1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
28 #include <asm/eeh_event.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
34 #include <asm/pte-walk.h>
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
76 #define EEH_MAX_FAILS 2100000
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
99 u32 eeh_max_freezes = 5;
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
106 bool eeh_debugfs_no_recover;
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
140 static struct eeh_stats eeh_stats;
142 static int __init eeh_setup(char *str)
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
151 __setup("eeh=", eeh_setup);
153 void eeh_show_enabled(void)
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
175 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 edev->pe->phb->global_number, edev->bdfn >> 8,
177 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev->pe->phb->global_number, edev->bdfn >> 8,
180 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
182 eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
186 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
190 /* Gather bridge-specific registers */
191 if (edev->mode & EEH_DEV_BRIDGE) {
192 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
196 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 pr_warn("EEH: Bridge control: %04x\n", cfg);
201 /* Dump out the PCI-X command and status regs */
202 cap = edev->pcix_cap;
204 eeh_ops->read_config(edev, cap, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
208 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg);
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap = edev->pcie_cap;
216 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
219 for (i=0; i<=8; i++) {
220 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
225 pr_warn("%s\n", buffer);
227 l = scnprintf(buffer, sizeof(buffer),
228 "EEH: PCI-E %02x: %08x ",
231 l += scnprintf(buffer+l, sizeof(buffer)-l,
237 pr_warn("%s\n", buffer);
240 /* If AER capable, dump it */
243 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
246 for (i=0; i<=13; i++) {
247 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
252 pr_warn("%s\n", buffer);
254 l = scnprintf(buffer, sizeof(buffer),
255 "EEH: PCI-E AER %02x: %08x ",
258 l += scnprintf(buffer+l, sizeof(buffer)-l,
263 pr_warn("%s\n", buffer);
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
271 struct eeh_dev *edev, *tmp;
274 eeh_pe_for_each_dev(pe, edev, tmp)
275 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 EEH_PCI_REGS_LOG_LEN - *plen);
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
284 * @severity: temporary or permanent error log
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
311 if (!(pe->type & EEH_PE_PHB)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 severity == EEH_LOG_PERM)
314 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
328 eeh_ops->configure_bridge(pe);
329 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 eeh_pe_restore_bars(pe);
333 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
337 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
344 * This routine should be called to convert virtual I/O address
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
354 * We won't find hugepages here(this is iomem). Hence we are not
355 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 * page table free, because of init_mm.
358 ptep = find_init_mm_pte(token, &hugepage_shift);
364 /* On radix we can do hugepage mappings for io, so handle that */
365 if (hugepage_shift) {
366 pa <<= hugepage_shift;
367 pa |= token & ((1ul << hugepage_shift) - 1);
370 pa |= token & (PAGE_SIZE - 1);
377 * On PowerNV platform, we might already have fenced PHB there.
378 * For that case, it's meaningless to recover frozen PE. Intead,
379 * We have to handle fenced PHB firstly.
381 static int eeh_phb_check_failure(struct eeh_pe *pe)
383 struct eeh_pe *phb_pe;
387 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
390 /* Find the PHB PE */
391 phb_pe = eeh_phb_pe_get(pe->phb);
393 pr_warn("%s Can't find PE for PHB#%x\n",
394 __func__, pe->phb->global_number);
398 /* If the PHB has been in problematic state */
399 eeh_serialize_lock(&flags);
400 if (phb_pe->state & EEH_PE_ISOLATED) {
405 /* Check PHB state */
406 ret = eeh_ops->get_state(phb_pe, NULL);
408 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
413 /* Isolate the PHB and send event */
414 eeh_pe_mark_isolated(phb_pe);
415 eeh_serialize_unlock(flags);
417 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
418 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 eeh_send_failure_event(phb_pe);
422 eeh_serialize_unlock(flags);
427 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
430 * Check for an EEH failure for the given device node. Call this
431 * routine if the result of a read was all 0xff's and you want to
432 * find out if this is due to an EEH slot freeze. This routine
433 * will query firmware for the EEH status.
435 * Returns 0 if there has not been an EEH error; otherwise returns
436 * a non-zero value and queues up a slot isolation event notification.
438 * It is safe to call this routine in an interrupt context.
440 int eeh_dev_check_failure(struct eeh_dev *edev)
444 struct device_node *dn;
446 struct eeh_pe *pe, *parent_pe;
448 const char *location = NULL;
450 eeh_stats.total_mmio_ffs++;
459 dev = eeh_dev_to_pci_dev(edev);
460 pe = eeh_dev_to_pe(edev);
462 /* Access to IO BARs might get this far and still not want checking. */
464 eeh_stats.ignored_check++;
465 eeh_edev_dbg(edev, "Ignored check\n");
469 if (!pe->addr && !pe->config_addr) {
470 eeh_stats.no_cfg_addr++;
475 * On PowerNV platform, we might already have fenced PHB
476 * there and we need take care of that firstly.
