1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/dma-mapping.c
5 * Copyright (C) 2000-2004 Russell King
7 * DMA uncached mapping support.
9 #include <linux/module.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
44 struct arm_dma_alloc_args {
54 struct arm_dma_free_args {
65 struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
71 struct arm_dma_buffer {
72 struct list_head list;
74 struct arm_dma_allocator *allocator;
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 struct arm_dma_buffer *buf, *found = NULL;
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
122 * Ensure that any data held in the cache is appropriately discarded
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
183 * Return whether the given device DMA address mask can be supported
184 * properly. For example, if your device can only drive the low 24-bits
185 * during bus mastering, then you would pass 0x00ffffff as the mask
188 static int arm_dma_supported(struct device *dev, u64 mask)
190 unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
193 * Translate the device's DMA mask to a PFN limit. This
194 * PFN number includes the page which we can DMA to.
196 return dma_to_pfn(dev, mask) >= max_dma_pfn;
199 const struct dma_map_ops arm_dma_ops = {
200 .alloc = arm_dma_alloc,
201 .free = arm_dma_free,
202 .mmap = arm_dma_mmap,
203 .get_sgtable = arm_dma_get_sgtable,
204 .map_page = arm_dma_map_page,
205 .unmap_page = arm_dma_unmap_page,
206 .map_sg = arm_dma_map_sg,
207 .unmap_sg = arm_dma_unmap_sg,
208 .map_resource = dma_direct_map_resource,
209 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
210 .sync_single_for_device = arm_dma_sync_single_for_device,
211 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
212 .sync_sg_for_device = arm_dma_sync_sg_for_device,
213 .dma_supported = arm_dma_supported,
214 .get_required_mask = dma_direct_get_required_mask,
216 EXPORT_SYMBOL(arm_dma_ops);
218 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
219 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
220 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
221 dma_addr_t handle, unsigned long attrs);
222 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
223 void *cpu_addr, dma_addr_t dma_addr, size_t size,
224 unsigned long attrs);
226 const struct dma_map_ops arm_coherent_dma_ops = {
227 .alloc = arm_coherent_dma_alloc,
228 .free = arm_coherent_dma_free,
229 .mmap = arm_coherent_dma_mmap,
230 .get_sgtable = arm_dma_get_sgtable,
231 .map_page = arm_coherent_dma_map_page,
232 .map_sg = arm_dma_map_sg,
233 .map_resource = dma_direct_map_resource,
234 .dma_supported = arm_dma_supported,
235 .get_required_mask = dma_direct_get_required_mask,
237 EXPORT_SYMBOL(arm_coherent_dma_ops);
239 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
242 * Ensure that the allocated pages are zeroed, and that any data
243 * lurking in the kernel direct-mapped region is invalidated.
245 if (PageHighMem(page)) {
246 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
247 phys_addr_t end = base + size;
249 void *ptr = kmap_atomic(page);
250 memset(ptr, 0, PAGE_SIZE);
251 if (coherent_flag != COHERENT)
252 dmac_flush_range(ptr, ptr + PAGE_SIZE);
257 if (coherent_flag != COHERENT)
258 outer_flush_range(base, end);
260 void *ptr = page_address(page);
261 memset(ptr, 0, size);
262 if (coherent_flag != COHERENT) {
263 dmac_flush_range(ptr, ptr + size);
264 outer_flush_range(__pa(ptr), __pa(ptr) + size);
270 * Allocate a DMA buffer for 'dev' of size 'size' using the
271 * specified gfp mask. Note that 'size' must be page aligned.
273 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
274 gfp_t gfp, int coherent_flag)
276 unsigned long order = get_order(size);
277 struct page *page, *p, *e;
279 page = alloc_pages(gfp, order);
284 * Now split the huge page and free the excess pages
286 split_page(page, order);
287 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
290 __dma_clear_buffer(page, size, coherent_flag);
296 * Free a DMA buffer. 'size' must be page aligned.
298 static void __dma_free_buffer(struct page *page, size_t size)
300 struct page *e = page + (size >> PAGE_SHIFT);
308 static void *__alloc_from_contiguous(struct device *dev, size_t size,
309 pgprot_t prot, struct page **ret_page,
310 const void *caller, bool want_vaddr,
311 int coherent_flag, gfp_t gfp);
313 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
314 pgprot_t prot, struct page **ret_page,
315 const void *caller, bool want_vaddr);
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
318 static struct gen_pool *atomic_pool __ro_after_init;
320 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
322 static int __init early_coherent_pool(char *p)
324 atomic_pool_size = memparse(p, &p);
327 early_param("coherent_pool", early_coherent_pool);
330 * Initialise the coherent pool for atomic allocations.
332 static int __init atomic_pool_init(void)
334 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
335 gfp_t gfp = GFP_KERNEL | GFP_DMA;
339 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
343 * The atomic pool is only used for non-coherent allocations
344 * so we must pass NORMAL for coherent_flag.
346 if (dev_get_cma_area(NULL))
347 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
348 &page, atomic_pool_init, true, NORMAL,
351 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
352 &page, atomic_pool_init, true);
356 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
358 atomic_pool_size, -1);
360 goto destroy_genpool;
362 gen_pool_set_algo(atomic_pool,
363 gen_pool_first_fit_order_align,
365 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
366 atomic_pool_size / 1024);
371 gen_pool_destroy(atomic_pool);
374 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
375 atomic_pool_size / 1024);
379 * CMA is activated by core_initcall, so we must be called after it.
