1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
12 #include "async-thread.h"
13 #include "dev-replace.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
23 struct btrfs_failed_bio {
24 struct btrfs_bio *bbio;
26 atomic_t repair_count;
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
32 return bbio->inode && is_data_inode(bbio->inode);
35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
42 * is already initialized by the block layer.
44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 btrfs_bio_end_io_t end_io, void *private)
47 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 bbio->fs_info = fs_info;
49 bbio->end_io = end_io;
50 bbio->private = private;
51 atomic_set(&bbio->pending_ios, 1);
55 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
56 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
58 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
61 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
62 struct btrfs_fs_info *fs_info,
63 btrfs_bio_end_io_t end_io, void *private)
65 struct btrfs_bio *bbio;
68 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
69 bbio = btrfs_bio(bio);
70 btrfs_bio_init(bbio, fs_info, end_io, private);
74 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
75 struct btrfs_bio *orig_bbio,
76 u64 map_length, bool use_append)
78 struct btrfs_bio *bbio;
84 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
85 &btrfs_clone_bioset, map_length);
87 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
88 GFP_NOFS, &btrfs_clone_bioset);
90 bbio = btrfs_bio(bio);
91 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
92 bbio->inode = orig_bbio->inode;
93 bbio->file_offset = orig_bbio->file_offset;
94 orig_bbio->file_offset += map_length;
95 if (bbio_has_ordered_extent(bbio)) {
96 refcount_inc(&orig_bbio->ordered->refs);
97 bbio->ordered = orig_bbio->ordered;
99 atomic_inc(&orig_bbio->pending_ios);
103 /* Free a bio that was never submitted to the underlying device. */
104 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106 if (bbio_has_ordered_extent(bbio))
107 btrfs_put_ordered_extent(bbio->ordered);
111 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113 if (bbio_has_ordered_extent(bbio)) {
114 struct btrfs_ordered_extent *ordered = bbio->ordered;
117 btrfs_put_ordered_extent(ordered);
123 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125 bbio->bio.bi_status = status;
126 __btrfs_bio_end_io(bbio);
129 static void btrfs_orig_write_end_io(struct bio *bio);
131 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
132 struct btrfs_bio *orig_bbio)
135 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
136 * just blindly propagate a write failure here. Instead increment the
137 * error count in the original I/O context so that it is guaranteed to
138 * be larger than the error tolerance.
140 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
141 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
142 struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144 atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146 orig_bbio->bio.bi_status = bbio->bio.bi_status;
150 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152 if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
153 struct btrfs_bio *orig_bbio = bbio->private;
155 if (bbio->bio.bi_status)
156 btrfs_bbio_propagate_error(bbio, orig_bbio);
157 btrfs_cleanup_bio(bbio);
161 if (atomic_dec_and_test(&bbio->pending_ios))
162 __btrfs_bio_end_io(bbio);
165 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167 if (cur_mirror == fbio->num_copies)
168 return cur_mirror + 1 - fbio->num_copies;
169 return cur_mirror + 1;
172 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
175 return fbio->num_copies;
176 return cur_mirror - 1;
179 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181 if (atomic_dec_and_test(&fbio->repair_count)) {
182 btrfs_orig_bbio_end_io(fbio->bbio);
183 mempool_free(fbio, &btrfs_failed_bio_pool);
187 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
188 struct btrfs_device *dev)
190 struct btrfs_failed_bio *fbio = repair_bbio->private;
191 struct btrfs_inode *inode = repair_bbio->inode;
192 struct btrfs_fs_info *fs_info = inode->root->fs_info;
193 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
194 int mirror = repair_bbio->mirror_num;
197 * We can only trigger this for data bio, which doesn't support larger
200 ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
202 if (repair_bbio->bio.bi_status ||
203 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
204 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
205 repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
207 mirror = next_repair_mirror(fbio, mirror);
208 if (mirror == fbio->bbio->mirror_num) {
209 btrfs_debug(fs_info, "no mirror left");
210 fbio->bbio->bio.bi_status = BLK_STS_IOERR;
214 btrfs_submit_bio(repair_bbio, mirror);
219 mirror = prev_repair_mirror(fbio, mirror);
220 btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
221 repair_bbio->file_offset, fs_info->sectorsize,
222 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
223 page_folio(bv->bv_page), bv->bv_offset, mirror);
224 } while (mirror != fbio->bbio->mirror_num);
227 btrfs_repair_done(fbio);
228 bio_put(&repair_bbio->bio);
232 * Try to kick off a repair read to the next available mirror for a bad sector.