478 ret = eeh_phb_check_failure(pe);
483 * If the PE isn't owned by us, we shouldn't check the
484 * state. Instead, let the owner handle it if the PE has
487 if (eeh_pe_passed(pe))
490 /* If we already have a pending isolation event for this
491 * slot, we know it's bad already, we don't need to check.
492 * Do this checking under a lock; as multiple PCI devices
493 * in one slot might report errors simultaneously, and we
494 * only want one error recovery routine running.
496 eeh_serialize_lock(&flags);
498 if (pe->state & EEH_PE_ISOLATED) {
500 if (pe->check_count == EEH_MAX_FAILS) {
501 dn = pci_device_to_OF_node(dev);
503 location = of_get_property(dn, "ibm,loc-code",
505 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
507 location ? location : "unknown",
508 eeh_driver_name(dev));
509 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
510 eeh_driver_name(dev));
517 * Now test for an EEH failure. This is VERY expensive.
518 * Note that the eeh_config_addr may be a parent device
519 * in the case of a device behind a bridge, or it may be
520 * function zero of a multi-function device.
521 * In any case they must share a common PHB.
523 ret = eeh_ops->get_state(pe, NULL);
525 /* Note that config-io to empty slots may fail;
526 * they are empty when they don't have children.
527 * We will punt with the following conditions: Failure to get
528 * PE's state, EEH not support and Permanently unavailable
529 * state, PE is in good state.
532 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
533 eeh_stats.false_positives++;
534 pe->false_positives++;
540 * It should be corner case that the parent PE has been
541 * put into frozen state as well. We should take care
544 parent_pe = pe->parent;
546 /* Hit the ceiling ? */
547 if (parent_pe->type & EEH_PE_PHB)
550 /* Frozen parent PE ? */
551 ret = eeh_ops->get_state(parent_pe, NULL);
552 if (ret > 0 && !eeh_state_active(ret)) {
554 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
555 pe->phb->global_number, pe->addr,
556 pe->phb->global_number, parent_pe->addr);
559 /* Next parent level */
560 parent_pe = parent_pe->parent;
563 eeh_stats.slot_resets++;
565 /* Avoid repeated reports of this failure, including problems
566 * with other functions on this device, and functions under
569 eeh_pe_mark_isolated(pe);
570 eeh_serialize_unlock(flags);
572 /* Most EEH events are due to device driver bugs. Having
573 * a stack trace will help the device-driver authors figure
574 * out what happened. So print that out.
576 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
577 __func__, pe->phb->global_number, pe->addr);
578 eeh_send_failure_event(pe);
583 eeh_serialize_unlock(flags);
587 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
590 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
591 * @token: I/O address
593 * Check for an EEH failure at the given I/O address. Call this
594 * routine if the result of a read was all 0xff's and you want to
595 * find out if this is due to an EEH slot freeze event. This routine
596 * will query firmware for the EEH status.
598 * Note this routine is safe to call in an interrupt context.
600 int eeh_check_failure(const volatile void __iomem *token)
603 struct eeh_dev *edev;
605 /* Finding the phys addr + pci device; this is pretty quick. */
606 addr = eeh_token_to_phys((unsigned long __force) token);
607 edev = eeh_addr_cache_get_dev(addr);
609 eeh_stats.no_device++;
613 return eeh_dev_check_failure(edev);
615 EXPORT_SYMBOL(eeh_check_failure);
619 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
622 * This routine should be called to reenable frozen MMIO or DMA
623 * so that it would work correctly again. It's useful while doing
624 * recovery or log collection on the indicated device.
626 int eeh_pci_enable(struct eeh_pe *pe, int function)
631 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
632 * Also, it's pointless to enable them on unfrozen PE. So
633 * we have to check before enabling IO or DMA.