381 postcore_initcall(atomic_pool_init);
383 struct dma_contig_early_reserve {
388 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
390 static int dma_mmu_remap_num __initdata;
392 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
394 dma_mmu_remap[dma_mmu_remap_num].base = base;
395 dma_mmu_remap[dma_mmu_remap_num].size = size;
399 void __init dma_contiguous_remap(void)
402 for (i = 0; i < dma_mmu_remap_num; i++) {
403 phys_addr_t start = dma_mmu_remap[i].base;
404 phys_addr_t end = start + dma_mmu_remap[i].size;
408 if (end > arm_lowmem_limit)
409 end = arm_lowmem_limit;
413 map.pfn = __phys_to_pfn(start);
414 map.virtual = __phys_to_virt(start);
415 map.length = end - start;
416 map.type = MT_MEMORY_DMA_READY;
419 * Clear previous low-memory mapping to ensure that the
420 * TLB does not see any conflicting entries, then flush
421 * the TLB of the old entries before creating new mappings.
423 * This ensures that any speculatively loaded TLB entries
424 * (even though they may be rare) can not cause any problems,
425 * and ensures that this code is architecturally compliant.
427 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
429 pmd_clear(pmd_off_k(addr));
431 flush_tlb_kernel_range(__phys_to_virt(start),
432 __phys_to_virt(end));
434 iotable_init(&map, 1);
438 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
440 struct page *page = virt_to_page(addr);
441 pgprot_t prot = *(pgprot_t *)data;
443 set_pte_ext(pte, mk_pte(page, prot), 0);
447 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
449 unsigned long start = (unsigned long) page_address(page);
450 unsigned end = start + size;
452 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
453 flush_tlb_kernel_range(start, end);
456 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
457 pgprot_t prot, struct page **ret_page,
458 const void *caller, bool want_vaddr)
463 * __alloc_remap_buffer is only called when the device is
466 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
472 ptr = dma_common_contiguous_remap(page, size, prot, caller);
474 __dma_free_buffer(page, size);
483 static void *__alloc_from_pool(size_t size, struct page **ret_page)
489 WARN(1, "coherent pool not initialised!\n");
493 val = gen_pool_alloc(atomic_pool, size);
495 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
497 *ret_page = phys_to_page(phys);
504 static bool __in_atomic_pool(void *start, size_t size)
506 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
509 static int __free_from_pool(void *start, size_t size)
511 if (!__in_atomic_pool(start, size))
514 gen_pool_free(atomic_pool, (unsigned long)start, size);
519 static void *__alloc_from_contiguous(struct device *dev, size_t size,
520 pgprot_t prot, struct page **ret_page,
521 const void *caller, bool want_vaddr,
522 int coherent_flag, gfp_t gfp)
524 unsigned long order = get_order(size);
525 size_t count = size >> PAGE_SHIFT;
529 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
533 __dma_clear_buffer(page, size, coherent_flag);
538 if (PageHighMem(page)) {
539 ptr = dma_common_contiguous_remap(page, size, prot, caller);
541 dma_release_from_contiguous(dev, page, count);
545 __dma_remap(page, size, prot);
546 ptr = page_address(page);
554 static void __free_from_contiguous(struct device *dev, struct page *page,
555 void *cpu_addr, size_t size, bool want_vaddr)
558 if (PageHighMem(page))
559 dma_common_free_remap(cpu_addr, size);
561 __dma_remap(page, size, PAGE_KERNEL);
563 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
566 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
568 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
569 pgprot_writecombine(prot) :
570 pgprot_dmacoherent(prot);
574 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
575 struct page **ret_page)
578 /* __alloc_simple_buffer is only called when the device is coherent */
579 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
584 return page_address(page);
587 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
588 struct page **ret_page)
590 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
594 static void simple_allocator_free(struct arm_dma_free_args *args)
596 __dma_free_buffer(args->page, args->size);
599 static struct arm_dma_allocator simple_allocator = {
600 .alloc = simple_allocator_alloc,
601 .free = simple_allocator_free,
604 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
605 struct page **ret_page)
607 return __alloc_from_contiguous(args->dev, args->size, args->prot,
608 ret_page, args->caller,
609 args->want_vaddr, args->coherent_flag,
613 static void cma_allocator_free(struct arm_dma_free_args *args)
615 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
616 args->size, args->want_vaddr);
619 static struct arm_dma_allocator cma_allocator = {
620 .alloc = cma_allocator_alloc,
621 .free = cma_allocator_free,
624 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
625 struct page **ret_page)
627 return __alloc_from_pool(args->size, ret_page);
630 static void pool_allocator_free(struct arm_dma_free_args *args)
632 __free_from_pool(args->cpu_addr, args->size);
635 static struct arm_dma_allocator pool_allocator = {
636 .alloc = pool_allocator_alloc,
637 .free = pool_allocator_free,
640 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
641 struct page **ret_page)
643 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
644 args->prot, ret_page, args->caller,
648 static void remap_allocator_free(struct arm_dma_free_args *args)
650 if (args->want_vaddr)
651 dma_common_free_remap(args->cpu_addr, args->size);
653 __dma_free_buffer(args->page, args->size);
656 static struct arm_dma_allocator remap_allocator = {
657 .alloc = remap_allocator_alloc,
658 .free = remap_allocator_free,
661 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
662 gfp_t gfp, pgprot_t prot, bool is_coherent,
663 unsigned long attrs, const void *caller)
665 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
666 struct page *page = NULL;
668 bool allowblock, cma;
669 struct arm_dma_buffer *buf;
670 struct arm_dma_alloc_args args = {
672 .size = PAGE_ALIGN(size),
676 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
677 .coherent_flag = is_coherent ? COHERENT : NORMAL,
680 #ifdef CONFIG_DMA_API_DEBUG
681 u64 limit = (mask + 1) & ~mask;
682 if (limit && size >= limit) {
683 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
689 buf = kzalloc(sizeof(*buf),
690 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
694 if (mask < 0xffffffffULL)
698 * Following is a work-around (a.k.a. hack) to prevent pages
699 * with __GFP_COMP being passed to split_page() which cannot
700 * handle them. The real problem is that this flag probably
701 * should be 0 on ARM as it is not supported on this
702 * platform; see CONFIG_HUGETLBFS.
