropriate restricted permissions, which are
285          * applied in efi_runtime_update_mappings() below. All other
286          * regions can be mapped non-executable at this point, with
287          * the exception of boot services code regions, but those will
288          * be unmapped again entirely in efi_free_boot_services().
289          */
290         if (md->type != EFI_BOOT_SERVICES_CODE &&
291             md->type != EFI_RUNTIME_SERVICES_CODE)
292                 flags |= _PAGE_NX;
293
294         if (!(md->attribute & EFI_MEMORY_WB))
295                 flags |= _PAGE_PCD;
296
297         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
298                 flags |= _PAGE_ENC;
299
300         pfn = md->phys_addr >> PAGE_SHIFT;
301         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
302                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
303                            md->phys_addr, va);
304 }
305
306 void __init efi_map_region(efi_memory_desc_t *md)
307 {
308         unsigned long size = md->num_pages << PAGE_SHIFT;
309         u64 pa = md->phys_addr;
310
311         /*
312          * Make sure the 1:1 mappings are present as a catch-all for b0rked
313          * firmware which doesn't update all internal pointers after switching
314          * to virtual mode and would otherwise crap on us.
315          */
316         __map_region(md, md->phys_addr);
317
318         /*
319          * Enforce the 1:1 mapping as the default virtual address when
320          * booting in EFI mixed mode, because even though we may be
321          * running a 64-bit kernel, the firmware may only be 32-bit.
322          */
323         if (efi_is_mixed()) {
324                 md->virt_addr = md->phys_addr;
325                 return;
326         }
327
328         efi_va -= size;
329
330         /* Is PA 2M-aligned? */
331         if (!(pa & (PMD_SIZE - 1))) {
332                 efi_va &= PMD_MASK;
333         } else {
334                 u64 pa_offset = pa & (PMD_SIZE - 1);
335                 u64 prev_va = efi_va;
336
337                 /* get us the same offset within this 2M page */
338                 efi_va = (efi_va & PMD_MASK) + pa_offset;
339
340                 if (efi_va > prev_va)
341                         efi_va -= PMD_SIZE;
342         }
343
344         if (efi_va < EFI_VA_END) {
345                 pr_warn(FW_WARN "VA address range overflow!\n");
346                 return;
347         }
348
349         /* Do the VA map */
350         __map_region(md, efi_va);
351         md->virt_addr = efi_va;
352 }
353
354 /*
355  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
356  * md->virt_addr is the original virtual address which had been mapped in kexec
357  * 1st kernel.
358  */
359 void __init efi_map_region_fixed(efi_memory_desc_t *md)
360 {
361         __map_region(md, md->phys_addr);
362         __map_region(md, md->virt_addr);
363 }
364
365 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
366 {
367         efi_setup = phys_addr + sizeof(struct setup_data);
368 }
369
370 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
371 {
372         unsigned long pfn;
373         pgd_t *pgd = efi_mm.pgd;
374         int err1, err2;
375
376         /* Update the 1:1 mapping */
377         pfn = md->phys_addr >> PAGE_SHIFT;
378         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
379         if (err1) {
380                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
381                            md->phys_addr, md->virt_addr);
382         }
383
384         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
385         if (err2) {
386                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
387                            md->phys_addr, md->virt_addr);
388         }
389
390         return err1 || err2;
391 }
392
393 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
394 {
395         unsigned long pf = 0;
396
397         if (md->attribute & EFI_MEMORY_XP)
398                 pf |= _PAGE_NX;
399
400         if (!(md->attribute & EFI_MEMORY_RO))
401                 pf |= _PAGE_RW;
402
403         if (sev_active())
404                 pf |= _PAGE_ENC;
405
406         return efi_update_mappings(md, pf);
407 }
408
409 void __init efi_runtime_update_mappings(void)
410 {
411         efi_memory_desc_t *md;
412
413         /*
414          * Use the EFI Memory Attribute Table for mapping permissions if it
415          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
416          */
417         if (efi_enabled(EFI_MEM_ATTR)) {
418                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
419                 return;
420         }
421
422         /*
423          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
424          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
425          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
426          * published by the firmware. Even if we find a buggy implementation of
427          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
428          * EFI_PROPERTIES_TABLE, because of the same reason.