636 case EEH_OPT_THAW_MMIO:
637 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
639 case EEH_OPT_THAW_DMA:
640 active_flag = EEH_STATE_DMA_ACTIVE;
642 case EEH_OPT_DISABLE:
644 case EEH_OPT_FREEZE_PE:
648 pr_warn("%s: Invalid function %d\n",
654 * Check if IO or DMA has been enabled before
658 rc = eeh_ops->get_state(pe, NULL);
662 /* Needn't enable it at all */
663 if (rc == EEH_STATE_NOT_SUPPORT)
666 /* It's already enabled */
667 if (rc & active_flag)
672 /* Issue the request */
673 rc = eeh_ops->set_option(pe, function);
675 pr_warn("%s: Unexpected state change %d on "
676 "PHB#%x-PE#%x, err=%d\n",
677 __func__, function, pe->phb->global_number,
680 /* Check if the request is finished successfully */
682 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
686 if (rc & active_flag)
695 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
698 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
699 struct pci_dev *dev = userdata;
702 * The caller should have disabled and saved the
703 * state for the specified device
705 if (!pdev || pdev == dev)
708 /* Ensure we have D0 power state */
709 pci_set_power_state(pdev, PCI_D0);
711 /* Save device state */
712 pci_save_state(pdev);
715 * Disable device to avoid any DMA traffic and
716 * interrupt from the device
718 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
721 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
723 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 struct pci_dev *dev = userdata;
729 /* Apply customization from firmware */
730 if (eeh_ops->restore_config)
731 eeh_ops->restore_config(edev);
733 /* The caller should restore state for the specified device */
735 pci_restore_state(pdev);
739 * pcibios_set_pcie_reset_state - Set PCI-E reset state
740 * @dev: pci device struct
741 * @state: reset state to enter
746 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
748 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
749 struct eeh_pe *pe = eeh_dev_to_pe(edev);
752 pr_err("%s: No PE found on PCI device %s\n",
753 __func__, pci_name(dev));
758 case pcie_deassert_reset:
759 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
761 if (!(pe->type & EEH_PE_VF))
762 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
763 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
764 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
767 eeh_pe_mark_isolated(pe);
768 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
769 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
770 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
771 if (!(pe->type & EEH_PE_VF))
772 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 eeh_ops->reset(pe, EEH_RESET_HOT);
775 case pcie_warm_reset:
776 eeh_pe_mark_isolated(pe);
777 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
778 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 if (!(pe->type & EEH_PE_VF))
781 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
782 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
785 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
793 * eeh_set_pe_freset - Check the required reset for the indicated device
795 * @flag: return value
797 * Each device might have its preferred reset type: fundamental or
798 * hot reset. The routine is used to collected the information for
799 * the indicated device and its children so that the bunch of the
800 * devices could be reset properly.
802 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
805 unsigned int *freset = (unsigned int *)flag;
807 dev = eeh_dev_to_pci_dev(edev);
809 *freset |= dev->needs_freset;
812 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
817 eeh_for_each_pe(root, pe) {
818 if (eeh_pe_passed(pe)) {
819 state = eeh_ops->get_state(pe, NULL);
821 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
822 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
823 pe->phb->global_number, pe->addr);
824 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
831 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
834 * This function executes a full reset procedure on a PE, including setting
835 * the appropriate flags, performing a fundamental or hot reset, and then
836 * deactivating the reset status. It is designed to be used within the EEH
837 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
838 * only performs a single operation at a time.
840 * This function will attempt to reset a PE three times before failing.
842 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
844 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
845 int type = EEH_RESET_HOT;
846 unsigned int freset = 0;
847 int i, state = 0, ret;
850 * Determine the type of reset to perform - hot or fundamental.
851 * Hot reset is the default operation, unless any device under the
852 * PE requires a fundamental reset.
854 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
857 type = EEH_RESET_FUNDAMENTAL;
859 /* Mark the PE as in reset state and block config space accesses */
860 eeh_pe_state_mark(pe, reset_state);
862 /* Make three attempts at resetting the bus */
863 for (i = 0; i < 3; i++) {
864 ret = eeh_pe_reset(pe, type, include_passed);
866 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
870 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
871 state, pe->phb->global_number, pe->addr, i + 1);
875 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
876 pe->phb->global_number, pe->addr, i + 1);
878 /* Wait until the PE is in a functioning state */
879 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
881 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
882 pe->phb->global_number, pe->addr);
883 ret = -ENOTRECOVERABLE;
886 if (eeh_state_active(state))
889 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
890 pe->phb->global_number, pe->addr, state, i + 1);
893 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
894 * (potentially) passed through to a guest, re-freeze them:
897 eeh_pe_refreeze_passed(pe);
899 eeh_pe_state_clear(pe, reset_state, true);
904 * eeh_save_bars - Save device bars
905 * @edev: PCI device associated EEH device
907 * Save the values of the device bars. Unlike the restore
908 * routine, this routine is *not* recursive. This is because
909 * PCI devices are added individually; but, for the restore,
910 * an entire slot is reset at a time.
912 void eeh_save_bars(struct eeh_dev *edev)
919 for (i = 0; i < 16; i++)
920 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
923 * For PCI bridges including root port, we need enable bus
924 * master explicitly. Otherwise, it can't fetch IODA table
925 * entries correctly. So we cache the bit in advance so that
926 * we can restore it after reset, either PHB range or PE range.
