]> Git Repo - linux.git/blob - mm/vmscan.c
KVM: arm64: Sanitise ID_AA64MMFR3_EL1
[linux.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>  /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66
67 #include "internal.h"
68 #include "swap.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72
73 struct scan_control {
74         /* How many pages shrink_list() should reclaim */
75         unsigned long nr_to_reclaim;
76
77         /*
78          * Nodemask of nodes allowed by the caller. If NULL, all nodes
79          * are scanned.
80          */
81         nodemask_t      *nodemask;
82
83         /*
84          * The memory cgroup that hit its limit and as a result is the
85          * primary target of this reclaim invocation.
86          */
87         struct mem_cgroup *target_mem_cgroup;
88
89         /*
90          * Scan pressure balancing between anon and file LRUs
91          */
92         unsigned long   anon_cost;
93         unsigned long   file_cost;
94
95 #ifdef CONFIG_MEMCG
96         /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
97         int *proactive_swappiness;
98 #endif
99
100         /* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103         unsigned int may_deactivate:2;
104         unsigned int force_deactivate:1;
105         unsigned int skipped_deactivate:1;
106
107         /* Writepage batching in laptop mode; RECLAIM_WRITE */
108         unsigned int may_writepage:1;
109
110         /* Can mapped folios be reclaimed? */
111         unsigned int may_unmap:1;
112
113         /* Can folios be swapped as part of reclaim? */
114         unsigned int may_swap:1;
115
116         /* Not allow cache_trim_mode to be turned on as part of reclaim? */
117         unsigned int no_cache_trim_mode:1;
118
119         /* Has cache_trim_mode failed at least once? */
120         unsigned int cache_trim_mode_failed:1;
121
122         /* Proactive reclaim invoked by userspace through memory.reclaim */
123         unsigned int proactive:1;
124
125         /*
126          * Cgroup memory below memory.low is protected as long as we
127          * don't threaten to OOM. If any cgroup is reclaimed at
128          * reduced force or passed over entirely due to its memory.low
129          * setting (memcg_low_skipped), and nothing is reclaimed as a
130          * result, then go back for one more cycle that reclaims the protected
131          * memory (memcg_low_reclaim) to avert OOM.
132          */
133         unsigned int memcg_low_reclaim:1;
134         unsigned int memcg_low_skipped:1;
135
136         /* Shared cgroup tree walk failed, rescan the whole tree */
137         unsigned int memcg_full_walk:1;
138
139         unsigned int hibernation_mode:1;
140
141         /* One of the zones is ready for compaction */
142         unsigned int compaction_ready:1;
143
144         /* There is easily reclaimable cold cache in the current node */
145         unsigned int cache_trim_mode:1;
146
147         /* The file folios on the current node are dangerously low */
148         unsigned int file_is_tiny:1;
149
150         /* Always discard instead of demoting to lower tier memory */
151         unsigned int no_demotion:1;
152
153         /* Allocation order */
154         s8 order;
155
156         /* Scan (total_size >> priority) pages at once */
157         s8 priority;
158
159         /* The highest zone to isolate folios for reclaim from */
160         s8 reclaim_idx;
161
162         /* This context's GFP mask */
163         gfp_t gfp_mask;
164
165         /* Incremented by the number of inactive pages that were scanned */
166         unsigned long nr_scanned;
167
168         /* Number of pages freed so far during a call to shrink_zones() */
169         unsigned long nr_reclaimed;
170
171         struct {
172                 unsigned int dirty;
173                 unsigned int unqueued_dirty;
174                 unsigned int congested;
175                 unsigned int writeback;
176                 unsigned int immediate;
177                 unsigned int file_taken;
178                 unsigned int taken;
179         } nr;
180
181         /* for recording the reclaimed slab by now */
182         struct reclaim_state reclaim_state;
183 };
184
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field)                 \
187         do {                                                            \
188                 if ((_folio)->lru.prev != _base) {                      \
189                         struct folio *prev;                             \
190                                                                         \
191                         prev = lru_to_folio(&(_folio->lru));            \
192                         prefetchw(&prev->_field);                       \
193                 }                                                       \
194         } while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198
199 /*
200  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
201  */
202 int vm_swappiness = 60;
203
204 #ifdef CONFIG_MEMCG
205
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209         return sc->target_mem_cgroup;
210 }
211
212 /*
213  * Returns true for reclaim on the root cgroup. This is true for direct
214  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215  */
216 static bool root_reclaim(struct scan_control *sc)
217 {
218         return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220
221 /**
222  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223  * @sc: scan_control in question
224  *
225  * The normal page dirty throttling mechanism in balance_dirty_pages() is
226  * completely broken with the legacy memcg and direct stalling in
227  * shrink_folio_list() is used for throttling instead, which lacks all the
228  * niceties such as fairness, adaptive pausing, bandwidth proportional
229  * allocation and configurability.
230  *
231  * This function tests whether the vmscan currently in progress can assume
232  * that the normal dirty throttling mechanism is operational.
233  */
234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236         if (!cgroup_reclaim(sc))
237                 return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240                 return true;
241 #endif
242         return false;
243 }
244
245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247         if (sc->proactive && sc->proactive_swappiness)
248                 return *sc->proactive_swappiness;
249         return mem_cgroup_swappiness(memcg);
250 }
251 #else
252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254         return false;
255 }
256
257 static bool root_reclaim(struct scan_control *sc)
258 {
259         return true;
260 }
261
262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264         return true;
265 }
266
267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269         return READ_ONCE(vm_swappiness);
270 }
271 #endif
272
273 static void set_task_reclaim_state(struct task_struct *task,
274                                    struct reclaim_state *rs)
275 {
276         /* Check for an overwrite */
277         WARN_ON_ONCE(rs && task->reclaim_state);
278
279         /* Check for the nulling of an already-nulled member */
280         WARN_ON_ONCE(!rs && !task->reclaim_state);
281
282         task->reclaim_state = rs;
283 }
284
285 /*
286  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
287  * scan_control->nr_reclaimed.
288  */
289 static void flush_reclaim_state(struct scan_control *sc)
290 {
291         /*
292          * Currently, reclaim_state->reclaimed includes three types of pages
293          * freed outside of vmscan:
294          * (1) Slab pages.
295          * (2) Clean file pages from pruned inodes (on highmem systems).
296          * (3) XFS freed buffer pages.
297          *
298          * For all of these cases, we cannot universally link the pages to a
299          * single memcg. For example, a memcg-aware shrinker can free one object
300          * charged to the target memcg, causing an entire page to be freed.
301          * If we count the entire page as reclaimed from the memcg, we end up
302          * overestimating the reclaimed amount (potentially under-reclaiming).
303          *
304          * Only count such pages for global reclaim to prevent under-reclaiming
305          * from the target memcg; preventing unnecessary retries during memcg
306          * charging and false positives from proactive reclaim.
307          *
308          * For uncommon cases where the freed pages were actually mostly
309          * charged to the target memcg, we end up underestimating the reclaimed
310          * amount. This should be fine. The freed pages will be uncharged
311          * anyway, even if they are not counted here properly, and we will be
312          * able to make forward progress in charging (which is usually in a
313          * retry loop).
314          *
315          * We can go one step further, and report the uncharged objcg pages in
316          * memcg reclaim, to make reporting more accurate and reduce
317          * underestimation, but it's probably not worth the complexity for now.
318          */
319         if (current->reclaim_state && root_reclaim(sc)) {
320                 sc->nr_reclaimed += current->reclaim_state->reclaimed;
321                 current->reclaim_state->reclaimed = 0;
322         }
323 }
324
325 static bool can_demote(int nid, struct scan_control *sc)
326 {
327         if (!numa_demotion_enabled)
328                 return false;
329         if (sc && sc->no_demotion)
330                 return false;
331         if (next_demotion_node(nid) == NUMA_NO_NODE)
332                 return false;
333
334         return true;
335 }
336
337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
338                                           int nid,
339                                           struct scan_control *sc)
340 {
341         if (memcg == NULL) {
342                 /*
343                  * For non-memcg reclaim, is there
344                  * space in any swap device?
345                  */
346                 if (get_nr_swap_pages() > 0)
347                         return true;
348         } else {
349                 /* Is the memcg below its swap limit? */
350                 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
351                         return true;
352         }
353
354         /*
355          * The page can not be swapped.
356          *
357          * Can it be reclaimed from this node via demotion?
358          */
359         return can_demote(nid, sc);
360 }
361
362 /*
363  * This misses isolated folios which are not accounted for to save counters.
364  * As the data only determines if reclaim or compaction continues, it is
365  * not expected that isolated folios will be a dominating factor.
366  */
367 unsigned long zone_reclaimable_pages(struct zone *zone)
368 {
369         unsigned long nr;
370
371         nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
372                 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
373         if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
374                 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
375                         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
376
377         return nr;
378 }
379
380 /**
381  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
382  * @lruvec: lru vector
383  * @lru: lru to use
384  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
385  */
386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
387                                      int zone_idx)
388 {
389         unsigned long size = 0;
390         int zid;
391
392         for (zid = 0; zid <= zone_idx; zid++) {
393                 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
394
395                 if (!managed_zone(zone))
396                         continue;
397
398                 if (!mem_cgroup_disabled())
399                         size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
400                 else
401                         size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
402         }
403         return size;
404 }
405
406 static unsigned long drop_slab_node(int nid)
407 {
408         unsigned long freed = 0;
409         struct mem_cgroup *memcg = NULL;
410
411         memcg = mem_cgroup_iter(NULL, NULL, NULL);
412         do {
413                 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
414         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
415
416         return freed;
417 }
418
419 void drop_slab(void)
420 {
421         int nid;
422         int shift = 0;
423         unsigned long freed;
424
425         do {
426                 freed = 0;
427                 for_each_online_node(nid) {
428                         if (fatal_signal_pending(current))
429                                 return;
430
431                         freed += drop_slab_node(nid);
432                 }
433         } while ((freed >> shift++) > 1);
434 }
435
436 static int reclaimer_offset(void)
437 {
438         BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
439                         PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
440         BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
441                         PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
442         BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
443                         PGSCAN_DIRECT - PGSCAN_KSWAPD);
444         BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
445                         PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
446
447         if (current_is_kswapd())
448                 return 0;
449         if (current_is_khugepaged())
450                 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
451         return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
452 }
453
454 static inline int is_page_cache_freeable(struct folio *folio)
455 {
456         /*
457          * A freeable page cache folio is referenced only by the caller
458          * that isolated the folio, the page cache and optional filesystem
459          * private data at folio->private.
460          */
461         return folio_ref_count(folio) - folio_test_private(folio) ==
462                 1 + folio_nr_pages(folio);
463 }
464
465 /*
466  * We detected a synchronous write error writing a folio out.  Probably
467  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
468  * fsync(), msync() or close().
469  *
470  * The tricky part is that after writepage we cannot touch the mapping: nothing
471  * prevents it from being freed up.  But we have a ref on the folio and once
472  * that folio is locked, the mapping is pinned.
473  *
474  * We're allowed to run sleeping folio_lock() here because we know the caller has
475  * __GFP_FS.
476  */
477 static void handle_write_error(struct address_space *mapping,
478                                 struct folio *folio, int error)
479 {
480         folio_lock(folio);
481         if (folio_mapping(folio) == mapping)
482                 mapping_set_error(mapping, error);
483         folio_unlock(folio);
484 }
485
486 static bool skip_throttle_noprogress(pg_data_t *pgdat)
487 {
488         int reclaimable = 0, write_pending = 0;
489         int i;
490
491         /*
492          * If kswapd is disabled, reschedule if necessary but do not
493          * throttle as the system is likely near OOM.
494          */
495         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
496                 return true;
497
498         /*
499          * If there are a lot of dirty/writeback folios then do not
500          * throttle as throttling will occur when the folios cycle
501          * towards the end of the LRU if still under writeback.
502          */
503         for (i = 0; i < MAX_NR_ZONES; i++) {
504                 struct zone *zone = pgdat->node_zones + i;
505
506                 if (!managed_zone(zone))
507                         continue;
508
509                 reclaimable += zone_reclaimable_pages(zone);
510                 write_pending += zone_page_state_snapshot(zone,
511                                                   NR_ZONE_WRITE_PENDING);
512         }
513         if (2 * write_pending <= reclaimable)
514                 return true;
515
516         return false;
517 }
518
519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
520 {
521         wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
522         long timeout, ret;
523         DEFINE_WAIT(wait);
524
525         /*
526          * Do not throttle user workers, kthreads other than kswapd or
527          * workqueues. They may be required for reclaim to make
528          * forward progress (e.g. journalling workqueues or kthreads).
529          */
530         if (!current_is_kswapd() &&
531             current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
532                 cond_resched();
533                 return;
534         }
535
536         /*
537          * These figures are pulled out of thin air.
538          * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
539          * parallel reclaimers which is a short-lived event so the timeout is
540          * short. Failing to make progress or waiting on writeback are
541          * potentially long-lived events so use a longer timeout. This is shaky
542          * logic as a failure to make progress could be due to anything from
543          * writeback to a slow device to excessive referenced folios at the tail
544          * of the inactive LRU.
545          */
546         switch(reason) {
547         case VMSCAN_THROTTLE_WRITEBACK:
548                 timeout = HZ/10;
549
550                 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
551                         WRITE_ONCE(pgdat->nr_reclaim_start,
552                                 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
553                 }
554
555                 break;
556         case VMSCAN_THROTTLE_CONGESTED:
557                 fallthrough;
558         case VMSCAN_THROTTLE_NOPROGRESS:
559                 if (skip_throttle_noprogress(pgdat)) {
560                         cond_resched();
561                         return;
562                 }
563
564                 timeout = 1;
565
566                 break;
567         case VMSCAN_THROTTLE_ISOLATED:
568                 timeout = HZ/50;
569                 break;
570         default:
571                 WARN_ON_ONCE(1);
572                 timeout = HZ;
573                 break;
574         }
575
576         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
577         ret = schedule_timeout(timeout);
578         finish_wait(wqh, &wait);
579
580         if (reason == VMSCAN_THROTTLE_WRITEBACK)
581                 atomic_dec(&pgdat->nr_writeback_throttled);
582
583         trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
584                                 jiffies_to_usecs(timeout - ret),
585                                 reason);
586 }
587
588 /*
589  * Account for folios written if tasks are throttled waiting on dirty
590  * folios to clean. If enough folios have been cleaned since throttling
591  * started then wakeup the throttled tasks.
592  */
593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
594                                                         int nr_throttled)
595 {
596         unsigned long nr_written;
597
598         node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
599
600         /*
601          * This is an inaccurate read as the per-cpu deltas may not
602          * be synchronised. However, given that the system is
603          * writeback throttled, it is not worth taking the penalty
604          * of getting an accurate count. At worst, the throttle
605          * timeout guarantees forward progress.
606          */
607         nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
608                 READ_ONCE(pgdat->nr_reclaim_start);
609
610         if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
611                 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
612 }
613
614 /* possible outcome of pageout() */
615 typedef enum {
616         /* failed to write folio out, folio is locked */
617         PAGE_KEEP,
618         /* move folio to the active list, folio is locked */
619         PAGE_ACTIVATE,
620         /* folio has been sent to the disk successfully, folio is unlocked */
621         PAGE_SUCCESS,
622         /* folio is clean and locked */
623         PAGE_CLEAN,
624 } pageout_t;
625
626 /*
627  * pageout is called by shrink_folio_list() for each dirty folio.
628  * Calls ->writepage().
629  */
630 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
631                          struct swap_iocb **plug)
632 {
633         /*
634          * If the folio is dirty, only perform writeback if that write
635          * will be non-blocking.  To prevent this allocation from being
636          * stalled by pagecache activity.  But note that there may be
637          * stalls if we need to run get_block().  We could test
638          * PagePrivate for that.
639          *
640          * If this process is currently in __generic_file_write_iter() against
641          * this folio's queue, we can perform writeback even if that
642          * will block.
643          *
644          * If the folio is swapcache, write it back even if that would
645          * block, for some throttling. This happens by accident, because
646          * swap_backing_dev_info is bust: it doesn't reflect the
647          * congestion state of the swapdevs.  Easy to fix, if needed.
648          */
649         if (!is_page_cache_freeable(folio))
650                 return PAGE_KEEP;
651         if (!mapping) {
652                 /*
653                  * Some data journaling orphaned folios can have
654                  * folio->mapping == NULL while being dirty with clean buffers.
655                  */
656                 if (folio_test_private(folio)) {
657                         if (try_to_free_buffers(folio)) {
658                                 folio_clear_dirty(folio);
659                                 pr_info("%s: orphaned folio\n", __func__);
660                                 return PAGE_CLEAN;
661                         }
662                 }
663                 return PAGE_KEEP;
664         }
665         if (mapping->a_ops->writepage == NULL)
666                 return PAGE_ACTIVATE;
667
668         if (folio_clear_dirty_for_io(folio)) {
669                 int res;
670                 struct writeback_control wbc = {
671                         .sync_mode = WB_SYNC_NONE,
672                         .nr_to_write = SWAP_CLUSTER_MAX,
673                         .range_start = 0,
674                         .range_end = LLONG_MAX,
675                         .for_reclaim = 1,
676                         .swap_plug = plug,
677                 };
678
679                 folio_set_reclaim(folio);
680                 res = mapping->a_ops->writepage(&folio->page, &wbc);
681                 if (res < 0)
682                         handle_write_error(mapping, folio, res);
683                 if (res == AOP_WRITEPAGE_ACTIVATE) {
684                         folio_clear_reclaim(folio);
685                         return PAGE_ACTIVATE;
686                 }
687
688                 if (!folio_test_writeback(folio)) {
689                         /* synchronous write or broken a_ops? */
690                         folio_clear_reclaim(folio);
691                 }
692                 trace_mm_vmscan_write_folio(folio);
693                 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
694                 return PAGE_SUCCESS;
695         }
696
697         return PAGE_CLEAN;
698 }
699
700 /*
701  * Same as remove_mapping, but if the folio is removed from the mapping, it
702  * gets returned with a refcount of 0.
703  */
704 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
705                             bool reclaimed, struct mem_cgroup *target_memcg)
706 {
707         int refcount;
708         void *shadow = NULL;
709
710         BUG_ON(!folio_test_locked(folio));
711         BUG_ON(mapping != folio_mapping(folio));
712
713         if (!folio_test_swapcache(folio))
714                 spin_lock(&mapping->host->i_lock);
715         xa_lock_irq(&mapping->i_pages);
716         /*
717          * The non racy check for a busy folio.
718          *
719          * Must be careful with the order of the tests. When someone has
720          * a ref to the folio, it may be possible that they dirty it then
721          * drop the reference. So if the dirty flag is tested before the
722          * refcount here, then the following race may occur:
723          *
724          * get_user_pages(&page);
725          * [user mapping goes away]
726          * write_to(page);
727          *                              !folio_test_dirty(folio)    [good]
728          * folio_set_dirty(folio);
729          * folio_put(folio);
730          *                              !refcount(folio)   [good, discard it]
731          *
732          * [oops, our write_to data is lost]
733          *
734          * Reversing the order of the tests ensures such a situation cannot
735          * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
736          * load is not satisfied before that of folio->_refcount.
737          *
738          * Note that if the dirty flag is always set via folio_mark_dirty,
739          * and thus under the i_pages lock, then this ordering is not required.
740          */
741         refcount = 1 + folio_nr_pages(folio);
742         if (!folio_ref_freeze(folio, refcount))
743                 goto cannot_free;
744         /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
745         if (unlikely(folio_test_dirty(folio))) {
746                 folio_ref_unfreeze(folio, refcount);
747                 goto cannot_free;
748         }
749
750         if (folio_test_swapcache(folio)) {
751                 swp_entry_t swap = folio->swap;
752
753                 if (reclaimed && !mapping_exiting(mapping))
754                         shadow = workingset_eviction(folio, target_memcg);
755                 __delete_from_swap_cache(folio, swap, shadow);
756                 mem_cgroup_swapout(folio, swap);
757                 xa_unlock_irq(&mapping->i_pages);
758                 put_swap_folio(folio, swap);
759         } else {
760                 void (*free_folio)(struct folio *);
761
762                 free_folio = mapping->a_ops->free_folio;
763                 /*
764                  * Remember a shadow entry for reclaimed file cache in
765                  * order to detect refaults, thus thrashing, later on.
766                  *
767                  * But don't store shadows in an address space that is
768                  * already exiting.  This is not just an optimization,
769                  * inode reclaim needs to empty out the radix tree or
770                  * the nodes are lost.  Don't plant shadows behind its
771                  * back.
772                  *
773                  * We also don't store shadows for DAX mappings because the
774                  * only page cache folios found in these are zero pages
775                  * covering holes, and because we don't want to mix DAX
776                  * exceptional entries and shadow exceptional entries in the
777                  * same address_space.
778                  */
779                 if (reclaimed && folio_is_file_lru(folio) &&
780                     !mapping_exiting(mapping) && !dax_mapping(mapping))
781                         shadow = workingset_eviction(folio, target_memcg);
782                 __filemap_remove_folio(folio, shadow);
783                 xa_unlock_irq(&mapping->i_pages);
784                 if (mapping_shrinkable(mapping))
785                         inode_add_lru(mapping->host);
786                 spin_unlock(&mapping->host->i_lock);
787
788                 if (free_folio)
789                         free_folio(folio);
790         }
791
792         return 1;
793
794 cannot_free:
795         xa_unlock_irq(&mapping->i_pages);
796         if (!folio_test_swapcache(folio))
797                 spin_unlock(&mapping->host->i_lock);
798         return 0;
799 }
800
801 /**
802  * remove_mapping() - Attempt to remove a folio from its mapping.
803  * @mapping: The address space.
804  * @folio: The folio to remove.
805  *
806  * If the folio is dirty, under writeback or if someone else has a ref
807  * on it, removal will fail.
808  * Return: The number of pages removed from the mapping.  0 if the folio
809  * could not be removed.
810  * Context: The caller should have a single refcount on the folio and
811  * hold its lock.
812  */
813 long remove_mapping(struct address_space *mapping, struct folio *folio)
814 {
815         if (__remove_mapping(mapping, folio, false, NULL)) {
816                 /*
817                  * Unfreezing the refcount with 1 effectively
818                  * drops the pagecache ref for us without requiring another
819                  * atomic operation.
820                  */
821                 folio_ref_unfreeze(folio, 1);
822                 return folio_nr_pages(folio);
823         }
824         return 0;
825 }
826
827 /**
828  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
829  * @folio: Folio to be returned to an LRU list.
830  *
831  * Add previously isolated @folio to appropriate LRU list.
832  * The folio may still be unevictable for other reasons.
833  *
834  * Context: lru_lock must not be held, interrupts must be enabled.
835  */
836 void folio_putback_lru(struct folio *folio)
837 {
838         folio_add_lru(folio);
839         folio_put(folio);               /* drop ref from isolate */
840 }
841
842 enum folio_references {
843         FOLIOREF_RECLAIM,
844         FOLIOREF_RECLAIM_CLEAN,
845         FOLIOREF_KEEP,
846         FOLIOREF_ACTIVATE,
847 };
848
849 static enum folio_references folio_check_references(struct folio *folio,
850                                                   struct scan_control *sc)
851 {
852         int referenced_ptes, referenced_folio;
853         unsigned long vm_flags;
854
855         referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
856                                            &vm_flags);
857         referenced_folio = folio_test_clear_referenced(folio);
858
859         /*
860          * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
861          * Let the folio, now marked Mlocked, be moved to the unevictable list.
862          */
863         if (vm_flags & VM_LOCKED)
864                 return FOLIOREF_ACTIVATE;
865
866         /* rmap lock contention: rotate */
867         if (referenced_ptes == -1)
868                 return FOLIOREF_KEEP;
869
870         if (referenced_ptes) {
871                 /*
872                  * All mapped folios start out with page table
873                  * references from the instantiating fault, so we need
874                  * to look twice if a mapped file/anon folio is used more
875                  * than once.
876                  *
877                  * Mark it and spare it for another trip around the
878                  * inactive list.  Another page table reference will
879                  * lead to its activation.
880                  *
881                  * Note: the mark is set for activated folios as well
882                  * so that recently deactivated but used folios are
883                  * quickly recovered.
884                  */
885                 folio_set_referenced(folio);
886
887                 if (referenced_folio || referenced_ptes > 1)
888                         return FOLIOREF_ACTIVATE;
889
890                 /*
891                  * Activate file-backed executable folios after first usage.
892                  */
893                 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
894                         return FOLIOREF_ACTIVATE;
895
896                 return FOLIOREF_KEEP;
897         }
898
899         /* Reclaim if clean, defer dirty folios to writeback */
900         if (referenced_folio && folio_is_file_lru(folio))
901                 return FOLIOREF_RECLAIM_CLEAN;
902
903         return FOLIOREF_RECLAIM;
904 }
905
906 /* Check if a folio is dirty or under writeback */
907 static void folio_check_dirty_writeback(struct folio *folio,
908                                        bool *dirty, bool *writeback)
909 {
910         struct address_space *mapping;
911
912         /*
913          * Anonymous folios are not handled by flushers and must be written
914          * from reclaim context. Do not stall reclaim based on them.
915          * MADV_FREE anonymous folios are put into inactive file list too.
916          * They could be mistakenly treated as file lru. So further anon
917          * test is needed.
918          */
919         if (!folio_is_file_lru(folio) ||
920             (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
921                 *dirty = false;
922                 *writeback = false;
923                 return;
924         }
925
926         /* By default assume that the folio flags are accurate */
927         *dirty = folio_test_dirty(folio);
928         *writeback = folio_test_writeback(folio);
929
930         /* Verify dirty/writeback state if the filesystem supports it */
931         if (!folio_test_private(folio))
932                 return;
933
934         mapping = folio_mapping(folio);
935         if (mapping && mapping->a_ops->is_dirty_writeback)
936                 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
937 }
938
939 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
940 {
941         struct folio *dst;
942         nodemask_t *allowed_mask;
943         struct migration_target_control *mtc;
944
945         mtc = (struct migration_target_control *)private;
946
947         allowed_mask = mtc->nmask;
948         /*
949          * make sure we allocate from the target node first also trying to
950          * demote or reclaim pages from the target node via kswapd if we are
951          * low on free memory on target node. If we don't do this and if
952          * we have free memory on the slower(lower) memtier, we would start
953          * allocating pages from slower(lower) memory tiers without even forcing
954          * a demotion of cold pages from the target memtier. This can result
955          * in the kernel placing hot pages in slower(lower) memory tiers.
956          */
957         mtc->nmask = NULL;
958         mtc->gfp_mask |= __GFP_THISNODE;
959         dst = alloc_migration_target(src, (unsigned long)mtc);
960         if (dst)
961                 return dst;
962
963         mtc->gfp_mask &= ~__GFP_THISNODE;
964         mtc->nmask = allowed_mask;
965
966         return alloc_migration_target(src, (unsigned long)mtc);
967 }
968
969 /*
970  * Take folios on @demote_folios and attempt to demote them to another node.
971  * Folios which are not demoted are left on @demote_folios.
972  */
973 static unsigned int demote_folio_list(struct list_head *demote_folios,
974                                      struct pglist_data *pgdat)
975 {
976         int target_nid = next_demotion_node(pgdat->node_id);
977         unsigned int nr_succeeded;
978         nodemask_t allowed_mask;
979
980         struct migration_target_control mtc = {
981                 /*
982                  * Allocate from 'node', or fail quickly and quietly.
983                  * When this happens, 'page' will likely just be discarded
984                  * instead of migrated.
985                  */
986                 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
987                         __GFP_NOMEMALLOC | GFP_NOWAIT,
988                 .nid = target_nid,
989                 .nmask = &allowed_mask,
990                 .reason = MR_DEMOTION,
991         };
992
993         if (list_empty(demote_folios))
994                 return 0;
995
996         if (target_nid == NUMA_NO_NODE)
997                 return 0;
998
999         node_get_allowed_targets(pgdat, &allowed_mask);
1000
1001         /* Demotion ignores all cpuset and mempolicy settings */
1002         migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1003                       (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1004                       &nr_succeeded);
1005
1006         mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
1007                             nr_succeeded);
1008
1009         return nr_succeeded;
1010 }
1011
1012 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1013 {
1014         if (gfp_mask & __GFP_FS)
1015                 return true;
1016         if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1017                 return false;
1018         /*
1019          * We can "enter_fs" for swap-cache with only __GFP_IO
1020          * providing this isn't SWP_FS_OPS.