704 gfp &= ~(__GFP_COMP);
707 *handle = DMA_MAPPING_ERROR;
708 allowblock = gfpflags_allow_blocking(gfp);
709 cma = allowblock ? dev_get_cma_area(dev) : false;
712 buf->allocator = &cma_allocator;
713 else if (is_coherent)
714 buf->allocator = &simple_allocator;
716 buf->allocator = &remap_allocator;
718 buf->allocator = &pool_allocator;
720 addr = buf->allocator->alloc(&args, &page);
725 *handle = pfn_to_dma(dev, page_to_pfn(page));
726 buf->virt = args.want_vaddr ? addr : page;
728 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
729 list_add(&buf->list, &arm_dma_bufs);
730 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
735 return args.want_vaddr ? addr : page;
739 * Allocate DMA-coherent memory space and return both the kernel remapped
740 * virtual and bus address for that space.
742 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
743 gfp_t gfp, unsigned long attrs)
745 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
747 return __dma_alloc(dev, size, handle, gfp, prot, false,
748 attrs, __builtin_return_address(0));
751 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
752 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
754 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
755 attrs, __builtin_return_address(0));
758 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
759 void *cpu_addr, dma_addr_t dma_addr, size_t size,
763 unsigned long nr_vma_pages = vma_pages(vma);
764 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
765 unsigned long pfn = dma_to_pfn(dev, dma_addr);
766 unsigned long off = vma->vm_pgoff;
768 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
771 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
772 ret = remap_pfn_range(vma, vma->vm_start,
774 vma->vm_end - vma->vm_start,
782 * Create userspace mapping for the DMA-coherent memory.
784 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
785 void *cpu_addr, dma_addr_t dma_addr, size_t size,
788 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
791 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
792 void *cpu_addr, dma_addr_t dma_addr, size_t size,
795 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
796 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
800 * Free a buffer as defined by the above mapping.
802 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
803 dma_addr_t handle, unsigned long attrs,
806 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
807 struct arm_dma_buffer *buf;
808 struct arm_dma_free_args args = {
810 .size = PAGE_ALIGN(size),
811 .cpu_addr = cpu_addr,
813 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
816 buf = arm_dma_buffer_find(cpu_addr);
817 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
820 buf->allocator->free(&args);
824 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
825 dma_addr_t handle, unsigned long attrs)
827 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
830 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
831 dma_addr_t handle, unsigned long attrs)
833 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
836 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
837 void *cpu_addr, dma_addr_t handle, size_t size,
840 unsigned long pfn = dma_to_pfn(dev, handle);
844 /* If the PFN is not valid, we do not have a struct page */
848 page = pfn_to_page(pfn);
850 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
854 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
858 static void dma_cache_maint_page(struct page *page, unsigned long offset,
859 size_t size, enum dma_data_direction dir,
860 void (*op)(const void *, size_t, int))
865 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
869 * A single sg entry may refer to multiple physically contiguous
870 * pages. But we still need to process highmem pages individually.
871 * If highmem is not configured then the bulk of this loop gets
878 page = pfn_to_page(pfn);
880 if (PageHighMem(page)) {
881 if (len + offset > PAGE_SIZE)
882 len = PAGE_SIZE - offset;
884 if (cache_is_vipt_nonaliasing()) {
885 vaddr = kmap_atomic(page);
886 op(vaddr + offset, len, dir);
887 kunmap_atomic(vaddr);
889 vaddr = kmap_high_get(page);
891 op(vaddr + offset, len, dir);
896 vaddr = page_address(page) + offset;
906 * Make an area consistent for devices.
907 * Note: Drivers should NOT use this function directly, as it will break
908 * platforms with CONFIG_DMABOUNCE.
909 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
911 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
912 size_t size, enum dma_data_direction dir)
916 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
918 paddr = page_to_phys(page) + off;
919 if (dir == DMA_FROM_DEVICE) {
920 outer_inv_range(paddr, paddr + size);
922 outer_clean_range(paddr, paddr + size);
924 /* FIXME: non-speculating: flush on bidirectional mappings? */
927 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
928 size_t size, enum dma_data_direction dir)
930 phys_addr_t paddr = page_to_phys(page) + off;
932 /* FIXME: non-speculating: not required */
933 /* in any case, don't bother invalidating if DMA to device */
934 if (dir != DMA_TO_DEVICE) {
935 outer_inv_range(paddr, paddr + size);
937 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
941 * Mark the D-cache clean for these pages to avoid extra flushing.
943 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
947 pfn = page_to_pfn(page) + off / PAGE_SIZE;
951 left -= PAGE_SIZE - off;
953 while (left >= PAGE_SIZE) {
954 page = pfn_to_page(pfn++);
955 set_bit(PG_dcache_clean, &page->flags);
962 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
963 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
964 * @sg: list of buffers
965 * @nents: number of buffers to map
966 * @dir: DMA transfer direction
968 * Map a set of buffers described by scatterlist in streaming mode for DMA.