429          */
430
431         if (!efi_enabled(EFI_NX_PE_DATA))
432                 return;
433
434         for_each_efi_memory_desc(md) {
435                 unsigned long pf = 0;
436
437                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
438                         continue;
439
440                 if (!(md->attribute & EFI_MEMORY_WB))
441                         pf |= _PAGE_PCD;
442
443                 if ((md->attribute & EFI_MEMORY_XP) ||
444                         (md->type == EFI_RUNTIME_SERVICES_DATA))
445                         pf |= _PAGE_NX;
446
447                 if (!(md->attribute & EFI_MEMORY_RO) &&
448                         (md->type != EFI_RUNTIME_SERVICES_CODE))
449                         pf |= _PAGE_RW;
450
451                 if (sev_active())
452                         pf |= _PAGE_ENC;
453
454                 efi_update_mappings(md, pf);
455         }
456 }
457
458 void __init efi_dump_pagetable(void)
459 {
460 #ifdef CONFIG_EFI_PGT_DUMP
461         ptdump_walk_pgd_level(NULL, &efi_mm);
462 #endif
463 }
464
465 /*
466  * Makes the calling thread switch to/from efi_mm context. Can be used
467  * in a kernel thread and user context. Preemption needs to remain disabled
468  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
469  * can not change under us.
470  * It should be ensured that there are no concurent calls to this function.
471  */
472 void efi_switch_mm(struct mm_struct *mm)
473 {
474         efi_scratch.prev_mm = current->active_mm;
475         current->active_mm = mm;
476         switch_mm(efi_scratch.prev_mm, mm, NULL);
477 }
478
479 static DEFINE_SPINLOCK(efi_runtime_lock);
480
481 /*
482  * DS and ES contain user values.  We need to save them.
483  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
484  * need to save the old SS: __KERNEL_DS is always acceptable.
485  */
486 #define __efi_thunk(func, ...)                                          \
487 ({                                                                      \
488         unsigned short __ds, __es;                                      \
489         efi_status_t ____s;                                             \
490                                                                         \
491         savesegment(ds, __ds);                                          \
492         savesegment(es, __es);                                          \
493                                                                         \
494         loadsegment(ss, __KERNEL_DS);                                   \
495         loadsegment(ds, __KERNEL_DS);                                   \
496         loadsegment(es, __KERNEL_DS);                                   \
497                                                                         \
498         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
499                                                                         \
500         loadsegment(ds, __ds);                                          \
501         loadsegment(es, __es);                                          \
502                                                                         \
503         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
504         ____s;                                                          \
505 })
506
507 /*
508  * Switch to the EFI page tables early so that we can access the 1:1
509  * runtime services mappings which are not mapped in any other page
510  * tables.
511  *
512  * Also, disable interrupts because the IDT points to 64-bit handlers,
513  * which aren't going to function correctly when we switch to 32-bit.
514  */
515 #define efi_thunk(func...)                                              \
516 ({                                                                      \
517         efi_status_t __s;                                               \
518                                                                         \
519         arch_efi_call_virt_setup();                                     \
520                                                                         \
521         __s = __efi_thunk(func);                                        \
522                                                                         \
523         arch_efi_call_virt_teardown();                                  \
524                                                                         \
525         __s;                                                            \
526 })
527
528 static efi_status_t __init __no_sanitize_address
529 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
530                                   unsigned long descriptor_size,
531                                   u32 descriptor_version,
532                                   efi_memory_desc_t *virtual_map)
533 {
534         efi_status_t status;
535         unsigned long flags;
536
537         efi_sync_low_kernel_mappings();
538         local_irq_save(flags);
539
540         efi_switch_mm(&efi_mm);
541
542         status = __efi_thunk(set_virtual_address_map, memory_map_size,
543                              descriptor_size, descriptor_version, virtual_map);
544
545         efi_switch_mm(efi_scratch.prev_mm);
546         local_irq_restore(flags);
547
548         return status;
549 }
550
551 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
552 {
553         return EFI_UNSUPPORTED;
554 }
555
556 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
557 {
558         return EFI_UNSUPPORTED;
559 }
560
561 static efi_status_t
562 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
563                           efi_time_t *tm)
564 {
565         return EFI_UNSUPPORTED;