1021          * ->flags can be updated non-atomicially (scan_swap_map_slots),
1022          * but that will never affect SWP_FS_OPS, so the data_race
1023          * is safe.
1024          */
1025         return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1026 }
1027
1028 /*
1029  * shrink_folio_list() returns the number of reclaimed pages
1030  */
1031 static unsigned int shrink_folio_list(struct list_head *folio_list,
1032                 struct pglist_data *pgdat, struct scan_control *sc,
1033                 struct reclaim_stat *stat, bool ignore_references)
1034 {
1035         struct folio_batch free_folios;
1036         LIST_HEAD(ret_folios);
1037         LIST_HEAD(demote_folios);
1038         unsigned int nr_reclaimed = 0;
1039         unsigned int pgactivate = 0;
1040         bool do_demote_pass;
1041         struct swap_iocb *plug = NULL;
1042
1043         folio_batch_init(&free_folios);
1044         memset(stat, 0, sizeof(*stat));
1045         cond_resched();
1046         do_demote_pass = can_demote(pgdat->node_id, sc);
1047
1048 retry:
1049         while (!list_empty(folio_list)) {
1050                 struct address_space *mapping;
1051                 struct folio *folio;
1052                 enum folio_references references = FOLIOREF_RECLAIM;
1053                 bool dirty, writeback;
1054                 unsigned int nr_pages;
1055
1056                 cond_resched();
1057
1058                 folio = lru_to_folio(folio_list);
1059                 list_del(&folio->lru);
1060
1061                 if (!folio_trylock(folio))
1062                         goto keep;
1063
1064                 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1065
1066                 nr_pages = folio_nr_pages(folio);
1067
1068                 /* Account the number of base pages */
1069                 sc->nr_scanned += nr_pages;
1070
1071                 if (unlikely(!folio_evictable(folio)))
1072                         goto activate_locked;
1073
1074                 if (!sc->may_unmap && folio_mapped(folio))
1075                         goto keep_locked;
1076
1077                 /* folio_update_gen() tried to promote this page? */
1078                 if (lru_gen_enabled() && !ignore_references &&
1079                     folio_mapped(folio) && folio_test_referenced(folio))
1080                         goto keep_locked;
1081
1082                 /*
1083                  * The number of dirty pages determines if a node is marked
1084                  * reclaim_congested. kswapd will stall and start writing
1085                  * folios if the tail of the LRU is all dirty unqueued folios.
1086                  */
1087                 folio_check_dirty_writeback(folio, &dirty, &writeback);
1088                 if (dirty || writeback)
1089                         stat->nr_dirty += nr_pages;
1090
1091                 if (dirty && !writeback)
1092                         stat->nr_unqueued_dirty += nr_pages;
1093
1094                 /*
1095                  * Treat this folio as congested if folios are cycling
1096                  * through the LRU so quickly that the folios marked
1097                  * for immediate reclaim are making it to the end of
1098                  * the LRU a second time.
1099                  */
1100                 if (writeback && folio_test_reclaim(folio))
1101                         stat->nr_congested += nr_pages;
1102
1103                 /*
1104                  * If a folio at the tail of the LRU is under writeback, there
1105                  * are three cases to consider.
1106                  *
1107                  * 1) If reclaim is encountering an excessive number
1108                  *    of folios under writeback and this folio has both
1109                  *    the writeback and reclaim flags set, then it
1110                  *    indicates that folios are being queued for I/O but
1111                  *    are being recycled through the LRU before the I/O
1112                  *    can complete. Waiting on the folio itself risks an
1113                  *    indefinite stall if it is impossible to writeback
1114                  *    the folio due to I/O error or disconnected storage
1115                  *    so instead note that the LRU is being scanned too
1116                  *    quickly and the caller can stall after the folio
1117                  *    list has been processed.
1118                  *
1119                  * 2) Global or new memcg reclaim encounters a folio that is
1120                  *    not marked for immediate reclaim, or the caller does not
1121                  *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1122                  *    not to fs). In this case mark the folio for immediate
1123                  *    reclaim and continue scanning.
1124                  *
1125                  *    Require may_enter_fs() because we would wait on fs, which
1126                  *    may not have submitted I/O yet. And the loop driver might
1127                  *    enter reclaim, and deadlock if it waits on a folio for
1128                  *    which it is needed to do the write (loop masks off
1129                  *    __GFP_IO|__GFP_FS for this reason); but more thought
1130                  *    would probably show more reasons.
1131                  *
1132                  * 3) Legacy memcg encounters a folio that already has the
1133                  *    reclaim flag set. memcg does not have any dirty folio
1134                  *    throttling so we could easily OOM just because too many
1135                  *    folios are in writeback and there is nothing else to
1136                  *    reclaim. Wait for the writeback to complete.
1137                  *
1138                  * In cases 1) and 2) we activate the folios to get them out of
1139                  * the way while we continue scanning for clean folios on the
1140                  * inactive list and refilling from the active list. The
1141                  * observation here is that waiting for disk writes is more
1142                  * expensive than potentially causing reloads down the line.
1143                  * Since they're marked for immediate reclaim, they won't put
1144                  * memory pressure on the cache working set any longer than it
1145                  * takes to write them to disk.
1146                  */
1147                 if (folio_test_writeback(folio)) {
1148                         /* Case 1 above */
1149                         if (current_is_kswapd() &&
1150                             folio_test_reclaim(folio) &&
1151                             test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1152                                 stat->nr_immediate += nr_pages;
1153                                 goto activate_locked;
1154
1155                         /* Case 2 above */
1156                         } else if (writeback_throttling_sane(sc) ||
1157                             !folio_test_reclaim(folio) ||
1158                             !may_enter_fs(folio, sc->gfp_mask)) {
1159                                 /*
1160                                  * This is slightly racy -
1161                                  * folio_end_writeback() might have
1162                                  * just cleared the reclaim flag, then
1163                                  * setting the reclaim flag here ends up
1164                                  * interpreted as the readahead flag - but
1165                                  * that does not matter enough to care.
1166                                  * What we do want is for this folio to
1167                                  * have the reclaim flag set next time
1168                                  * memcg reclaim reaches the tests above,
1169                                  * so it will then wait for writeback to
1170                                  * avoid OOM; and it's also appropriate
1171                                  * in global reclaim.
1172                                  */
1173                                 folio_set_reclaim(folio);
1174                                 stat->nr_writeback += nr_pages;
1175                                 goto activate_locked;
1176
1177                         /* Case 3 above */
1178                         } else {
1179                                 folio_unlock(folio);
1180                                 folio_wait_writeback(folio);
1181                                 /* then go back and try same folio again */
1182                                 list_add_tail(&folio->lru, folio_list);
1183                                 continue;
1184                         }
1185                 }
1186
1187                 if (!ignore_references)
1188                         references = folio_check_references(folio, sc);
1189
1190                 switch (references) {
1191                 case FOLIOREF_ACTIVATE:
1192                         goto activate_locked;
1193                 case FOLIOREF_KEEP:
1194                         stat->nr_ref_keep += nr_pages;
1195                         goto keep_locked;
1196                 case FOLIOREF_RECLAIM:
1197                 case FOLIOREF_RECLAIM_CLEAN:
1198                         ; /* try to reclaim the folio below */
1199                 }
1200
1201                 /*
1202                  * Before reclaiming the folio, try to relocate
1203                  * its contents to another node.
1204                  */
1205                 if (do_demote_pass &&
1206                     (thp_migration_supported() || !folio_test_large(folio))) {
1207                         list_add(&folio->lru, &demote_folios);
1208                         folio_unlock(folio);
1209                         continue;
1210                 }
1211
1212                 /*
1213                  * Anonymous process memory has backing store?
1214                  * Try to allocate it some swap space here.
1215                  * Lazyfree folio could be freed directly
1216                  */
1217                 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1218                         if (!folio_test_swapcache(folio)) {
1219                                 if (!(sc->gfp_mask & __GFP_IO))
1220                                         goto keep_locked;
1221                                 if (folio_maybe_dma_pinned(folio))
1222                                         goto keep_locked;
1223                                 if (folio_test_large(folio)) {
1224                                         /* cannot split folio, skip it */
1225                                         if (!can_split_folio(folio, NULL))
1226                                                 goto activate_locked;
1227                                         /*
1228                                          * Split partially mapped folios right away.
1229                                          * We can free the unmapped pages without IO.
1230                                          */
1231                                         if (data_race(!list_empty(&folio->_deferred_list)) &&
1232                                             split_folio_to_list(folio, folio_list))
1233                                                 goto activate_locked;
1234                                 }
1235                                 if (!add_to_swap(folio)) {
1236                                         int __maybe_unused order = folio_order(folio);
1237
1238                                         if (!folio_test_large(folio))
1239                                                 goto activate_locked_split;
1240                                         /* Fallback to swap normal pages */
1241                                         if (split_folio_to_list(folio, folio_list))
1242                                                 goto activate_locked;
1243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1244                                         if (nr_pages >= HPAGE_PMD_NR) {
1245                                                 count_memcg_folio_events(folio,
1246                                                         THP_SWPOUT_FALLBACK, 1);
1247                                                 count_vm_event(THP_SWPOUT_FALLBACK);
1248                                         }
1249                                         count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1250 #endif
1251                                         if (!add_to_swap(folio))
1252                                                 goto activate_locked_split;
1253                                 }
1254                         }
1255                 } else if (folio_test_swapbacked(folio) &&
1256                            folio_test_large(folio)) {
1257                         /* Split shmem folio */
1258                         if (split_folio_to_list(folio, folio_list))
1259                                 goto keep_locked;
1260                 }
1261
1262                 /*
1263                  * If the folio was split above, the tail pages will make
1264                  * their own pass through this function and be accounted
1265                  * then.
1266                  */
1267                 if ((nr_pages > 1) && !folio_test_large(folio)) {
1268                         sc->nr_scanned -= (nr_pages - 1);
1269                         nr_pages = 1;
1270                 }
1271
1272                 /*
1273                  * The folio is mapped into the page tables of one or more
1274                  * processes. Try to unmap it here.
1275                  */
1276                 if (folio_mapped(folio)) {
1277                         enum ttu_flags flags = TTU_BATCH_FLUSH;
1278                         bool was_swapbacked = folio_test_swapbacked(folio);
1279
1280                         if (folio_test_pmd_mappable(folio))
1281                                 flags |= TTU_SPLIT_HUGE_PMD;
1282                         /*
1283                          * Without TTU_SYNC, try_to_unmap will only begin to
1284                          * hold PTL from the first present PTE within a large
1285                          * folio. Some initial PTEs might be skipped due to
1286                          * races with parallel PTE writes in which PTEs can be
1287                          * cleared temporarily before being written new present
1288                          * values. This will lead to a large folio is still
1289                          * mapped while some subpages have been partially
1290                          * unmapped after try_to_unmap; TTU_SYNC helps
1291                          * try_to_unmap acquire PTL from the first PTE,
1292                          * eliminating the influence of temporary PTE values.
1293                          */
1294                         if (folio_test_large(folio))
1295                                 flags |= TTU_SYNC;
1296
1297                         try_to_unmap(folio, flags);
1298                         if (folio_mapped(folio)) {
1299                                 stat->nr_unmap_fail += nr_pages;
1300                                 if (!was_swapbacked &&
1301                                     folio_test_swapbacked(folio))
1302                                         stat->nr_lazyfree_fail += nr_pages;
1303                                 goto activate_locked;
1304                         }
1305                 }
1306
1307                 /*
1308                  * Folio is unmapped now so it cannot be newly pinned anymore.
1309                  * No point in trying to reclaim folio if it is pinned.
1310                  * Furthermore we don't want to reclaim underlying fs metadata
1311                  * if the folio is pinned and thus potentially modified by the
1312                  * pinning process as that may upset the filesystem.
1313                  */
1314                 if (folio_maybe_dma_pinned(folio))
1315                         goto activate_locked;
1316
1317                 mapping = folio_mapping(folio);
1318                 if (folio_test_dirty(folio)) {
1319                         /*
1320                          * Only kswapd can writeback filesystem folios
1321                          * to avoid risk of stack overflow. But avoid
1322                          * injecting inefficient single-folio I/O into
1323                          * flusher writeback as much as possible: only
1324                          * write folios when we've encountered many
1325                          * dirty folios, and when we've already scanned
1326                          * the rest of the LRU for clean folios and see
1327                          * the same dirty folios again (with the reclaim
1328                          * flag set).
1329                          */
1330                         if (folio_is_file_lru(folio) &&
1331                             (!current_is_kswapd() ||
1332                              !folio_test_reclaim(folio) ||
1333                              !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1334                                 /*
1335                                  * Immediately reclaim when written back.
1336                                  * Similar in principle to folio_deactivate()
1337                                  * except we already have the folio isolated
1338                                  * and know it's dirty
1339                                  */
1340                                 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1341                                                 nr_pages);
1342                                 folio_set_reclaim(folio);
1343
1344                                 goto activate_locked;
1345                         }
1346
1347                         if (references == FOLIOREF_RECLAIM_CLEAN)
1348                                 goto keep_locked;
1349                         if (!may_enter_fs(folio, sc->gfp_mask))
1350                                 goto keep_locked;
1351                         if (!sc->may_writepage)
1352                                 goto keep_locked;
1353
1354                         /*
1355                          * Folio is dirty. Flush the TLB if a writable entry
1356                          * potentially exists to avoid CPU writes after I/O
1357                          * starts and then write it out here.
1358                          */
1359                         try_to_unmap_flush_dirty();
1360                         switch (pageout(folio, mapping, &plug)) {
1361                         case PAGE_KEEP:
1362                                 goto keep_locked;
1363                         case PAGE_ACTIVATE:
1364                                 goto activate_locked;
1365                         case PAGE_SUCCESS:
1366                                 stat->nr_pageout += nr_pages;
1367
1368                                 if (folio_test_writeback(folio))
1369                                         goto keep;
1370                                 if (folio_test_dirty(folio))
1371                                         goto keep;
1372
1373                                 /*
1374                                  * A synchronous write - probably a ramdisk.  Go
1375                                  * ahead and try to reclaim the folio.
1376                                  */
1377                                 if (!folio_trylock(folio))
1378                                         goto keep;
1379                                 if (folio_test_dirty(folio) ||
1380                                     folio_test_writeback(folio))
1381                                         goto keep_locked;
1382                                 mapping = folio_mapping(folio);
1383                                 fallthrough;
1384                         case PAGE_CLEAN:
1385                                 ; /* try to free the folio below */
1386                         }
1387                 }
1388
1389                 /*
1390                  * If the folio has buffers, try to free the buffer
1391                  * mappings associated with this folio. If we succeed
1392                  * we try to free the folio as well.
1393                  *
1394                  * We do this even if the folio is dirty.
1395                  * filemap_release_folio() does not perform I/O, but it
1396                  * is possible for a folio to have the dirty flag set,
1397                  * but it is actually clean (all its buffers are clean).
1398                  * This happens if the buffers were written out directly,
1399                  * with submit_bh(). ext3 will do this, as well as
1400                  * the blockdev mapping.  filemap_release_folio() will
1401                  * discover that cleanness and will drop the buffers
1402                  * and mark the folio clean - it can be freed.
1403                  *
1404                  * Rarely, folios can have buffers and no ->mapping.
1405                  * These are the folios which were not successfully
1406                  * invalidated in truncate_cleanup_folio().  We try to
1407                  * drop those buffers here and if that worked, and the
1408                  * folio is no longer mapped into process address space
1409                  * (refcount == 1) it can be freed.  Otherwise, leave
1410                  * the folio on the LRU so it is swappable.
1411                  */
1412                 if (folio_needs_release(folio)) {
1413                         if (!filemap_release_folio(folio, sc->gfp_mask))
1414                                 goto activate_locked;
1415                         if (!mapping && folio_ref_count(folio) == 1) {
1416                                 folio_unlock(folio);
1417                                 if (folio_put_testzero(folio))
1418                                         goto free_it;
1419                                 else {
1420                                         /*
1421                                          * rare race with speculative reference.
1422                                          * the speculative reference will free
1423                                          * this folio shortly, so we may
1424                                          * increment nr_reclaimed here (and
1425                                          * leave it off the LRU).
1426                                          */
1427                                         nr_reclaimed += nr_pages;
1428                                         continue;
1429                                 }
1430                         }
1431                 }
1432
1433                 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1434                         /* follow __remove_mapping for reference */
1435                         if (!folio_ref_freeze(folio, 1))
1436                                 goto keep_locked;
1437                         /*
1438                          * The folio has only one reference left, which is
1439                          * from the isolation. After the caller puts the
1440                          * folio back on the lru and drops the reference, the
1441                          * folio will be freed anyway. It doesn't matter
1442                          * which lru it goes on. So we don't bother checking
1443                          * the dirty flag here.
1444                          */
1445                         count_vm_events(PGLAZYFREED, nr_pages);
1446                         count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1447                 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1448                                                          sc->target_mem_cgroup))
1449                         goto keep_locked;
1450
1451                 folio_unlock(folio);
1452 free_it:
1453                 /*
1454                  * Folio may get swapped out as a whole, need to account
1455                  * all pages in it.
1456                  */
1457                 nr_reclaimed += nr_pages;
1458
1459                 folio_undo_large_rmappable(folio);
1460                 if (folio_batch_add(&free_folios, folio) == 0) {
1461                         mem_cgroup_uncharge_folios(&free_folios);
1462                         try_to_unmap_flush();
1463                         free_unref_folios(&free_folios);
1464                 }
1465                 continue;
1466
1467 activate_locked_split:
1468                 /*
1469                  * The tail pages that are failed to add into swap cache
1470                  * reach here.  Fixup nr_scanned and nr_pages.
1471                  */
1472                 if (nr_pages > 1) {
1473                         sc->nr_scanned -= (nr_pages - 1);
1474                         nr_pages = 1;
1475                 }
1476 activate_locked:
1477                 /* Not a candidate for swapping, so reclaim swap space. */
1478                 if (folio_test_swapcache(folio) &&
1479                     (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1480                         folio_free_swap(folio);
1481                 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1482                 if (!folio_test_mlocked(folio)) {
1483                         int type = folio_is_file_lru(folio);
1484                         folio_set_active(folio);
1485                         stat->nr_activate[type] += nr_pages;
1486                         count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1487                 }
1488 keep_locked:
1489                 folio_unlock(folio);
1490 keep:
1491                 list_add(&folio->lru, &ret_folios);
1492                 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1493                                 folio_test_unevictable(folio), folio);
1494         }
1495         /* 'folio_list' is always empty here */
1496
1497         /* Migrate folios selected for demotion */
1498         nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1499         /* Folios that could not be demoted are still in @demote_folios */
1500         if (!list_empty(&demote_folios)) {
1501                 /* Folios which weren't demoted go back on @folio_list */
1502                 list_splice_init(&demote_folios, folio_list);
1503
1504                 /*
1505                  * goto retry to reclaim the undemoted folios in folio_list if
1506                  * desired.
1507                  *
1508                  * Reclaiming directly from top tier nodes is not often desired
1509                  * due to it breaking the LRU ordering: in general memory
1510                  * should be reclaimed from lower tier nodes and demoted from
1511                  * top tier nodes.
1512                  *
1513                  * However, disabling reclaim from top tier nodes entirely
1514                  * would cause ooms in edge scenarios where lower tier memory
1515                  * is unreclaimable for whatever reason, eg memory being
1516                  * mlocked or too hot to reclaim. We can disable reclaim
1517                  * from top tier nodes in proactive reclaim though as that is
1518                  * not real memory pressure.
1519                  */
1520                 if (!sc->proactive) {
1521                         do_demote_pass = false;
1522                         goto retry;
1523                 }
1524         }
1525
1526         pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1527
1528         mem_cgroup_uncharge_folios(&free_folios);
1529         try_to_unmap_flush();
1530         free_unref_folios(&free_folios);
1531
1532         list_splice(&ret_folios, folio_list);
1533         count_vm_events(PGACTIVATE, pgactivate);
1534
1535         if (plug)
1536                 swap_write_unplug(plug);
1537         return nr_reclaimed;
1538 }
1539
1540 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1541                                            struct list_head *folio_list)
1542 {
1543         struct scan_control sc = {
1544                 .gfp_mask = GFP_KERNEL,
1545                 .may_unmap = 1,
1546         };
1547         struct reclaim_stat stat;
1548         unsigned int nr_reclaimed;
1549         struct folio *folio, *next;
1550         LIST_HEAD(clean_folios);
1551         unsigned int noreclaim_flag;
1552
1553         list_for_each_entry_safe(folio, next, folio_list, lru) {
1554                 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1555                     !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1556                     !folio_test_unevictable(folio)) {
1557                         folio_clear_active(folio);
1558                         list_move(&folio->lru, &clean_folios);
1559                 }
1560         }
1561
1562         /*
1563          * We should be safe here since we are only dealing with file pages and
1564          * we are not kswapd and therefore cannot write dirty file pages. But
1565          * call memalloc_noreclaim_save() anyway, just in case these conditions
1566          * change in the future.
1567          */
1568         noreclaim_flag = memalloc_noreclaim_save();
1569         nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1570                                         &stat, true);
1571         memalloc_noreclaim_restore(noreclaim_flag);
1572
1573         list_splice(&clean_folios, folio_list);
1574         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1575                             -(long)nr_reclaimed);
1576         /*
1577          * Since lazyfree pages are isolated from file LRU from the beginning,
1578          * they will rotate back to anonymous LRU in the end if it failed to
1579          * discard so isolated count will be mismatched.
1580          * Compensate the isolated count for both LRU lists.
1581          */
1582         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1583                             stat.nr_lazyfree_fail);
1584         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1585                             -(long)stat.nr_lazyfree_fail);
1586         return nr_reclaimed;
1587 }
1588
1589 /*
1590  * Update LRU sizes after isolating pages. The LRU size updates must
1591  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1592  */
1593 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1594                         enum lru_list lru, unsigned long *nr_zone_taken)
1595 {
1596         int zid;
1597
1598         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1599                 if (!nr_zone_taken[zid])
1600                         continue;
1601
1602                 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1603         }
1604
1605 }
1606
1607 #ifdef CONFIG_CMA
1608 /*
1609  * It is waste of effort to scan and reclaim CMA pages if it is not available
1610  * for current allocation context. Kswapd can not be enrolled as it can not
1611  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1612  */
1613 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1614 {
1615         return !current_is_kswapd() &&
1616                         gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1617                         folio_migratetype(folio) == MIGRATE_CMA;
1618 }
1619 #else
1620 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1621 {
1622         return false;
1623 }
1624 #endif
1625
1626 /*
1627  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1628  *
1629  * lruvec->lru_lock is heavily contended.  Some of the functions that
1630  * shrink the lists perform better by taking out a batch of pages
1631  * and working on them outside the LRU lock.
1632  *
1633  * For pagecache intensive workloads, this function is the hottest
1634  * spot in the kernel (apart from copy_*_user functions).
1635  *
1636  * Lru_lock must be held before calling this function.
1637  *
1638  * @nr_to_scan: The number of eligible pages to look through on the list.
1639  * @lruvec:     The LRU vector to pull pages from.
1640  * @dst:        The temp list to put pages on to.
1641  * @nr_scanned: The number of pages that were scanned.
1642  * @sc:         The scan_control struct for this reclaim session
1643  * @lru:        LRU list id for isolating
1644  *
1645  * returns how many pages were moved onto *@dst.
1646  */
1647 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1648                 struct lruvec *lruvec, struct list_head *dst,
1649                 unsigned long *nr_scanned, struct scan_control *sc,
1650                 enum lru_list lru)
1651 {
1652         struct list_head *src = &lruvec->lists[lru];
1653         unsigned long nr_taken = 0;
1654         unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1655         unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1656         unsigned long skipped = 0;
1657         unsigned long scan, total_scan, nr_pages;
1658         LIST_HEAD(folios_skipped);
1659
1660         total_scan = 0;
1661         scan = 0;
1662         while (scan < nr_to_scan && !list_empty(src)) {
1663                 struct list_head *move_to = src;
1664                 struct folio *folio;
1665
1666                 folio = lru_to_folio(src);
1667                 prefetchw_prev_lru_folio(folio, src, flags);
1668
1669                 nr_pages = folio_nr_pages(folio);
1670                 total_scan += nr_pages;
1671
1672                 if (folio_zonenum(folio) > sc->reclaim_idx ||
1673                                 skip_cma(folio, sc)) {
1674                         nr_skipped[folio_zonenum(folio)] += nr_pages;
1675                         move_to = &folios_skipped;
1676                         goto move;
1677                 }
1678
1679                 /*
1680                  * Do not count skipped folios because that makes the function
1681                  * return with no isolated folios if the LRU mostly contains
1682                  * ineligible folios.  This causes the VM to not reclaim any
1683                  * folios, triggering a premature OOM.
1684                  * Account all pages in a folio.
1685                  */
1686                 scan += nr_pages;
1687
1688                 if (!folio_test_lru(folio))
1689                         goto move;
1690                 if (!sc->may_unmap && folio_mapped(folio))
1691                         goto move;
1692
1693                 /*
1694                  * Be careful not to clear the lru flag until after we're
1695                  * sure the folio is not being freed elsewhere -- the
1696                  * folio release code relies on it.
1697                  */
1698                 if (unlikely(!folio_try_get(folio)))
1699                         goto move;
1700
1701                 if (!folio_test_clear_lru(folio)) {
1702                         /* Another thread is already isolating this folio */
1703                         folio_put(folio);
1704                         goto move;
1705                 }
1706
1707                 nr_taken += nr_pages;
1708                 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1709                 move_to = dst;
1710 move:
1711                 list_move(&folio->lru, move_to);
1712         }
1713
1714         /*
1715          * Splice any skipped folios to the start of the LRU list. Note that
1716          * this disrupts the LRU order when reclaiming for lower zones but
1717          * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1718          * scanning would soon rescan the same folios to skip and waste lots
1719          * of cpu cycles.
1720          */
1721         if (!list_empty(&folios_skipped)) {
1722                 int zid;
1723
1724                 list_splice(&folios_skipped, src);
1725                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1726                         if (!nr_skipped[zid])
1727                                 continue;
1728
1729                         __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1730                         skipped += nr_skipped[zid];
1731                 }
1732         }
1733         *nr_scanned = total_scan;
1734         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1735                                     total_scan, skipped, nr_taken, lru);
1736         update_lru_sizes(lruvec, lru, nr_zone_taken);
1737         return nr_taken;
1738 }
1739
1740 /**
1741  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1742  * @folio: Folio to isolate from its LRU list.
1743  *
1744  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1745  * corresponding to whatever LRU list the folio was on.
1746  *
1747  * The folio will have its LRU flag cleared.  If it was found on the
1748  * active list, it will have the Active flag set.  If it was found on the
1749  * unevictable list, it will have the Unevictable flag set.  These flags
1750  * may need to be cleared by the caller before letting the page go.
1751  *
1752  * Context:
1753  *
1754  * (1) Must be called with an elevated refcount on the folio. This is a
1755  *     fundamental difference from isolate_lru_folios() (which is called
1756  *     without a stable reference).
1757  * (2) The lru_lock must not be held.
1758  * (3) Interrupts must be enabled.
1759  *
1760  * Return: true if the folio was removed from an LRU list.
1761  * false if the folio was not on an LRU list.
1762  */
1763 bool folio_isolate_lru(struct folio *folio)
1764 {
1765         bool ret = false;
1766
1767         VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1768
1769         if (folio_test_clear_lru(folio)) {
1770                 struct lruvec *lruvec;
1771
1772                 folio_get(folio);
1773                 lruvec = folio_lruvec_lock_irq(folio);
1774                 lruvec_del_folio(lruvec, folio);
1775                 unlock_page_lruvec_irq(lruvec);
1776                 ret = true;
1777         }
1778
1779         return ret;
1780 }
1781
1782 /*
1783  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1784  * then get rescheduled. When there are massive number of tasks doing page
1785  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1786  * the LRU list will go small and be scanned faster than necessary, leading to
1787  * unnecessary swapping, thrashing and OOM.
1788  */
1789 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1790                 struct scan_control *sc)
1791 {
1792         unsigned long inactive, isolated;
1793         bool too_many;
1794
1795         if (current_is_kswapd())
1796                 return false;
1797
1798         if (!writeback_throttling_sane(sc))
1799                 return false;
1800
1801         if (file) {
1802                 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1803                 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1804         } else {
1805                 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1806                 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1807         }
1808
1809         /*
1810          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1811          * won't get blocked by normal direct-reclaimers, forming a circular
1812          * deadlock.