969 * This is the scatter-gather version of the dma_map_single interface.
970 * Here the scatter gather list elements are each tagged with the
971 * appropriate dma address and length. They are obtained via
972 * sg_dma_{address,length}.
974 * Device ownership issues as mentioned for dma_map_single are the same
977 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
978 enum dma_data_direction dir, unsigned long attrs)
980 const struct dma_map_ops *ops = get_dma_ops(dev);
981 struct scatterlist *s;
984 for_each_sg(sg, s, nents, i) {
985 #ifdef CONFIG_NEED_SG_DMA_LENGTH
986 s->dma_length = s->length;
988 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
989 s->length, dir, attrs);
990 if (dma_mapping_error(dev, s->dma_address))
996 for_each_sg(sg, s, i, j)
997 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1002 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004 * @sg: list of buffers
1005 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1008 * Unmap a set of streaming mode DMA translations. Again, CPU access
1009 * rules concerning calls here are the same as for dma_unmap_single().
1011 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1012 enum dma_data_direction dir, unsigned long attrs)
1014 const struct dma_map_ops *ops = get_dma_ops(dev);
1015 struct scatterlist *s;
1019 for_each_sg(sg, s, nents, i)
1020 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1024 * arm_dma_sync_sg_for_cpu
1025 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026 * @sg: list of buffers
1027 * @nents: number of buffers to map (returned from dma_map_sg)
1028 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1030 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1031 int nents, enum dma_data_direction dir)
1033 const struct dma_map_ops *ops = get_dma_ops(dev);
1034 struct scatterlist *s;
1037 for_each_sg(sg, s, nents, i)
1038 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1043 * arm_dma_sync_sg_for_device
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map (returned from dma_map_sg)
1047 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1049 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1050 int nents, enum dma_data_direction dir)
1052 const struct dma_map_ops *ops = get_dma_ops(dev);
1053 struct scatterlist *s;
1056 for_each_sg(sg, s, nents, i)
1057 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1061 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1064 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065 * 32-bits, which then can't be addressed by devices that only support
1067 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068 * handles bounce buffering for us.
1070 if (IS_ENABLED(CONFIG_ARM_LPAE))
1072 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1075 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1077 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1081 if (attrs & DMA_ATTR_PRIVILEGED)
1085 case DMA_BIDIRECTIONAL:
1086 return prot | IOMMU_READ | IOMMU_WRITE;
1088 return prot | IOMMU_READ;
1089 case DMA_FROM_DEVICE:
1090 return prot | IOMMU_WRITE;
1098 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1100 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1103 unsigned int order = get_order(size);
1104 unsigned int align = 0;
1105 unsigned int count, start;
1106 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1107 unsigned long flags;
1111 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1112 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1114 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1115 align = (1 << order) - 1;
1117 spin_lock_irqsave(&mapping->lock, flags);
1118 for (i = 0; i < mapping->nr_bitmaps; i++) {
1119 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1120 mapping->bits, 0, count, align);
1122 if (start > mapping->bits)
1125 bitmap_set(mapping->bitmaps[i], start, count);
1130 * No unused range found. Try to extend the existing mapping
1131 * and perform a second attempt to reserve an IO virtual
1132 * address range of size bytes.
1134 if (i == mapping->nr_bitmaps) {
1135 if (extend_iommu_mapping(mapping)) {
1136 spin_unlock_irqrestore(&mapping->lock, flags);
1137 return DMA_MAPPING_ERROR;
1140 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1141 mapping->bits, 0, count, align);
1143 if (start > mapping->bits) {
1144 spin_unlock_irqrestore(&mapping->lock, flags);
1145 return DMA_MAPPING_ERROR;
1148 bitmap_set(mapping->bitmaps[i], start, count);
1150 spin_unlock_irqrestore(&mapping->lock, flags);
1152 iova = mapping->base + (mapping_size * i);
1153 iova += start << PAGE_SHIFT;
1158 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1159 dma_addr_t addr, size_t size)
1161 unsigned int start, count;
1162 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163 unsigned long flags;
1164 dma_addr_t bitmap_base;
1170 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1171 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1173 bitmap_base = mapping->base + mapping_size * bitmap_index;
1175 start = (addr - bitmap_base) >> PAGE_SHIFT;
1177 if (addr + size > bitmap_base + mapping_size) {
1179 * The address range to be freed reaches into the iova
1180 * range of the next bitmap. This should not happen as
1181 * we don't allow this in __alloc_iova (at the
1186 count = size >> PAGE_SHIFT;
1188 spin_lock_irqsave(&mapping->lock, flags);
1189 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1193 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1196 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1197 gfp_t gfp, unsigned long attrs,
1200 struct page **pages;
1201 int count = size >> PAGE_SHIFT;
1202 int array_size = count * sizeof(struct page *);
1206 if (array_size <= PAGE_SIZE)
1207 pages = kzalloc(array_size, GFP_KERNEL);
1209 pages = vzalloc(array_size);
1213 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1215 unsigned long order = get_order(size);
1218 page = dma_alloc_from_contiguous(dev, count, order,
1219 gfp & __GFP_NOWARN);
1223 __dma_clear_buffer(page, size, coherent_flag);