234 * This primarily tries to recover good data to serve the actual read request,
235 * but also tries to write the good data back to the bad mirror(s) when a
236 * read succeeded to restore the redundancy.
238 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
241 struct btrfs_failed_bio *fbio)
243 struct btrfs_inode *inode = failed_bbio->inode;
244 struct btrfs_fs_info *fs_info = inode->root->fs_info;
245 const u32 sectorsize = fs_info->sectorsize;
246 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
247 struct btrfs_bio *repair_bbio;
248 struct bio *repair_bio;
252 btrfs_debug(fs_info, "repair read error: read error at %llu",
253 failed_bbio->file_offset + bio_offset);
255 num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
256 if (num_copies == 1) {
257 btrfs_debug(fs_info, "no copy to repair from");
258 failed_bbio->bio.bi_status = BLK_STS_IOERR;
263 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
264 fbio->bbio = failed_bbio;
265 fbio->num_copies = num_copies;
266 atomic_set(&fbio->repair_count, 1);
269 atomic_inc(&fbio->repair_count);
271 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
272 &btrfs_repair_bioset);
273 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
274 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
276 repair_bbio = btrfs_bio(repair_bio);
277 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
278 repair_bbio->inode = failed_bbio->inode;
279 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
281 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
282 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
283 btrfs_submit_bio(repair_bbio, mirror);
287 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
289 struct btrfs_inode *inode = bbio->inode;
290 struct btrfs_fs_info *fs_info = inode->root->fs_info;
291 u32 sectorsize = fs_info->sectorsize;
292 struct bvec_iter *iter = &bbio->saved_iter;
293 blk_status_t status = bbio->bio.bi_status;
294 struct btrfs_failed_bio *fbio = NULL;
297 /* Read-repair requires the inode field to be set by the submitter. */
301 * Hand off repair bios to the repair code as there is no upper level
302 * submitter for them.
304 if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
305 btrfs_end_repair_bio(bbio, dev);
309 /* Clear the I/O error. A failed repair will reset it. */
310 bbio->bio.bi_status = BLK_STS_OK;
312 while (iter->bi_size) {
313 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
315 bv.bv_len = min(bv.bv_len, sectorsize);
316 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
317 fbio = repair_one_sector(bbio, offset, &bv, fbio);
319 bio_advance_iter_single(&bbio->bio, iter, sectorsize);
320 offset += sectorsize;
323 if (bbio->csum != bbio->csum_inline)
327 btrfs_repair_done(fbio);
329 btrfs_orig_bbio_end_io(bbio);
332 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
334 if (!dev || !dev->bdev)
336 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
339 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
340 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
341 else if (!(bio->bi_opf & REQ_RAHEAD))
342 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
343 if (bio->bi_opf & REQ_PREFLUSH)
344 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
347 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
350 if (bio->bi_opf & REQ_META)
351 return fs_info->endio_meta_workers;
352 return fs_info->endio_workers;
355 static void btrfs_end_bio_work(struct work_struct *work)
357 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
359 /* Metadata reads are checked and repaired by the submitter. */
360 if (is_data_bbio(bbio))
361 btrfs_check_read_bio(bbio, bbio->bio.bi_private);
363 btrfs_orig_bbio_end_io(bbio);
366 static void btrfs_simple_end_io(struct bio *bio)
368 struct btrfs_bio *bbio = btrfs_bio(bio);
369 struct btrfs_device *dev = bio->bi_private;
370 struct btrfs_fs_info *fs_info = bbio->fs_info;
372 btrfs_bio_counter_dec(fs_info);
375 btrfs_log_dev_io_error(bio, dev);
377 if (bio_op(bio) == REQ_OP_READ) {
378 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
379 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
381 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
382 btrfs_record_physical_zoned(bbio);
383 btrfs_orig_bbio_end_io(bbio);
387 static void btrfs_raid56_end_io(struct bio *bio)
389 struct btrfs_io_context *bioc = bio->bi_private;
390 struct btrfs_bio *bbio = btrfs_bio(bio);
392 btrfs_bio_counter_dec(bioc->fs_info);
393 bbio->mirror_num = bioc->mirror_num;
394 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
