1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
18 #define EXTN_FLAG_SENSOR_ID BIT(7)
20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
22 #define OCC_STATE_SAFE 4
23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
27 #define OCC_TEMP_SENSOR_FAULT 0xFF
29 #define OCC_FRU_TYPE_VRM 3
31 /* OCC sensor type and version definitions */
33 struct temp_sensor_1 {
38 struct temp_sensor_2 {
44 struct freq_sensor_1 {
49 struct freq_sensor_2 {
54 struct power_sensor_1 {
61 struct power_sensor_2 {
71 struct power_sensor_data {
77 struct power_sensor_data_and_time {
84 struct power_sensor_a0 {
86 struct power_sensor_data_and_time system;
88 struct power_sensor_data_and_time proc;
89 struct power_sensor_data vdd;
90 struct power_sensor_data vdn;
93 struct caps_sensor_2 {
103 struct caps_sensor_3 {
114 struct extended_sensor {
124 static int occ_poll(struct occ *occ)
127 u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
129 struct occ_poll_response_header *header;
132 cmd[0] = occ->seq_no++; /* sequence number */
133 cmd[1] = 0; /* cmd type */
134 cmd[2] = 0; /* data length msb */
135 cmd[3] = 1; /* data length lsb */
136 cmd[4] = occ->poll_cmd_data; /* data */
137 cmd[5] = checksum >> 8; /* checksum msb */
138 cmd[6] = checksum & 0xFF; /* checksum lsb */
141 /* mutex should already be locked if necessary */
142 rc = occ->send_cmd(occ, cmd);
144 occ->last_error = rc;
145 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
151 /* clear error since communication was successful */
152 occ->error_count = 0;
156 /* check for safe state */
157 header = (struct occ_poll_response_header *)occ->resp.data;
158 if (header->occ_state == OCC_STATE_SAFE) {
159 if (occ->last_safe) {
160 if (time_after(jiffies,
161 occ->last_safe + OCC_SAFE_TIMEOUT))
162 occ->error = -EHOSTDOWN;
164 occ->last_safe = jiffies;
171 occ_sysfs_poll_done(occ);
175 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
180 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
187 memcpy(&cmd[4], &user_power_cap_be, 2);
189 checksum += cmd[4] + cmd[5];
190 cmd[6] = checksum >> 8;
191 cmd[7] = checksum & 0xFF;
193 rc = mutex_lock_interruptible(&occ->lock);
197 rc = occ->send_cmd(occ, cmd);
199 mutex_unlock(&occ->lock);
204 int occ_update_response(struct occ *occ)
206 int rc = mutex_lock_interruptible(&occ->lock);
211 /* limit the maximum rate of polling the OCC */
212 if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
214 occ->last_update = jiffies;
216 rc = occ->last_error;
219 mutex_unlock(&occ->lock);
223 static ssize_t occ_show_temp_1(struct device *dev,
224 struct device_attribute *attr, char *buf)
228 struct temp_sensor_1 *temp;
229 struct occ *occ = dev_get_drvdata(dev);
230 struct occ_sensors *sensors = &occ->sensors;
231 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
233 rc = occ_update_response(occ);
237 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
241 val = get_unaligned_be16(&temp->sensor_id);
245 * If a sensor reading has expired and couldn't be refreshed,
246 * OCC returns 0xFFFF for that sensor.