1225 for (i = 0; i < count; i++)
1226 pages[i] = page + i;
1231 /* Go straight to 4K chunks if caller says it's OK. */
1232 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1233 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1236 * IOMMU can map any pages, so himem can also be used here
1238 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1243 order = iommu_order_array[order_idx];
1245 /* Drop down when we get small */
1246 if (__fls(count) < order) {
1252 /* See if it's easy to allocate a high-order chunk */
1253 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1255 /* Go down a notch at first sign of pressure */
1261 pages[i] = alloc_pages(gfp, 0);
1267 split_page(pages[i], order);
1270 pages[i + j] = pages[i] + j;
1273 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1275 count -= 1 << order;
1282 __free_pages(pages[i], 0);
1287 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1288 size_t size, unsigned long attrs)
1290 int count = size >> PAGE_SHIFT;
1293 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1294 dma_release_from_contiguous(dev, pages[0], count);
1296 for (i = 0; i < count; i++)
1298 __free_pages(pages[i], 0);
1306 * Create a mapping in device IO address space for specified pages
1309 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1310 unsigned long attrs)
1312 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1313 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1314 dma_addr_t dma_addr, iova;
1317 dma_addr = __alloc_iova(mapping, size);
1318 if (dma_addr == DMA_MAPPING_ERROR)
1322 for (i = 0; i < count; ) {
1325 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1326 phys_addr_t phys = page_to_phys(pages[i]);
1327 unsigned int len, j;
1329 for (j = i + 1; j < count; j++, next_pfn++)
1330 if (page_to_pfn(pages[j]) != next_pfn)
1333 len = (j - i) << PAGE_SHIFT;
1334 ret = iommu_map(mapping->domain, iova, phys, len,
1335 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1343 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1344 __free_iova(mapping, dma_addr, size);
1345 return DMA_MAPPING_ERROR;
1348 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1350 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 * add optional in-page offset from iova to size and align
1354 * result to page size
1356 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1359 iommu_unmap(mapping->domain, iova, size);
1360 __free_iova(mapping, iova, size);
1364 static struct page **__atomic_get_pages(void *addr)
1369 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1370 page = phys_to_page(phys);
1372 return (struct page **)page;
1375 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1377 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1378 return __atomic_get_pages(cpu_addr);
1380 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1383 return dma_common_find_pages(cpu_addr);
1386 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1387 dma_addr_t *handle, int coherent_flag,
1388 unsigned long attrs)
1393 if (coherent_flag == COHERENT)
1394 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1396 addr = __alloc_from_pool(size, &page);
1400 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1401 if (*handle == DMA_MAPPING_ERROR)
1407 __free_from_pool(addr, size);
1411 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1412 dma_addr_t handle, size_t size, int coherent_flag)
1414 __iommu_remove_mapping(dev, handle, size);
1415 if (coherent_flag == COHERENT)
1416 __dma_free_buffer(virt_to_page(cpu_addr), size);
1418 __free_from_pool(cpu_addr, size);
1421 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1422 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1425 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1426 struct page **pages;
1429 *handle = DMA_MAPPING_ERROR;
1430 size = PAGE_ALIGN(size);
1432 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1433 return __iommu_alloc_simple(dev, size, gfp, handle,
1434 coherent_flag, attrs);
1437 * Following is a work-around (a.k.a. hack) to prevent pages
1438 * with __GFP_COMP being passed to split_page() which cannot
1439 * handle them. The real problem is that this flag probably
1440 * should be 0 on ARM as it is not supported on this
1441 * platform; see CONFIG_HUGETLBFS.
1443 gfp &= ~(__GFP_COMP);
1445 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1449 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1450 if (*handle == DMA_MAPPING_ERROR)
1453 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1456 addr = dma_common_pages_remap(pages, size, prot,
1457 __builtin_return_address(0));
1464 __iommu_remove_mapping(dev, *handle, size);
1466 __iommu_free_buffer(dev, pages, size, attrs);
1470 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1471 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1473 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1476 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1477 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1479 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1482 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1483 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1484 unsigned long attrs)
1486 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1487 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1493 if (vma->vm_pgoff >= nr_pages)
1496 err = vm_map_pages(vma, pages, nr_pages);
1498 pr_err("Remapping memory failed: %d\n", err);
1502 static int arm_iommu_mmap_attrs(struct device *dev,
1503 struct vm_area_struct *vma, void *cpu_addr,
1504 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1506 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1508 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1511 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1512 struct vm_area_struct *vma, void *cpu_addr,
1513 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1515 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1519 * free a page as defined by the above mapping.
1520 * Must not be called with IRQs disabled.