928 if (edev->mode & EEH_DEV_BRIDGE)
929 edev->config_space[1] |= PCI_COMMAND_MASTER;
933 * eeh_ops_register - Register platform dependent EEH operations
934 * @ops: platform dependent EEH operations
936 * Register the platform dependent EEH operation callback
937 * functions. The platform should call this function before
938 * any other EEH operations.
940 int __init eeh_ops_register(struct eeh_ops *ops)
943 pr_warn("%s: Invalid EEH ops name for %p\n",
948 if (eeh_ops && eeh_ops != ops) {
949 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
950 __func__, eeh_ops->name, ops->name);
960 * eeh_ops_unregister - Unreigster platform dependent EEH operations
961 * @name: name of EEH platform operations
963 * Unregister the platform dependent EEH operation callback
966 int __exit eeh_ops_unregister(const char *name)
968 if (!name || !strlen(name)) {
969 pr_warn("%s: Invalid EEH ops name\n",
974 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
982 static int eeh_reboot_notifier(struct notifier_block *nb,
983 unsigned long action, void *unused)
985 eeh_clear_flag(EEH_ENABLED);
989 static struct notifier_block eeh_reboot_nb = {
990 .notifier_call = eeh_reboot_notifier,
994 * eeh_init - EEH initialization
996 * Initialize EEH by trying to enable it for all of the adapters in the system.
997 * As a side effect we can determine here if eeh is supported at all.
998 * Note that we leave EEH on so failed config cycles won't cause a machine
999 * check. If a user turns off EEH for a particular adapter they are really
1000 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1001 * grant access to a slot if EEH isn't enabled, and so we always enable
1002 * EEH for all slots/all devices.
1004 * The eeh-force-off option disables EEH checking globally, for all slots.
1005 * Even if force-off is set, the EEH hardware is still enabled, so that
1006 * newer systems can boot.
1008 static int eeh_init(void)
1010 struct pci_controller *hose, *tmp;
1013 /* Register reboot notifier */
1014 ret = register_reboot_notifier(&eeh_reboot_nb);
1016 pr_warn("%s: Failed to register notifier (%d)\n",
1021 /* call platform initialization function */
1023 pr_warn("%s: Platform EEH operation not found\n",
1026 } else if ((ret = eeh_ops->init()))
1029 /* Initialize PHB PEs */
1030 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1031 eeh_phb_pe_create(hose);
1033 eeh_addr_cache_init();
1035 /* Initialize EEH event */
1036 return eeh_event_init();
1039 core_initcall_sync(eeh_init);
1041 static int eeh_device_notifier(struct notifier_block *nb,
1042 unsigned long action, void *data)
1044 struct device *dev = data;
1048 * Note: It's not possible to perform EEH device addition (i.e.
1049 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
1050 * the device's resources, which have not yet been set up.
1052 case BUS_NOTIFY_DEL_DEVICE:
1053 eeh_remove_device(to_pci_dev(dev));
1061 static struct notifier_block eeh_device_nb = {
1062 .notifier_call = eeh_device_notifier,
1065 static __init int eeh_set_bus_notifier(void)
1067 bus_register_notifier(&pci_bus_type, &eeh_device_nb);
1070 arch_initcall(eeh_set_bus_notifier);
1073 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1074 * @dev: pci device for which to set up EEH
1076 * This routine must be used to complete EEH initialization for PCI
1077 * devices that were added after system boot (e.g. hotplug, dlpar).
1079 void eeh_probe_device(struct pci_dev *dev)
1081 struct eeh_dev *edev;
1083 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1086 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1087 * already called for this device.
1089 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1090 pci_dbg(dev, "Already bound to an eeh_dev!\n");
1094 edev = eeh_ops->probe(dev);
1096 pr_debug("EEH: Adding device failed\n");
1101 * FIXME: We rely on pcibios_release_device() to remove the
1102 * existing EEH state. The release function is only called if
1103 * the pci_dev's refcount drops to zero so if something is
1104 * keeping a ref to a device (e.g. a filesystem) we need to
1105 * remove the old EEH state.
1107 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1109 if (edev->pdev && edev->pdev != dev) {
1110 eeh_pe_tree_remove(edev);
1111 eeh_addr_cache_rmv_dev(edev->pdev);
1112 eeh_sysfs_remove_device(edev->pdev);
1115 * We definitely should have the PCI device removed
1116 * though it wasn't correctly. So we needn't call
1117 * into error handler afterwards.