395 btrfs_check_read_bio(bbio, NULL);
397 btrfs_orig_bbio_end_io(bbio);
399 btrfs_put_bioc(bioc);
402 static void btrfs_orig_write_end_io(struct bio *bio)
404 struct btrfs_io_stripe *stripe = bio->bi_private;
405 struct btrfs_io_context *bioc = stripe->bioc;
406 struct btrfs_bio *bbio = btrfs_bio(bio);
408 btrfs_bio_counter_dec(bioc->fs_info);
410 if (bio->bi_status) {
411 atomic_inc(&bioc->error);
412 btrfs_log_dev_io_error(bio, stripe->dev);
416 * Only send an error to the higher layers if it is beyond the tolerance
419 if (atomic_read(&bioc->error) > bioc->max_errors)
420 bio->bi_status = BLK_STS_IOERR;
422 bio->bi_status = BLK_STS_OK;
424 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
425 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
427 btrfs_orig_bbio_end_io(bbio);
428 btrfs_put_bioc(bioc);
431 static void btrfs_clone_write_end_io(struct bio *bio)
433 struct btrfs_io_stripe *stripe = bio->bi_private;
435 if (bio->bi_status) {
436 atomic_inc(&stripe->bioc->error);
437 btrfs_log_dev_io_error(bio, stripe->dev);
438 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
439 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
442 /* Pass on control to the original bio this one was cloned from */
443 bio_endio(stripe->bioc->orig_bio);
447 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
449 if (!dev || !dev->bdev ||
450 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
451 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
452 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
457 bio_set_dev(bio, dev->bdev);
460 * For zone append writing, bi_sector must point the beginning of the
463 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
464 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
465 u64 zone_start = round_down(physical, dev->fs_info->zone_size);
467 ASSERT(btrfs_dev_is_sequential(dev, physical));
468 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
470 btrfs_debug_in_rcu(dev->fs_info,
471 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
472 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
473 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
474 dev->devid, bio->bi_iter.bi_size);
476 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
477 blkcg_punt_bio_submit(bio);
482 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
484 struct bio *orig_bio = bioc->orig_bio, *bio;
486 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
488 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
489 if (dev_nr == bioc->num_stripes - 1) {
491 bio->bi_end_io = btrfs_orig_write_end_io;
493 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
494 bio_inc_remaining(orig_bio);
495 bio->bi_end_io = btrfs_clone_write_end_io;
498 bio->bi_private = &bioc->stripes[dev_nr];
499 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
500 bioc->stripes[dev_nr].bioc = bioc;
501 bioc->size = bio->bi_iter.bi_size;
502 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
505 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
506 struct btrfs_io_stripe *smap, int mirror_num)
509 /* Single mirror read/write fast path. */
510 btrfs_bio(bio)->mirror_num = mirror_num;
511 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
512 if (bio_op(bio) != REQ_OP_READ)
513 btrfs_bio(bio)->orig_physical = smap->physical;
514 bio->bi_private = smap->dev;
515 bio->bi_end_io = btrfs_simple_end_io;
516 btrfs_submit_dev_bio(smap->dev, bio);
517 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
518 /* Parity RAID write or read recovery. */
519 bio->bi_private = bioc;
520 bio->bi_end_io = btrfs_raid56_end_io;
521 if (bio_op(bio) == REQ_OP_READ)
522 raid56_parity_recover(bio, bioc, mirror_num);
524 raid56_parity_write(bio, bioc);
526 /* Write to multiple mirrors. */
527 int total_devs = bioc->num_stripes;
529 bioc->orig_bio = bio;
530 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
531 btrfs_submit_mirrored_bio(bioc, dev_nr);
535 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
537 if (bbio->bio.bi_opf & REQ_META)
538 return btree_csum_one_bio(bbio);
539 return btrfs_csum_one_bio(bbio);
543 * Async submit bios are used to offload expensive checksumming onto the worker
546 struct async_submit_bio {
547 struct btrfs_bio *bbio;
548 struct btrfs_io_context *bioc;
549 struct btrfs_io_stripe smap;
551 struct btrfs_work work;
555 * In order to insert checksums into the metadata in large chunks, we wait
556 * until bio submission time. All the pages in the bio are checksummed and
557 * sums are attached onto the ordered extent record.