1813          */
1814         if (gfp_has_io_fs(sc->gfp_mask))
1815                 inactive >>= 3;
1816
1817         too_many = isolated > inactive;
1818
1819         /* Wake up tasks throttled due to too_many_isolated. */
1820         if (!too_many)
1821                 wake_throttle_isolated(pgdat);
1822
1823         return too_many;
1824 }
1825
1826 /*
1827  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1828  *
1829  * Returns the number of pages moved to the given lruvec.
1830  */
1831 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1832                 struct list_head *list)
1833 {
1834         int nr_pages, nr_moved = 0;
1835         struct folio_batch free_folios;
1836
1837         folio_batch_init(&free_folios);
1838         while (!list_empty(list)) {
1839                 struct folio *folio = lru_to_folio(list);
1840
1841                 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1842                 list_del(&folio->lru);
1843                 if (unlikely(!folio_evictable(folio))) {
1844                         spin_unlock_irq(&lruvec->lru_lock);
1845                         folio_putback_lru(folio);
1846                         spin_lock_irq(&lruvec->lru_lock);
1847                         continue;
1848                 }
1849
1850                 /*
1851                  * The folio_set_lru needs to be kept here for list integrity.
1852                  * Otherwise:
1853                  *   #0 move_folios_to_lru             #1 release_pages
1854                  *   if (!folio_put_testzero())
1855                  *                                    if (folio_put_testzero())
1856                  *                                      !lru //skip lru_lock
1857                  *     folio_set_lru()
1858                  *     list_add(&folio->lru,)
1859                  *                                        list_add(&folio->lru,)
1860                  */
1861                 folio_set_lru(folio);
1862
1863                 if (unlikely(folio_put_testzero(folio))) {
1864                         __folio_clear_lru_flags(folio);
1865
1866                         folio_undo_large_rmappable(folio);
1867                         if (folio_batch_add(&free_folios, folio) == 0) {
1868                                 spin_unlock_irq(&lruvec->lru_lock);
1869                                 mem_cgroup_uncharge_folios(&free_folios);
1870                                 free_unref_folios(&free_folios);
1871                                 spin_lock_irq(&lruvec->lru_lock);
1872                         }
1873
1874                         continue;
1875                 }
1876
1877                 /*
1878                  * All pages were isolated from the same lruvec (and isolation
1879                  * inhibits memcg migration).
1880                  */
1881                 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1882                 lruvec_add_folio(lruvec, folio);
1883                 nr_pages = folio_nr_pages(folio);
1884                 nr_moved += nr_pages;
1885                 if (folio_test_active(folio))
1886                         workingset_age_nonresident(lruvec, nr_pages);
1887         }
1888
1889         if (free_folios.nr) {
1890                 spin_unlock_irq(&lruvec->lru_lock);
1891                 mem_cgroup_uncharge_folios(&free_folios);
1892                 free_unref_folios(&free_folios);
1893                 spin_lock_irq(&lruvec->lru_lock);
1894         }
1895
1896         return nr_moved;
1897 }
1898
1899 /*
1900  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1901  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1902  * we should not throttle.  Otherwise it is safe to do so.
1903  */
1904 static int current_may_throttle(void)
1905 {
1906         return !(current->flags & PF_LOCAL_THROTTLE);
1907 }
1908
1909 /*
1910  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1911  * of reclaimed pages
1912  */
1913 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1914                 struct lruvec *lruvec, struct scan_control *sc,
1915                 enum lru_list lru)
1916 {
1917         LIST_HEAD(folio_list);
1918         unsigned long nr_scanned;
1919         unsigned int nr_reclaimed = 0;
1920         unsigned long nr_taken;
1921         struct reclaim_stat stat;
1922         bool file = is_file_lru(lru);
1923         enum vm_event_item item;
1924         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1925         bool stalled = false;
1926
1927         while (unlikely(too_many_isolated(pgdat, file, sc))) {
1928                 if (stalled)
1929                         return 0;
1930
1931                 /* wait a bit for the reclaimer. */
1932                 stalled = true;
1933                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1934
1935                 /* We are about to die and free our memory. Return now. */
1936                 if (fatal_signal_pending(current))
1937                         return SWAP_CLUSTER_MAX;
1938         }
1939
1940         lru_add_drain();
1941
1942         spin_lock_irq(&lruvec->lru_lock);
1943
1944         nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1945                                      &nr_scanned, sc, lru);
1946
1947         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1948         item = PGSCAN_KSWAPD + reclaimer_offset();
1949         if (!cgroup_reclaim(sc))
1950                 __count_vm_events(item, nr_scanned);
1951         __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1952         __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1953
1954         spin_unlock_irq(&lruvec->lru_lock);
1955
1956         if (nr_taken == 0)
1957                 return 0;
1958
1959         nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1960
1961         spin_lock_irq(&lruvec->lru_lock);
1962         move_folios_to_lru(lruvec, &folio_list);
1963
1964         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1965         item = PGSTEAL_KSWAPD + reclaimer_offset();
1966         if (!cgroup_reclaim(sc))
1967                 __count_vm_events(item, nr_reclaimed);
1968         __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1969         __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1970         spin_unlock_irq(&lruvec->lru_lock);
1971
1972         lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1973
1974         /*
1975          * If dirty folios are scanned that are not queued for IO, it
1976          * implies that flushers are not doing their job. This can
1977          * happen when memory pressure pushes dirty folios to the end of
1978          * the LRU before the dirty limits are breached and the dirty
1979          * data has expired. It can also happen when the proportion of
1980          * dirty folios grows not through writes but through memory
1981          * pressure reclaiming all the clean cache. And in some cases,
1982          * the flushers simply cannot keep up with the allocation
1983          * rate. Nudge the flusher threads in case they are asleep.
1984          */
1985         if (stat.nr_unqueued_dirty == nr_taken) {
1986                 wakeup_flusher_threads(WB_REASON_VMSCAN);
1987                 /*
1988                  * For cgroupv1 dirty throttling is achieved by waking up
1989                  * the kernel flusher here and later waiting on folios
1990                  * which are in writeback to finish (see shrink_folio_list()).
1991                  *
1992                  * Flusher may not be able to issue writeback quickly
1993                  * enough for cgroupv1 writeback throttling to work
1994                  * on a large system.
1995                  */
1996                 if (!writeback_throttling_sane(sc))
1997                         reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1998         }
1999
2000         sc->nr.dirty += stat.nr_dirty;
2001         sc->nr.congested += stat.nr_congested;
2002         sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2003         sc->nr.writeback += stat.nr_writeback;
2004         sc->nr.immediate += stat.nr_immediate;
2005         sc->nr.taken += nr_taken;
2006         if (file)
2007                 sc->nr.file_taken += nr_taken;
2008
2009         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2010                         nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2011         return nr_reclaimed;
2012 }
2013
2014 /*
2015  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2016  *
2017  * We move them the other way if the folio is referenced by one or more
2018  * processes.
2019  *
2020  * If the folios are mostly unmapped, the processing is fast and it is
2021  * appropriate to hold lru_lock across the whole operation.  But if
2022  * the folios are mapped, the processing is slow (folio_referenced()), so
2023  * we should drop lru_lock around each folio.  It's impossible to balance
2024  * this, so instead we remove the folios from the LRU while processing them.
2025  * It is safe to rely on the active flag against the non-LRU folios in here
2026  * because nobody will play with that bit on a non-LRU folio.
2027  *
2028  * The downside is that we have to touch folio->_refcount against each folio.
2029  * But we had to alter folio->flags anyway.
2030  */
2031 static void shrink_active_list(unsigned long nr_to_scan,
2032                                struct lruvec *lruvec,
2033                                struct scan_control *sc,
2034                                enum lru_list lru)
2035 {
2036         unsigned long nr_taken;
2037         unsigned long nr_scanned;
2038         unsigned long vm_flags;
2039         LIST_HEAD(l_hold);      /* The folios which were snipped off */
2040         LIST_HEAD(l_active);
2041         LIST_HEAD(l_inactive);
2042         unsigned nr_deactivate, nr_activate;
2043         unsigned nr_rotated = 0;
2044         bool file = is_file_lru(lru);
2045         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2046
2047         lru_add_drain();
2048
2049         spin_lock_irq(&lruvec->lru_lock);
2050
2051         nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2052                                      &nr_scanned, sc, lru);
2053
2054         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2055
2056         if (!cgroup_reclaim(sc))
2057                 __count_vm_events(PGREFILL, nr_scanned);
2058         __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2059
2060         spin_unlock_irq(&lruvec->lru_lock);
2061
2062         while (!list_empty(&l_hold)) {
2063                 struct folio *folio;
2064
2065                 cond_resched();
2066                 folio = lru_to_folio(&l_hold);
2067                 list_del(&folio->lru);
2068
2069                 if (unlikely(!folio_evictable(folio))) {
2070                         folio_putback_lru(folio);
2071                         continue;
2072                 }
2073
2074                 if (unlikely(buffer_heads_over_limit)) {
2075                         if (folio_needs_release(folio) &&
2076                             folio_trylock(folio)) {
2077                                 filemap_release_folio(folio, 0);
2078                                 folio_unlock(folio);
2079                         }
2080                 }
2081
2082                 /* Referenced or rmap lock contention: rotate */
2083                 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2084                                      &vm_flags) != 0) {
2085                         /*
2086                          * Identify referenced, file-backed active folios and
2087                          * give them one more trip around the active list. So
2088                          * that executable code get better chances to stay in
2089                          * memory under moderate memory pressure.  Anon folios
2090                          * are not likely to be evicted by use-once streaming
2091                          * IO, plus JVM can create lots of anon VM_EXEC folios,
2092                          * so we ignore them here.
2093                          */
2094                         if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2095                                 nr_rotated += folio_nr_pages(folio);
2096                                 list_add(&folio->lru, &l_active);
2097                                 continue;
2098                         }
2099                 }
2100
2101                 folio_clear_active(folio);      /* we are de-activating */
2102                 folio_set_workingset(folio);
2103                 list_add(&folio->lru, &l_inactive);
2104         }
2105
2106         /*
2107          * Move folios back to the lru list.
2108          */
2109         spin_lock_irq(&lruvec->lru_lock);
2110
2111         nr_activate = move_folios_to_lru(lruvec, &l_active);
2112         nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2113
2114         __count_vm_events(PGDEACTIVATE, nr_deactivate);
2115         __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2116
2117         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2118         spin_unlock_irq(&lruvec->lru_lock);
2119
2120         if (nr_rotated)
2121                 lru_note_cost(lruvec, file, 0, nr_rotated);
2122         trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2123                         nr_deactivate, nr_rotated, sc->priority, file);
2124 }
2125
2126 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2127                                       struct pglist_data *pgdat)
2128 {
2129         struct reclaim_stat dummy_stat;
2130         unsigned int nr_reclaimed;
2131         struct folio *folio;
2132         struct scan_control sc = {
2133                 .gfp_mask = GFP_KERNEL,
2134                 .may_writepage = 1,
2135                 .may_unmap = 1,
2136                 .may_swap = 1,
2137                 .no_demotion = 1,
2138         };
2139
2140         nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true);
2141         while (!list_empty(folio_list)) {
2142                 folio = lru_to_folio(folio_list);
2143                 list_del(&folio->lru);
2144                 folio_putback_lru(folio);
2145         }
2146
2147         return nr_reclaimed;
2148 }
2149
2150 unsigned long reclaim_pages(struct list_head *folio_list)
2151 {
2152         int nid;
2153         unsigned int nr_reclaimed = 0;
2154         LIST_HEAD(node_folio_list);
2155         unsigned int noreclaim_flag;
2156
2157         if (list_empty(folio_list))
2158                 return nr_reclaimed;
2159
2160         noreclaim_flag = memalloc_noreclaim_save();
2161
2162         nid = folio_nid(lru_to_folio(folio_list));
2163         do {
2164                 struct folio *folio = lru_to_folio(folio_list);
2165
2166                 if (nid == folio_nid(folio)) {
2167                         folio_clear_active(folio);
2168                         list_move(&folio->lru, &node_folio_list);
2169                         continue;
2170                 }
2171
2172                 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2173                 nid = folio_nid(lru_to_folio(folio_list));
2174         } while (!list_empty(folio_list));
2175
2176         nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2177
2178         memalloc_noreclaim_restore(noreclaim_flag);
2179
2180         return nr_reclaimed;
2181 }
2182
2183 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2184                                  struct lruvec *lruvec, struct scan_control *sc)
2185 {
2186         if (is_active_lru(lru)) {
2187                 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2188                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
2189                 else
2190                         sc->skipped_deactivate = 1;
2191                 return 0;
2192         }
2193
2194         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2195 }
2196
2197 /*
2198  * The inactive anon list should be small enough that the VM never has
2199  * to do too much work.
2200  *
2201  * The inactive file list should be small enough to leave most memory
2202  * to the established workingset on the scan-resistant active list,
2203  * but large enough to avoid thrashing the aggregate readahead window.
2204  *
2205  * Both inactive lists should also be large enough that each inactive
2206  * folio has a chance to be referenced again before it is reclaimed.
2207  *
2208  * If that fails and refaulting is observed, the inactive list grows.
2209  *
2210  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2211  * on this LRU, maintained by the pageout code. An inactive_ratio
2212  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2213  *
2214  * total     target    max
2215  * memory    ratio     inactive
2216  * -------------------------------------
2217  *   10MB       1         5MB
2218  *  100MB       1        50MB
2219  *    1GB       3       250MB
2220  *   10GB      10       0.9GB
2221  *  100GB      31         3GB
2222  *    1TB     101        10GB
2223  *   10TB     320        32GB
2224  */
2225 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2226 {
2227         enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2228         unsigned long inactive, active;
2229         unsigned long inactive_ratio;
2230         unsigned long gb;
2231
2232         inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2233         active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2234
2235         gb = (inactive + active) >> (30 - PAGE_SHIFT);
2236         if (gb)
2237                 inactive_ratio = int_sqrt(10 * gb);
2238         else
2239                 inactive_ratio = 1;
2240
2241         return inactive * inactive_ratio < active;
2242 }
2243
2244 enum scan_balance {
2245         SCAN_EQUAL,
2246         SCAN_FRACT,
2247         SCAN_ANON,
2248         SCAN_FILE,
2249 };
2250
2251 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2252 {
2253         unsigned long file;
2254         struct lruvec *target_lruvec;
2255
2256         if (lru_gen_enabled())
2257                 return;
2258
2259         target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2260
2261         /*
2262          * Flush the memory cgroup stats, so that we read accurate per-memcg
2263          * lruvec stats for heuristics.
2264          */
2265         mem_cgroup_flush_stats(sc->target_mem_cgroup);
2266
2267         /*
2268          * Determine the scan balance between anon and file LRUs.
2269          */
2270         spin_lock_irq(&target_lruvec->lru_lock);
2271         sc->anon_cost = target_lruvec->anon_cost;
2272         sc->file_cost = target_lruvec->file_cost;
2273         spin_unlock_irq(&target_lruvec->lru_lock);
2274
2275         /*
2276          * Target desirable inactive:active list ratios for the anon
2277          * and file LRU lists.
2278          */
2279         if (!sc->force_deactivate) {
2280                 unsigned long refaults;
2281
2282                 /*
2283                  * When refaults are being observed, it means a new
2284                  * workingset is being established. Deactivate to get
2285                  * rid of any stale active pages quickly.
2286                  */
2287                 refaults = lruvec_page_state(target_lruvec,
2288                                 WORKINGSET_ACTIVATE_ANON);
2289                 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2290                         inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2291                         sc->may_deactivate |= DEACTIVATE_ANON;
2292                 else
2293                         sc->may_deactivate &= ~DEACTIVATE_ANON;
2294
2295                 refaults = lruvec_page_state(target_lruvec,
2296                                 WORKINGSET_ACTIVATE_FILE);
2297                 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2298                     inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2299                         sc->may_deactivate |= DEACTIVATE_FILE;
2300                 else
2301                         sc->may_deactivate &= ~DEACTIVATE_FILE;
2302         } else
2303                 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2304
2305         /*
2306          * If we have plenty of inactive file pages that aren't
2307          * thrashing, try to reclaim those first before touching
2308          * anonymous pages.
2309          */
2310         file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2311         if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2312             !sc->no_cache_trim_mode)
2313                 sc->cache_trim_mode = 1;
2314         else
2315                 sc->cache_trim_mode = 0;
2316
2317         /*
2318          * Prevent the reclaimer from falling into the cache trap: as
2319          * cache pages start out inactive, every cache fault will tip
2320          * the scan balance towards the file LRU.  And as the file LRU
2321          * shrinks, so does the window for rotation from references.
2322          * This means we have a runaway feedback loop where a tiny
2323          * thrashing file LRU becomes infinitely more attractive than
2324          * anon pages.  Try to detect this based on file LRU size.
2325          */
2326         if (!cgroup_reclaim(sc)) {
2327                 unsigned long total_high_wmark = 0;
2328                 unsigned long free, anon;
2329                 int z;
2330
2331                 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332                 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333                            node_page_state(pgdat, NR_INACTIVE_FILE);
2334
2335                 for (z = 0; z < MAX_NR_ZONES; z++) {
2336                         struct zone *zone = &pgdat->node_zones[z];
2337
2338                         if (!managed_zone(zone))
2339                                 continue;
2340
2341                         total_high_wmark += high_wmark_pages(zone);
2342                 }
2343
2344                 /*
2345                  * Consider anon: if that's low too, this isn't a
2346                  * runaway file reclaim problem, but rather just
2347                  * extreme pressure. Reclaim as per usual then.
2348                  */
2349                 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2350
2351                 sc->file_is_tiny =
2352                         file + free <= total_high_wmark &&
2353                         !(sc->may_deactivate & DEACTIVATE_ANON) &&
2354                         anon >> sc->priority;
2355         }
2356 }
2357
2358 /*
2359  * Determine how aggressively the anon and file LRU lists should be
2360  * scanned.
2361  *
2362  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2363  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2364  */
2365 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2366                            unsigned long *nr)
2367 {
2368         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2369         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2370         unsigned long anon_cost, file_cost, total_cost;
2371         int swappiness = sc_swappiness(sc, memcg);
2372         u64 fraction[ANON_AND_FILE];
2373         u64 denominator = 0;    /* gcc */
2374         enum scan_balance scan_balance;
2375         unsigned long ap, fp;
2376         enum lru_list lru;
2377
2378         /* If we have no swap space, do not bother scanning anon folios. */
2379         if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2380                 scan_balance = SCAN_FILE;
2381                 goto out;
2382         }
2383
2384         /*
2385          * Global reclaim will swap to prevent OOM even with no
2386          * swappiness, but memcg users want to use this knob to
2387          * disable swapping for individual groups completely when
2388          * using the memory controller's swap limit feature would be
2389          * too expensive.
2390          */
2391         if (cgroup_reclaim(sc) && !swappiness) {
2392                 scan_balance = SCAN_FILE;
2393                 goto out;
2394         }
2395
2396         /*
2397          * Do not apply any pressure balancing cleverness when the
2398          * system is close to OOM, scan both anon and file equally
2399          * (unless the swappiness setting disagrees with swapping).
2400          */
2401         if (!sc->priority && swappiness) {
2402                 scan_balance = SCAN_EQUAL;
2403                 goto out;
2404         }
2405
2406         /*
2407          * If the system is almost out of file pages, force-scan anon.
2408          */
2409         if (sc->file_is_tiny) {
2410                 scan_balance = SCAN_ANON;
2411                 goto out;
2412         }
2413
2414         /*
2415          * If there is enough inactive page cache, we do not reclaim
2416          * anything from the anonymous working right now.
2417          */
2418         if (sc->cache_trim_mode) {
2419                 scan_balance = SCAN_FILE;
2420                 goto out;
2421         }
2422
2423         scan_balance = SCAN_FRACT;
2424         /*
2425          * Calculate the pressure balance between anon and file pages.
2426          *
2427          * The amount of pressure we put on each LRU is inversely
2428          * proportional to the cost of reclaiming each list, as
2429          * determined by the share of pages that are refaulting, times
2430          * the relative IO cost of bringing back a swapped out
2431          * anonymous page vs reloading a filesystem page (swappiness).
2432          *
2433          * Although we limit that influence to ensure no list gets
2434          * left behind completely: at least a third of the pressure is
2435          * applied, before swappiness.
2436          *
2437          * With swappiness at 100, anon and file have equal IO cost.
2438          */
2439         total_cost = sc->anon_cost + sc->file_cost;
2440         anon_cost = total_cost + sc->anon_cost;
2441         file_cost = total_cost + sc->file_cost;
2442         total_cost = anon_cost + file_cost;
2443
2444         ap = swappiness * (total_cost + 1);
2445         ap /= anon_cost + 1;
2446
2447         fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2448         fp /= file_cost + 1;
2449
2450         fraction[0] = ap;
2451         fraction[1] = fp;
2452         denominator = ap + fp;
2453 out:
2454         for_each_evictable_lru(lru) {
2455                 bool file = is_file_lru(lru);
2456                 unsigned long lruvec_size;
2457                 unsigned long low, min;
2458                 unsigned long scan;
2459
2460                 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2461                 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2462                                       &min, &low);
2463
2464                 if (min || low) {
2465                         /*
2466                          * Scale a cgroup's reclaim pressure by proportioning
2467                          * its current usage to its memory.low or memory.min
2468                          * setting.
2469                          *
2470                          * This is important, as otherwise scanning aggression
2471                          * becomes extremely binary -- from nothing as we
2472                          * approach the memory protection threshold, to totally
2473                          * nominal as we exceed it.  This results in requiring
2474                          * setting extremely liberal protection thresholds. It
2475                          * also means we simply get no protection at all if we
2476                          * set it too low, which is not ideal.
2477                          *
2478                          * If there is any protection in place, we reduce scan
2479                          * pressure by how much of the total memory used is
2480                          * within protection thresholds.
2481                          *
2482                          * There is one special case: in the first reclaim pass,
2483                          * we skip over all groups that are within their low
2484                          * protection. If that fails to reclaim enough pages to
2485                          * satisfy the reclaim goal, we come back and override
2486                          * the best-effort low protection. However, we still
2487                          * ideally want to honor how well-behaved groups are in
2488                          * that case instead of simply punishing them all
2489                          * equally. As such, we reclaim them based on how much
2490                          * memory they are using, reducing the scan pressure
2491                          * again by how much of the total memory used is under
2492                          * hard protection.
2493                          */
2494                         unsigned long cgroup_size = mem_cgroup_size(memcg);
2495                         unsigned long protection;
2496
2497                         /* memory.low scaling, make sure we retry before OOM */
2498                         if (!sc->memcg_low_reclaim && low > min) {
2499                                 protection = low;
2500                                 sc->memcg_low_skipped = 1;
2501                         } else {
2502                                 protection = min;
2503                         }
2504
2505                         /* Avoid TOCTOU with earlier protection check */
2506                         cgroup_size = max(cgroup_size, protection);
2507
2508                         scan = lruvec_size - lruvec_size * protection /
2509                                 (cgroup_size + 1);
2510
2511                         /*
2512                          * Minimally target SWAP_CLUSTER_MAX pages to keep
2513                          * reclaim moving forwards, avoiding decrementing
2514                          * sc->priority further than desirable.
2515                          */
2516                         scan = max(scan, SWAP_CLUSTER_MAX);
2517                 } else {
2518                         scan = lruvec_size;
2519                 }
2520
2521                 scan >>= sc->priority;
2522
2523                 /*
2524                  * If the cgroup's already been deleted, make sure to
2525                  * scrape out the remaining cache.
2526                  */
2527                 if (!scan && !mem_cgroup_online(memcg))
2528                         scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2529
2530                 switch (scan_balance) {
2531                 case SCAN_EQUAL:
2532                         /* Scan lists relative to size */
2533                         break;
2534                 case SCAN_FRACT:
2535                         /*
2536                          * Scan types proportional to swappiness and
2537                          * their relative recent reclaim efficiency.
2538                          * Make sure we don't miss the last page on
2539                          * the offlined memory cgroups because of a
2540                          * round-off error.
2541                          */
2542                         scan = mem_cgroup_online(memcg) ?
2543                                div64_u64(scan * fraction[file], denominator) :
2544                                DIV64_U64_ROUND_UP(scan * fraction[file],
2545                                                   denominator);
2546                         break;
2547                 case SCAN_FILE:
2548                 case SCAN_ANON:
2549                         /* Scan one type exclusively */
2550                         if ((scan_balance == SCAN_FILE) != file)
2551                                 scan = 0;
2552                         break;
2553                 default:
2554                         /* Look ma, no brain */
2555                         BUG();
2556                 }
2557
2558                 nr[lru] = scan;
2559         }
2560 }
2561
2562 /*
2563  * Anonymous LRU management is a waste if there is
2564  * ultimately no way to reclaim the memory.
2565  */
2566 static bool can_age_anon_pages(struct pglist_data *pgdat,
2567                                struct scan_control *sc)
2568 {
2569         /* Aging the anon LRU is valuable if swap is present: */
2570         if (total_swap_pages > 0)
2571                 return true;
2572
2573         /* Also valuable if anon pages can be demoted: */
2574         return can_demote(pgdat->node_id, sc);
2575 }
2576
2577 #ifdef CONFIG_LRU_GEN
2578
2579 #ifdef CONFIG_LRU_GEN_ENABLED
2580 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2581 #define get_cap(cap)    static_branch_likely(&lru_gen_caps[cap])
2582 #else
2583 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2584 #define get_cap(cap)    static_branch_unlikely(&lru_gen_caps[cap])
2585 #endif
2586
2587 static bool should_walk_mmu(void)
2588 {
2589         return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2590 }
2591
2592 static bool should_clear_pmd_young(void)
2593 {
2594         return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2595 }
2596
2597 /******************************************************************************
2598  *                          shorthand helpers
2599  ******************************************************************************/
2600
2601 #define LRU_REFS_FLAGS  (BIT(PG_referenced) | BIT(PG_workingset))
2602
2603 #define DEFINE_MAX_SEQ(lruvec)                                          \
2604         unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2605
2606 #define DEFINE_MIN_SEQ(lruvec)                                          \
2607         unsigned long min_seq[ANON_AND_FILE] = {                        \
2608                 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),      \
2609                 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),      \
2610         }
2611
2612 #define for_each_gen_type_zone(gen, type, zone)                         \
2613         for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)                   \
2614                 for ((type) = 0; (type) < ANON_AND_FILE; (type)++)      \
2615                         for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2616
2617 #define get_memcg_gen(seq)      ((seq) % MEMCG_NR_GENS)
2618 #define get_memcg_bin(bin)      ((bin) % MEMCG_NR_BINS)
2619
2620 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2621 {
2622         struct pglist_data *pgdat = NODE_DATA(nid);
2623
2624 #ifdef CONFIG_MEMCG
2625         if (memcg) {
2626                 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2627
2628                 /* see the comment in mem_cgroup_lruvec() */
2629                 if (!lruvec->pgdat)
2630                         lruvec->pgdat = pgdat;
2631
2632                 return lruvec;
2633         }
2634 #endif
2635         VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2636
2637         return &pgdat->__lruvec;
2638 }
2639
2640 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2641 {
2642         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2643         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2644
2645         if (!sc->may_swap)
2646                 return 0;
2647
2648         if (!can_demote(pgdat->node_id, sc) &&
2649             mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2650                 return 0;
2651
2652         return sc_swappiness(sc, memcg);
2653 }
2654
2655 static int get_nr_gens(struct lruvec *lruvec, int type)
2656 {
2657         return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2658 }
2659
2660 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2661 {
2662         /* see the comment on lru_gen_folio */
2663         return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2664                get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2665                get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2666 }
2667
2668 /******************************************************************************
2669  *                          Bloom filters
2670  ******************************************************************************/
2671
2672 /*
2673  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2674  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2675  * bits in a bitmap, k is the number of hash functions and n is the number of
2676  * inserted items.
2677  *
2678  * Page table walkers use one of the two filters to reduce their search space.
2679  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2680  * aging uses the double-buffering technique to flip to the other filter each
2681  * time it produces a new generation. For non-leaf entries that have enough
2682  * leaf entries, the aging carries them over to the next generation in
2683  * walk_pmd_range(); the eviction also report them when walking the rmap
2684  * in lru_gen_look_around().