1522 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1523 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1525 struct page **pages;
1526 size = PAGE_ALIGN(size);
1528 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1529 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1533 pages = __iommu_get_pages(cpu_addr, attrs);
1535 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1539 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1540 dma_common_free_remap(cpu_addr, size);
1542 __iommu_remove_mapping(dev, handle, size);
1543 __iommu_free_buffer(dev, pages, size, attrs);
1546 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1547 void *cpu_addr, dma_addr_t handle,
1548 unsigned long attrs)
1550 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1553 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1554 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1556 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1559 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1560 void *cpu_addr, dma_addr_t dma_addr,
1561 size_t size, unsigned long attrs)
1563 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1564 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1569 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1574 * Map a part of the scatter-gather list into contiguous io address space
1576 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1577 size_t size, dma_addr_t *handle,
1578 enum dma_data_direction dir, unsigned long attrs,
1581 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1582 dma_addr_t iova, iova_base;
1585 struct scatterlist *s;
1588 size = PAGE_ALIGN(size);
1589 *handle = DMA_MAPPING_ERROR;
1591 iova_base = iova = __alloc_iova(mapping, size);
1592 if (iova == DMA_MAPPING_ERROR)
1595 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1596 phys_addr_t phys = page_to_phys(sg_page(s));
1597 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1599 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1600 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1602 prot = __dma_info_to_prot(dir, attrs);
1604 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1607 count += len >> PAGE_SHIFT;
1610 *handle = iova_base;
1614 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1615 __free_iova(mapping, iova_base, size);
1619 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1620 enum dma_data_direction dir, unsigned long attrs,
1623 struct scatterlist *s = sg, *dma = sg, *start = sg;
1625 unsigned int offset = s->offset;
1626 unsigned int size = s->offset + s->length;
1627 unsigned int max = dma_get_max_seg_size(dev);
1629 for (i = 1; i < nents; i++) {
1632 s->dma_address = DMA_MAPPING_ERROR;
1635 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1636 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1637 dir, attrs, is_coherent) < 0)
1640 dma->dma_address += offset;
1641 dma->dma_length = size - offset;
1643 size = offset = s->offset;
1650 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1654 dma->dma_address += offset;
1655 dma->dma_length = size - offset;
1660 for_each_sg(sg, s, count, i)
1661 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1666 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667 * @dev: valid struct device pointer
1668 * @sg: list of buffers
1669 * @nents: number of buffers to map
1670 * @dir: DMA transfer direction
1672 * Map a set of i/o coherent buffers described by scatterlist in streaming
1673 * mode for DMA. The scatter gather list elements are merged together (if
1674 * possible) and tagged with the appropriate dma address and length. They are
1675 * obtained via sg_dma_{address,length}.
1677 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1678 int nents, enum dma_data_direction dir, unsigned long attrs)
1680 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1684 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685 * @dev: valid struct device pointer
1686 * @sg: list of buffers
1687 * @nents: number of buffers to map
1688 * @dir: DMA transfer direction
1690 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691 * The scatter gather list elements are merged together (if possible) and
1692 * tagged with the appropriate dma address and length. They are obtained via
1693 * sg_dma_{address,length}.
1695 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1696 int nents, enum dma_data_direction dir, unsigned long attrs)
1698 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1701 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1702 int nents, enum dma_data_direction dir,
1703 unsigned long attrs, bool is_coherent)
1705 struct scatterlist *s;
1708 for_each_sg(sg, s, nents, i) {
1710 __iommu_remove_mapping(dev, sg_dma_address(s),
1712 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1713 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1719 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720 * @dev: valid struct device pointer
1721 * @sg: list of buffers
1722 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1725 * Unmap a set of streaming mode DMA translations. Again, CPU access
1726 * rules concerning calls here are the same as for dma_unmap_single().
1728 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1729 struct scatterlist *sg, int nents, enum dma_data_direction dir,
1730 unsigned long attrs)
1732 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1736 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1742 * Unmap a set of streaming mode DMA translations. Again, CPU access
1743 * rules concerning calls here are the same as for dma_unmap_single().
1745 static void arm_iommu_unmap_sg(struct device *dev,
1746 struct scatterlist *sg, int nents,
1747 enum dma_data_direction dir,
1748 unsigned long attrs)
1750 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1754 * arm_iommu_sync_sg_for_cpu
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map (returned from dma_map_sg)
1758 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1760 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1761 struct scatterlist *sg,
1762 int nents, enum dma_data_direction dir)
1764 struct scatterlist *s;
1767 for_each_sg(sg, s, nents, i)
1768 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1773 * arm_iommu_sync_sg_for_device
1774 * @dev: valid struct device pointer
1775 * @sg: list of buffers
1776 * @nents: number of buffers to map (returned from dma_map_sg)
1777 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1779 static void arm_iommu_sync_sg_for_device(struct device *dev,
1780 struct scatterlist *sg,
1781 int nents, enum dma_data_direction dir)
1783 struct scatterlist *s;
1786 for_each_sg(sg, s, nents, i)
1787 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1792 * arm_coherent_iommu_map_page
1793 * @dev: valid struct device pointer
1794 * @page: page that buffer resides in