566 }
567
568 static efi_status_t
569 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
570 {
571         return EFI_UNSUPPORTED;
572 }
573
574 static unsigned long efi_name_size(efi_char16_t *name)
575 {
576         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
577 }
578
579 static efi_status_t
580 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
581                        u32 *attr, unsigned long *data_size, void *data)
582 {
583         u8 buf[24] __aligned(8);
584         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
585         efi_status_t status;
586         u32 phys_name, phys_vendor, phys_attr;
587         u32 phys_data_size, phys_data;
588         unsigned long flags;
589
590         spin_lock_irqsave(&efi_runtime_lock, flags);
591
592         *vnd = *vendor;
593
594         phys_data_size = virt_to_phys_or_null(data_size);
595         phys_vendor = virt_to_phys_or_null(vnd);
596         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
597         phys_attr = virt_to_phys_or_null(attr);
598         phys_data = virt_to_phys_or_null_size(data, *data_size);
599
600         if (!phys_name || (data && !phys_data))
601                 status = EFI_INVALID_PARAMETER;
602         else
603                 status = efi_thunk(get_variable, phys_name, phys_vendor,
604                                    phys_attr, phys_data_size, phys_data);
605
606         spin_unlock_irqrestore(&efi_runtime_lock, flags);
607
608         return status;
609 }
610
611 static efi_status_t
612 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
613                        u32 attr, unsigned long data_size, void *data)
614 {
615         u8 buf[24] __aligned(8);
616         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
617         u32 phys_name, phys_vendor, phys_data;
618         efi_status_t status;
619         unsigned long flags;
620
621         spin_lock_irqsave(&efi_runtime_lock, flags);
622
623         *vnd = *vendor;
624
625         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
626         phys_vendor = virt_to_phys_or_null(vnd);
627         phys_data = virt_to_phys_or_null_size(data, data_size);
628
629         if (!phys_name || (data && !phys_data))
630                 status = EFI_INVALID_PARAMETER;
631         else
632                 status = efi_thunk(set_variable, phys_name, phys_vendor,
633                                    attr, data_size, phys_data);
634
635         spin_unlock_irqrestore(&efi_runtime_lock, flags);
636
637         return status;
638 }
639
640 static efi_status_t
641 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
642                                    u32 attr, unsigned long data_size,
643                                    void *data)
644 {
645         u8 buf[24] __aligned(8);
646         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
647         u32 phys_name, phys_vendor, phys_data;
648         efi_status_t status;
649         unsigned long flags;
650
651         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
652                 return EFI_NOT_READY;
653
654         *vnd = *vendor;
655
656         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
657         phys_vendor = virt_to_phys_or_null(vnd);
658         phys_data = virt_to_phys_or_null_size(data, data_size);
659
660         if (!phys_name || (data && !phys_data))
661                 status = EFI_INVALID_PARAMETER;
662         else
663                 status = efi_thunk(set_variable, phys_name, phys_vendor,
664                                    attr, data_size, phys_data);
665
666         spin_unlock_irqrestore(&efi_runtime_lock, flags);
667
668         return status;
669 }
670
671 static efi_status_t
672 efi_thunk_get_next_variable(unsigned long *name_size,
673                             efi_char16_t *name,
674                             efi_guid_t *vendor)
675 {
676         u8 buf[24] __aligned(8);
677         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
678         efi_status_t status;
679         u32 phys_name_size, phys_name, phys_vendor;
680         unsigned long flags;
681
682         spin_lock_irqsave(&efi_runtime_lock, flags);
683
684         *vnd = *vendor;
685
686         phys_name_size = virt_to_phys_or_null(name_size);
687         phys_vendor = virt_to_phys_or_null(vnd);
688         phys_name = virt_to_phys_or_null_size(name, *name_size);
689
690         if (!phys_name)
691                 status = EFI_INVALID_PARAMETER;
692         else
693                 status = efi_thunk(get_next_variable, phys_name_size,
694                                    phys_name, phys_vendor);
695
696         spin_unlock_irqrestore(&efi_runtime_lock, flags);
697
698         *vendor = *vnd;
699         return status;
700 }
701
702 static efi_status_t
703 efi_thunk_get_next_high_mono_count(u32 *count)
704 {
705         return EFI_UNSUPPORTED;
706 }
707
708 static void
709 efi_thunk_reset_system(int reset_type, efi_status_t status,
710                        unsigned long data_size, efi_char16_t *data)
711 {
712         u32 phys_data;
713         unsigned long flags;
714
715         spin_lock_irqsave(&efi_runtime_lock, flags);
716
717         phys_data = virt_to_phys_or_null_size(data, data_size);
718
719         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
720
721         spin_unlock_irqrestore(&efi_runtime_lock, flags);
722 }
723
724 static efi_status_t
725 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
726                          unsigned long count, unsigned long sg_list)
727 {
728         /*
729          * To properly support this function we would need to repackage
730          * 'capsules' because the firmware doesn't understand 64-bit
731          * pointers.