2685  *
2686  * For future optimizations:
2687  * 1. It's not necessary to keep both filters all the time. The spare one can be
2688  *    freed after the RCU grace period and reallocated if needed again.
2689  * 2. And when reallocating, it's worth scaling its size according to the number
2690  *    of inserted entries in the other filter, to reduce the memory overhead on
2691  *    small systems and false positives on large systems.
2692  * 3. Jenkins' hash function is an alternative to Knuth's.
2693  */
2694 #define BLOOM_FILTER_SHIFT      15
2695
2696 static inline int filter_gen_from_seq(unsigned long seq)
2697 {
2698         return seq % NR_BLOOM_FILTERS;
2699 }
2700
2701 static void get_item_key(void *item, int *key)
2702 {
2703         u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2704
2705         BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2706
2707         key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2708         key[1] = hash >> BLOOM_FILTER_SHIFT;
2709 }
2710
2711 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2712                               void *item)
2713 {
2714         int key[2];
2715         unsigned long *filter;
2716         int gen = filter_gen_from_seq(seq);
2717
2718         filter = READ_ONCE(mm_state->filters[gen]);
2719         if (!filter)
2720                 return true;
2721
2722         get_item_key(item, key);
2723
2724         return test_bit(key[0], filter) && test_bit(key[1], filter);
2725 }
2726
2727 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2728                                 void *item)
2729 {
2730         int key[2];
2731         unsigned long *filter;
2732         int gen = filter_gen_from_seq(seq);
2733
2734         filter = READ_ONCE(mm_state->filters[gen]);
2735         if (!filter)
2736                 return;
2737
2738         get_item_key(item, key);
2739
2740         if (!test_bit(key[0], filter))
2741                 set_bit(key[0], filter);
2742         if (!test_bit(key[1], filter))
2743                 set_bit(key[1], filter);
2744 }
2745
2746 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2747 {
2748         unsigned long *filter;
2749         int gen = filter_gen_from_seq(seq);
2750
2751         filter = mm_state->filters[gen];
2752         if (filter) {
2753                 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2754                 return;
2755         }
2756
2757         filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2758                                __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2759         WRITE_ONCE(mm_state->filters[gen], filter);
2760 }
2761
2762 /******************************************************************************
2763  *                          mm_struct list
2764  ******************************************************************************/
2765
2766 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2767
2768 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2769 {
2770         static struct lru_gen_mm_list mm_list = {
2771                 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2772                 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2773         };
2774
2775 #ifdef CONFIG_MEMCG
2776         if (memcg)
2777                 return &memcg->mm_list;
2778 #endif
2779         VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2780
2781         return &mm_list;
2782 }
2783
2784 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2785 {
2786         return &lruvec->mm_state;
2787 }
2788
2789 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2790 {
2791         int key;
2792         struct mm_struct *mm;
2793         struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2794         struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2795
2796         mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2797         key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2798
2799         if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2800                 return NULL;
2801
2802         clear_bit(key, &mm->lru_gen.bitmap);
2803
2804         return mmget_not_zero(mm) ? mm : NULL;
2805 }
2806
2807 void lru_gen_add_mm(struct mm_struct *mm)
2808 {
2809         int nid;
2810         struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2811         struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2812
2813         VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2814 #ifdef CONFIG_MEMCG
2815         VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2816         mm->lru_gen.memcg = memcg;
2817 #endif
2818         spin_lock(&mm_list->lock);
2819
2820         for_each_node_state(nid, N_MEMORY) {
2821                 struct lruvec *lruvec = get_lruvec(memcg, nid);
2822                 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2823
2824                 /* the first addition since the last iteration */
2825                 if (mm_state->tail == &mm_list->fifo)
2826                         mm_state->tail = &mm->lru_gen.list;
2827         }
2828
2829         list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2830
2831         spin_unlock(&mm_list->lock);
2832 }
2833
2834 void lru_gen_del_mm(struct mm_struct *mm)
2835 {
2836         int nid;
2837         struct lru_gen_mm_list *mm_list;
2838         struct mem_cgroup *memcg = NULL;
2839
2840         if (list_empty(&mm->lru_gen.list))
2841                 return;
2842
2843 #ifdef CONFIG_MEMCG
2844         memcg = mm->lru_gen.memcg;
2845 #endif
2846         mm_list = get_mm_list(memcg);
2847
2848         spin_lock(&mm_list->lock);
2849
2850         for_each_node(nid) {
2851                 struct lruvec *lruvec = get_lruvec(memcg, nid);
2852                 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2853
2854                 /* where the current iteration continues after */
2855                 if (mm_state->head == &mm->lru_gen.list)
2856                         mm_state->head = mm_state->head->prev;
2857
2858                 /* where the last iteration ended before */
2859                 if (mm_state->tail == &mm->lru_gen.list)
2860                         mm_state->tail = mm_state->tail->next;
2861         }
2862
2863         list_del_init(&mm->lru_gen.list);
2864
2865         spin_unlock(&mm_list->lock);
2866
2867 #ifdef CONFIG_MEMCG
2868         mem_cgroup_put(mm->lru_gen.memcg);
2869         mm->lru_gen.memcg = NULL;
2870 #endif
2871 }
2872
2873 #ifdef CONFIG_MEMCG
2874 void lru_gen_migrate_mm(struct mm_struct *mm)
2875 {
2876         struct mem_cgroup *memcg;
2877         struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2878
2879         VM_WARN_ON_ONCE(task->mm != mm);
2880         lockdep_assert_held(&task->alloc_lock);
2881
2882         /* for mm_update_next_owner() */
2883         if (mem_cgroup_disabled())
2884                 return;
2885
2886         /* migration can happen before addition */
2887         if (!mm->lru_gen.memcg)
2888                 return;
2889
2890         rcu_read_lock();
2891         memcg = mem_cgroup_from_task(task);
2892         rcu_read_unlock();
2893         if (memcg == mm->lru_gen.memcg)
2894                 return;
2895
2896         VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2897
2898         lru_gen_del_mm(mm);
2899         lru_gen_add_mm(mm);
2900 }
2901 #endif
2902
2903 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2904
2905 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2906 {
2907         return NULL;
2908 }
2909
2910 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2911 {
2912         return NULL;
2913 }
2914
2915 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2916 {
2917         return NULL;
2918 }
2919
2920 #endif
2921
2922 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2923 {
2924         int i;
2925         int hist;
2926         struct lruvec *lruvec = walk->lruvec;
2927         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2928
2929         lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2930
2931         hist = lru_hist_from_seq(walk->seq);
2932
2933         for (i = 0; i < NR_MM_STATS; i++) {
2934                 WRITE_ONCE(mm_state->stats[hist][i],
2935                            mm_state->stats[hist][i] + walk->mm_stats[i]);
2936                 walk->mm_stats[i] = 0;
2937         }
2938
2939         if (NR_HIST_GENS > 1 && last) {
2940                 hist = lru_hist_from_seq(walk->seq + 1);
2941
2942                 for (i = 0; i < NR_MM_STATS; i++)
2943                         WRITE_ONCE(mm_state->stats[hist][i], 0);
2944         }
2945 }
2946
2947 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2948 {
2949         bool first = false;
2950         bool last = false;
2951         struct mm_struct *mm = NULL;
2952         struct lruvec *lruvec = walk->lruvec;
2953         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2954         struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2955         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2956
2957         /*
2958          * mm_state->seq is incremented after each iteration of mm_list. There
2959          * are three interesting cases for this page table walker:
2960          * 1. It tries to start a new iteration with a stale max_seq: there is
2961          *    nothing left to do.
2962          * 2. It started the next iteration: it needs to reset the Bloom filter
2963          *    so that a fresh set of PTE tables can be recorded.
2964          * 3. It ended the current iteration: it needs to reset the mm stats
2965          *    counters and tell its caller to increment max_seq.
2966          */
2967         spin_lock(&mm_list->lock);
2968
2969         VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2970
2971         if (walk->seq <= mm_state->seq)
2972                 goto done;
2973
2974         if (!mm_state->head)
2975                 mm_state->head = &mm_list->fifo;
2976
2977         if (mm_state->head == &mm_list->fifo)
2978                 first = true;
2979
2980         do {
2981                 mm_state->head = mm_state->head->next;
2982                 if (mm_state->head == &mm_list->fifo) {
2983                         WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2984                         last = true;
2985                         break;
2986                 }
2987
2988                 /* force scan for those added after the last iteration */
2989                 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2990                         mm_state->tail = mm_state->head->next;
2991                         walk->force_scan = true;
2992                 }
2993         } while (!(mm = get_next_mm(walk)));
2994 done:
2995         if (*iter || last)
2996                 reset_mm_stats(walk, last);
2997
2998         spin_unlock(&mm_list->lock);
2999
3000         if (mm && first)
3001                 reset_bloom_filter(mm_state, walk->seq + 1);
3002
3003         if (*iter)
3004                 mmput_async(*iter);
3005
3006         *iter = mm;
3007
3008         return last;
3009 }
3010
3011 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3012 {
3013         bool success = false;
3014         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3015         struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3016         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3017
3018         spin_lock(&mm_list->lock);
3019
3020         VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3021
3022         if (seq > mm_state->seq) {
3023                 mm_state->head = NULL;
3024                 mm_state->tail = NULL;
3025                 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3026                 success = true;
3027         }
3028
3029         spin_unlock(&mm_list->lock);
3030
3031         return success;
3032 }
3033
3034 /******************************************************************************
3035  *                          PID controller
3036  ******************************************************************************/
3037
3038 /*
3039  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3040  *
3041  * The P term is refaulted/(evicted+protected) from a tier in the generation
3042  * currently being evicted; the I term is the exponential moving average of the
3043  * P term over the generations previously evicted, using the smoothing factor
3044  * 1/2; the D term isn't supported.
3045  *
3046  * The setpoint (SP) is always the first tier of one type; the process variable
3047  * (PV) is either any tier of the other type or any other tier of the same
3048  * type.
3049  *
3050  * The error is the difference between the SP and the PV; the correction is to
3051  * turn off protection when SP>PV or turn on protection when SP<PV.
3052  *
3053  * For future optimizations:
3054  * 1. The D term may discount the other two terms over time so that long-lived
3055  *    generations can resist stale information.
3056  */
3057 struct ctrl_pos {
3058         unsigned long refaulted;
3059         unsigned long total;
3060         int gain;
3061 };
3062
3063 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3064                           struct ctrl_pos *pos)
3065 {
3066         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3067         int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3068
3069         pos->refaulted = lrugen->avg_refaulted[type][tier] +
3070                          atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3071         pos->total = lrugen->avg_total[type][tier] +
3072                      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3073         if (tier)
3074                 pos->total += lrugen->protected[hist][type][tier - 1];
3075         pos->gain = gain;
3076 }
3077
3078 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3079 {
3080         int hist, tier;
3081         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3082         bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3083         unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3084
3085         lockdep_assert_held(&lruvec->lru_lock);
3086
3087         if (!carryover && !clear)
3088                 return;
3089
3090         hist = lru_hist_from_seq(seq);
3091
3092         for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3093                 if (carryover) {
3094                         unsigned long sum;
3095
3096                         sum = lrugen->avg_refaulted[type][tier] +
3097                               atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3098                         WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3099
3100                         sum = lrugen->avg_total[type][tier] +
3101                               atomic_long_read(&lrugen->evicted[hist][type][tier]);
3102                         if (tier)
3103                                 sum += lrugen->protected[hist][type][tier - 1];
3104                         WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3105                 }
3106
3107                 if (clear) {
3108                         atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3109                         atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3110                         if (tier)
3111                                 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3112                 }
3113         }
3114 }
3115
3116 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3117 {
3118         /*
3119          * Return true if the PV has a limited number of refaults or a lower
3120          * refaulted/total than the SP.
3121          */
3122         return pv->refaulted < MIN_LRU_BATCH ||
3123                pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3124                (sp->refaulted + 1) * pv->total * pv->gain;
3125 }
3126
3127 /******************************************************************************
3128  *                          the aging
3129  ******************************************************************************/
3130
3131 /* promote pages accessed through page tables */
3132 static int folio_update_gen(struct folio *folio, int gen)
3133 {
3134         unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3135
3136         VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3137         VM_WARN_ON_ONCE(!rcu_read_lock_held());
3138
3139         do {
3140                 /* lru_gen_del_folio() has isolated this page? */
3141                 if (!(old_flags & LRU_GEN_MASK)) {
3142                         /* for shrink_folio_list() */
3143                         new_flags = old_flags | BIT(PG_referenced);
3144                         continue;
3145                 }
3146
3147                 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3148                 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3149         } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3150
3151         return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3152 }
3153
3154 /* protect pages accessed multiple times through file descriptors */
3155 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3156 {
3157         int type = folio_is_file_lru(folio);
3158         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3159         int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3160         unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3161
3162         VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3163
3164         do {
3165                 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3166                 /* folio_update_gen() has promoted this page? */
3167                 if (new_gen >= 0 && new_gen != old_gen)
3168                         return new_gen;
3169
3170                 new_gen = (old_gen + 1) % MAX_NR_GENS;
3171
3172                 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3173                 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3174                 /* for folio_end_writeback() */
3175                 if (reclaiming)
3176                         new_flags |= BIT(PG_reclaim);
3177         } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3178
3179         lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3180
3181         return new_gen;
3182 }
3183
3184 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3185                               int old_gen, int new_gen)
3186 {
3187         int type = folio_is_file_lru(folio);
3188         int zone = folio_zonenum(folio);
3189         int delta = folio_nr_pages(folio);
3190
3191         VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3192         VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3193
3194         walk->batched++;
3195
3196         walk->nr_pages[old_gen][type][zone] -= delta;
3197         walk->nr_pages[new_gen][type][zone] += delta;
3198 }
3199
3200 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3201 {
3202         int gen, type, zone;
3203         struct lruvec *lruvec = walk->lruvec;
3204         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3205
3206         walk->batched = 0;
3207
3208         for_each_gen_type_zone(gen, type, zone) {
3209                 enum lru_list lru = type * LRU_INACTIVE_FILE;
3210                 int delta = walk->nr_pages[gen][type][zone];
3211
3212                 if (!delta)
3213                         continue;
3214
3215                 walk->nr_pages[gen][type][zone] = 0;
3216                 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3217                            lrugen->nr_pages[gen][type][zone] + delta);
3218
3219                 if (lru_gen_is_active(lruvec, gen))
3220                         lru += LRU_ACTIVE;
3221                 __update_lru_size(lruvec, lru, zone, delta);
3222         }
3223 }
3224
3225 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3226 {
3227         struct address_space *mapping;
3228         struct vm_area_struct *vma = args->vma;
3229         struct lru_gen_mm_walk *walk = args->private;
3230
3231         if (!vma_is_accessible(vma))
3232                 return true;
3233
3234         if (is_vm_hugetlb_page(vma))
3235                 return true;
3236
3237         if (!vma_has_recency(vma))
3238                 return true;
3239
3240         if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3241                 return true;
3242
3243         if (vma == get_gate_vma(vma->vm_mm))
3244                 return true;
3245
3246         if (vma_is_anonymous(vma))
3247                 return !walk->can_swap;
3248
3249         if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3250                 return true;
3251
3252         mapping = vma->vm_file->f_mapping;
3253         if (mapping_unevictable(mapping))
3254                 return true;
3255
3256         if (shmem_mapping(mapping))
3257                 return !walk->can_swap;
3258
3259         /* to exclude special mappings like dax, etc. */
3260         return !mapping->a_ops->read_folio;
3261 }
3262
3263 /*
3264  * Some userspace memory allocators map many single-page VMAs. Instead of
3265  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3266  * table to reduce zigzags and improve cache performance.
3267  */
3268 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3269                          unsigned long *vm_start, unsigned long *vm_end)
3270 {
3271         unsigned long start = round_up(*vm_end, size);
3272         unsigned long end = (start | ~mask) + 1;
3273         VMA_ITERATOR(vmi, args->mm, start);
3274
3275         VM_WARN_ON_ONCE(mask & size);
3276         VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3277
3278         for_each_vma(vmi, args->vma) {
3279                 if (end && end <= args->vma->vm_start)
3280                         return false;
3281
3282                 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3283                         continue;
3284
3285                 *vm_start = max(start, args->vma->vm_start);
3286                 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3287
3288                 return true;
3289         }
3290
3291         return false;
3292 }
3293
3294 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3295 {
3296         unsigned long pfn = pte_pfn(pte);
3297
3298         VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3299
3300         if (!pte_present(pte) || is_zero_pfn(pfn))
3301                 return -1;
3302
3303         if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3304                 return -1;
3305
3306         if (WARN_ON_ONCE(!pfn_valid(pfn)))
3307                 return -1;
3308
3309         return pfn;
3310 }
3311
3312 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3313 {
3314         unsigned long pfn = pmd_pfn(pmd);
3315
3316         VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3317
3318         if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3319                 return -1;
3320
3321         if (WARN_ON_ONCE(pmd_devmap(pmd)))
3322                 return -1;
3323
3324         if (WARN_ON_ONCE(!pfn_valid(pfn)))
3325                 return -1;
3326
3327         return pfn;
3328 }
3329
3330 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3331                                    struct pglist_data *pgdat, bool can_swap)
3332 {
3333         struct folio *folio;
3334
3335         /* try to avoid unnecessary memory loads */
3336         if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3337                 return NULL;
3338
3339         folio = pfn_folio(pfn);
3340         if (folio_nid(folio) != pgdat->node_id)
3341                 return NULL;
3342
3343         if (folio_memcg_rcu(folio) != memcg)
3344                 return NULL;
3345
3346         /* file VMAs can contain anon pages from COW */
3347         if (!folio_is_file_lru(folio) && !can_swap)
3348                 return NULL;
3349
3350         return folio;
3351 }
3352
3353 static bool suitable_to_scan(int total, int young)
3354 {
3355         int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3356
3357         /* suitable if the average number of young PTEs per cacheline is >=1 */
3358         return young * n >= total;
3359 }
3360
3361 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3362                            struct mm_walk *args)
3363 {
3364         int i;
3365         pte_t *pte;
3366         spinlock_t *ptl;
3367         unsigned long addr;
3368         int total = 0;
3369         int young = 0;
3370         struct lru_gen_mm_walk *walk = args->private;
3371         struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3372         struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3373         DEFINE_MAX_SEQ(walk->lruvec);
3374         int old_gen, new_gen = lru_gen_from_seq(max_seq);
3375
3376         pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3377         if (!pte)
3378                 return false;
3379         if (!spin_trylock(ptl)) {
3380                 pte_unmap(pte);
3381                 return false;
3382         }
3383
3384         arch_enter_lazy_mmu_mode();
3385 restart:
3386         for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3387                 unsigned long pfn;
3388                 struct folio *folio;
3389                 pte_t ptent = ptep_get(pte + i);
3390
3391                 total++;
3392                 walk->mm_stats[MM_LEAF_TOTAL]++;
3393
3394                 pfn = get_pte_pfn(ptent, args->vma, addr);
3395                 if (pfn == -1)
3396                         continue;
3397
3398                 if (!pte_young(ptent)) {
3399                         walk->mm_stats[MM_LEAF_OLD]++;
3400                         continue;
3401                 }
3402
3403                 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3404                 if (!folio)
3405                         continue;
3406
3407                 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3408                         VM_WARN_ON_ONCE(true);
3409
3410                 young++;
3411                 walk->mm_stats[MM_LEAF_YOUNG]++;
3412
3413                 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3414                     !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3415                       !folio_test_swapcache(folio)))
3416                         folio_mark_dirty(folio);
3417
3418                 old_gen = folio_update_gen(folio, new_gen);
3419                 if (old_gen >= 0 && old_gen != new_gen)
3420                         update_batch_size(walk, folio, old_gen, new_gen);
3421         }
3422
3423         if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3424                 goto restart;
3425
3426         arch_leave_lazy_mmu_mode();
3427         pte_unmap_unlock(pte, ptl);
3428
3429         return suitable_to_scan(total, young);
3430 }
3431
3432 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3433                                   struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3434 {
3435         int i;
3436         pmd_t *pmd;
3437         spinlock_t *ptl;
3438         struct lru_gen_mm_walk *walk = args->private;
3439         struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3440         struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3441         DEFINE_MAX_SEQ(walk->lruvec);
3442         int old_gen, new_gen = lru_gen_from_seq(max_seq);
3443
3444         VM_WARN_ON_ONCE(pud_leaf(*pud));
3445
3446         /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3447         if (*first == -1) {
3448                 *first = addr;
3449                 bitmap_zero(bitmap, MIN_LRU_BATCH);
3450                 return;
3451         }
3452
3453         i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3454         if (i && i <= MIN_LRU_BATCH) {
3455                 __set_bit(i - 1, bitmap);
3456                 return;
3457         }
3458
3459         pmd = pmd_offset(pud, *first);
3460
3461         ptl = pmd_lockptr(args->mm, pmd);
3462         if (!spin_trylock(ptl))
3463                 goto done;
3464
3465         arch_enter_lazy_mmu_mode();
3466
3467         do {
3468                 unsigned long pfn;
3469                 struct folio *folio;
3470
3471                 /* don't round down the first address */
3472                 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3473
3474                 pfn = get_pmd_pfn(pmd[i], vma, addr);
3475                 if (pfn == -1)
3476                         goto next;
3477
3478                 if (!pmd_trans_huge(pmd[i])) {
3479                         if (should_clear_pmd_young())
3480                                 pmdp_test_and_clear_young(vma, addr, pmd + i);
3481                         goto next;
3482                 }
3483
3484                 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3485                 if (!folio)
3486                         goto next;
3487
3488                 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3489                         goto next;
3490
3491                 walk->mm_stats[MM_LEAF_YOUNG]++;
3492
3493                 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3494                     !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3495                       !folio_test_swapcache(folio)))
3496                         folio_mark_dirty(folio);
3497
3498                 old_gen = folio_update_gen(folio, new_gen);
3499                 if (old_gen >= 0 && old_gen != new_gen)
3500                         update_batch_size(walk, folio, old_gen, new_gen);
3501 next:
3502                 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3503         } while (i <= MIN_LRU_BATCH);
3504
3505         arch_leave_lazy_mmu_mode();
3506         spin_unlock(ptl);
3507 done:
3508         *first = -1;
3509 }
3510
3511 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3512                            struct mm_walk *args)
3513 {
3514         int i;
3515         pmd_t *pmd;
3516         unsigned long next;
3517         unsigned long addr;
3518         struct vm_area_struct *vma;
3519         DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3520         unsigned long first = -1;
3521         struct lru_gen_mm_walk *walk = args->private;
3522         struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3523
3524         VM_WARN_ON_ONCE(pud_leaf(*pud));
3525
3526         /*
3527          * Finish an entire PMD in two passes: the first only reaches to PTE
3528          * tables to avoid taking the PMD lock; the second, if necessary, takes
3529          * the PMD lock to clear the accessed bit in PMD entries.
3530          */
3531         pmd = pmd_offset(pud, start & PUD_MASK);
3532 restart:
3533         /* walk_pte_range() may call get_next_vma() */
3534         vma = args->vma;
3535         for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3536                 pmd_t val = pmdp_get_lockless(pmd + i);
3537
3538                 next = pmd_addr_end(addr, end);
3539
3540                 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3541                         walk->mm_stats[MM_LEAF_TOTAL]++;
3542                         continue;
3543                 }
3544
3545                 if (pmd_trans_huge(val)) {
3546                         unsigned long pfn = pmd_pfn(val);
3547                         struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3548
3549                         walk->mm_stats[MM_LEAF_TOTAL]++;
3550
3551                         if (!pmd_young(val)) {
3552                                 walk->mm_stats[MM_LEAF_OLD]++;
3553                                 continue;
3554                         }
3555
3556                         /* try to avoid unnecessary memory loads */
3557                         if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3558                                 continue;
3559
3560                         walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3561                         continue;
3562                 }
3563
3564                 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3565
3566                 if (should_clear_pmd_young()) {
3567                         if (!pmd_young(val))
3568                                 continue;
3569
3570                         walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3571                 }
3572
3573                 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3574                         continue;
3575
3576                 walk->mm_stats[MM_NONLEAF_FOUND]++;
3577
3578                 if (!walk_pte_range(&val, addr, next, args))
3579                         continue;
3580
3581                 walk->mm_stats[MM_NONLEAF_ADDED]++;
3582
3583                 /* carry over to the next generation */
3584                 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3585         }
3586
3587         walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3588
3589         if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3590                 goto restart;
3591 }
3592
3593 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3594                           struct mm_walk *args)
3595 {
3596         int i;
3597         pud_t *pud;
3598         unsigned long addr;
3599         unsigned long next;
3600         struct lru_gen_mm_walk *walk = args->private;
3601
3602         VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3603
3604         pud = pud_offset(p4d, start & P4D_MASK);
3605 restart:
3606         for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3607                 pud_t val = READ_ONCE(pud[i]);
3608
3609                 next = pud_addr_end(addr, end);
3610
3611                 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3612                         continue;
3613
3614                 walk_pmd_range(&val, addr, next, args);
3615
3616                 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3617                         end = (addr | ~PUD_MASK) + 1;
3618                         goto done;
3619                 }
3620         }
3621
3622         if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3623                 goto restart;
3624
3625         end = round_up(end, P4D_SIZE);
3626 done:
3627         if (!end || !args->vma)
3628                 return 1;
3629
3630         walk->next_addr = max(end, args->vma->vm_start);
3631
3632         return -EAGAIN;
3633 }
3634
3635 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3636 {
3637         static const struct mm_walk_ops mm_walk_ops = {
3638                 .test_walk = should_skip_vma,
3639                 .p4d_entry = walk_pud_range,
3640                 .walk_lock = PGWALK_RDLOCK,
3641         };
3642
3643         int err;
3644         struct lruvec *lruvec = walk->lruvec;
3645         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3646
3647         walk->next_addr = FIRST_USER_ADDRESS;
3648
3649         do {
3650                 DEFINE_MAX_SEQ(lruvec);
3651
3652                 err = -EBUSY;
3653
3654                 /* another thread might have called inc_max_seq() */
3655                 if (walk->seq != max_seq)
3656                         break;
3657
3658                 /* folio_update_gen() requires stable folio_memcg() */
3659                 if (!mem_cgroup_trylock_pages(memcg))
3660                         break;
3661
3662                 /* the caller might be holding the lock for write */
3663                 if (mmap_read_trylock(mm)) {
3664                         err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3665
3666                         mmap_read_unlock(mm);
3667                 }
3668
3669                 mem_cgroup_unlock_pages();
3670
3671                 if (walk->batched) {
3672                         spin_lock_irq(&lruvec->lru_lock);
3673                         reset_batch_size(walk);
3674                         spin_unlock_irq(&lruvec->lru_lock);
3675                 }
3676
3677                 cond_resched();
3678         } while (err == -EAGAIN);
3679 }
3680
3681 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3682 {
3683         struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3684
3685         if (pgdat && current_is_kswapd()) {
3686                 VM_WARN_ON_ONCE(walk);
3687
3688                 walk = &pgdat->mm_walk;
3689         } else if (!walk && force_alloc) {
3690                 VM_WARN_ON_ONCE(current_is_kswapd());
3691
3692                 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3693         }
3694
3695         current->reclaim_state->mm_walk = walk;
3696
3697         return walk;
3698 }
3699
3700 static void clear_mm_walk(void)
3701 {
3702         struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3703
3704         VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3705         VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3706
3707         current->reclaim_state->mm_walk = NULL;
3708
3709         if (!current_is_kswapd())
3710                 kfree(walk);
3711 }
3712
3713 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3714 {
3715         int zone;
3716         int remaining = MAX_LRU_BATCH;
3717         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3718         int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3719
3720         if (type == LRU_GEN_ANON && !can_swap)
3721                 goto done;
3722
3723         /* prevent cold/hot inversion if force_scan is true */
3724         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3725                 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3726
3727                 while (!list_empty(head)) {
3728                         struct folio *folio = lru_to_folio(head);
3729
3730                         VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3731                         VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3732                         VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3733                         VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3734
3735                         new_gen = folio_inc_gen(lruvec, folio, false);
3736                         list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3737
3738                         if (!--remaining)
3739                                 return false;
3740                 }
3741         }
3742 done:
3743         reset_ctrl_pos(lruvec, type, true);
3744         WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3745
3746         return true;
3747 }
3748
3749 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3750 {
3751         int gen, type, zone;
3752         bool success = false;
3753         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3754         DEFINE_MIN_SEQ(lruvec);
3755
3756         VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3757
3758         /* find the oldest populated generation */
3759         for (type = !can_swap; type < ANON_AND_FILE; type++) {
3760                 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3761                         gen = lru_gen_from_seq(min_seq[type]);
3762
3763                         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3764                                 if (!list_empty(&lrugen->folios[gen][type][zone]))
3765                                         goto next;
3766                         }
3767
3768                         min_seq[type]++;
3769                 }
3770 next:
3771                 ;
3772         }
3773
3774         /* see the comment on lru_gen_folio */
3775         if (can_swap) {
3776                 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3777                 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3778         }
3779
3780         for (type = !can_swap; type < ANON_AND_FILE; type++) {
3781                 if (min_seq[type] == lrugen->min_seq[type])
3782                         continue;
3783
3784                 reset_ctrl_pos(lruvec, type, true);
3785                 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3786                 success = true;
3787         }
3788
3789         return success;
3790 }
3791
3792 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3793                         bool can_swap, bool force_scan)
3794 {
3795         bool success;
3796         int prev, next;
3797         int type, zone;
3798         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3799 restart:
3800         if (seq < READ_ONCE(lrugen->max_seq))
3801                 return false;
3802
3803         spin_lock_irq(&lruvec->lru_lock);
3804
3805         VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3806
3807         success = seq == lrugen->max_seq;
3808         if (!success)
3809                 goto unlock;
3810
3811         for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3812                 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3813                         continue;
3814
3815                 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3816
3817                 if (inc_min_seq(lruvec, type, can_swap))
3818                         continue;
3819
3820                 spin_unlock_irq(&lruvec->lru_lock);
3821                 cond_resched();
3822                 goto restart;
3823         }
3824
3825         /*
3826          * Update the active/inactive LRU sizes for compatibility. Both sides of
3827          * the current max_seq need to be covered, since max_seq+1 can overlap
3828          * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3829          * overlap, cold/hot inversion happens.