248 if (temp->value == 0xFFFF)
250 val = get_unaligned_be16(&temp->value) * 1000;
256 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
259 static ssize_t occ_show_temp_2(struct device *dev,
260 struct device_attribute *attr, char *buf)
264 struct temp_sensor_2 *temp;
265 struct occ *occ = dev_get_drvdata(dev);
266 struct occ_sensors *sensors = &occ->sensors;
267 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
269 rc = occ_update_response(occ);
273 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
277 val = get_unaligned_be32(&temp->sensor_id);
281 if (val == OCC_TEMP_SENSOR_FAULT)
285 * VRM doesn't return temperature, only alarm bit. This
286 * attribute maps to tempX_alarm instead of tempX_input for
289 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290 /* sensor not ready */
298 val = temp->fru_type;
301 val = temp->value == OCC_TEMP_SENSOR_FAULT;
307 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
310 static ssize_t occ_show_freq_1(struct device *dev,
311 struct device_attribute *attr, char *buf)
315 struct freq_sensor_1 *freq;
316 struct occ *occ = dev_get_drvdata(dev);
317 struct occ_sensors *sensors = &occ->sensors;
318 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
320 rc = occ_update_response(occ);
324 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
328 val = get_unaligned_be16(&freq->sensor_id);
331 val = get_unaligned_be16(&freq->value);
337 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
340 static ssize_t occ_show_freq_2(struct device *dev,
341 struct device_attribute *attr, char *buf)
345 struct freq_sensor_2 *freq;
346 struct occ *occ = dev_get_drvdata(dev);
347 struct occ_sensors *sensors = &occ->sensors;
348 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
350 rc = occ_update_response(occ);
354 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
358 val = get_unaligned_be32(&freq->sensor_id);
361 val = get_unaligned_be16(&freq->value);
367 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
370 static ssize_t occ_show_power_1(struct device *dev,
371 struct device_attribute *attr, char *buf)
375 struct power_sensor_1 *power;
376 struct occ *occ = dev_get_drvdata(dev);
377 struct occ_sensors *sensors = &occ->sensors;
378 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
380 rc = occ_update_response(occ);
384 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
388 val = get_unaligned_be16(&power->sensor_id);
391 val = get_unaligned_be32(&power->accumulator) /
392 get_unaligned_be32(&power->update_tag);
396 val = (u64)get_unaligned_be32(&power->update_tag) *
397 occ->powr_sample_time_us;
400 val = get_unaligned_be16(&power->value) * 1000000ULL;
406 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
409 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
411 u64 divisor = get_unaligned_be32(samples);
413 return (divisor == 0) ? 0 :
414 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
417 static ssize_t occ_show_power_2(struct device *dev,
418 struct device_attribute *attr, char *buf)
422 struct power_sensor_2 *power;
423 struct occ *occ = dev_get_drvdata(dev);
424 struct occ_sensors *sensors = &occ->sensors;
425 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
427 rc = occ_update_response(occ);
431 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
435 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
436 get_unaligned_be32(&power->sensor_id),
437 power->function_id, power->apss_channel);
439 val = occ_get_powr_avg(&power->accumulator,
443 val = (u64)get_unaligned_be32(&power->update_tag) *
444 occ->powr_sample_time_us;
447 val = get_unaligned_be16(&power->value) * 1000000ULL;
453 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
456 static ssize_t occ_show_power_a0(struct device *dev,
457 struct device_attribute *attr, char *buf)
461 struct power_sensor_a0 *power;
462 struct occ *occ = dev_get_drvdata(dev);
463 struct occ_sensors *sensors = &occ->sensors;
464 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
466 rc = occ_update_response(occ);
470 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
474 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
475 get_unaligned_be32(&power->sensor_id));
477 val = occ_get_powr_avg(&power->system.accumulator,
478 &power->system.update_tag);
481 val = (u64)get_unaligned_be32(&power->system.update_tag) *
482 occ->powr_sample_time_us;
485 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
488 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
489 get_unaligned_be32(&power->sensor_id));
491 val = occ_get_powr_avg(&power->proc.accumulator,
492 &power->proc.update_tag);
495 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
496 occ->powr_sample_time_us;
499 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
502 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
503 get_unaligned_be32(&power->sensor_id));
505 val = occ_get_powr_avg(&power->vdd.accumulator,
506 &power->vdd.update_tag);
509 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
510 occ->powr_sample_time_us;
513 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
516 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
517 get_unaligned_be32(&power->sensor_id));
519 val = occ_get_powr_avg(&power->vdn.accumulator,
520 &power->vdn.update_tag);
523 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
524 occ->powr_sample_time_us;
527 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
533 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
536 static ssize_t occ_show_caps_1_2(struct device *dev,
537 struct device_attribute *attr, char *buf)
541 struct caps_sensor_2 *caps;
542 struct occ *occ = dev_get_drvdata(dev);
543 struct occ_sensors *sensors = &occ->sensors;
544 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
546 rc = occ_update_response(occ);
550 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
554 return snprintf(buf, PAGE_SIZE - 1, "system\n");
556 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
559 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
562 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