1119 edev->mode |= EEH_DEV_NO_HANDLER;
1122 /* bind the pdev and the edev together */
1124 dev->dev.archdata.edev = edev;
1125 eeh_addr_cache_insert_dev(dev);
1126 eeh_sysfs_add_device(dev);
1130 * eeh_remove_device - Undo EEH setup for the indicated pci device
1131 * @dev: pci device to be removed
1133 * This routine should be called when a device is removed from
1134 * a running system (e.g. by hotplug or dlpar). It unregisters
1135 * the PCI device from the EEH subsystem. I/O errors affecting
1136 * this device will no longer be detected after this call; thus,
1137 * i/o errors affecting this slot may leave this device unusable.
1139 void eeh_remove_device(struct pci_dev *dev)
1141 struct eeh_dev *edev;
1143 if (!dev || !eeh_enabled())
1145 edev = pci_dev_to_eeh_dev(dev);
1147 /* Unregister the device with the EEH/PCI address search system */
1148 dev_dbg(&dev->dev, "EEH: Removing device\n");
1150 if (!edev || !edev->pdev || !edev->pe) {
1151 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1156 * During the hotplug for EEH error recovery, we need the EEH
1157 * device attached to the parent PE in order for BAR restore
1158 * a bit later. So we keep it for BAR restore and remove it
1159 * from the parent PE during the BAR resotre.
1164 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1165 * remove the sysfs files before clearing dev.archdata.edev
1167 if (edev->mode & EEH_DEV_SYSFS)
1168 eeh_sysfs_remove_device(dev);
1171 * We're removing from the PCI subsystem, that means
1172 * the PCI device driver can't support EEH or not
1173 * well. So we rely on hotplug completely to do recovery
1174 * for the specific PCI device.
1176 edev->mode |= EEH_DEV_NO_HANDLER;
1178 eeh_addr_cache_rmv_dev(dev);
1181 * The flag "in_error" is used to trace EEH devices for VFs
1182 * in error state or not. It's set in eeh_report_error(). If
1183 * it's not set, eeh_report_{reset,resume}() won't be called
1184 * for the VF EEH device.
1186 edev->in_error = false;
1187 dev->dev.archdata.edev = NULL;
1188 if (!(edev->pe->state & EEH_PE_KEEP))
1189 eeh_pe_tree_remove(edev);
1191 edev->mode |= EEH_DEV_DISCONNECTED;
1194 int eeh_unfreeze_pe(struct eeh_pe *pe)
1198 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1200 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1201 __func__, ret, pe->phb->global_number, pe->addr);
1205 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1207 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1208 __func__, ret, pe->phb->global_number, pe->addr);
1216 static struct pci_device_id eeh_reset_ids[] = {
1217 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1218 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1219 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1223 static int eeh_pe_change_owner(struct eeh_pe *pe)
1225 struct eeh_dev *edev, *tmp;
1226 struct pci_dev *pdev;
1227 struct pci_device_id *id;
1230 /* Check PE state */
1231 ret = eeh_ops->get_state(pe, NULL);
1232 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1235 /* Unfrozen PE, nothing to do */
1236 if (eeh_state_active(ret))
1239 /* Frozen PE, check if it needs PE level reset */
1240 eeh_pe_for_each_dev(pe, edev, tmp) {
1241 pdev = eeh_dev_to_pci_dev(edev);
1245 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1246 if (id->vendor != PCI_ANY_ID &&
1247 id->vendor != pdev->vendor)
1249 if (id->device != PCI_ANY_ID &&
1250 id->device != pdev->device)
1252 if (id->subvendor != PCI_ANY_ID &&
1253 id->subvendor != pdev->subsystem_vendor)
1255 if (id->subdevice != PCI_ANY_ID &&
1256 id->subdevice != pdev->subsystem_device)
1259 return eeh_pe_reset_and_recover(pe);
1263 ret = eeh_unfreeze_pe(pe);
1265 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1270 * eeh_dev_open - Increase count of pass through devices for PE
1273 * Increase count of passed through devices for the indicated
1274 * PE. In the result, the EEH errors detected on the PE won't be
1275 * reported. The PE owner will be responsible for detection
1278 int eeh_dev_open(struct pci_dev *pdev)
1280 struct eeh_dev *edev;
1283 mutex_lock(&eeh_dev_mutex);
1285 /* No PCI device ? */
1289 /* No EEH device or PE ? */
1290 edev = pci_dev_to_eeh_dev(pdev);
1291 if (!edev || !edev->pe)
1295 * The PE might have been put into frozen state, but we
1296 * didn't detect that yet. The passed through PCI devices
1297 * in frozen PE won't work properly. Clear the frozen state
1300 ret = eeh_pe_change_owner(edev->pe);
1304 /* Increase PE's pass through count */
1305 atomic_inc(&edev->pe->pass_dev_cnt);
1306 mutex_unlock(&eeh_dev_mutex);
1310 mutex_unlock(&eeh_dev_mutex);
1313 EXPORT_SYMBOL_GPL(eeh_dev_open);
1316 * eeh_dev_release - Decrease count of pass through devices for PE
1319 * Decrease count of pass through devices for the indicated PE. If
1320 * there is no passed through device in PE, the EEH errors detected
1321 * on the PE will be reported and handled as usual.