1795 * @offset: offset into page for start of buffer
1796 * @size: size of buffer to map
1797 * @dir: DMA transfer direction
1799 * Coherent IOMMU aware version of arm_dma_map_page()
1801 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1802 unsigned long offset, size_t size, enum dma_data_direction dir,
1803 unsigned long attrs)
1805 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1806 dma_addr_t dma_addr;
1807 int ret, prot, len = PAGE_ALIGN(size + offset);
1809 dma_addr = __alloc_iova(mapping, len);
1810 if (dma_addr == DMA_MAPPING_ERROR)
1813 prot = __dma_info_to_prot(dir, attrs);
1815 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1819 return dma_addr + offset;
1821 __free_iova(mapping, dma_addr, len);
1822 return DMA_MAPPING_ERROR;
1826 * arm_iommu_map_page
1827 * @dev: valid struct device pointer
1828 * @page: page that buffer resides in
1829 * @offset: offset into page for start of buffer
1830 * @size: size of buffer to map
1831 * @dir: DMA transfer direction
1833 * IOMMU aware version of arm_dma_map_page()
1835 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1836 unsigned long offset, size_t size, enum dma_data_direction dir,
1837 unsigned long attrs)
1839 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1840 __dma_page_cpu_to_dev(page, offset, size, dir);
1842 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1846 * arm_coherent_iommu_unmap_page
1847 * @dev: valid struct device pointer
1848 * @handle: DMA address of buffer
1849 * @size: size of buffer (same as passed to dma_map_page)
1850 * @dir: DMA transfer direction (same as passed to dma_map_page)
1852 * Coherent IOMMU aware version of arm_dma_unmap_page()
1854 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1855 size_t size, enum dma_data_direction dir, unsigned long attrs)
1857 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1858 dma_addr_t iova = handle & PAGE_MASK;
1859 int offset = handle & ~PAGE_MASK;
1860 int len = PAGE_ALIGN(size + offset);
1865 iommu_unmap(mapping->domain, iova, len);
1866 __free_iova(mapping, iova, len);
1870 * arm_iommu_unmap_page
1871 * @dev: valid struct device pointer
1872 * @handle: DMA address of buffer
1873 * @size: size of buffer (same as passed to dma_map_page)
1874 * @dir: DMA transfer direction (same as passed to dma_map_page)
1876 * IOMMU aware version of arm_dma_unmap_page()
1878 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1879 size_t size, enum dma_data_direction dir, unsigned long attrs)
1881 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1882 dma_addr_t iova = handle & PAGE_MASK;
1883 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884 int offset = handle & ~PAGE_MASK;
1885 int len = PAGE_ALIGN(size + offset);
1890 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1891 __dma_page_dev_to_cpu(page, offset, size, dir);
1893 iommu_unmap(mapping->domain, iova, len);
1894 __free_iova(mapping, iova, len);
1898 * arm_iommu_map_resource - map a device resource for DMA
1899 * @dev: valid struct device pointer
1900 * @phys_addr: physical address of resource
1901 * @size: size of resource to map
1902 * @dir: DMA transfer direction
1904 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1905 phys_addr_t phys_addr, size_t size,
1906 enum dma_data_direction dir, unsigned long attrs)
1908 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1909 dma_addr_t dma_addr;
1911 phys_addr_t addr = phys_addr & PAGE_MASK;
1912 unsigned int offset = phys_addr & ~PAGE_MASK;
1913 size_t len = PAGE_ALIGN(size + offset);
1915 dma_addr = __alloc_iova(mapping, len);
1916 if (dma_addr == DMA_MAPPING_ERROR)
1919 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1921 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1925 return dma_addr + offset;
1927 __free_iova(mapping, dma_addr, len);
1928 return DMA_MAPPING_ERROR;
1932 * arm_iommu_unmap_resource - unmap a device DMA resource
1933 * @dev: valid struct device pointer
1934 * @dma_handle: DMA address to resource
1935 * @size: size of resource to map
1936 * @dir: DMA transfer direction
1938 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1939 size_t size, enum dma_data_direction dir,
1940 unsigned long attrs)
1942 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1943 dma_addr_t iova = dma_handle & PAGE_MASK;
1944 unsigned int offset = dma_handle & ~PAGE_MASK;
1945 size_t len = PAGE_ALIGN(size + offset);
1950 iommu_unmap(mapping->domain, iova, len);
1951 __free_iova(mapping, iova, len);
1954 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 dma_addr_t iova = handle & PAGE_MASK;
1959 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 unsigned int offset = handle & ~PAGE_MASK;
1965 __dma_page_dev_to_cpu(page, offset, size, dir);
1968 static void arm_iommu_sync_single_for_device(struct device *dev,
1969 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1971 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 dma_addr_t iova = handle & PAGE_MASK;
1973 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 unsigned int offset = handle & ~PAGE_MASK;
1979 __dma_page_cpu_to_dev(page, offset, size, dir);
1982 static const struct dma_map_ops iommu_ops = {
1983 .alloc = arm_iommu_alloc_attrs,
1984 .free = arm_iommu_free_attrs,
1985 .mmap = arm_iommu_mmap_attrs,
1986 .get_sgtable = arm_iommu_get_sgtable,
1988 .map_page = arm_iommu_map_page,
1989 .unmap_page = arm_iommu_unmap_page,
1990 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1991 .sync_single_for_device = arm_iommu_sync_single_for_device,
1993 .map_sg = arm_iommu_map_sg,
1994 .unmap_sg = arm_iommu_unmap_sg,
1995 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1996 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1998 .map_resource = arm_iommu_map_resource,
1999 .unmap_resource = arm_iommu_unmap_resource,
2001 .dma_supported = arm_dma_supported,
2004 static const struct dma_map_ops iommu_coherent_ops = {
2005 .alloc = arm_coherent_iommu_alloc_attrs,
2006 .free = arm_coherent_iommu_free_attrs,
2007 .mmap = arm_coherent_iommu_mmap_attrs,
2008 .get_sgtable = arm_iommu_get_sgtable,
2010 .map_page = arm_coherent_iommu_map_page,
2011 .unmap_page = arm_coherent_iommu_unmap_page,
2013 .map_sg = arm_coherent_iommu_map_sg,
2014 .unmap_sg = arm_coherent_iommu_unmap_sg,
2016 .map_resource = arm_iommu_map_resource,
2017 .unmap_resource = arm_iommu_unmap_resource,
2019 .dma_supported = arm_dma_supported,
2023 * arm_iommu_create_mapping
2024 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025 * @base: start address of the valid IO address space
2026 * @size: maximum size of the valid IO address space
2028 * Creates a mapping structure which holds information about used/unused
2029 * IO address ranges, which is required to perform memory allocation and
2030 * mapping with IOMMU aware functions.
2032 * The client device need to be attached to the mapping with
2033 * arm_iommu_attach_device function.