565 val = get_unaligned_be16(&caps->max) * 1000000ULL;
568 val = get_unaligned_be16(&caps->min) * 1000000ULL;
571 val = get_unaligned_be16(&caps->user) * 1000000ULL;
574 if (occ->sensors.caps.version == 1)
577 val = caps->user_source;
583 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
586 static ssize_t occ_show_caps_3(struct device *dev,
587 struct device_attribute *attr, char *buf)
591 struct caps_sensor_3 *caps;
592 struct occ *occ = dev_get_drvdata(dev);
593 struct occ_sensors *sensors = &occ->sensors;
594 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
596 rc = occ_update_response(occ);
600 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
604 return snprintf(buf, PAGE_SIZE - 1, "system\n");
606 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
609 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
612 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
615 val = get_unaligned_be16(&caps->max) * 1000000ULL;
618 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
621 val = get_unaligned_be16(&caps->user) * 1000000ULL;
624 val = caps->user_source;
630 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
633 static ssize_t occ_store_caps_user(struct device *dev,
634 struct device_attribute *attr,
635 const char *buf, size_t count)
639 unsigned long long value;
640 struct occ *occ = dev_get_drvdata(dev);
642 rc = kstrtoull(buf, 0, &value);
646 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
648 rc = occ_set_user_power_cap(occ, user_power_cap);
655 static ssize_t occ_show_extended(struct device *dev,
656 struct device_attribute *attr, char *buf)
659 struct extended_sensor *extn;
660 struct occ *occ = dev_get_drvdata(dev);
661 struct occ_sensors *sensors = &occ->sensors;
662 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
664 rc = occ_update_response(occ);
668 extn = ((struct extended_sensor *)sensors->extended.data) +
673 if (extn->flags & EXTN_FLAG_SENSOR_ID)
674 rc = snprintf(buf, PAGE_SIZE - 1, "%u",
675 get_unaligned_be32(&extn->sensor_id));
677 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
678 extn->name[0], extn->name[1],
679 extn->name[2], extn->name[3]);
682 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
685 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
686 extn->data[0], extn->data[1], extn->data[2],
687 extn->data[3], extn->data[4], extn->data[5]);
697 * Some helper macros to make it easier to define an occ_attribute. Since these
698 * are dynamically allocated, we shouldn't use the existing kernel macros which
699 * stringify the name argument.
701 #define ATTR_OCC(_name, _mode, _show, _store) { \
704 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
710 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
711 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
716 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
717 ((struct sensor_device_attribute_2) \
718 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
721 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
722 * use our own instead of the built-in hwmon attribute types.
724 static int occ_setup_sensor_attrs(struct occ *occ)
726 unsigned int i, s, num_attrs = 0;
727 struct device *dev = occ->bus_dev;
728 struct occ_sensors *sensors = &occ->sensors;
729 struct occ_attribute *attr;
730 struct temp_sensor_2 *temp;
731 ssize_t (*show_temp)(struct device *, struct device_attribute *,
732 char *) = occ_show_temp_1;
733 ssize_t (*show_freq)(struct device *, struct device_attribute *,
734 char *) = occ_show_freq_1;
735 ssize_t (*show_power)(struct device *, struct device_attribute *,
736 char *) = occ_show_power_1;
737 ssize_t (*show_caps)(struct device *, struct device_attribute *,
738 char *) = occ_show_caps_1_2;
740 switch (sensors->temp.version) {
742 num_attrs += (sensors->temp.num_sensors * 2);
745 num_attrs += (sensors->temp.num_sensors * 4);
746 show_temp = occ_show_temp_2;
749 sensors->temp.num_sensors = 0;
752 switch (sensors->freq.version) {
754 show_freq = occ_show_freq_2;
757 num_attrs += (sensors->freq.num_sensors * 2);
760 sensors->freq.num_sensors = 0;
763 switch (sensors->power.version) {
765 show_power = occ_show_power_2;
768 num_attrs += (sensors->power.num_sensors * 4);
771 num_attrs += (sensors->power.num_sensors * 16);
772 show_power = occ_show_power_a0;
775 sensors->power.num_sensors = 0;
778 switch (sensors->caps.version) {
780 num_attrs += (sensors->caps.num_sensors * 7);
783 show_caps = occ_show_caps_3;
786 num_attrs += (sensors->caps.num_sensors * 8);
789 sensors->caps.num_sensors = 0;
792 switch (sensors->extended.version) {
794 num_attrs += (sensors->extended.num_sensors * 3);
797 sensors->extended.num_sensors = 0;
800 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
805 /* null-terminated list */
806 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
807 num_attrs + 1, GFP_KERNEL);
808 if (!occ->group.attrs)
813 for (i = 0; i < sensors->temp.num_sensors; ++i) {
815 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
817 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
818 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
822 if (sensors->temp.version > 1 &&
823 temp->fru_type == OCC_FRU_TYPE_VRM) {
824 snprintf(attr->name, sizeof(attr->name),
827 snprintf(attr->name, sizeof(attr->name),
831 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
835 if (sensors->temp.version > 1) {
836 snprintf(attr->name, sizeof(attr->name),
837 "temp%d_fru_type", s);
838 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
839 show_temp, NULL, 2, i);
842 snprintf(attr->name, sizeof(attr->name),
844 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
845 show_temp, NULL, 3, i);
850 for (i = 0; i < sensors->freq.num_sensors; ++i) {
853 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
854 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
858 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
859 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
864 if (sensors->power.version == 0xA0) {
866 * Special case for many-attribute power sensor. Split it into
867 * a sensor number per power type, emulating several sensors.