1323 void eeh_dev_release(struct pci_dev *pdev)
1325 struct eeh_dev *edev;
1327 mutex_lock(&eeh_dev_mutex);
1329 /* No PCI device ? */
1333 /* No EEH device ? */
1334 edev = pci_dev_to_eeh_dev(pdev);
1335 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1338 /* Decrease PE's pass through count */
1339 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1340 eeh_pe_change_owner(edev->pe);
1342 mutex_unlock(&eeh_dev_mutex);
1344 EXPORT_SYMBOL(eeh_dev_release);
1346 #ifdef CONFIG_IOMMU_API
1348 static int dev_has_iommu_table(struct device *dev, void *data)
1350 struct pci_dev *pdev = to_pci_dev(dev);
1351 struct pci_dev **ppdev = data;
1356 if (device_iommu_mapped(dev)) {
1365 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1366 * @group: IOMMU group
1368 * The routine is called to convert IOMMU group to EEH PE.
1370 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1372 struct pci_dev *pdev = NULL;
1373 struct eeh_dev *edev;
1376 /* No IOMMU group ? */
1380 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1384 /* No EEH device or PE ? */
1385 edev = pci_dev_to_eeh_dev(pdev);
1386 if (!edev || !edev->pe)
1391 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1393 #endif /* CONFIG_IOMMU_API */
1396 * eeh_pe_set_option - Set options for the indicated PE
1398 * @option: requested option
1400 * The routine is called to enable or disable EEH functionality
1401 * on the indicated PE, to enable IO or DMA for the frozen PE.
1403 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1412 * EEH functionality could possibly be disabled, just
1413 * return error for the case. And the EEH functinality
1414 * isn't expected to be disabled on one specific PE.
1417 case EEH_OPT_ENABLE:
1418 if (eeh_enabled()) {
1419 ret = eeh_pe_change_owner(pe);
1424 case EEH_OPT_DISABLE:
1426 case EEH_OPT_THAW_MMIO:
1427 case EEH_OPT_THAW_DMA:
1428 case EEH_OPT_FREEZE_PE:
1429 if (!eeh_ops || !eeh_ops->set_option) {
1434 ret = eeh_pci_enable(pe, option);
1437 pr_debug("%s: Option %d out of range (%d, %d)\n",
1438 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1444 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1447 * eeh_pe_get_state - Retrieve PE's state
1450 * Retrieve the PE's state, which includes 3 aspects: enabled
1451 * DMA, enabled IO and asserted reset.
1453 int eeh_pe_get_state(struct eeh_pe *pe)
1455 int result, ret = 0;
1456 bool rst_active, dma_en, mmio_en;
1462 if (!eeh_ops || !eeh_ops->get_state)
1466 * If the parent PE is owned by the host kernel and is undergoing
1467 * error recovery, we should return the PE state as temporarily
1468 * unavailable so that the error recovery on the guest is suspended
1469 * until the recovery completes on the host.
1472 !(pe->state & EEH_PE_REMOVED) &&
1473 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1474 return EEH_PE_STATE_UNAVAIL;
1476 result = eeh_ops->get_state(pe, NULL);
1477 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1478 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1479 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1482 ret = EEH_PE_STATE_RESET;
1483 else if (dma_en && mmio_en)
1484 ret = EEH_PE_STATE_NORMAL;
1485 else if (!dma_en && !mmio_en)
1486 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1487 else if (!dma_en && mmio_en)
1488 ret = EEH_PE_STATE_STOPPED_DMA;
1490 ret = EEH_PE_STATE_UNAVAIL;
1494 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1496 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1498 struct eeh_dev *edev, *tmp;
1499 struct pci_dev *pdev;
1502 eeh_pe_restore_bars(pe);
1505 * Reenable PCI devices as the devices passed
1506 * through are always enabled before the reset.