3830          */
3831         prev = lru_gen_from_seq(lrugen->max_seq - 1);
3832         next = lru_gen_from_seq(lrugen->max_seq + 1);
3833
3834         for (type = 0; type < ANON_AND_FILE; type++) {
3835                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3836                         enum lru_list lru = type * LRU_INACTIVE_FILE;
3837                         long delta = lrugen->nr_pages[prev][type][zone] -
3838                                      lrugen->nr_pages[next][type][zone];
3839
3840                         if (!delta)
3841                                 continue;
3842
3843                         __update_lru_size(lruvec, lru, zone, delta);
3844                         __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3845                 }
3846         }
3847
3848         for (type = 0; type < ANON_AND_FILE; type++)
3849                 reset_ctrl_pos(lruvec, type, false);
3850
3851         WRITE_ONCE(lrugen->timestamps[next], jiffies);
3852         /* make sure preceding modifications appear */
3853         smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3854 unlock:
3855         spin_unlock_irq(&lruvec->lru_lock);
3856
3857         return success;
3858 }
3859
3860 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3861                                bool can_swap, bool force_scan)
3862 {
3863         bool success;
3864         struct lru_gen_mm_walk *walk;
3865         struct mm_struct *mm = NULL;
3866         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3867         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3868
3869         VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3870
3871         if (!mm_state)
3872                 return inc_max_seq(lruvec, seq, can_swap, force_scan);
3873
3874         /* see the comment in iterate_mm_list() */
3875         if (seq <= READ_ONCE(mm_state->seq))
3876                 return false;
3877
3878         /*
3879          * If the hardware doesn't automatically set the accessed bit, fallback
3880          * to lru_gen_look_around(), which only clears the accessed bit in a
3881          * handful of PTEs. Spreading the work out over a period of time usually
3882          * is less efficient, but it avoids bursty page faults.
3883          */
3884         if (!should_walk_mmu()) {
3885                 success = iterate_mm_list_nowalk(lruvec, seq);
3886                 goto done;
3887         }
3888
3889         walk = set_mm_walk(NULL, true);
3890         if (!walk) {
3891                 success = iterate_mm_list_nowalk(lruvec, seq);
3892                 goto done;
3893         }
3894
3895         walk->lruvec = lruvec;
3896         walk->seq = seq;
3897         walk->can_swap = can_swap;
3898         walk->force_scan = force_scan;
3899
3900         do {
3901                 success = iterate_mm_list(walk, &mm);
3902                 if (mm)
3903                         walk_mm(mm, walk);
3904         } while (mm);
3905 done:
3906         if (success) {
3907                 success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3908                 WARN_ON_ONCE(!success);
3909         }
3910
3911         return success;
3912 }
3913
3914 /******************************************************************************
3915  *                          working set protection
3916  ******************************************************************************/
3917
3918 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3919 {
3920         int priority;
3921         unsigned long reclaimable;
3922
3923         if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3924                 return;
3925         /*
3926          * Determine the initial priority based on
3927          * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3928          * where reclaimed_to_scanned_ratio = inactive / total.
3929          */
3930         reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3931         if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3932                 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3933
3934         /* round down reclaimable and round up sc->nr_to_reclaim */
3935         priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3936
3937         /*
3938          * The estimation is based on LRU pages only, so cap it to prevent
3939          * overshoots of shrinker objects by large margins.
3940          */
3941         sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3942 }
3943
3944 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3945 {
3946         int gen, type, zone;
3947         unsigned long total = 0;
3948         bool can_swap = get_swappiness(lruvec, sc);
3949         struct lru_gen_folio *lrugen = &lruvec->lrugen;
3950         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3951         DEFINE_MAX_SEQ(lruvec);
3952         DEFINE_MIN_SEQ(lruvec);
3953
3954         for (type = !can_swap; type < ANON_AND_FILE; type++) {
3955                 unsigned long seq;
3956
3957                 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3958                         gen = lru_gen_from_seq(seq);
3959
3960                         for (zone = 0; zone < MAX_NR_ZONES; zone++)
3961                                 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3962                 }
3963         }
3964
3965         /* whether the size is big enough to be helpful */
3966         return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3967 }
3968
3969 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3970                                   unsigned long min_ttl)
3971 {
3972         int gen;
3973         unsigned long birth;
3974         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3975         DEFINE_MIN_SEQ(lruvec);
3976
3977         if (mem_cgroup_below_min(NULL, memcg))
3978                 return false;
3979
3980         if (!lruvec_is_sizable(lruvec, sc))
3981                 return false;
3982
3983         /* see the comment on lru_gen_folio */
3984         gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3985         birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3986
3987         return time_is_before_jiffies(birth + min_ttl);
3988 }
3989
3990 /* to protect the working set of the last N jiffies */
3991 static unsigned long lru_gen_min_ttl __read_mostly;
3992
3993 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3994 {
3995         struct mem_cgroup *memcg;
3996         unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3997         bool reclaimable = !min_ttl;
3998
3999         VM_WARN_ON_ONCE(!current_is_kswapd());
4000
4001         set_initial_priority(pgdat, sc);
4002
4003         memcg = mem_cgroup_iter(NULL, NULL, NULL);
4004         do {
4005                 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4006
4007                 mem_cgroup_calculate_protection(NULL, memcg);
4008
4009                 if (!reclaimable)
4010                         reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4011         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4012
4013         /*
4014          * The main goal is to OOM kill if every generation from all memcgs is
4015          * younger than min_ttl. However, another possibility is all memcgs are
4016          * either too small or below min.
4017          */
4018         if (!reclaimable && mutex_trylock(&oom_lock)) {
4019                 struct oom_control oc = {
4020                         .gfp_mask = sc->gfp_mask,
4021                 };
4022
4023                 out_of_memory(&oc);
4024
4025                 mutex_unlock(&oom_lock);
4026         }
4027 }
4028
4029 /******************************************************************************
4030  *                          rmap/PT walk feedback
4031  ******************************************************************************/
4032
4033 /*
4034  * This function exploits spatial locality when shrink_folio_list() walks the
4035  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4036  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4037  * the PTE table to the Bloom filter. This forms a feedback loop between the
4038  * eviction and the aging.
4039  */
4040 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4041 {
4042         int i;
4043         unsigned long start;
4044         unsigned long end;
4045         struct lru_gen_mm_walk *walk;
4046         int young = 0;
4047         pte_t *pte = pvmw->pte;
4048         unsigned long addr = pvmw->address;
4049         struct vm_area_struct *vma = pvmw->vma;
4050         struct folio *folio = pfn_folio(pvmw->pfn);
4051         bool can_swap = !folio_is_file_lru(folio);
4052         struct mem_cgroup *memcg = folio_memcg(folio);
4053         struct pglist_data *pgdat = folio_pgdat(folio);
4054         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4055         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4056         DEFINE_MAX_SEQ(lruvec);
4057         int old_gen, new_gen = lru_gen_from_seq(max_seq);
4058
4059         lockdep_assert_held(pvmw->ptl);
4060         VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4061
4062         if (spin_is_contended(pvmw->ptl))
4063                 return;
4064
4065         /* exclude special VMAs containing anon pages from COW */
4066         if (vma->vm_flags & VM_SPECIAL)
4067                 return;
4068
4069         /* avoid taking the LRU lock under the PTL when possible */
4070         walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4071
4072         start = max(addr & PMD_MASK, vma->vm_start);
4073         end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4074
4075         if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4076                 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4077                         end = start + MIN_LRU_BATCH * PAGE_SIZE;
4078                 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4079                         start = end - MIN_LRU_BATCH * PAGE_SIZE;
4080                 else {
4081                         start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4082                         end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4083                 }
4084         }
4085
4086         /* folio_update_gen() requires stable folio_memcg() */
4087         if (!mem_cgroup_trylock_pages(memcg))
4088                 return;
4089
4090         arch_enter_lazy_mmu_mode();
4091
4092         pte -= (addr - start) / PAGE_SIZE;
4093
4094         for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4095                 unsigned long pfn;
4096                 pte_t ptent = ptep_get(pte + i);
4097
4098                 pfn = get_pte_pfn(ptent, vma, addr);
4099                 if (pfn == -1)
4100                         continue;
4101
4102                 if (!pte_young(ptent))
4103                         continue;
4104
4105                 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4106                 if (!folio)
4107                         continue;
4108
4109                 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4110                         VM_WARN_ON_ONCE(true);
4111
4112                 young++;
4113
4114                 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4115                     !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4116                       !folio_test_swapcache(folio)))
4117                         folio_mark_dirty(folio);
4118
4119                 if (walk) {
4120                         old_gen = folio_update_gen(folio, new_gen);
4121                         if (old_gen >= 0 && old_gen != new_gen)
4122                                 update_batch_size(walk, folio, old_gen, new_gen);
4123
4124                         continue;
4125                 }
4126
4127                 old_gen = folio_lru_gen(folio);
4128                 if (old_gen < 0)
4129                         folio_set_referenced(folio);
4130                 else if (old_gen != new_gen)
4131                         folio_activate(folio);
4132         }
4133
4134         arch_leave_lazy_mmu_mode();
4135         mem_cgroup_unlock_pages();
4136
4137         /* feedback from rmap walkers to page table walkers */
4138         if (mm_state && suitable_to_scan(i, young))
4139                 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4140 }
4141
4142 /******************************************************************************
4143  *                          memcg LRU
4144  ******************************************************************************/
4145
4146 /* see the comment on MEMCG_NR_GENS */
4147 enum {
4148         MEMCG_LRU_NOP,
4149         MEMCG_LRU_HEAD,
4150         MEMCG_LRU_TAIL,
4151         MEMCG_LRU_OLD,
4152         MEMCG_LRU_YOUNG,
4153 };
4154
4155 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4156 {
4157         int seg;
4158         int old, new;
4159         unsigned long flags;
4160         int bin = get_random_u32_below(MEMCG_NR_BINS);
4161         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4162
4163         spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4164
4165         VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4166
4167         seg = 0;
4168         new = old = lruvec->lrugen.gen;
4169
4170         /* see the comment on MEMCG_NR_GENS */
4171         if (op == MEMCG_LRU_HEAD)
4172                 seg = MEMCG_LRU_HEAD;
4173         else if (op == MEMCG_LRU_TAIL)
4174                 seg = MEMCG_LRU_TAIL;
4175         else if (op == MEMCG_LRU_OLD)
4176                 new = get_memcg_gen(pgdat->memcg_lru.seq);
4177         else if (op == MEMCG_LRU_YOUNG)
4178                 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4179         else
4180                 VM_WARN_ON_ONCE(true);
4181
4182         WRITE_ONCE(lruvec->lrugen.seg, seg);
4183         WRITE_ONCE(lruvec->lrugen.gen, new);
4184
4185         hlist_nulls_del_rcu(&lruvec->lrugen.list);
4186
4187         if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4188                 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4189         else
4190                 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4191
4192         pgdat->memcg_lru.nr_memcgs[old]--;
4193         pgdat->memcg_lru.nr_memcgs[new]++;
4194
4195         if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4196                 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4197
4198         spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4199 }
4200
4201 #ifdef CONFIG_MEMCG
4202
4203 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4204 {
4205         int gen;
4206         int nid;
4207         int bin = get_random_u32_below(MEMCG_NR_BINS);
4208
4209         for_each_node(nid) {
4210                 struct pglist_data *pgdat = NODE_DATA(nid);
4211                 struct lruvec *lruvec = get_lruvec(memcg, nid);
4212
4213                 spin_lock_irq(&pgdat->memcg_lru.lock);
4214
4215                 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4216
4217                 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4218
4219                 lruvec->lrugen.gen = gen;
4220
4221                 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4222                 pgdat->memcg_lru.nr_memcgs[gen]++;
4223
4224                 spin_unlock_irq(&pgdat->memcg_lru.lock);
4225         }
4226 }
4227
4228 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4229 {
4230         int nid;
4231
4232         for_each_node(nid) {
4233                 struct lruvec *lruvec = get_lruvec(memcg, nid);
4234
4235                 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4236         }
4237 }
4238
4239 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4240 {
4241         int gen;
4242         int nid;
4243
4244         for_each_node(nid) {
4245                 struct pglist_data *pgdat = NODE_DATA(nid);
4246                 struct lruvec *lruvec = get_lruvec(memcg, nid);
4247
4248                 spin_lock_irq(&pgdat->memcg_lru.lock);
4249
4250                 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4251                         goto unlock;
4252
4253                 gen = lruvec->lrugen.gen;
4254
4255                 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4256                 pgdat->memcg_lru.nr_memcgs[gen]--;
4257
4258                 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4259                         WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4260 unlock:
4261                 spin_unlock_irq(&pgdat->memcg_lru.lock);
4262         }
4263 }
4264
4265 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4266 {
4267         struct lruvec *lruvec = get_lruvec(memcg, nid);
4268
4269         /* see the comment on MEMCG_NR_GENS */
4270         if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4271                 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4272 }
4273
4274 #endif /* CONFIG_MEMCG */
4275
4276 /******************************************************************************
4277  *                          the eviction
4278  ******************************************************************************/
4279
4280 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4281                        int tier_idx)
4282 {
4283         bool success;
4284         int gen = folio_lru_gen(folio);
4285         int type = folio_is_file_lru(folio);
4286         int zone = folio_zonenum(folio);
4287         int delta = folio_nr_pages(folio);
4288         int refs = folio_lru_refs(folio);
4289         int tier = lru_tier_from_refs(refs);
4290         struct lru_gen_folio *lrugen = &lruvec->lrugen;
4291
4292         VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4293
4294         /* unevictable */
4295         if (!folio_evictable(folio)) {
4296                 success = lru_gen_del_folio(lruvec, folio, true);
4297                 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4298                 folio_set_unevictable(folio);
4299                 lruvec_add_folio(lruvec, folio);
4300                 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4301                 return true;
4302         }
4303
4304         /* promoted */
4305         if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4306                 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4307                 return true;
4308         }
4309
4310         /* protected */
4311         if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4312                 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4313
4314                 gen = folio_inc_gen(lruvec, folio, false);
4315                 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4316
4317                 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4318                            lrugen->protected[hist][type][tier - 1] + delta);
4319                 return true;
4320         }
4321
4322         /* ineligible */
4323         if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4324                 gen = folio_inc_gen(lruvec, folio, false);
4325                 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4326                 return true;
4327         }
4328
4329         /* waiting for writeback */
4330         if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4331             (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4332                 gen = folio_inc_gen(lruvec, folio, true);
4333                 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4334                 return true;
4335         }
4336
4337         return false;
4338 }
4339
4340 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4341 {
4342         bool success;
4343
4344         /* swap constrained */
4345         if (!(sc->gfp_mask & __GFP_IO) &&
4346             (folio_test_dirty(folio) ||
4347              (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4348                 return false;
4349
4350         /* raced with release_pages() */
4351         if (!folio_try_get(folio))
4352                 return false;
4353
4354         /* raced with another isolation */
4355         if (!folio_test_clear_lru(folio)) {
4356                 folio_put(folio);
4357                 return false;
4358         }
4359
4360         /* see the comment on MAX_NR_TIERS */
4361         if (!folio_test_referenced(folio))
4362                 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4363
4364         /* for shrink_folio_list() */
4365         folio_clear_reclaim(folio);
4366         folio_clear_referenced(folio);
4367
4368         success = lru_gen_del_folio(lruvec, folio, true);
4369         VM_WARN_ON_ONCE_FOLIO(!success, folio);
4370
4371         return true;
4372 }
4373
4374 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4375                        int type, int tier, struct list_head *list)
4376 {
4377         int i;
4378         int gen;
4379         enum vm_event_item item;
4380         int sorted = 0;
4381         int scanned = 0;
4382         int isolated = 0;
4383         int skipped = 0;
4384         int remaining = MAX_LRU_BATCH;
4385         struct lru_gen_folio *lrugen = &lruvec->lrugen;
4386         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4387
4388         VM_WARN_ON_ONCE(!list_empty(list));
4389
4390         if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4391                 return 0;
4392
4393         gen = lru_gen_from_seq(lrugen->min_seq[type]);
4394
4395         for (i = MAX_NR_ZONES; i > 0; i--) {
4396                 LIST_HEAD(moved);
4397                 int skipped_zone = 0;
4398                 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4399                 struct list_head *head = &lrugen->folios[gen][type][zone];
4400
4401                 while (!list_empty(head)) {
4402                         struct folio *folio = lru_to_folio(head);
4403                         int delta = folio_nr_pages(folio);
4404
4405                         VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4406                         VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4407                         VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4408                         VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4409
4410                         scanned += delta;
4411
4412                         if (sort_folio(lruvec, folio, sc, tier))
4413                                 sorted += delta;
4414                         else if (isolate_folio(lruvec, folio, sc)) {
4415                                 list_add(&folio->lru, list);
4416                                 isolated += delta;
4417                         } else {
4418                                 list_move(&folio->lru, &moved);
4419                                 skipped_zone += delta;
4420                         }
4421
4422                         if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4423                                 break;
4424                 }
4425
4426                 if (skipped_zone) {
4427                         list_splice(&moved, head);
4428                         __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4429                         skipped += skipped_zone;
4430                 }
4431
4432                 if (!remaining || isolated >= MIN_LRU_BATCH)
4433                         break;
4434         }
4435
4436         item = PGSCAN_KSWAPD + reclaimer_offset();
4437         if (!cgroup_reclaim(sc)) {
4438                 __count_vm_events(item, isolated);
4439                 __count_vm_events(PGREFILL, sorted);
4440         }
4441         __count_memcg_events(memcg, item, isolated);
4442         __count_memcg_events(memcg, PGREFILL, sorted);
4443         __count_vm_events(PGSCAN_ANON + type, isolated);
4444         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4445                                 scanned, skipped, isolated,
4446                                 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4447
4448         /*
4449          * There might not be eligible folios due to reclaim_idx. Check the
4450          * remaining to prevent livelock if it's not making progress.
4451          */
4452         return isolated || !remaining ? scanned : 0;
4453 }
4454
4455 static int get_tier_idx(struct lruvec *lruvec, int type)
4456 {
4457         int tier;
4458         struct ctrl_pos sp, pv;
4459
4460         /*
4461          * To leave a margin for fluctuations, use a larger gain factor (1:2).
4462          * This value is chosen because any other tier would have at least twice
4463          * as many refaults as the first tier.
4464          */
4465         read_ctrl_pos(lruvec, type, 0, 1, &sp);
4466         for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4467                 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4468                 if (!positive_ctrl_err(&sp, &pv))
4469                         break;
4470         }
4471
4472         return tier - 1;
4473 }
4474
4475 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4476 {
4477         int type, tier;
4478         struct ctrl_pos sp, pv;
4479         int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4480
4481         /*
4482          * Compare the first tier of anon with that of file to determine which
4483          * type to scan. Also need to compare other tiers of the selected type
4484          * with the first tier of the other type to determine the last tier (of
4485          * the selected type) to evict.
4486          */
4487         read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4488         read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4489         type = positive_ctrl_err(&sp, &pv);
4490
4491         read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4492         for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4493                 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4494                 if (!positive_ctrl_err(&sp, &pv))
4495                         break;
4496         }
4497
4498         *tier_idx = tier - 1;
4499
4500         return type;
4501 }
4502
4503 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4504                           int *type_scanned, struct list_head *list)
4505 {
4506         int i;
4507         int type;
4508         int scanned;
4509         int tier = -1;
4510         DEFINE_MIN_SEQ(lruvec);
4511
4512         /*
4513          * Try to make the obvious choice first, and if anon and file are both
4514          * available from the same generation,
4515          * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4516          *    first.
4517          * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4518          *    exist than clean swapcache.
4519          */
4520         if (!swappiness)
4521                 type = LRU_GEN_FILE;
4522         else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4523                 type = LRU_GEN_ANON;
4524         else if (swappiness == 1)
4525                 type = LRU_GEN_FILE;
4526         else if (swappiness == MAX_SWAPPINESS)
4527                 type = LRU_GEN_ANON;
4528         else if (!(sc->gfp_mask & __GFP_IO))
4529                 type = LRU_GEN_FILE;
4530         else
4531                 type = get_type_to_scan(lruvec, swappiness, &tier);
4532
4533         for (i = !swappiness; i < ANON_AND_FILE; i++) {
4534                 if (tier < 0)
4535                         tier = get_tier_idx(lruvec, type);
4536
4537                 scanned = scan_folios(lruvec, sc, type, tier, list);
4538                 if (scanned)
4539                         break;
4540
4541                 type = !type;
4542                 tier = -1;
4543         }
4544
4545         *type_scanned = type;
4546
4547         return scanned;
4548 }
4549
4550 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4551 {
4552         int type;
4553         int scanned;
4554         int reclaimed;
4555         LIST_HEAD(list);
4556         LIST_HEAD(clean);
4557         struct folio *folio;
4558         struct folio *next;
4559         enum vm_event_item item;
4560         struct reclaim_stat stat;
4561         struct lru_gen_mm_walk *walk;
4562         bool skip_retry = false;
4563         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4564         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4565
4566         spin_lock_irq(&lruvec->lru_lock);
4567
4568         scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4569
4570         scanned += try_to_inc_min_seq(lruvec, swappiness);
4571
4572         if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4573                 scanned = 0;
4574
4575         spin_unlock_irq(&lruvec->lru_lock);
4576
4577         if (list_empty(&list))
4578                 return scanned;
4579 retry:
4580         reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4581         sc->nr_reclaimed += reclaimed;
4582         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4583                         scanned, reclaimed, &stat, sc->priority,
4584                         type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4585
4586         list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4587                 if (!folio_evictable(folio)) {
4588                         list_del(&folio->lru);
4589                         folio_putback_lru(folio);
4590                         continue;
4591                 }
4592
4593                 if (folio_test_reclaim(folio) &&
4594                     (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4595                         /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4596                         if (folio_test_workingset(folio))
4597                                 folio_set_referenced(folio);
4598                         continue;
4599                 }
4600
4601                 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4602                     folio_mapped(folio) || folio_test_locked(folio) ||
4603                     folio_test_dirty(folio) || folio_test_writeback(folio)) {
4604                         /* don't add rejected folios to the oldest generation */
4605                         set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4606                                       BIT(PG_active));
4607                         continue;
4608                 }
4609
4610                 /* retry folios that may have missed folio_rotate_reclaimable() */
4611                 list_move(&folio->lru, &clean);
4612         }
4613
4614         spin_lock_irq(&lruvec->lru_lock);
4615
4616         move_folios_to_lru(lruvec, &list);
4617
4618         walk = current->reclaim_state->mm_walk;
4619         if (walk && walk->batched) {
4620                 walk->lruvec = lruvec;
4621                 reset_batch_size(walk);
4622         }
4623
4624         item = PGSTEAL_KSWAPD + reclaimer_offset();
4625         if (!cgroup_reclaim(sc))
4626                 __count_vm_events(item, reclaimed);
4627         __count_memcg_events(memcg, item, reclaimed);
4628         __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4629
4630         spin_unlock_irq(&lruvec->lru_lock);
4631
4632         list_splice_init(&clean, &list);
4633
4634         if (!list_empty(&list)) {
4635                 skip_retry = true;
4636                 goto retry;
4637         }
4638
4639         return scanned;
4640 }
4641
4642 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4643                              bool can_swap, unsigned long *nr_to_scan)
4644 {
4645         int gen, type, zone;
4646         unsigned long old = 0;
4647         unsigned long young = 0;
4648         unsigned long total = 0;
4649         struct lru_gen_folio *lrugen = &lruvec->lrugen;
4650         DEFINE_MIN_SEQ(lruvec);
4651
4652         /* whether this lruvec is completely out of cold folios */
4653         if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4654                 *nr_to_scan = 0;
4655                 return true;
4656         }
4657
4658         for (type = !can_swap; type < ANON_AND_FILE; type++) {
4659                 unsigned long seq;
4660
4661                 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4662                         unsigned long size = 0;
4663
4664                         gen = lru_gen_from_seq(seq);
4665
4666                         for (zone = 0; zone < MAX_NR_ZONES; zone++)
4667                                 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4668
4669                         total += size;
4670                         if (seq == max_seq)
4671                                 young += size;
4672                         else if (seq + MIN_NR_GENS == max_seq)
4673                                 old += size;
4674                 }
4675         }
4676
4677         *nr_to_scan = total;
4678
4679         /*
4680          * The aging tries to be lazy to reduce the overhead, while the eviction
4681          * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4682          * ideal number of generations is MIN_NR_GENS+1.
4683          */
4684         if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4685                 return false;
4686
4687         /*
4688          * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4689          * of the total number of pages for each generation. A reasonable range
4690          * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4691          * aging cares about the upper bound of hot pages, while the eviction
4692          * cares about the lower bound of cold pages.
4693          */
4694         if (young * MIN_NR_GENS > total)
4695                 return true;
4696         if (old * (MIN_NR_GENS + 2) < total)
4697                 return true;
4698
4699         return false;
4700 }
4701
4702 /*
4703  * For future optimizations:
4704  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4705  *    reclaim.