869 for (i = 0; i < sensors->power.num_sensors; ++i) {
875 for (j = 0; j < 4; ++j) {
876 snprintf(attr->name, sizeof(attr->name),
878 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
883 snprintf(attr->name, sizeof(attr->name),
884 "power%d_average", s);
885 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
890 snprintf(attr->name, sizeof(attr->name),
891 "power%d_average_interval", s);
892 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
897 snprintf(attr->name, sizeof(attr->name),
899 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
908 s = (sensors->power.num_sensors * 4) + 1;
910 for (i = 0; i < sensors->power.num_sensors; ++i) {
913 snprintf(attr->name, sizeof(attr->name),
915 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
916 show_power, NULL, 0, i);
919 snprintf(attr->name, sizeof(attr->name),
920 "power%d_average", s);
921 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
922 show_power, NULL, 1, i);
925 snprintf(attr->name, sizeof(attr->name),
926 "power%d_average_interval", s);
927 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
928 show_power, NULL, 2, i);
931 snprintf(attr->name, sizeof(attr->name),
933 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
934 show_power, NULL, 3, i);
938 s = sensors->power.num_sensors + 1;
941 if (sensors->caps.num_sensors >= 1) {
942 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
943 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
947 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
948 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
952 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
953 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
957 snprintf(attr->name, sizeof(attr->name),
958 "power%d_cap_not_redundant", s);
959 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
963 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
964 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
968 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
969 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
973 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
975 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
976 occ_store_caps_user, 6, 0);
979 if (sensors->caps.version > 1) {
980 snprintf(attr->name, sizeof(attr->name),
981 "power%d_cap_user_source", s);
982 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983 show_caps, NULL, 7, 0);
988 for (i = 0; i < sensors->extended.num_sensors; ++i) {
991 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
992 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
993 occ_show_extended, NULL, 0, i);
996 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
997 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998 occ_show_extended, NULL, 1, i);
1001 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1002 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003 occ_show_extended, NULL, 2, i);
1007 /* put the sensors in the group */
1008 for (i = 0; i < num_attrs; ++i) {
1009 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1010 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1016 /* only need to do this once at startup, as OCC won't change sensors on us */
1017 static void occ_parse_poll_response(struct occ *occ)
1019 unsigned int i, old_offset, offset = 0, size = 0;
1020 struct occ_sensor *sensor;
1021 struct occ_sensors *sensors = &occ->sensors;
1022 struct occ_response *resp = &occ->resp;
1023 struct occ_poll_response *poll =
1024 (struct occ_poll_response *)&resp->data[0];
1025 struct occ_poll_response_header *header = &poll->header;
1026 struct occ_sensor_data_block *block = &poll->block;
1028 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1029 header->occ_code_level);
1031 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1032 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1033 old_offset = offset;
1034 offset = (block->header.num_sensors *
1035 block->header.sensor_length) + sizeof(block->header);
1038 /* validate all the length/size fields */
1039 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1040 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1044 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1045 old_offset, offset - 1, block->header.eye_catcher,
1046 block->header.num_sensors);
1048 /* match sensor block type */
1049 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1050 sensor = &sensors->temp;
1051 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1052 sensor = &sensors->freq;
1053 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1054 sensor = &sensors->power;
1055 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1056 sensor = &sensors->caps;
1057 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1058 sensor = &sensors->extended;
1060 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1061 block->header.eye_catcher);
1065 sensor->num_sensors = block->header.num_sensors;
1066 sensor->version = block->header.sensor_format;
1067 sensor->data = &block->data;
1070 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1071 sizeof(*header), size + sizeof(*header));
1074 int occ_setup(struct occ *occ, const char *name)
1078 mutex_init(&occ->lock);
1079 occ->groups[0] = &occ->group;
1081 /* no need to lock */
1083 if (rc == -ESHUTDOWN) {
1084 dev_info(occ->bus_dev, "host is not ready\n");
1086 } else if (rc < 0) {
1087 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1092 occ_parse_poll_response(occ);
1094 rc = occ_setup_sensor_attrs(occ);
1096 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1101 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1103 if (IS_ERR(occ->hwmon)) {
1104 rc = PTR_ERR(occ->hwmon);
1105 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1110 rc = occ_setup_sysfs(occ);
1112 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1116 EXPORT_SYMBOL_GPL(occ_setup);
1119 MODULE_DESCRIPTION("Common OCC hwmon code");
1120 MODULE_LICENSE("GPL");