1508 eeh_pe_for_each_dev(pe, edev, tmp) {
1509 pdev = eeh_dev_to_pci_dev(edev);
1513 ret = pci_reenable_device(pdev);
1515 pr_warn("%s: Failure %d reenabling %s\n",
1516 __func__, ret, pci_name(pdev));
1521 /* The PE is still in frozen state */
1522 if (include_passed || !eeh_pe_passed(pe)) {
1523 ret = eeh_unfreeze_pe(pe);
1525 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1526 pe->phb->global_number, pe->addr);
1528 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1534 * eeh_pe_reset - Issue PE reset according to specified type
1536 * @option: reset type
1538 * The routine is called to reset the specified PE with the
1539 * indicated type, either fundamental reset or hot reset.
1540 * PE reset is the most important part for error recovery.
1542 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1550 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1554 case EEH_RESET_DEACTIVATE:
1555 ret = eeh_ops->reset(pe, option);
1556 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1560 ret = eeh_pe_reenable_devices(pe, include_passed);
1563 case EEH_RESET_FUNDAMENTAL:
1565 * Proactively freeze the PE to drop all MMIO access
1566 * during reset, which should be banned as it's always
1567 * cause recursive EEH error.
1569 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1571 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1572 ret = eeh_ops->reset(pe, option);
1575 pr_debug("%s: Unsupported option %d\n",
1582 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1585 * eeh_pe_configure - Configure PCI bridges after PE reset
1588 * The routine is called to restore the PCI config space for
1589 * those PCI devices, especially PCI bridges affected by PE
1590 * reset issued previously.
1592 int eeh_pe_configure(struct eeh_pe *pe)
1602 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1605 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1606 * @pe: the indicated PE
1608 * @function: error function
1610 * @mask: address mask
1612 * The routine is called to inject the specified PCI error, which
1613 * is determined by @type and @function, to the indicated PE for
1616 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1617 unsigned long addr, unsigned long mask)
1623 /* Unsupported operation ? */
1624 if (!eeh_ops || !eeh_ops->err_inject)
1627 /* Check on PCI error type */
1628 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1631 /* Check on PCI error function */
1632 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1635 return eeh_ops->err_inject(pe, type, func, addr, mask);
1637 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1639 static int proc_eeh_show(struct seq_file *m, void *v)
1641 if (!eeh_enabled()) {
1642 seq_printf(m, "EEH Subsystem is globally disabled\n");
1643 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1645 seq_printf(m, "EEH Subsystem is enabled\n");
1648 "no device node=%llu\n"
1649 "no config address=%llu\n"
1650 "check not wanted=%llu\n"
1651 "eeh_total_mmio_ffs=%llu\n"
1652 "eeh_false_positives=%llu\n"
1653 "eeh_slot_resets=%llu\n",
1654 eeh_stats.no_device,
1656 eeh_stats.no_cfg_addr,
1657 eeh_stats.ignored_check,
1658 eeh_stats.total_mmio_ffs,
1659 eeh_stats.false_positives,
1660 eeh_stats.slot_resets);
1666 #ifdef CONFIG_DEBUG_FS
1667 static int eeh_enable_dbgfs_set(void *data, u64 val)
1670 eeh_clear_flag(EEH_FORCE_DISABLED);
1672 eeh_add_flag(EEH_FORCE_DISABLED);
1677 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1686 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1687 eeh_enable_dbgfs_set, "0x%llx\n");
1689 static ssize_t eeh_force_recover_write(struct file *filp,
1690 const char __user *user_buf,
1691 size_t count, loff_t *ppos)
1693 struct pci_controller *hose;
1694 uint32_t phbid, pe_no;
1699 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1704 * When PE is NULL the event is a "special" event. Rather than
1705 * recovering a specific PE it forces the EEH core to scan for failed
1706 * PHBs and recovers each. This needs to be done before any device
1707 * recoveries can occur.