2035 struct dma_iommu_mapping *
2036 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2038 unsigned int bits = size >> PAGE_SHIFT;
2039 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2040 struct dma_iommu_mapping *mapping;
2044 /* currently only 32-bit DMA address space is supported */
2045 if (size > DMA_BIT_MASK(32) + 1)
2046 return ERR_PTR(-ERANGE);
2049 return ERR_PTR(-EINVAL);
2051 if (bitmap_size > PAGE_SIZE) {
2052 extensions = bitmap_size / PAGE_SIZE;
2053 bitmap_size = PAGE_SIZE;
2056 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2060 mapping->bitmap_size = bitmap_size;
2061 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2063 if (!mapping->bitmaps)
2066 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2067 if (!mapping->bitmaps[0])
2070 mapping->nr_bitmaps = 1;
2071 mapping->extensions = extensions;
2072 mapping->base = base;
2073 mapping->bits = BITS_PER_BYTE * bitmap_size;
2075 spin_lock_init(&mapping->lock);
2077 mapping->domain = iommu_domain_alloc(bus);
2078 if (!mapping->domain)
2081 kref_init(&mapping->kref);
2084 kfree(mapping->bitmaps[0]);
2086 kfree(mapping->bitmaps);
2090 return ERR_PTR(err);
2092 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2094 static void release_iommu_mapping(struct kref *kref)
2097 struct dma_iommu_mapping *mapping =
2098 container_of(kref, struct dma_iommu_mapping, kref);
2100 iommu_domain_free(mapping->domain);
2101 for (i = 0; i < mapping->nr_bitmaps; i++)
2102 kfree(mapping->bitmaps[i]);
2103 kfree(mapping->bitmaps);
2107 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2111 if (mapping->nr_bitmaps >= mapping->extensions)
2114 next_bitmap = mapping->nr_bitmaps;
2115 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2117 if (!mapping->bitmaps[next_bitmap])
2120 mapping->nr_bitmaps++;
2125 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2128 kref_put(&mapping->kref, release_iommu_mapping);
2130 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2132 static int __arm_iommu_attach_device(struct device *dev,
2133 struct dma_iommu_mapping *mapping)
2137 err = iommu_attach_device(mapping->domain, dev);
2141 kref_get(&mapping->kref);
2142 to_dma_iommu_mapping(dev) = mapping;
2144 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2149 * arm_iommu_attach_device
2150 * @dev: valid struct device pointer
2151 * @mapping: io address space mapping structure (returned from
2152 * arm_iommu_create_mapping)
2154 * Attaches specified io address space mapping to the provided device.
2155 * This replaces the dma operations (dma_map_ops pointer) with the
2156 * IOMMU aware version.
2158 * More than one client might be attached to the same io address space
2161 int arm_iommu_attach_device(struct device *dev,
2162 struct dma_iommu_mapping *mapping)
2166 err = __arm_iommu_attach_device(dev, mapping);
2170 set_dma_ops(dev, &iommu_ops);
2173 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2176 * arm_iommu_detach_device
2177 * @dev: valid struct device pointer
2179 * Detaches the provided device from a previously attached map.
2180 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2182 void arm_iommu_detach_device(struct device *dev)
2184 struct dma_iommu_mapping *mapping;
2186 mapping = to_dma_iommu_mapping(dev);
2188 dev_warn(dev, "Not attached\n");
2192 iommu_detach_device(mapping->domain, dev);
2193 kref_put(&mapping->kref, release_iommu_mapping);
2194 to_dma_iommu_mapping(dev) = NULL;
2195 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2197 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2199 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2201 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2203 return coherent ? &iommu_coherent_ops : &iommu_ops;
2206 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2207 const struct iommu_ops *iommu)
2209 struct dma_iommu_mapping *mapping;
2214 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2215 if (IS_ERR(mapping)) {
2216 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217 size, dev_name(dev));
2221 if (__arm_iommu_attach_device(dev, mapping)) {
2222 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2224 arm_iommu_release_mapping(mapping);
2231 static void arm_teardown_iommu_dma_ops(struct device *dev)
2233 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2238 arm_iommu_detach_device(dev);
2239 arm_iommu_release_mapping(mapping);
2244 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2245 const struct iommu_ops *iommu)
2250 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2252 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2254 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2256 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 const struct iommu_ops *iommu, bool coherent)
2259 const struct dma_map_ops *dma_ops;
2261 dev->archdata.dma_coherent = coherent;
2262 #ifdef CONFIG_SWIOTLB
2263 dev->dma_coherent = coherent;
2267 * Don't override the dma_ops if they have already been set. Ideally
2268 * this should be the only location where dma_ops are set, remove this
2269 * check when all other callers of set_dma_ops will have disappeared.
2274 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2275 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2277 dma_ops = arm_get_dma_map_ops(coherent);
2279 set_dma_ops(dev, dma_ops);
2282 if (xen_initial_domain())
2283 dev->dma_ops = &xen_swiotlb_dma_ops;
2285 dev->archdata.dma_ops_setup = true;
2288 void arch_teardown_dma_ops(struct device *dev)
2290 if (!dev->archdata.dma_ops_setup)
2293 arm_teardown_iommu_dma_ops(dev);
2294 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295 set_dma_ops(dev, NULL);
2298 #ifdef CONFIG_SWIOTLB
2299 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2300 enum dma_data_direction dir)
2302 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2306 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2307 enum dma_data_direction dir)
2309 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2313 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2314 gfp_t gfp, unsigned long attrs)
2316 return __dma_alloc(dev, size, dma_handle, gfp,
2317 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2318 attrs, __builtin_return_address(0));
2321 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2322 dma_addr_t dma_handle, unsigned long attrs)
2324 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2326 #endif /* CONFIG_SWIOTLB */