4706  */
4707 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4708 {
4709         bool success;
4710         unsigned long nr_to_scan;
4711         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4712         DEFINE_MAX_SEQ(lruvec);
4713
4714         if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4715                 return -1;
4716
4717         success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4718
4719         /* try to scrape all its memory if this memcg was deleted */
4720         if (nr_to_scan && !mem_cgroup_online(memcg))
4721                 return nr_to_scan;
4722
4723         /* try to get away with not aging at the default priority */
4724         if (!success || sc->priority == DEF_PRIORITY)
4725                 return nr_to_scan >> sc->priority;
4726
4727         /* stop scanning this lruvec as it's low on cold folios */
4728         return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4729 }
4730
4731 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4732 {
4733         int i;
4734         enum zone_watermarks mark;
4735
4736         /* don't abort memcg reclaim to ensure fairness */
4737         if (!root_reclaim(sc))
4738                 return false;
4739
4740         if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4741                 return true;
4742
4743         /* check the order to exclude compaction-induced reclaim */
4744         if (!current_is_kswapd() || sc->order)
4745                 return false;
4746
4747         mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4748                WMARK_PROMO : WMARK_HIGH;
4749
4750         for (i = 0; i <= sc->reclaim_idx; i++) {
4751                 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4752                 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4753
4754                 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4755                         return false;
4756         }
4757
4758         /* kswapd should abort if all eligible zones are safe */
4759         return true;
4760 }
4761
4762 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4763 {
4764         long nr_to_scan;
4765         unsigned long scanned = 0;
4766         int swappiness = get_swappiness(lruvec, sc);
4767
4768         while (true) {
4769                 int delta;
4770
4771                 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4772                 if (nr_to_scan <= 0)
4773                         break;
4774
4775                 delta = evict_folios(lruvec, sc, swappiness);
4776                 if (!delta)
4777                         break;
4778
4779                 scanned += delta;
4780                 if (scanned >= nr_to_scan)
4781                         break;
4782
4783                 if (should_abort_scan(lruvec, sc))
4784                         break;
4785
4786                 cond_resched();
4787         }
4788
4789         /* whether this lruvec should be rotated */
4790         return nr_to_scan < 0;
4791 }
4792
4793 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4794 {
4795         bool success;
4796         unsigned long scanned = sc->nr_scanned;
4797         unsigned long reclaimed = sc->nr_reclaimed;
4798         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4799         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4800
4801         /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4802         if (mem_cgroup_below_min(NULL, memcg))
4803                 return MEMCG_LRU_YOUNG;
4804
4805         if (mem_cgroup_below_low(NULL, memcg)) {
4806                 /* see the comment on MEMCG_NR_GENS */
4807                 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4808                         return MEMCG_LRU_TAIL;
4809
4810                 memcg_memory_event(memcg, MEMCG_LOW);
4811         }
4812
4813         success = try_to_shrink_lruvec(lruvec, sc);
4814
4815         shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4816
4817         if (!sc->proactive)
4818                 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4819                            sc->nr_reclaimed - reclaimed);
4820
4821         flush_reclaim_state(sc);
4822
4823         if (success && mem_cgroup_online(memcg))
4824                 return MEMCG_LRU_YOUNG;
4825
4826         if (!success && lruvec_is_sizable(lruvec, sc))
4827                 return 0;
4828
4829         /* one retry if offlined or too small */
4830         return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4831                MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4832 }
4833
4834 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4835 {
4836         int op;
4837         int gen;
4838         int bin;
4839         int first_bin;
4840         struct lruvec *lruvec;
4841         struct lru_gen_folio *lrugen;
4842         struct mem_cgroup *memcg;
4843         struct hlist_nulls_node *pos;
4844
4845         gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4846         bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4847 restart:
4848         op = 0;
4849         memcg = NULL;
4850
4851         rcu_read_lock();
4852
4853         hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4854                 if (op) {
4855                         lru_gen_rotate_memcg(lruvec, op);
4856                         op = 0;
4857                 }
4858
4859                 mem_cgroup_put(memcg);
4860                 memcg = NULL;
4861
4862                 if (gen != READ_ONCE(lrugen->gen))
4863                         continue;
4864
4865                 lruvec = container_of(lrugen, struct lruvec, lrugen);
4866                 memcg = lruvec_memcg(lruvec);
4867
4868                 if (!mem_cgroup_tryget(memcg)) {
4869                         lru_gen_release_memcg(memcg);
4870                         memcg = NULL;
4871                         continue;
4872                 }
4873
4874                 rcu_read_unlock();
4875
4876                 op = shrink_one(lruvec, sc);
4877
4878                 rcu_read_lock();
4879
4880                 if (should_abort_scan(lruvec, sc))
4881                         break;
4882         }
4883
4884         rcu_read_unlock();
4885
4886         if (op)
4887                 lru_gen_rotate_memcg(lruvec, op);
4888
4889         mem_cgroup_put(memcg);
4890
4891         if (!is_a_nulls(pos))
4892                 return;
4893
4894         /* restart if raced with lru_gen_rotate_memcg() */
4895         if (gen != get_nulls_value(pos))
4896                 goto restart;
4897
4898         /* try the rest of the bins of the current generation */
4899         bin = get_memcg_bin(bin + 1);
4900         if (bin != first_bin)
4901                 goto restart;
4902 }
4903
4904 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4905 {
4906         struct blk_plug plug;
4907
4908         VM_WARN_ON_ONCE(root_reclaim(sc));
4909         VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4910
4911         lru_add_drain();
4912
4913         blk_start_plug(&plug);
4914
4915         set_mm_walk(NULL, sc->proactive);
4916
4917         if (try_to_shrink_lruvec(lruvec, sc))
4918                 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4919
4920         clear_mm_walk();
4921
4922         blk_finish_plug(&plug);
4923 }
4924
4925 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4926 {
4927         struct blk_plug plug;
4928         unsigned long reclaimed = sc->nr_reclaimed;
4929
4930         VM_WARN_ON_ONCE(!root_reclaim(sc));
4931
4932         /*
4933          * Unmapped clean folios are already prioritized. Scanning for more of
4934          * them is likely futile and can cause high reclaim latency when there
4935          * is a large number of memcgs.
4936          */
4937         if (!sc->may_writepage || !sc->may_unmap)
4938                 goto done;
4939
4940         lru_add_drain();
4941
4942         blk_start_plug(&plug);
4943
4944         set_mm_walk(pgdat, sc->proactive);
4945
4946         set_initial_priority(pgdat, sc);
4947
4948         if (current_is_kswapd())
4949                 sc->nr_reclaimed = 0;
4950
4951         if (mem_cgroup_disabled())
4952                 shrink_one(&pgdat->__lruvec, sc);
4953         else
4954                 shrink_many(pgdat, sc);
4955
4956         if (current_is_kswapd())
4957                 sc->nr_reclaimed += reclaimed;
4958
4959         clear_mm_walk();
4960
4961         blk_finish_plug(&plug);
4962 done:
4963         /* kswapd should never fail */
4964         pgdat->kswapd_failures = 0;
4965 }
4966
4967 /******************************************************************************
4968  *                          state change
4969  ******************************************************************************/
4970
4971 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4972 {
4973         struct lru_gen_folio *lrugen = &lruvec->lrugen;
4974
4975         if (lrugen->enabled) {
4976                 enum lru_list lru;
4977
4978                 for_each_evictable_lru(lru) {
4979                         if (!list_empty(&lruvec->lists[lru]))
4980                                 return false;
4981                 }
4982         } else {
4983                 int gen, type, zone;
4984
4985                 for_each_gen_type_zone(gen, type, zone) {
4986                         if (!list_empty(&lrugen->folios[gen][type][zone]))
4987                                 return false;
4988                 }
4989         }
4990
4991         return true;
4992 }
4993
4994 static bool fill_evictable(struct lruvec *lruvec)
4995 {
4996         enum lru_list lru;
4997         int remaining = MAX_LRU_BATCH;
4998
4999         for_each_evictable_lru(lru) {
5000                 int type = is_file_lru(lru);
5001                 bool active = is_active_lru(lru);
5002                 struct list_head *head = &lruvec->lists[lru];
5003
5004                 while (!list_empty(head)) {
5005                         bool success;
5006                         struct folio *folio = lru_to_folio(head);
5007
5008                         VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5009                         VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5010                         VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5011                         VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5012
5013                         lruvec_del_folio(lruvec, folio);
5014                         success = lru_gen_add_folio(lruvec, folio, false);
5015                         VM_WARN_ON_ONCE(!success);
5016
5017                         if (!--remaining)
5018                                 return false;
5019                 }
5020         }
5021
5022         return true;
5023 }
5024
5025 static bool drain_evictable(struct lruvec *lruvec)
5026 {
5027         int gen, type, zone;
5028         int remaining = MAX_LRU_BATCH;
5029
5030         for_each_gen_type_zone(gen, type, zone) {
5031                 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5032
5033                 while (!list_empty(head)) {
5034                         bool success;
5035                         struct folio *folio = lru_to_folio(head);
5036
5037                         VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5038                         VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5039                         VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5040                         VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5041
5042                         success = lru_gen_del_folio(lruvec, folio, false);
5043                         VM_WARN_ON_ONCE(!success);
5044                         lruvec_add_folio(lruvec, folio);
5045
5046                         if (!--remaining)
5047                                 return false;
5048                 }
5049         }
5050
5051         return true;
5052 }
5053
5054 static void lru_gen_change_state(bool enabled)
5055 {
5056         static DEFINE_MUTEX(state_mutex);
5057
5058         struct mem_cgroup *memcg;
5059
5060         cgroup_lock();
5061         cpus_read_lock();
5062         get_online_mems();
5063         mutex_lock(&state_mutex);
5064
5065         if (enabled == lru_gen_enabled())
5066                 goto unlock;
5067
5068         if (enabled)
5069                 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5070         else
5071                 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5072
5073         memcg = mem_cgroup_iter(NULL, NULL, NULL);
5074         do {
5075                 int nid;
5076
5077                 for_each_node(nid) {
5078                         struct lruvec *lruvec = get_lruvec(memcg, nid);
5079
5080                         spin_lock_irq(&lruvec->lru_lock);
5081
5082                         VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5083                         VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5084
5085                         lruvec->lrugen.enabled = enabled;
5086
5087                         while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5088                                 spin_unlock_irq(&lruvec->lru_lock);
5089                                 cond_resched();
5090                                 spin_lock_irq(&lruvec->lru_lock);
5091                         }
5092
5093                         spin_unlock_irq(&lruvec->lru_lock);
5094                 }
5095
5096                 cond_resched();
5097         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5098 unlock:
5099         mutex_unlock(&state_mutex);
5100         put_online_mems();
5101         cpus_read_unlock();
5102         cgroup_unlock();
5103 }
5104
5105 /******************************************************************************
5106  *                          sysfs interface
5107  ******************************************************************************/
5108
5109 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5110 {
5111         return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5112 }
5113
5114 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5115 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5116                                 const char *buf, size_t len)
5117 {
5118         unsigned int msecs;
5119
5120         if (kstrtouint(buf, 0, &msecs))
5121                 return -EINVAL;
5122
5123         WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5124
5125         return len;
5126 }
5127
5128 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5129
5130 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5131 {
5132         unsigned int caps = 0;
5133
5134         if (get_cap(LRU_GEN_CORE))
5135                 caps |= BIT(LRU_GEN_CORE);
5136
5137         if (should_walk_mmu())
5138                 caps |= BIT(LRU_GEN_MM_WALK);
5139
5140         if (should_clear_pmd_young())
5141                 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5142
5143         return sysfs_emit(buf, "0x%04x\n", caps);
5144 }
5145
5146 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5147 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5148                              const char *buf, size_t len)
5149 {
5150         int i;
5151         unsigned int caps;
5152
5153         if (tolower(*buf) == 'n')
5154                 caps = 0;
5155         else if (tolower(*buf) == 'y')
5156                 caps = -1;
5157         else if (kstrtouint(buf, 0, &caps))
5158                 return -EINVAL;
5159
5160         for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5161                 bool enabled = caps & BIT(i);
5162
5163                 if (i == LRU_GEN_CORE)
5164                         lru_gen_change_state(enabled);
5165                 else if (enabled)
5166                         static_branch_enable(&lru_gen_caps[i]);
5167                 else
5168                         static_branch_disable(&lru_gen_caps[i]);
5169         }
5170
5171         return len;
5172 }
5173
5174 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5175
5176 static struct attribute *lru_gen_attrs[] = {
5177         &lru_gen_min_ttl_attr.attr,
5178         &lru_gen_enabled_attr.attr,
5179         NULL
5180 };
5181
5182 static const struct attribute_group lru_gen_attr_group = {
5183         .name = "lru_gen",
5184         .attrs = lru_gen_attrs,
5185 };
5186
5187 /******************************************************************************
5188  *                          debugfs interface
5189  ******************************************************************************/
5190
5191 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5192 {
5193         struct mem_cgroup *memcg;
5194         loff_t nr_to_skip = *pos;
5195
5196         m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5197         if (!m->private)
5198                 return ERR_PTR(-ENOMEM);
5199
5200         memcg = mem_cgroup_iter(NULL, NULL, NULL);
5201         do {
5202                 int nid;
5203
5204                 for_each_node_state(nid, N_MEMORY) {
5205                         if (!nr_to_skip--)
5206                                 return get_lruvec(memcg, nid);
5207                 }
5208         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5209
5210         return NULL;
5211 }
5212
5213 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5214 {
5215         if (!IS_ERR_OR_NULL(v))
5216                 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5217
5218         kvfree(m->private);
5219         m->private = NULL;
5220 }
5221
5222 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5223 {
5224         int nid = lruvec_pgdat(v)->node_id;
5225         struct mem_cgroup *memcg = lruvec_memcg(v);
5226
5227         ++*pos;
5228
5229         nid = next_memory_node(nid);
5230         if (nid == MAX_NUMNODES) {
5231                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5232                 if (!memcg)
5233                         return NULL;
5234
5235                 nid = first_memory_node;
5236         }
5237
5238         return get_lruvec(memcg, nid);
5239 }
5240
5241 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5242                                   unsigned long max_seq, unsigned long *min_seq,
5243                                   unsigned long seq)
5244 {
5245         int i;
5246         int type, tier;
5247         int hist = lru_hist_from_seq(seq);
5248         struct lru_gen_folio *lrugen = &lruvec->lrugen;
5249         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5250
5251         for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5252                 seq_printf(m, "            %10d", tier);
5253                 for (type = 0; type < ANON_AND_FILE; type++) {
5254                         const char *s = "   ";
5255                         unsigned long n[3] = {};
5256
5257                         if (seq == max_seq) {
5258                                 s = "RT ";
5259                                 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5260                                 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5261                         } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5262                                 s = "rep";
5263                                 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5264                                 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5265                                 if (tier)
5266                                         n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5267                         }
5268
5269                         for (i = 0; i < 3; i++)
5270                                 seq_printf(m, " %10lu%c", n[i], s[i]);
5271                 }
5272                 seq_putc(m, '\n');
5273         }
5274
5275         if (!mm_state)
5276                 return;
5277
5278         seq_puts(m, "                      ");
5279         for (i = 0; i < NR_MM_STATS; i++) {
5280                 const char *s = "      ";
5281                 unsigned long n = 0;
5282
5283                 if (seq == max_seq && NR_HIST_GENS == 1) {
5284                         s = "LOYNFA";
5285                         n = READ_ONCE(mm_state->stats[hist][i]);
5286                 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5287                         s = "loynfa";
5288                         n = READ_ONCE(mm_state->stats[hist][i]);
5289                 }
5290
5291                 seq_printf(m, " %10lu%c", n, s[i]);
5292         }
5293         seq_putc(m, '\n');
5294 }
5295
5296 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5297 static int lru_gen_seq_show(struct seq_file *m, void *v)
5298 {
5299         unsigned long seq;
5300         bool full = !debugfs_real_fops(m->file)->write;
5301         struct lruvec *lruvec = v;
5302         struct lru_gen_folio *lrugen = &lruvec->lrugen;
5303         int nid = lruvec_pgdat(lruvec)->node_id;
5304         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5305         DEFINE_MAX_SEQ(lruvec);
5306         DEFINE_MIN_SEQ(lruvec);
5307
5308         if (nid == first_memory_node) {
5309                 const char *path = memcg ? m->private : "";
5310
5311 #ifdef CONFIG_MEMCG
5312                 if (memcg)
5313                         cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5314 #endif
5315                 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5316         }
5317
5318         seq_printf(m, " node %5d\n", nid);
5319
5320         if (!full)
5321                 seq = min_seq[LRU_GEN_ANON];
5322         else if (max_seq >= MAX_NR_GENS)
5323                 seq = max_seq - MAX_NR_GENS + 1;
5324         else
5325                 seq = 0;
5326
5327         for (; seq <= max_seq; seq++) {
5328                 int type, zone;
5329                 int gen = lru_gen_from_seq(seq);
5330                 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5331
5332                 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5333
5334                 for (type = 0; type < ANON_AND_FILE; type++) {
5335                         unsigned long size = 0;
5336                         char mark = full && seq < min_seq[type] ? 'x' : ' ';
5337
5338                         for (zone = 0; zone < MAX_NR_ZONES; zone++)
5339                                 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5340
5341                         seq_printf(m, " %10lu%c", size, mark);
5342                 }
5343
5344                 seq_putc(m, '\n');
5345
5346                 if (full)
5347                         lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5348         }
5349
5350         return 0;
5351 }
5352
5353 static const struct seq_operations lru_gen_seq_ops = {
5354         .start = lru_gen_seq_start,
5355         .stop = lru_gen_seq_stop,
5356         .next = lru_gen_seq_next,
5357         .show = lru_gen_seq_show,
5358 };
5359
5360 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5361                      bool can_swap, bool force_scan)
5362 {
5363         DEFINE_MAX_SEQ(lruvec);
5364         DEFINE_MIN_SEQ(lruvec);
5365
5366         if (seq < max_seq)
5367                 return 0;
5368
5369         if (seq > max_seq)
5370                 return -EINVAL;
5371
5372         if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5373                 return -ERANGE;
5374
5375         try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5376
5377         return 0;
5378 }
5379
5380 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5381                         int swappiness, unsigned long nr_to_reclaim)
5382 {
5383         DEFINE_MAX_SEQ(lruvec);
5384
5385         if (seq + MIN_NR_GENS > max_seq)
5386                 return -EINVAL;
5387
5388         sc->nr_reclaimed = 0;
5389
5390         while (!signal_pending(current)) {
5391                 DEFINE_MIN_SEQ(lruvec);
5392
5393                 if (seq < min_seq[!swappiness])
5394                         return 0;
5395
5396                 if (sc->nr_reclaimed >= nr_to_reclaim)
5397                         return 0;
5398
5399                 if (!evict_folios(lruvec, sc, swappiness))
5400                         return 0;
5401
5402                 cond_resched();
5403         }
5404
5405         return -EINTR;
5406 }
5407
5408 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5409                    struct scan_control *sc, int swappiness, unsigned long opt)
5410 {
5411         struct lruvec *lruvec;
5412         int err = -EINVAL;
5413         struct mem_cgroup *memcg = NULL;
5414
5415         if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5416                 return -EINVAL;
5417
5418         if (!mem_cgroup_disabled()) {
5419                 rcu_read_lock();
5420
5421                 memcg = mem_cgroup_from_id(memcg_id);
5422                 if (!mem_cgroup_tryget(memcg))
5423                         memcg = NULL;
5424
5425                 rcu_read_unlock();
5426
5427                 if (!memcg)
5428                         return -EINVAL;
5429         }
5430
5431         if (memcg_id != mem_cgroup_id(memcg))
5432                 goto done;
5433
5434         lruvec = get_lruvec(memcg, nid);
5435
5436         if (swappiness < MIN_SWAPPINESS)
5437                 swappiness = get_swappiness(lruvec, sc);
5438         else if (swappiness > MAX_SWAPPINESS)
5439                 goto done;
5440
5441         switch (cmd) {
5442         case '+':
5443                 err = run_aging(lruvec, seq, swappiness, opt);
5444                 break;
5445         case '-':
5446                 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5447                 break;
5448         }
5449 done:
5450         mem_cgroup_put(memcg);
5451
5452         return err;
5453 }
5454
5455 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5456 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5457                                  size_t len, loff_t *pos)
5458 {
5459         void *buf;
5460         char *cur, *next;
5461         unsigned int flags;
5462         struct blk_plug plug;
5463         int err = -EINVAL;
5464         struct scan_control sc = {
5465                 .may_writepage = true,
5466                 .may_unmap = true,
5467                 .may_swap = true,
5468                 .reclaim_idx = MAX_NR_ZONES - 1,
5469                 .gfp_mask = GFP_KERNEL,
5470         };
5471
5472         buf = kvmalloc(len + 1, GFP_KERNEL);
5473         if (!buf)
5474                 return -ENOMEM;
5475
5476         if (copy_from_user(buf, src, len)) {
5477                 kvfree(buf);
5478                 return -EFAULT;
5479         }
5480
5481         set_task_reclaim_state(current, &sc.reclaim_state);
5482         flags = memalloc_noreclaim_save();
5483         blk_start_plug(&plug);
5484         if (!set_mm_walk(NULL, true)) {
5485                 err = -ENOMEM;
5486                 goto done;
5487         }
5488
5489         next = buf;
5490         next[len] = '\0';
5491
5492         while ((cur = strsep(&next, ",;\n"))) {
5493                 int n;
5494                 int end;
5495                 char cmd;
5496                 unsigned int memcg_id;
5497                 unsigned int nid;
5498                 unsigned long seq;
5499                 unsigned int swappiness = -1;
5500                 unsigned long opt = -1;
5501
5502                 cur = skip_spaces(cur);
5503                 if (!*cur)
5504                         continue;
5505
5506                 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5507                            &seq, &end, &swappiness, &end, &opt, &end);
5508                 if (n < 4 || cur[end]) {
5509                         err = -EINVAL;
5510                         break;
5511                 }
5512
5513                 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5514                 if (err)
5515                         break;
5516         }
5517 done:
5518         clear_mm_walk();
5519         blk_finish_plug(&plug);
5520         memalloc_noreclaim_restore(flags);
5521         set_task_reclaim_state(current, NULL);
5522
5523         kvfree(buf);
5524
5525         return err ? : len;
5526 }
5527
5528 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5529 {
5530         return seq_open(file, &lru_gen_seq_ops);
5531 }
5532
5533 static const struct file_operations lru_gen_rw_fops = {
5534         .open = lru_gen_seq_open,
5535         .read = seq_read,
5536         .write = lru_gen_seq_write,
5537         .llseek = seq_lseek,
5538         .release = seq_release,
5539 };
5540
5541 static const struct file_operations lru_gen_ro_fops = {
5542         .open = lru_gen_seq_open,
5543         .read = seq_read,
5544         .llseek = seq_lseek,
5545         .release = seq_release,
5546 };
5547
5548 /******************************************************************************
5549  *                          initialization
5550  ******************************************************************************/
5551
5552 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5553 {
5554         int i, j;
5555
5556         spin_lock_init(&pgdat->memcg_lru.lock);
5557
5558         for (i = 0; i < MEMCG_NR_GENS; i++) {
5559                 for (j = 0; j < MEMCG_NR_BINS; j++)
5560                         INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5561         }
5562 }
5563
5564 void lru_gen_init_lruvec(struct lruvec *lruvec)
5565 {
5566         int i;
5567         int gen, type, zone;
5568         struct lru_gen_folio *lrugen = &lruvec->lrugen;
5569         struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5570
5571         lrugen->max_seq = MIN_NR_GENS + 1;
5572         lrugen->enabled = lru_gen_enabled();
5573
5574         for (i = 0; i <= MIN_NR_GENS + 1; i++)
5575                 lrugen->timestamps[i] = jiffies;
5576
5577         for_each_gen_type_zone(gen, type, zone)
5578                 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5579
5580         if (mm_state)
5581                 mm_state->seq = MIN_NR_GENS;
5582 }
5583
5584 #ifdef CONFIG_MEMCG
5585
5586 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5587 {
5588         struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5589
5590         if (!mm_list)
5591                 return;
5592
5593         INIT_LIST_HEAD(&mm_list->fifo);
5594         spin_lock_init(&mm_list->lock);
5595 }
5596
5597 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5598 {
5599         int i;
5600         int nid;
5601         struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5602
5603         VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5604
5605         for_each_node(nid) {
5606                 struct lruvec *lruvec = get_lruvec(memcg, nid);
5607                 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5608
5609                 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5610                                            sizeof(lruvec->lrugen.nr_pages)));
5611
5612                 lruvec->lrugen.list.next = LIST_POISON1;
5613
5614                 if (!mm_state)
5615                         continue;
5616
5617                 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5618                         bitmap_free(mm_state->filters[i]);
5619                         mm_state->filters[i] = NULL;
5620                 }
5621         }
5622 }
5623
5624 #endif /* CONFIG_MEMCG */
5625
5626 static int __init init_lru_gen(void)
5627 {
5628         BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5629         BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5630
5631         if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5632                 pr_err("lru_gen: failed to create sysfs group\n");
5633
5634         debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5635         debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5636
5637         return 0;
5638 };
5639 late_initcall(init_lru_gen);
5640
5641 #else /* !CONFIG_LRU_GEN */
5642
5643 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5644 {
5645         BUILD_BUG();
5646 }
5647
5648 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5649 {
5650         BUILD_BUG();
5651 }
5652
5653 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5654 {
5655         BUILD_BUG();
5656 }
5657
5658 #endif /* CONFIG_LRU_GEN */
5659
5660 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5661 {
5662         unsigned long nr[NR_LRU_LISTS];
5663         unsigned long targets[NR_LRU_LISTS];
5664         unsigned long nr_to_scan;
5665         enum lru_list lru;
5666         unsigned long nr_reclaimed = 0;
5667         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5668         bool proportional_reclaim;
5669         struct blk_plug plug;
5670
5671         if (lru_gen_enabled() && !root_reclaim(sc)) {
5672                 lru_gen_shrink_lruvec(lruvec, sc);
5673                 return;
5674         }
5675
5676         get_scan_count(lruvec, sc, nr);
5677
5678         /* Record the original scan target for proportional adjustments later */
5679         memcpy(targets, nr, sizeof(nr));
5680
5681         /*
5682          * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5683          * event that can occur when there is little memory pressure e.g.
5684          * multiple streaming readers/writers. Hence, we do not abort scanning
5685          * when the requested number of pages are reclaimed when scanning at
5686          * DEF_PRIORITY on the assumption that the fact we are direct
5687          * reclaiming implies that kswapd is not keeping up and it is best to
5688          * do a batch of work at once. For memcg reclaim one check is made to
5689          * abort proportional reclaim if either the file or anon lru has already
5690          * dropped to zero at the first pass.
5691          */
5692         proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5693                                 sc->priority == DEF_PRIORITY);
5694
5695         blk_start_plug(&plug);
5696         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5697                                         nr[LRU_INACTIVE_FILE]) {
5698                 unsigned long nr_anon, nr_file, percentage;
5699                 unsigned long nr_scanned;
5700
5701                 for_each_evictable_lru(lru) {
5702                         if (nr[lru]) {
5703                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5704                                 nr[lru] -= nr_to_scan;
5705
5706                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
5707                                                             lruvec, sc);
5708                         }
5709                 }
5710
5711                 cond_resched();
5712
5713                 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5714                         continue;
5715
5716                 /*
5717                  * For kswapd and memcg, reclaim at least the number of pages
5718                  * requested. Ensure that the anon and file LRUs are scanned
5719                  * proportionally what was requested by get_scan_count(). We
5720                  * stop reclaiming one LRU and reduce the amount scanning
5721                  * proportional to the original scan target.
5722                  */
5723                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5724                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5725
5726                 /*
5727                  * It's just vindictive to attack the larger once the smaller
5728                  * has gone to zero.  And given the way we stop scanning the
5729                  * smaller below, this makes sure that we only make one nudge
5730                  * towards proportionality once we've got nr_to_reclaim.
5731                  */
5732                 if (!nr_file || !nr_anon)
5733                         break;
5734
5735                 if (nr_file > nr_anon) {
5736                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5737                                                 targets[LRU_ACTIVE_ANON] + 1;
5738                         lru = LRU_BASE;
5739                         percentage = nr_anon * 100 / scan_target;
5740                 } else {
5741                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5742                                                 targets[LRU_ACTIVE_FILE] + 1;
5743                         lru = LRU_FILE;
5744                         percentage = nr_file * 100 / scan_target;
5745                 }
5746
5747                 /* Stop scanning the smaller of the LRU */
5748                 nr[lru] = 0;
5749                 nr[lru + LRU_ACTIVE] = 0;
5750
5751                 /*
5752                  * Recalculate the other LRU scan count based on its original
5753                  * scan target and the percentage scanning already complete
5754                  */
5755                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5756                 nr_scanned = targets[lru] - nr[lru];
5757                 nr[lru] = targets[lru] * (100 - percentage) / 100;
5758                 nr[lru] -= min(nr[lru], nr_scanned);
5759
5760                 lru += LRU_ACTIVE;
5761                 nr_scanned = targets[lru] - nr[lru];
5762                 nr[lru] = targets[lru] * (100 - percentage) / 100;
5763                 nr[lru] -= min(nr[lru], nr_scanned);
5764         }
5765         blk_finish_plug(&plug);
5766         sc->nr_reclaimed += nr_reclaimed;
5767
5768         /*
5769          * Even if we did not try to evict anon pages at all, we want to
5770          * rebalance the anon lru active/inactive ratio.