732          */
733         return EFI_UNSUPPORTED;
734 }
735
736 static efi_status_t
737 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
738                               u64 *remaining_space,
739                               u64 *max_variable_size)
740 {
741         efi_status_t status;
742         u32 phys_storage, phys_remaining, phys_max;
743         unsigned long flags;
744
745         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
746                 return EFI_UNSUPPORTED;
747
748         spin_lock_irqsave(&efi_runtime_lock, flags);
749
750         phys_storage = virt_to_phys_or_null(storage_space);
751         phys_remaining = virt_to_phys_or_null(remaining_space);
752         phys_max = virt_to_phys_or_null(max_variable_size);
753
754         status = efi_thunk(query_variable_info, attr, phys_storage,
755                            phys_remaining, phys_max);
756
757         spin_unlock_irqrestore(&efi_runtime_lock, flags);
758
759         return status;
760 }
761
762 static efi_status_t
763 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
764                                           u64 *remaining_space,
765                                           u64 *max_variable_size)
766 {
767         efi_status_t status;
768         u32 phys_storage, phys_remaining, phys_max;
769         unsigned long flags;
770
771         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
772                 return EFI_UNSUPPORTED;
773
774         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
775                 return EFI_NOT_READY;
776
777         phys_storage = virt_to_phys_or_null(storage_space);
778         phys_remaining = virt_to_phys_or_null(remaining_space);
779         phys_max = virt_to_phys_or_null(max_variable_size);
780
781         status = efi_thunk(query_variable_info, attr, phys_storage,
782                            phys_remaining, phys_max);
783
784         spin_unlock_irqrestore(&efi_runtime_lock, flags);
785
786         return status;
787 }
788
789 static efi_status_t
790 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
791                              unsigned long count, u64 *max_size,
792                              int *reset_type)
793 {
794         /*
795          * To properly support this function we would need to repackage
796          * 'capsules' because the firmware doesn't understand 64-bit
797          * pointers.
798          */
799         return EFI_UNSUPPORTED;
800 }
801
802 void __init efi_thunk_runtime_setup(void)
803 {
804         if (!IS_ENABLED(CONFIG_EFI_MIXED))
805                 return;
806
807         efi.get_time = efi_thunk_get_time;
808         efi.set_time = efi_thunk_set_time;
809         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
810         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
811         efi.get_variable = efi_thunk_get_variable;
812         efi.get_next_variable = efi_thunk_get_next_variable;
813         efi.set_variable = efi_thunk_set_variable;
814         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
815         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
816         efi.reset_system = efi_thunk_reset_system;
817         efi.query_variable_info = efi_thunk_query_variable_info;
818         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
819         efi.update_capsule = efi_thunk_update_capsule;
820         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
821 }
822
823 efi_status_t __init __no_sanitize_address
824 efi_set_virtual_address_map(unsigned long memory_map_size,
825                             unsigned long descriptor_size,
826                             u32 descriptor_version,
827                             efi_memory_desc_t *virtual_map,
828                             unsigned long systab_phys)
829 {
830         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
831         efi_status_t status;
832         unsigned long flags;
833
834         if (efi_is_mixed())
835                 return efi_thunk_set_virtual_address_map(memory_map_size,
836                                                          descriptor_size,
837                                                          descriptor_version,
838                                                          virtual_map);
839         efi_switch_mm(&efi_mm);
840
841         kernel_fpu_begin();
842
843         /* Disable interrupts around EFI calls: */
844         local_irq_save(flags);
845         status = efi_call(efi.runtime->set_virtual_address_map,
846                           memory_map_size, descriptor_size,
847                           descriptor_version, virtual_map);
848         local_irq_restore(flags);
849
850         kernel_fpu_end();
851
852         /* grab the virtually remapped EFI runtime services table pointer */
853         efi.runtime = READ_ONCE(systab->runtime);
854
855         efi_switch_mm(efi_scratch.prev_mm);
856
857         return status;
858 }
This page took 0.077614 seconds and 4 git commands to generate.