1709 if (!strncmp(buf, "hwcheck", 7)) {
1710 __eeh_send_failure_event(NULL);
1714 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1718 hose = pci_find_controller_for_domain(phbid);
1723 pe = eeh_pe_get(hose, pe_no, 0);
1728 * We don't do any state checking here since the detection
1729 * process is async to the recovery process. The recovery
1730 * thread *should* not break even if we schedule a recovery
1731 * from an odd state (e.g. PE removed, or recovery of a
1734 __eeh_send_failure_event(pe);
1736 return ret < 0 ? ret : count;
1739 static const struct file_operations eeh_force_recover_fops = {
1740 .open = simple_open,
1741 .llseek = no_llseek,
1742 .write = eeh_force_recover_write,
1745 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1746 char __user *user_buf,
1747 size_t count, loff_t *ppos)
1749 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1751 return simple_read_from_buffer(user_buf, count, ppos,
1752 usage, sizeof(usage) - 1);
1755 static ssize_t eeh_dev_check_write(struct file *filp,
1756 const char __user *user_buf,
1757 size_t count, loff_t *ppos)
1759 uint32_t domain, bus, dev, fn;
1760 struct pci_dev *pdev;
1761 struct eeh_dev *edev;
1765 memset(buf, 0, sizeof(buf));
1766 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1770 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1772 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1776 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1780 edev = pci_dev_to_eeh_dev(pdev);
1782 pci_err(pdev, "No eeh_dev for this device!\n");
1787 ret = eeh_dev_check_failure(edev);
1788 pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1789 domain, bus, dev, fn, ret);
1796 static const struct file_operations eeh_dev_check_fops = {
1797 .open = simple_open,
1798 .llseek = no_llseek,
1799 .write = eeh_dev_check_write,
1800 .read = eeh_debugfs_dev_usage,
1803 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1805 struct resource *bar = NULL;
1806 void __iomem *mapped;
1810 /* Do we have an MMIO BAR to disable? */
1811 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1812 struct resource *r = &pdev->resource[i];
1814 if (!r->flags || !r->start)
1816 if (r->flags & IORESOURCE_IO)
1818 if (r->flags & IORESOURCE_UNSET)
1826 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1830 pci_err(pdev, "Going to break: %pR\n", bar);
1832 if (pdev->is_virtfn) {
1833 #ifndef CONFIG_PCI_IOV
1837 * VFs don't have a per-function COMMAND register, so the best
1838 * we can do is clear the Memory Space Enable bit in the PF's
1839 * SRIOV control reg.
1841 * Unfortunately, this requires that we have a PF (i.e doesn't
1842 * work for a passed-through VF) and it has the potential side
1843 * effect of also causing an EEH on every other VF under the
1846 pdev = pdev->physfn;
1848 return -ENXIO; /* passed through VFs have no PF */
1850 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1851 pos += PCI_SRIOV_CTRL;
1852 bit = PCI_SRIOV_CTRL_MSE;
1853 #endif /* !CONFIG_PCI_IOV */
1855 bit = PCI_COMMAND_MEMORY;
1862 * 1. Disable Memory space.
1864 * 2. Perform an MMIO to the device. This should result in an error
1865 * (CA / UR) being raised by the device which results in an EEH
1866 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1867 * so the freeze hook so the EEH Detection machinery won't be
1868 * triggered here. This is to match the usual behaviour of EEH
1869 * where the HW will asyncronously freeze a PE and it's up to
1870 * the kernel to notice and deal with it.
1872 * 3. Turn Memory space back on. This is more important for VFs
1873 * since recovery will probably fail if we don't. For normal
1874 * the COMMAND register is reset as a part of re-initialising
1877 * Breaking stuff is the point so who cares if it's racy ;)
1879 pci_read_config_word(pdev, pos, &old);
1881 mapped = ioremap(bar->start, PAGE_SIZE);
1883 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1887 pci_write_config_word(pdev, pos, old & ~bit);
1889 pci_write_config_word(pdev, pos, old);
1896 static ssize_t eeh_dev_break_write(struct file *filp,
1897 const char __user *user_buf,
1898 size_t count, loff_t *ppos)
1900 uint32_t domain, bus, dev, fn;
1901 struct pci_dev *pdev;
1905 memset(buf, 0, sizeof(buf));
1906 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1910 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1912 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1916 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1920 ret = eeh_debugfs_break_device(pdev);
1929 static const struct file_operations eeh_dev_break_fops = {
1930 .open = simple_open,
1931 .llseek = no_llseek,
1932 .write = eeh_dev_break_write,
1933 .read = eeh_debugfs_dev_usage,
1938 static int __init eeh_init_proc(void)
1940 if (machine_is(pseries) || machine_is(powernv)) {
1941 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1942 #ifdef CONFIG_DEBUG_FS
1943 debugfs_create_file_unsafe("eeh_enable", 0600,
1944 powerpc_debugfs_root, NULL,
1945 &eeh_enable_dbgfs_ops);
1946 debugfs_create_u32("eeh_max_freezes", 0600,
1947 powerpc_debugfs_root, &eeh_max_freezes);
1948 debugfs_create_bool("eeh_disable_recovery", 0600,
1949 powerpc_debugfs_root,
1950 &eeh_debugfs_no_recover);
1951 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1952 powerpc_debugfs_root, NULL,
1953 &eeh_dev_check_fops);
1954 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1955 powerpc_debugfs_root, NULL,
1956 &eeh_dev_break_fops);
1957 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1958 powerpc_debugfs_root, NULL,
1959 &eeh_force_recover_fops);
1960 eeh_cache_debugfs_init();
1966 __initcall(eeh_init_proc);