5771          */
5772         if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5773             inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5774                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5775                                    sc, LRU_ACTIVE_ANON);
5776 }
5777
5778 /* Use reclaim/compaction for costly allocs or under memory pressure */
5779 static bool in_reclaim_compaction(struct scan_control *sc)
5780 {
5781         if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5782                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5783                          sc->priority < DEF_PRIORITY - 2))
5784                 return true;
5785
5786         return false;
5787 }
5788
5789 /*
5790  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5791  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5792  * true if more pages should be reclaimed such that when the page allocator
5793  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5794  * It will give up earlier than that if there is difficulty reclaiming pages.
5795  */
5796 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5797                                         unsigned long nr_reclaimed,
5798                                         struct scan_control *sc)
5799 {
5800         unsigned long pages_for_compaction;
5801         unsigned long inactive_lru_pages;
5802         int z;
5803
5804         /* If not in reclaim/compaction mode, stop */
5805         if (!in_reclaim_compaction(sc))
5806                 return false;
5807
5808         /*
5809          * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5810          * number of pages that were scanned. This will return to the caller
5811          * with the risk reclaim/compaction and the resulting allocation attempt
5812          * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5813          * allocations through requiring that the full LRU list has been scanned
5814          * first, by assuming that zero delta of sc->nr_scanned means full LRU
5815          * scan, but that approximation was wrong, and there were corner cases
5816          * where always a non-zero amount of pages were scanned.
5817          */
5818         if (!nr_reclaimed)
5819                 return false;
5820
5821         /* If compaction would go ahead or the allocation would succeed, stop */
5822         for (z = 0; z <= sc->reclaim_idx; z++) {
5823                 struct zone *zone = &pgdat->node_zones[z];
5824                 if (!managed_zone(zone))
5825                         continue;
5826
5827                 /* Allocation can already succeed, nothing to do */
5828                 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5829                                       sc->reclaim_idx, 0))
5830                         return false;
5831
5832                 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5833                         return false;
5834         }
5835
5836         /*
5837          * If we have not reclaimed enough pages for compaction and the
5838          * inactive lists are large enough, continue reclaiming
5839          */
5840         pages_for_compaction = compact_gap(sc->order);
5841         inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5842         if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5843                 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5844
5845         return inactive_lru_pages > pages_for_compaction;
5846 }
5847
5848 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5849 {
5850         struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5851         struct mem_cgroup_reclaim_cookie reclaim = {
5852                 .pgdat = pgdat,
5853         };
5854         struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5855         struct mem_cgroup *memcg;
5856
5857         /*
5858          * In most cases, direct reclaimers can do partial walks
5859          * through the cgroup tree, using an iterator state that
5860          * persists across invocations. This strikes a balance between
5861          * fairness and allocation latency.
5862          *
5863          * For kswapd, reliable forward progress is more important
5864          * than a quick return to idle. Always do full walks.
5865          */
5866         if (current_is_kswapd() || sc->memcg_full_walk)
5867                 partial = NULL;
5868
5869         memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5870         do {
5871                 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5872                 unsigned long reclaimed;
5873                 unsigned long scanned;
5874
5875                 /*
5876                  * This loop can become CPU-bound when target memcgs
5877                  * aren't eligible for reclaim - either because they
5878                  * don't have any reclaimable pages, or because their
5879                  * memory is explicitly protected. Avoid soft lockups.
5880                  */
5881                 cond_resched();
5882
5883                 mem_cgroup_calculate_protection(target_memcg, memcg);
5884
5885                 if (mem_cgroup_below_min(target_memcg, memcg)) {
5886                         /*
5887                          * Hard protection.
5888                          * If there is no reclaimable memory, OOM.
5889                          */
5890                         continue;
5891                 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5892                         /*
5893                          * Soft protection.
5894                          * Respect the protection only as long as
5895                          * there is an unprotected supply
5896                          * of reclaimable memory from other cgroups.
5897                          */
5898                         if (!sc->memcg_low_reclaim) {
5899                                 sc->memcg_low_skipped = 1;
5900                                 continue;
5901                         }
5902                         memcg_memory_event(memcg, MEMCG_LOW);
5903                 }
5904
5905                 reclaimed = sc->nr_reclaimed;
5906                 scanned = sc->nr_scanned;
5907
5908                 shrink_lruvec(lruvec, sc);
5909
5910                 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5911                             sc->priority);
5912
5913                 /* Record the group's reclaim efficiency */
5914                 if (!sc->proactive)
5915                         vmpressure(sc->gfp_mask, memcg, false,
5916                                    sc->nr_scanned - scanned,
5917                                    sc->nr_reclaimed - reclaimed);
5918
5919                 /* If partial walks are allowed, bail once goal is reached */
5920                 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5921                         mem_cgroup_iter_break(target_memcg, memcg);
5922                         break;
5923                 }
5924         } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5925 }
5926
5927 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5928 {
5929         unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5930         struct lruvec *target_lruvec;
5931         bool reclaimable = false;
5932
5933         if (lru_gen_enabled() && root_reclaim(sc)) {
5934                 lru_gen_shrink_node(pgdat, sc);
5935                 return;
5936         }
5937
5938         target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5939
5940 again:
5941         memset(&sc->nr, 0, sizeof(sc->nr));
5942
5943         nr_reclaimed = sc->nr_reclaimed;
5944         nr_scanned = sc->nr_scanned;
5945
5946         prepare_scan_control(pgdat, sc);
5947
5948         shrink_node_memcgs(pgdat, sc);
5949
5950         flush_reclaim_state(sc);
5951
5952         nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5953
5954         /* Record the subtree's reclaim efficiency */
5955         if (!sc->proactive)
5956                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5957                            sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5958
5959         if (nr_node_reclaimed)
5960                 reclaimable = true;
5961
5962         if (current_is_kswapd()) {
5963                 /*
5964                  * If reclaim is isolating dirty pages under writeback,
5965                  * it implies that the long-lived page allocation rate
5966                  * is exceeding the page laundering rate. Either the
5967                  * global limits are not being effective at throttling
5968                  * processes due to the page distribution throughout
5969                  * zones or there is heavy usage of a slow backing
5970                  * device. The only option is to throttle from reclaim
5971                  * context which is not ideal as there is no guarantee
5972                  * the dirtying process is throttled in the same way
5973                  * balance_dirty_pages() manages.
5974                  *
5975                  * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5976                  * count the number of pages under pages flagged for
5977                  * immediate reclaim and stall if any are encountered
5978                  * in the nr_immediate check below.
5979                  */
5980                 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5981                         set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5982
5983                 /* Allow kswapd to start writing pages during reclaim.*/
5984                 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5985                         set_bit(PGDAT_DIRTY, &pgdat->flags);
5986
5987                 /*
5988                  * If kswapd scans pages marked for immediate
5989                  * reclaim and under writeback (nr_immediate), it
5990                  * implies that pages are cycling through the LRU
5991                  * faster than they are written so forcibly stall
5992                  * until some pages complete writeback.
5993                  */
5994                 if (sc->nr.immediate)
5995                         reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5996         }
5997
5998         /*
5999          * Tag a node/memcg as congested if all the dirty pages were marked
6000          * for writeback and immediate reclaim (counted in nr.congested).
6001          *
6002          * Legacy memcg will stall in page writeback so avoid forcibly
6003          * stalling in reclaim_throttle().
6004          */
6005         if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6006                 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6007                         set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6008
6009                 if (current_is_kswapd())
6010                         set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6011         }
6012
6013         /*
6014          * Stall direct reclaim for IO completions if the lruvec is
6015          * node is congested. Allow kswapd to continue until it
6016          * starts encountering unqueued dirty pages or cycling through
6017          * the LRU too quickly.
6018          */
6019         if (!current_is_kswapd() && current_may_throttle() &&
6020             !sc->hibernation_mode &&
6021             (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6022              test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6023                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6024
6025         if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6026                 goto again;
6027
6028         /*
6029          * Kswapd gives up on balancing particular nodes after too
6030          * many failures to reclaim anything from them and goes to
6031          * sleep. On reclaim progress, reset the failure counter. A
6032          * successful direct reclaim run will revive a dormant kswapd.
6033          */
6034         if (reclaimable)
6035                 pgdat->kswapd_failures = 0;
6036         else if (sc->cache_trim_mode)
6037                 sc->cache_trim_mode_failed = 1;
6038 }
6039
6040 /*
6041  * Returns true if compaction should go ahead for a costly-order request, or
6042  * the allocation would already succeed without compaction. Return false if we
6043  * should reclaim first.
6044  */
6045 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6046 {
6047         unsigned long watermark;
6048
6049         if (!gfp_compaction_allowed(sc->gfp_mask))
6050                 return false;
6051
6052         /* Allocation can already succeed, nothing to do */
6053         if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6054                               sc->reclaim_idx, 0))
6055                 return true;
6056
6057         /* Compaction cannot yet proceed. Do reclaim. */
6058         if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6059                 return false;
6060
6061         /*
6062          * Compaction is already possible, but it takes time to run and there
6063          * are potentially other callers using the pages just freed. So proceed
6064          * with reclaim to make a buffer of free pages available to give
6065          * compaction a reasonable chance of completing and allocating the page.
6066          * Note that we won't actually reclaim the whole buffer in one attempt
6067          * as the target watermark in should_continue_reclaim() is lower. But if
6068          * we are already above the high+gap watermark, don't reclaim at all.
6069          */
6070         watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6071
6072         return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6073 }
6074
6075 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6076 {
6077         /*
6078          * If reclaim is making progress greater than 12% efficiency then
6079          * wake all the NOPROGRESS throttled tasks.
6080          */
6081         if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6082                 wait_queue_head_t *wqh;
6083
6084                 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6085                 if (waitqueue_active(wqh))
6086                         wake_up(wqh);
6087
6088                 return;
6089         }
6090
6091         /*
6092          * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6093          * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6094          * under writeback and marked for immediate reclaim at the tail of the
6095          * LRU.
6096          */
6097         if (current_is_kswapd() || cgroup_reclaim(sc))
6098                 return;
6099
6100         /* Throttle if making no progress at high prioities. */
6101         if (sc->priority == 1 && !sc->nr_reclaimed)
6102                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6103 }
6104
6105 /*
6106  * This is the direct reclaim path, for page-allocating processes.  We only
6107  * try to reclaim pages from zones which will satisfy the caller's allocation
6108  * request.
6109  *
6110  * If a zone is deemed to be full of pinned pages then just give it a light
6111  * scan then give up on it.
6112  */
6113 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6114 {
6115         struct zoneref *z;
6116         struct zone *zone;
6117         unsigned long nr_soft_reclaimed;
6118         unsigned long nr_soft_scanned;
6119         gfp_t orig_mask;
6120         pg_data_t *last_pgdat = NULL;
6121         pg_data_t *first_pgdat = NULL;
6122
6123         /*
6124          * If the number of buffer_heads in the machine exceeds the maximum
6125          * allowed level, force direct reclaim to scan the highmem zone as
6126          * highmem pages could be pinning lowmem pages storing buffer_heads
6127          */
6128         orig_mask = sc->gfp_mask;
6129         if (buffer_heads_over_limit) {
6130                 sc->gfp_mask |= __GFP_HIGHMEM;
6131                 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6132         }
6133
6134         for_each_zone_zonelist_nodemask(zone, z, zonelist,
6135                                         sc->reclaim_idx, sc->nodemask) {
6136                 /*
6137                  * Take care memory controller reclaiming has small influence
6138                  * to global LRU.
6139                  */
6140                 if (!cgroup_reclaim(sc)) {
6141                         if (!cpuset_zone_allowed(zone,
6142                                                  GFP_KERNEL | __GFP_HARDWALL))
6143                                 continue;
6144
6145                         /*
6146                          * If we already have plenty of memory free for
6147                          * compaction in this zone, don't free any more.
6148                          * Even though compaction is invoked for any
6149                          * non-zero order, only frequent costly order
6150                          * reclamation is disruptive enough to become a
6151                          * noticeable problem, like transparent huge
6152                          * page allocations.
6153                          */
6154                         if (IS_ENABLED(CONFIG_COMPACTION) &&
6155                             sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6156                             compaction_ready(zone, sc)) {
6157                                 sc->compaction_ready = true;
6158                                 continue;
6159                         }
6160
6161                         /*
6162                          * Shrink each node in the zonelist once. If the
6163                          * zonelist is ordered by zone (not the default) then a
6164                          * node may be shrunk multiple times but in that case
6165                          * the user prefers lower zones being preserved.
6166                          */
6167                         if (zone->zone_pgdat == last_pgdat)
6168                                 continue;
6169
6170                         /*
6171                          * This steals pages from memory cgroups over softlimit
6172                          * and returns the number of reclaimed pages and
6173                          * scanned pages. This works for global memory pressure
6174                          * and balancing, not for a memcg's limit.
6175                          */
6176                         nr_soft_scanned = 0;
6177                         nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6178                                                                       sc->order, sc->gfp_mask,
6179                                                                       &nr_soft_scanned);
6180                         sc->nr_reclaimed += nr_soft_reclaimed;
6181                         sc->nr_scanned += nr_soft_scanned;
6182                         /* need some check for avoid more shrink_zone() */
6183                 }
6184
6185                 if (!first_pgdat)
6186                         first_pgdat = zone->zone_pgdat;
6187
6188                 /* See comment about same check for global reclaim above */
6189                 if (zone->zone_pgdat == last_pgdat)
6190                         continue;
6191                 last_pgdat = zone->zone_pgdat;
6192                 shrink_node(zone->zone_pgdat, sc);
6193         }
6194
6195         if (first_pgdat)
6196                 consider_reclaim_throttle(first_pgdat, sc);
6197
6198         /*
6199          * Restore to original mask to avoid the impact on the caller if we
6200          * promoted it to __GFP_HIGHMEM.
6201          */
6202         sc->gfp_mask = orig_mask;
6203 }
6204
6205 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6206 {
6207         struct lruvec *target_lruvec;
6208         unsigned long refaults;
6209
6210         if (lru_gen_enabled())
6211                 return;
6212
6213         target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6214         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6215         target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6216         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6217         target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6218 }
6219
6220 /*
6221  * This is the main entry point to direct page reclaim.
6222  *
6223  * If a full scan of the inactive list fails to free enough memory then we
6224  * are "out of memory" and something needs to be killed.
6225  *
6226  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6227  * high - the zone may be full of dirty or under-writeback pages, which this
6228  * caller can't do much about.  We kick the writeback threads and take explicit
6229  * naps in the hope that some of these pages can be written.  But if the
6230  * allocating task holds filesystem locks which prevent writeout this might not
6231  * work, and the allocation attempt will fail.
6232  *
6233  * returns:     0, if no pages reclaimed
6234  *              else, the number of pages reclaimed
6235  */
6236 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6237                                           struct scan_control *sc)
6238 {
6239         int initial_priority = sc->priority;
6240         pg_data_t *last_pgdat;
6241         struct zoneref *z;
6242         struct zone *zone;
6243 retry:
6244         delayacct_freepages_start();
6245
6246         if (!cgroup_reclaim(sc))
6247                 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6248
6249         do {
6250                 if (!sc->proactive)
6251                         vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6252                                         sc->priority);
6253                 sc->nr_scanned = 0;
6254                 shrink_zones(zonelist, sc);
6255
6256                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6257                         break;
6258
6259                 if (sc->compaction_ready)
6260                         break;
6261
6262                 /*
6263                  * If we're getting trouble reclaiming, start doing
6264                  * writepage even in laptop mode.
6265                  */
6266                 if (sc->priority < DEF_PRIORITY - 2)
6267                         sc->may_writepage = 1;
6268         } while (--sc->priority >= 0);
6269
6270         last_pgdat = NULL;
6271         for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6272                                         sc->nodemask) {
6273                 if (zone->zone_pgdat == last_pgdat)
6274                         continue;
6275                 last_pgdat = zone->zone_pgdat;
6276
6277                 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6278
6279                 if (cgroup_reclaim(sc)) {
6280                         struct lruvec *lruvec;
6281
6282                         lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6283                                                    zone->zone_pgdat);
6284                         clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6285                 }
6286         }
6287
6288         delayacct_freepages_end();
6289
6290         if (sc->nr_reclaimed)
6291                 return sc->nr_reclaimed;
6292
6293         /* Aborted reclaim to try compaction? don't OOM, then */
6294         if (sc->compaction_ready)
6295                 return 1;
6296
6297         /*
6298          * In most cases, direct reclaimers can do partial walks
6299          * through the cgroup tree to meet the reclaim goal while
6300          * keeping latency low. Since the iterator state is shared
6301          * among all direct reclaim invocations (to retain fairness
6302          * among cgroups), though, high concurrency can result in
6303          * individual threads not seeing enough cgroups to make
6304          * meaningful forward progress. Avoid false OOMs in this case.
6305          */
6306         if (!sc->memcg_full_walk) {
6307                 sc->priority = initial_priority;
6308                 sc->memcg_full_walk = 1;
6309                 goto retry;
6310         }
6311
6312         /*
6313          * We make inactive:active ratio decisions based on the node's
6314          * composition of memory, but a restrictive reclaim_idx or a
6315          * memory.low cgroup setting can exempt large amounts of
6316          * memory from reclaim. Neither of which are very common, so
6317          * instead of doing costly eligibility calculations of the
6318          * entire cgroup subtree up front, we assume the estimates are
6319          * good, and retry with forcible deactivation if that fails.
6320          */
6321         if (sc->skipped_deactivate) {
6322                 sc->priority = initial_priority;
6323                 sc->force_deactivate = 1;
6324                 sc->skipped_deactivate = 0;
6325                 goto retry;
6326         }
6327
6328         /* Untapped cgroup reserves?  Don't OOM, retry. */
6329         if (sc->memcg_low_skipped) {
6330                 sc->priority = initial_priority;
6331                 sc->force_deactivate = 0;
6332                 sc->memcg_low_reclaim = 1;
6333                 sc->memcg_low_skipped = 0;
6334                 goto retry;
6335         }
6336
6337         return 0;
6338 }
6339
6340 static bool allow_direct_reclaim(pg_data_t *pgdat)
6341 {
6342         struct zone *zone;
6343         unsigned long pfmemalloc_reserve = 0;
6344         unsigned long free_pages = 0;
6345         int i;
6346         bool wmark_ok;
6347
6348         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6349                 return true;
6350
6351         for (i = 0; i <= ZONE_NORMAL; i++) {
6352                 zone = &pgdat->node_zones[i];
6353                 if (!managed_zone(zone))
6354                         continue;
6355
6356                 if (!zone_reclaimable_pages(zone))
6357                         continue;
6358
6359                 pfmemalloc_reserve += min_wmark_pages(zone);
6360                 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6361         }
6362
6363         /* If there are no reserves (unexpected config) then do not throttle */
6364         if (!pfmemalloc_reserve)
6365                 return true;
6366
6367         wmark_ok = free_pages > pfmemalloc_reserve / 2;
6368
6369         /* kswapd must be awake if processes are being throttled */
6370         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6371                 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6372                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6373
6374                 wake_up_interruptible(&pgdat->kswapd_wait);
6375         }
6376
6377         return wmark_ok;
6378 }
6379
6380 /*
6381  * Throttle direct reclaimers if backing storage is backed by the network
6382  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6383  * depleted. kswapd will continue to make progress and wake the processes
6384  * when the low watermark is reached.
6385  *
6386  * Returns true if a fatal signal was delivered during throttling. If this
6387  * happens, the page allocator should not consider triggering the OOM killer.
6388  */
6389 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6390                                         nodemask_t *nodemask)
6391 {
6392         struct zoneref *z;
6393         struct zone *zone;
6394         pg_data_t *pgdat = NULL;
6395
6396         /*
6397          * Kernel threads should not be throttled as they may be indirectly
6398          * responsible for cleaning pages necessary for reclaim to make forward
6399          * progress. kjournald for example may enter direct reclaim while
6400          * committing a transaction where throttling it could forcing other
6401          * processes to block on log_wait_commit().
6402          */
6403         if (current->flags & PF_KTHREAD)
6404                 goto out;
6405
6406         /*
6407          * If a fatal signal is pending, this process should not throttle.
6408          * It should return quickly so it can exit and free its memory
6409          */
6410         if (fatal_signal_pending(current))
6411                 goto out;
6412
6413         /*
6414          * Check if the pfmemalloc reserves are ok by finding the first node
6415          * with a usable ZONE_NORMAL or lower zone. The expectation is that
6416          * GFP_KERNEL will be required for allocating network buffers when
6417          * swapping over the network so ZONE_HIGHMEM is unusable.
6418          *
6419          * Throttling is based on the first usable node and throttled processes
6420          * wait on a queue until kswapd makes progress and wakes them. There
6421          * is an affinity then between processes waking up and where reclaim
6422          * progress has been made assuming the process wakes on the same node.
6423          * More importantly, processes running on remote nodes will not compete
6424          * for remote pfmemalloc reserves and processes on different nodes
6425          * should make reasonable progress.
6426          */
6427         for_each_zone_zonelist_nodemask(zone, z, zonelist,
6428                                         gfp_zone(gfp_mask), nodemask) {
6429                 if (zone_idx(zone) > ZONE_NORMAL)
6430                         continue;
6431
6432                 /* Throttle based on the first usable node */
6433                 pgdat = zone->zone_pgdat;
6434                 if (allow_direct_reclaim(pgdat))
6435                         goto out;
6436                 break;
6437         }
6438
6439         /* If no zone was usable by the allocation flags then do not throttle */
6440         if (!pgdat)
6441                 goto out;
6442
6443         /* Account for the throttling */
6444         count_vm_event(PGSCAN_DIRECT_THROTTLE);
6445
6446         /*
6447          * If the caller cannot enter the filesystem, it's possible that it
6448          * is due to the caller holding an FS lock or performing a journal
6449          * transaction in the case of a filesystem like ext[3|4]. In this case,
6450          * it is not safe to block on pfmemalloc_wait as kswapd could be
6451          * blocked waiting on the same lock. Instead, throttle for up to a
6452          * second before continuing.
6453          */
6454         if (!(gfp_mask & __GFP_FS))
6455                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6456                         allow_direct_reclaim(pgdat), HZ);
6457         else
6458                 /* Throttle until kswapd wakes the process */
6459                 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6460                         allow_direct_reclaim(pgdat));
6461
6462         if (fatal_signal_pending(current))
6463                 return true;
6464
6465 out:
6466         return false;
6467 }
6468
6469 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6470                                 gfp_t gfp_mask, nodemask_t *nodemask)
6471 {
6472         unsigned long nr_reclaimed;
6473         struct scan_control sc = {
6474                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6475                 .gfp_mask = current_gfp_context(gfp_mask),
6476                 .reclaim_idx = gfp_zone(gfp_mask),
6477                 .order = order,
6478                 .nodemask = nodemask,
6479                 .priority = DEF_PRIORITY,
6480                 .may_writepage = !laptop_mode,
6481                 .may_unmap = 1,
6482                 .may_swap = 1,
6483         };
6484
6485         /*
6486          * scan_control uses s8 fields for order, priority, and reclaim_idx.
6487          * Confirm they are large enough for max values.
6488          */
6489         BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6490         BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6491         BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6492
6493         /*
6494          * Do not enter reclaim if fatal signal was delivered while throttled.
6495          * 1 is returned so that the page allocator does not OOM kill at this
6496          * point.
6497          */
6498         if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6499                 return 1;
6500
6501         set_task_reclaim_state(current, &sc.reclaim_state);
6502         trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6503
6504         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6505
6506         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6507         set_task_reclaim_state(current, NULL);
6508
6509         return nr_reclaimed;
6510 }
6511
6512 #ifdef CONFIG_MEMCG
6513
6514 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6515 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6516                                                 gfp_t gfp_mask, bool noswap,
6517                                                 pg_data_t *pgdat,
6518                                                 unsigned long *nr_scanned)
6519 {
6520         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6521         struct scan_control sc = {
6522                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6523                 .target_mem_cgroup = memcg,
6524                 .may_writepage = !laptop_mode,
6525                 .may_unmap = 1,
6526                 .reclaim_idx = MAX_NR_ZONES - 1,
6527                 .may_swap = !noswap,
6528         };
6529
6530         WARN_ON_ONCE(!current->reclaim_state);
6531
6532         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6533                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6534
6535         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6536                                                       sc.gfp_mask);
6537
6538         /*
6539          * NOTE: Although we can get the priority field, using it
6540          * here is not a good idea, since it limits the pages we can scan.
6541          * if we don't reclaim here, the shrink_node from balance_pgdat
6542          * will pick up pages from other mem cgroup's as well. We hack
6543          * the priority and make it zero.
6544          */
6545         shrink_lruvec(lruvec, &sc);
6546
6547         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6548
6549         *nr_scanned = sc.nr_scanned;
6550
6551         return sc.nr_reclaimed;
6552 }
6553
6554 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6555                                            unsigned long nr_pages,
6556                                            gfp_t gfp_mask,
6557                                            unsigned int reclaim_options,
6558                                            int *swappiness)
6559 {
6560         unsigned long nr_reclaimed;
6561         unsigned int noreclaim_flag;
6562         struct scan_control sc = {
6563                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6564                 .proactive_swappiness = swappiness,
6565                 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6566                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6567                 .reclaim_idx = MAX_NR_ZONES - 1,
6568                 .target_mem_cgroup = memcg,
6569                 .priority = DEF_PRIORITY,
6570                 .may_writepage = !laptop_mode,
6571                 .may_unmap = 1,
6572                 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6573                 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6574         };
6575         /*
6576          * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6577          * equal pressure on all the nodes. This is based on the assumption that
6578          * the reclaim does not bail out early.
6579          */
6580         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6581
6582         set_task_reclaim_state(current, &sc.reclaim_state);
6583         trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6584         noreclaim_flag = memalloc_noreclaim_save();
6585
6586         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6587
6588         memalloc_noreclaim_restore(noreclaim_flag);
6589         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6590         set_task_reclaim_state(current, NULL);
6591
6592         return nr_reclaimed;
6593 }
6594 #endif
6595
6596 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6597 {
6598         struct mem_cgroup *memcg;
6599         struct lruvec *lruvec;
6600
6601         if (lru_gen_enabled()) {
6602                 lru_gen_age_node(pgdat, sc);
6603                 return;
6604         }
6605
6606         if (!can_age_anon_pages(pgdat, sc))
6607                 return;
6608
6609         lruvec = mem_cgroup_lruvec(NULL, pgdat);
6610         if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6611                 return;
6612
6613         memcg = mem_cgroup_iter(NULL, NULL, NULL);
6614         do {
6615                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6616                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6617                                    sc, LRU_ACTIVE_ANON);
6618                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6619         } while (memcg);
6620 }
6621
6622 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6623 {
6624         int i;
6625         struct zone *zone;
6626
6627         /*
6628          * Check for watermark boosts top-down as the higher zones
6629          * are more likely to be boosted. Both watermarks and boosts
6630          * should not be checked at the same time as reclaim would
6631          * start prematurely when there is no boosting and a lower
6632          * zone is balanced.
6633          */
6634         for (i = highest_zoneidx; i >= 0; i--) {
6635                 zone = pgdat->node_zones + i;
6636                 if (!managed_zone(zone))
6637                         continue;
6638
6639                 if (zone->watermark_boost)
6640                         return true;
6641         }
6642
6643         return false;
6644 }
6645
6646 /*
6647  * Returns true if there is an eligible zone balanced for the request order
6648  * and highest_zoneidx
6649  */
6650 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6651 {
6652         int i;
6653         unsigned long mark = -1;
6654         struct zone *zone;
6655
6656         /*
6657          * Check watermarks bottom-up as lower zones are more likely to
6658          * meet watermarks.
6659          */
6660         for (i = 0; i <= highest_zoneidx; i++) {
6661                 zone = pgdat->node_zones + i;
6662
6663                 if (!managed_zone(zone))
6664                         continue;
6665
6666                 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6667                         mark = wmark_pages(zone, WMARK_PROMO);
6668                 else
6669                         mark = high_wmark_pages(zone);
6670                 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6671                         return true;
6672         }
6673
6674         /*
6675          * If a node has no managed zone within highest_zoneidx, it does not
6676          * need balancing by definition. This can happen if a zone-restricted
6677          * allocation tries to wake a remote kswapd.
6678          */
6679         if (mark == -1)
6680                 return true;
6681
6682         return false;
6683 }
6684
6685 /* Clear pgdat state for congested, dirty or under writeback. */
6686 static void clear_pgdat_congested(pg_data_t *pgdat)
6687 {
6688         struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6689
6690         clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6691         clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6692         clear_bit(PGDAT_DIRTY, &pgdat->flags);
6693         clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6694 }
6695
6696 /*
6697  * Prepare kswapd for sleeping. This verifies that there are no processes
6698  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6699  *
6700  * Returns true if kswapd is ready to sleep
6701  */
6702 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6703                                 int highest_zoneidx)
6704 {
6705         /*
6706          * The throttled processes are normally woken up in balance_pgdat() as
6707          * soon as allow_direct_reclaim() is true. But there is a potential
6708          * race between when kswapd checks the watermarks and a process gets
6709          * throttled. There is also a potential race if processes get
6710          * throttled, kswapd wakes, a large process exits thereby balancing the
6711          * zones, which causes kswapd to exit balance_pgdat() before reaching
6712          * the wake up checks. If kswapd is going to sleep, no process should
6713          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6714          * the wake up is premature, processes will wake kswapd and get
6715          * throttled again. The difference from wake ups in balance_pgdat() is
6716          * that here we are under prepare_to_wait().
6717          */
6718         if (waitqueue_active(&pgdat->pfmemalloc_wait))
6719                 wake_up_all(&pgdat->pfmemalloc_wait);
6720
6721         /* Hopeless node, leave it to direct reclaim */
6722         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6723                 return true;
6724
6725         if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6726                 clear_pgdat_congested(pgdat);
6727                 return true;
6728         }
6729
6730         return false;
6731 }
6732
6733 /*
6734  * kswapd shrinks a node of pages that are at or below the highest usable
6735  * zone that is currently unbalanced.
6736  *
6737  * Returns true if kswapd scanned at least the requested number of pages to
6738  * reclaim or if the lack of progress was due to pages under writeback.
6739  * This is used to determine if the scanning priority needs to be raised.
6740  */
6741 static bool kswapd_shrink_node(pg_data_t *pgdat,
6742                                struct scan_control *sc)
6743 {
6744         struct zone *zone;
6745         int z;
6746         unsigned long nr_reclaimed = sc->nr_reclaimed;
6747
6748         /* Reclaim a number of pages proportional to the number of zones */
6749         sc->nr_to_reclaim = 0;
6750         for (z = 0; z <= sc->reclaim_idx; z++) {
6751                 zone = pgdat->node_zones + z;
6752                 if (!managed_zone(zone))
6753                         continue;
6754
6755                 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6756         }
6757
6758         /*
6759          * Historically care was taken to put equal pressure on all zones but
6760          * now pressure is applied based on node LRU order.
6761          */
6762         shrink_node(pgdat, sc);
6763
6764         /*
6765          * Fragmentation may mean that the system cannot be rebalanced for
6766          * high-order allocations. If twice the allocation size has been
6767          * reclaimed then recheck watermarks only at order-0 to prevent
6768          * excessive reclaim. Assume that a process requested a high-order
6769          * can direct reclaim/compact.
6770          */
6771         if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6772                 sc->order = 0;
6773
6774         /* account for progress from mm_account_reclaimed_pages() */
6775         return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6776 }
6777
6778 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6779 static inline void
6780 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6781 {
6782         int i;
6783         struct zone *zone;
6784
6785         for (i = 0; i <= highest_zoneidx; i++) {
6786                 zone = pgdat->node_zones + i;
6787
6788                 if (!managed_zone(zone))
6789                         continue;
6790
6791                 if (active)
6792                         set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6793                 else
6794                         clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6795         }
6796 }
6797
6798 static inline void
6799 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6800 {
6801         update_reclaim_active(pgdat, highest_zoneidx, true);
6802 }
6803
6804 static inline void
6805 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6806 {
6807         update_reclaim_active(pgdat, highest_zoneidx, false);
6808 }
6809
6810 /*
6811  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6812  * that are eligible for use by the caller until at least one zone is
6813  * balanced.
6814  *
6815  * Returns the order kswapd finished reclaiming at.
6816  *
6817  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6818  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6819  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6820  * or lower is eligible for reclaim until at least one usable zone is
6821  * balanced.
6822  */
6823 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6824 {
6825         int i;
6826         unsigned long nr_soft_reclaimed;
6827         unsigned long nr_soft_scanned;
6828         unsigned long pflags;
6829         unsigned long nr_boost_reclaim;
6830         unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6831         bool boosted;
6832         struct zone *zone;
6833         struct scan_control sc = {
6834                 .gfp_mask = GFP_KERNEL,
6835                 .order = order,
6836                 .may_unmap = 1,
6837         };
6838
6839         set_task_reclaim_state(current, &sc.reclaim_state);
6840         psi_memstall_enter(&pflags);
6841         __fs_reclaim_acquire(_THIS_IP_);
6842
6843         count_vm_event(PAGEOUTRUN);
6844
6845         /*
6846          * Account for the reclaim boost. Note that the zone boost is left in
6847          * place so that parallel allocations that are near the watermark will
6848          * stall or direct reclaim until kswapd is finished.
6849          */
6850         nr_boost_reclaim = 0;
6851         for (i = 0; i <= highest_zoneidx; i++) {
6852                 zone = pgdat->node_zones + i;
6853                 if (!managed_zone(zone))
6854                         continue;
6855
6856                 nr_boost_reclaim += zone->watermark_boost;
6857                 zone_boosts[i] = zone->watermark_boost;
6858         }
6859         boosted = nr_boost_reclaim;
6860
6861 restart:
6862         set_reclaim_active(pgdat, highest_zoneidx);
6863         sc.priority = DEF_PRIORITY;
6864         do {
6865                 unsigned long nr_reclaimed = sc.nr_reclaimed;
6866                 bool raise_priority = true;
6867                 bool balanced;
6868                 bool ret;
6869                 bool was_frozen;
6870
6871                 sc.reclaim_idx = highest_zoneidx;
6872
6873                 /*
6874                  * If the number of buffer_heads exceeds the maximum allowed
6875                  * then consider reclaiming from all zones. This has a dual
6876                  * purpose -- on 64-bit systems it is expected that
6877                  * buffer_heads are stripped during active rotation. On 32-bit
6878                  * systems, highmem pages can pin lowmem memory and shrinking
6879                  * buffers can relieve lowmem pressure. Reclaim may still not
6880                  * go ahead if all eligible zones for the original allocation
6881                  * request are balanced to avoid excessive reclaim from kswapd.
6882                  */
6883                 if (buffer_heads_over_limit) {
6884                         for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6885                                 zone = pgdat->node_zones + i;
6886                                 if (!managed_zone(zone))
6887                                         continue;
6888
6889                                 sc.reclaim_idx = i;
6890                                 break;
6891                         }
6892                 }
6893
6894                 /*
6895                  * If the pgdat is imbalanced then ignore boosting and preserve
6896                  * the watermarks for a later time and restart. Note that the
6897                  * zone watermarks will be still reset at the end of balancing
6898                  * on the grounds that the normal reclaim should be enough to
6899                  * re-evaluate if boosting is required when kswapd next wakes.
6900                  */
6901                 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6902                 if (!balanced && nr_boost_reclaim) {
6903                         nr_boost_reclaim = 0;
6904                         goto restart;
6905                 }
6906
6907                 /*
6908                  * If boosting is not active then only reclaim if there are no
6909                  * eligible zones. Note that sc.reclaim_idx is not used as
6910                  * buffer_heads_over_limit may have adjusted it.
6911                  */
6912                 if (!nr_boost_reclaim && balanced)
6913                         goto out;
6914
6915                 /* Limit the priority of boosting to avoid reclaim writeback */
6916                 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6917                         raise_priority = false;
6918
6919                 /*
6920                  * Do not writeback or swap pages for boosted reclaim. The
6921                  * intent is to relieve pressure not issue sub-optimal IO
6922                  * from reclaim context. If no pages are reclaimed, the
6923                  * reclaim will be aborted.
6924                  */
6925                 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6926                 sc.may_swap = !nr_boost_reclaim;
6927
6928                 /*
6929                  * Do some background aging, to give pages a chance to be
6930                  * referenced before reclaiming. All pages are rotated
6931                  * regardless of classzone as this is about consistent aging.
6932                  */
6933                 kswapd_age_node(pgdat, &sc);
6934
6935                 /*
6936                  * If we're getting trouble reclaiming, start doing writepage
6937                  * even in laptop mode.
6938                  */
6939                 if (sc.priority < DEF_PRIORITY - 2)
6940                         sc.may_writepage = 1;
6941
6942                 /* Call soft limit reclaim before calling shrink_node. */
6943                 sc.nr_scanned = 0;
6944                 nr_soft_scanned = 0;
6945                 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6946                                                               sc.gfp_mask, &nr_soft_scanned);
6947                 sc.nr_reclaimed += nr_soft_reclaimed;
6948
6949                 /*
6950                  * There should be no need to raise the scanning priority if
6951                  * enough pages are already being scanned that that high
6952                  * watermark would be met at 100% efficiency.
6953                  */
6954                 if (kswapd_shrink_node(pgdat, &sc))
6955                         raise_priority = false;
6956
6957                 /*
6958                  * If the low watermark is met there is no need for processes
6959                  * to be throttled on pfmemalloc_wait as they should not be
6960                  * able to safely make forward progress. Wake them
6961                  */
6962                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6963                                 allow_direct_reclaim(pgdat))
6964                         wake_up_all(&pgdat->pfmemalloc_wait);
6965
6966                 /* Check if kswapd should be suspending */
6967                 __fs_reclaim_release(_THIS_IP_);
6968                 ret = kthread_freezable_should_stop(&was_frozen);
6969                 __fs_reclaim_acquire(_THIS_IP_);
6970                 if (was_frozen || ret)
6971                         break;
6972
6973                 /*
6974                  * Raise priority if scanning rate is too low or there was no
6975                  * progress in reclaiming pages
6976                  */
6977                 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6978                 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6979
6980                 /*
6981                  * If reclaim made no progress for a boost, stop reclaim as
6982                  * IO cannot be queued and it could be an infinite loop in
6983                  * extreme circumstances.
6984                  */
6985                 if (nr_boost_reclaim && !nr_reclaimed)
6986                         break;
6987
6988                 if (raise_priority || !nr_reclaimed)
6989                         sc.priority--;
6990         } while (sc.priority >= 1);
6991
6992         /*
6993          * Restart only if it went through the priority loop all the way,
6994          * but cache_trim_mode didn't work.
6995          */
6996         if (!sc.nr_reclaimed && sc.priority < 1 &&
6997             !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6998                 sc.no_cache_trim_mode = 1;
6999                 goto restart;
7000         }
7001
7002         if (!sc.nr_reclaimed)
7003                 pgdat->kswapd_failures++;
7004
7005 out:
7006         clear_reclaim_active(pgdat, highest_zoneidx);
7007
7008         /* If reclaim was boosted, account for the reclaim done in this pass */
7009         if (boosted) {
7010                 unsigned long flags;
7011
7012                 for (i = 0; i <= highest_zoneidx; i++) {
7013                         if (!zone_boosts[i])
7014                                 continue;
7015
7016                         /* Increments are under the zone lock */
7017                         zone = pgdat->node_zones + i;
7018                         spin_lock_irqsave(&zone->lock, flags);
7019                         zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7020                         spin_unlock_irqrestore(&zone->lock, flags);
7021                 }
7022
7023                 /*
7024                  * As there is now likely space, wakeup kcompact to defragment
7025                  * pageblocks.
7026                  */
7027                 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7028         }
7029
7030         snapshot_refaults(NULL, pgdat);
7031         __fs_reclaim_release(_THIS_IP_);
7032         psi_memstall_leave(&pflags);
7033         set_task_reclaim_state(current, NULL);
7034
7035         /*
7036          * Return the order kswapd stopped reclaiming at as
7037          * prepare_kswapd_sleep() takes it into account. If another caller
7038          * entered the allocator slow path while kswapd was awake, order will
7039          * remain at the higher level.
7040          */
7041         return sc.order;
7042 }
7043
7044 /*
7045  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7046  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7047  * not a valid index then either kswapd runs for first time or kswapd couldn't
7048  * sleep after previous reclaim attempt (node is still unbalanced). In that
7049  * case return the zone index of the previous kswapd reclaim cycle.
7050  */
7051 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7052                                            enum zone_type prev_highest_zoneidx)
7053 {
7054         enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7055
7056         return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7057 }
7058
7059 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7060                                 unsigned int highest_zoneidx)
7061 {
7062         long remaining = 0;
7063         DEFINE_WAIT(wait);
7064
7065         if (freezing(current) || kthread_should_stop())
7066                 return;
7067
7068         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7069
7070         /*
7071          * Try to sleep for a short interval. Note that kcompactd will only be
7072          * woken if it is possible to sleep for a short interval. This is
7073          * deliberate on the assumption that if reclaim cannot keep an
7074          * eligible zone balanced that it's also unlikely that compaction will
7075          * succeed.
7076          */
7077         if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7078                 /*
7079                  * Compaction records what page blocks it recently failed to
7080                  * isolate pages from and skips them in the future scanning.
7081                  * When kswapd is going to sleep, it is reasonable to assume
7082                  * that pages and compaction may succeed so reset the cache.
7083                  */
7084                 reset_isolation_suitable(pgdat);
7085
7086                 /*
7087                  * We have freed the memory, now we should compact it to make
7088                  * allocation of the requested order possible.
7089                  */
7090                 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7091
7092                 remaining = schedule_timeout(HZ/10);
7093
7094                 /*
7095                  * If woken prematurely then reset kswapd_highest_zoneidx and
7096                  * order. The values will either be from a wakeup request or
7097                  * the previous request that slept prematurely.
7098                  */
7099                 if (remaining) {
7100                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7101                                         kswapd_highest_zoneidx(pgdat,
7102                                                         highest_zoneidx));
7103
7104                         if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7105                                 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7106                 }
7107
7108                 finish_wait(&pgdat->kswapd_wait, &wait);
7109                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7110         }
7111
7112         /*
7113          * After a short sleep, check if it was a premature sleep. If not, then
7114          * go fully to sleep until explicitly woken up.
7115          */
7116         if (!remaining &&
7117             prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7118                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7119
7120                 /*
7121                  * vmstat counters are not perfectly accurate and the estimated
7122                  * value for counters such as NR_FREE_PAGES can deviate from the
7123                  * true value by nr_online_cpus * threshold. To avoid the zone
7124                  * watermarks being breached while under pressure, we reduce the
7125                  * per-cpu vmstat threshold while kswapd is awake and restore
7126                  * them before going back to sleep.
7127                  */
7128                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7129
7130                 if (!kthread_should_stop())
7131                         schedule();
7132
7133                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7134         } else {
7135                 if (remaining)
7136                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7137                 else
7138                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7139         }
7140         finish_wait(&pgdat->kswapd_wait, &wait);
7141 }
7142
7143 /*
7144  * The background pageout daemon, started as a kernel thread
7145  * from the init process.
7146  *
7147  * This basically trickles out pages so that we have _some_
7148  * free memory available even if there is no other activity
7149  * that frees anything up. This is needed for things like routing
7150  * etc, where we otherwise might have all activity going on in
7151  * asynchronous contexts that cannot page things out.
7152  *
7153  * If there are applications that are active memory-allocators
7154  * (most normal use), this basically shouldn't matter.
7155  */
7156 static int kswapd(void *p)
7157 {
7158         unsigned int alloc_order, reclaim_order;
7159         unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7160         pg_data_t *pgdat = (pg_data_t *)p;
7161         struct task_struct *tsk = current;
7162         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7163
7164         if (!cpumask_empty(cpumask))
7165                 set_cpus_allowed_ptr(tsk, cpumask);
7166
7167         /*
7168          * Tell the memory management that we're a "memory allocator",
7169          * and that if we need more memory we should get access to it
7170          * regardless (see "__alloc_pages()"). "kswapd" should
7171          * never get caught in the normal page freeing logic.
7172          *
7173          * (Kswapd normally doesn't need memory anyway, but sometimes
7174          * you need a small amount of memory in order to be able to
7175          * page out something else, and this flag essentially protects
7176          * us from recursively trying to free more memory as we're
7177          * trying to free the first piece of memory in the first place).
7178          */
7179         tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7180         set_freezable();
7181
7182         WRITE_ONCE(pgdat->kswapd_order, 0);
7183         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7184         atomic_set(&pgdat->nr_writeback_throttled, 0);
7185         for ( ; ; ) {
7186                 bool was_frozen;
7187
7188                 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7189                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7190                                                         highest_zoneidx);
7191
7192 kswapd_try_sleep:
7193                 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7194                                         highest_zoneidx);
7195
7196                 /* Read the new order and highest_zoneidx */
7197                 alloc_order = READ_ONCE(pgdat->kswapd_order);
7198                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7199                                                         highest_zoneidx);
7200                 WRITE_ONCE(pgdat->kswapd_order, 0);
7201                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7202
7203                 if (kthread_freezable_should_stop(&was_frozen))
7204                         break;
7205
7206                 /*
7207                  * We can speed up thawing tasks if we don't call balance_pgdat
7208                  * after returning from the refrigerator
7209                  */
7210                 if (was_frozen)
7211                         continue;
7212
7213                 /*
7214                  * Reclaim begins at the requested order but if a high-order
7215                  * reclaim fails then kswapd falls back to reclaiming for
7216                  * order-0. If that happens, kswapd will consider sleeping
7217                  * for the order it finished reclaiming at (reclaim_order)
7218                  * but kcompactd is woken to compact for the original
7219                  * request (alloc_order).
7220                  */
7221                 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7222                                                 alloc_order);
7223                 reclaim_order = balance_pgdat(pgdat, alloc_order,
7224                                                 highest_zoneidx);
7225                 if (reclaim_order < alloc_order)
7226                         goto kswapd_try_sleep;
7227         }
7228
7229         tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7230
7231         return 0;
7232 }
7233
7234 /*
7235  * A zone is low on free memory or too fragmented for high-order memory.  If
7236  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7237  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7238  * has failed or is not needed, still wake up kcompactd if only compaction is
7239  * needed.
7240  */
7241 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7242                    enum zone_type highest_zoneidx)
7243 {
7244         pg_data_t *pgdat;
7245         enum zone_type curr_idx;
7246
7247         if (!managed_zone(zone))
7248                 return;
7249
7250         if (!cpuset_zone_allowed(zone, gfp_flags))
7251                 return;
7252
7253         pgdat = zone->zone_pgdat;
7254         curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7255
7256         if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7257                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7258
7259         if (READ_ONCE(pgdat->kswapd_order) < order)
7260                 WRITE_ONCE(pgdat->kswapd_order, order);
7261
7262         if (!waitqueue_active(&pgdat->kswapd_wait))
7263                 return;
7264
7265         /* Hopeless node, leave it to direct reclaim if possible */
7266         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7267             (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7268              !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7269                 /*
7270                  * There may be plenty of free memory available, but it's too
7271                  * fragmented for high-order allocations.  Wake up kcompactd
7272                  * and rely on compaction_suitable() to determine if it's
7273                  * needed.  If it fails, it will defer subsequent attempts to
7274                  * ratelimit its work.
7275                  */
7276                 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7277                         wakeup_kcompactd(pgdat, order, highest_zoneidx);
7278                 return;
7279         }
7280
7281         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7282                                       gfp_flags);
7283         wake_up_interruptible(&pgdat->kswapd_wait);
7284 }
7285
7286 #ifdef CONFIG_HIBERNATION
7287 /*
7288  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7289  * freed pages.
7290  *
7291  * Rather than trying to age LRUs the aim is to preserve the overall
7292  * LRU order by reclaiming preferentially
7293  * inactive > active > active referenced > active mapped
7294  */
7295 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7296 {
7297         struct scan_control sc = {
7298                 .nr_to_reclaim = nr_to_reclaim,
7299                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7300                 .reclaim_idx = MAX_NR_ZONES - 1,
7301                 .priority = DEF_PRIORITY,
7302                 .may_writepage = 1,
7303                 .may_unmap = 1,
7304                 .may_swap = 1,
7305                 .hibernation_mode = 1,
7306         };
7307         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7308         unsigned long nr_reclaimed;
7309         unsigned int noreclaim_flag;
7310
7311         fs_reclaim_acquire(sc.gfp_mask);
7312         noreclaim_flag = memalloc_noreclaim_save();
7313         set_task_reclaim_state(current, &sc.reclaim_state);
7314
7315         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7316
7317         set_task_reclaim_state(current, NULL);
7318         memalloc_noreclaim_restore(noreclaim_flag);
7319         fs_reclaim_release(sc.gfp_mask);
7320
7321         return nr_reclaimed;
7322 }
7323 #endif /* CONFIG_HIBERNATION */
7324
7325 /*
7326  * This kswapd start function will be called by init and node-hot-add.
7327  */
7328 void __meminit kswapd_run(int nid)
7329 {
7330         pg_data_t *pgdat = NODE_DATA(nid);
7331
7332         pgdat_kswapd_lock(pgdat);
7333         if (!pgdat->kswapd) {
7334                 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7335                 if (IS_ERR(pgdat->kswapd)) {
7336                         /* failure at boot is fatal */
7337                         pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7338                                    nid, PTR_ERR(pgdat->kswapd));
7339                         BUG_ON(system_state < SYSTEM_RUNNING);
7340                         pgdat->kswapd = NULL;
7341                 }
7342         }
7343         pgdat_kswapd_unlock(pgdat);
7344 }
7345
7346 /*
7347  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7348  * be holding mem_hotplug_begin/done().
7349  */
7350 void __meminit kswapd_stop(int nid)
7351 {
7352         pg_data_t *pgdat = NODE_DATA(nid);
7353         struct task_struct *kswapd;
7354
7355         pgdat_kswapd_lock(pgdat);
7356         kswapd = pgdat->kswapd;
7357         if (kswapd) {
7358                 kthread_stop(kswapd);
7359                 pgdat->kswapd = NULL;
7360         }
7361         pgdat_kswapd_unlock(pgdat);
7362 }
7363
7364 static int __init kswapd_init(void)
7365 {
7366         int nid;
7367
7368         swap_setup();
7369         for_each_node_state(nid, N_MEMORY)
7370                 kswapd_run(nid);
7371         return 0;
7372 }
7373
7374 module_init(kswapd_init)
7375
7376 #ifdef CONFIG_NUMA
7377 /*
7378  * Node reclaim mode
7379  *
7380  * If non-zero call node_reclaim when the number of free pages falls below
7381  * the watermarks.
7382  */
7383 int node_reclaim_mode __read_mostly;
7384
7385 /*
7386  * Priority for NODE_RECLAIM. This determines the fraction of pages
7387  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7388  * a zone.
7389  */
7390 #define NODE_RECLAIM_PRIORITY 4
7391
7392 /*
7393  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7394  * occur.
7395  */
7396 int sysctl_min_unmapped_ratio = 1;
7397
7398 /*
7399  * If the number of slab pages in a zone grows beyond this percentage then
7400  * slab reclaim needs to occur.
7401  */
7402 int sysctl_min_slab_ratio = 5;
7403
7404 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7405 {
7406         unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7407         unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7408                 node_page_state(pgdat, NR_ACTIVE_FILE);
7409
7410         /*
7411          * It's possible for there to be more file mapped pages than
7412          * accounted for by the pages on the file LRU lists because
7413          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7414          */
7415         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7416 }
7417
7418 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7419 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7420 {
7421         unsigned long nr_pagecache_reclaimable;
7422         unsigned long delta = 0;
7423
7424         /*
7425          * If RECLAIM_UNMAP is set, then all file pages are considered
7426          * potentially reclaimable. Otherwise, we have to worry about
7427          * pages like swapcache and node_unmapped_file_pages() provides
7428          * a better estimate
7429          */
7430         if (node_reclaim_mode & RECLAIM_UNMAP)
7431                 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7432         else
7433                 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7434
7435         /* If we can't clean pages, remove dirty pages from consideration */
7436         if (!(node_reclaim_mode & RECLAIM_WRITE))
7437                 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7438
7439         /* Watch for any possible underflows due to delta */
7440         if (unlikely(delta > nr_pagecache_reclaimable))
7441                 delta = nr_pagecache_reclaimable;
7442
7443         return nr_pagecache_reclaimable - delta;
7444 }
7445
7446 /*
7447  * Try to free up some pages from this node through reclaim.
7448  */
7449 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7450 {
7451         /* Minimum pages needed in order to stay on node */
7452         const unsigned long nr_pages = 1 << order;
7453         struct task_struct *p = current;
7454         unsigned int noreclaim_flag;
7455         struct scan_control sc = {
7456                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7457                 .gfp_mask = current_gfp_context(gfp_mask),
7458                 .order = order,
7459                 .priority = NODE_RECLAIM_PRIORITY,
7460                 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7461                 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7462                 .may_swap = 1,
7463                 .reclaim_idx = gfp_zone(gfp_mask),
7464         };
7465         unsigned long pflags;
7466
7467         trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7468                                            sc.gfp_mask);
7469
7470         cond_resched();
7471         psi_memstall_enter(&pflags);
7472         delayacct_freepages_start();
7473         fs_reclaim_acquire(sc.gfp_mask);
7474         /*
7475          * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7476          */
7477         noreclaim_flag = memalloc_noreclaim_save();
7478         set_task_reclaim_state(p, &sc.reclaim_state);
7479
7480         if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7481             node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7482                 /*
7483                  * Free memory by calling shrink node with increasing
7484                  * priorities until we have enough memory freed.
7485                  */
7486                 do {
7487                         shrink_node(pgdat, &sc);
7488                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7489         }
7490
7491         set_task_reclaim_state(p, NULL);
7492         memalloc_noreclaim_restore(noreclaim_flag);
7493         fs_reclaim_release(sc.gfp_mask);
7494         psi_memstall_leave(&pflags);
7495         delayacct_freepages_end();
7496
7497         trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7498
7499         return sc.nr_reclaimed >= nr_pages;
7500 }
7501
7502 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7503 {
7504         int ret;
7505
7506         /*
7507          * Node reclaim reclaims unmapped file backed pages and
7508          * slab pages if we are over the defined limits.
7509          *
7510          * A small portion of unmapped file backed pages is needed for
7511          * file I/O otherwise pages read by file I/O will be immediately
7512          * thrown out if the node is overallocated. So we do not reclaim
7513          * if less than a specified percentage of the node is used by
7514          * unmapped file backed pages.
7515          */
7516         if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7517             node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7518             pgdat->min_slab_pages)
7519                 return NODE_RECLAIM_FULL;
7520
7521         /*
7522          * Do not scan if the allocation should not be delayed.
7523          */
7524         if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7525                 return NODE_RECLAIM_NOSCAN;
7526
7527         /*
7528          * Only run node reclaim on the local node or on nodes that do not
7529          * have associated processors. This will favor the local processor
7530          * over remote processors and spread off node memory allocations
7531          * as wide as possible.
7532          */
7533         if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7534                 return NODE_RECLAIM_NOSCAN;
7535
7536         if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7537                 return NODE_RECLAIM_NOSCAN;
7538
7539         ret = __node_reclaim(pgdat, gfp_mask, order);
7540         clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7541
7542         if (!ret)
7543                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7544
7545         return ret;
7546 }
7547 #endif
7548
7549 /**
7550  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7551  * lru list
7552  * @fbatch: Batch of lru folios to check.
7553  *
7554  * Checks folios for evictability, if an evictable folio is in the unevictable
7555  * lru list, moves it to the appropriate evictable lru list. This function
7556  * should be only used for lru folios.
7557  */
7558 void check_move_unevictable_folios(struct folio_batch *fbatch)
7559 {
7560         struct lruvec *lruvec = NULL;
7561         int pgscanned = 0;
7562         int pgrescued = 0;
7563         int i;
7564
7565         for (i = 0; i < fbatch->nr; i++) {
7566                 struct folio *folio = fbatch->folios[i];
7567                 int nr_pages = folio_nr_pages(folio);
7568
7569                 pgscanned += nr_pages;
7570
7571                 /* block memcg migration while the folio moves between lrus */
7572                 if (!folio_test_clear_lru(folio))
7573                         continue;
7574
7575                 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7576                 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7577                         lruvec_del_folio(lruvec, folio);
7578                         folio_clear_unevictable(folio);
7579                         lruvec_add_folio(lruvec, folio);
7580                         pgrescued += nr_pages;
7581                 }
7582                 folio_set_lru(folio);
7583         }
7584
7585         if (lruvec) {
7586                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7587                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7588                 unlock_page_lruvec_irq(lruvec);
7589         } else if (pgscanned) {
7590                 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7591         }
7592 }
7593 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
This page took 0.459066 seconds and 4 git commands to generate.