559 * At IO completion time the csums attached on the ordered extent record are
560 * inserted into the btree.
562 static void run_one_async_start(struct btrfs_work *work)
564 struct async_submit_bio *async =
565 container_of(work, struct async_submit_bio, work);
568 ret = btrfs_bio_csum(async->bbio);
570 async->bbio->bio.bi_status = ret;
574 * In order to insert checksums into the metadata in large chunks, we wait
575 * until bio submission time. All the pages in the bio are checksummed and
576 * sums are attached onto the ordered extent record.
578 * At IO completion time the csums attached on the ordered extent record are
579 * inserted into the tree.
581 * If called with @do_free == true, then it will free the work struct.
583 static void run_one_async_done(struct btrfs_work *work, bool do_free)
585 struct async_submit_bio *async =
586 container_of(work, struct async_submit_bio, work);
587 struct bio *bio = &async->bbio->bio;
590 kfree(container_of(work, struct async_submit_bio, work));
594 /* If an error occurred we just want to clean up the bio and move on. */
595 if (bio->bi_status) {
596 btrfs_orig_bbio_end_io(async->bbio);
601 * All of the bios that pass through here are from async helpers.
602 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
603 * context. This changes nothing when cgroups aren't in use.
605 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
606 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
609 static bool should_async_write(struct btrfs_bio *bbio)
611 bool auto_csum_mode = true;
613 #ifdef CONFIG_BTRFS_DEBUG
614 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
615 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
617 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
620 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
623 /* Submit synchronously if the checksum implementation is fast. */
624 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
628 * Try to defer the submission to a workqueue to parallelize the
629 * checksum calculation unless the I/O is issued synchronously.
631 if (op_is_sync(bbio->bio.bi_opf))
634 /* Zoned devices require I/O to be submitted in order. */
635 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
642 * Submit bio to an async queue.
644 * Return true if the work has been successfully submitted, else false.
646 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
647 struct btrfs_io_context *bioc,
648 struct btrfs_io_stripe *smap, int mirror_num)
650 struct btrfs_fs_info *fs_info = bbio->fs_info;
651 struct async_submit_bio *async;
653 async = kmalloc(sizeof(*async), GFP_NOFS);
660 async->mirror_num = mirror_num;
662 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
663 btrfs_queue_work(fs_info->workers, &async->work);
667 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
669 struct btrfs_inode *inode = bbio->inode;
670 struct btrfs_fs_info *fs_info = bbio->fs_info;
671 struct btrfs_bio *orig_bbio = bbio;
672 struct bio *bio = &bbio->bio;
673 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
674 u64 length = bio->bi_iter.bi_size;
675 u64 map_length = length;
676 bool use_append = btrfs_use_zone_append(bbio);
677 struct btrfs_io_context *bioc = NULL;
678 struct btrfs_io_stripe smap;
682 smap.is_scrub = !bbio->inode;
684 btrfs_bio_counter_inc_blocked(fs_info);
685 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
686 &bioc, &smap, &mirror_num);
688 ret = errno_to_blk_status(error);
692 map_length = min(map_length, length);
694 map_length = min(map_length, fs_info->max_zone_append_size);
696 if (map_length < length) {
697 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
702 * Save the iter for the end_io handler and preload the checksums for
705 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
706 bbio->saved_iter = bio->bi_iter;
707 ret = btrfs_lookup_bio_sums(bbio);
712 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
714 bio->bi_opf &= ~REQ_OP_WRITE;
715 bio->bi_opf |= REQ_OP_ZONE_APPEND;
718 if (is_data_bbio(bbio) && bioc &&
719 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
721 * No locking for the list update, as we only add to
722 * the list in the I/O submission path, and list
723 * iteration only happens in the completion path, which
724 * can't happen until after the last submission.
726 btrfs_get_bioc(bioc);
727 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
731 * Csum items for reloc roots have already been cloned at this
732 * point, so they are handled as part of the no-checksum case.
734 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
735 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
736 !btrfs_is_data_reloc_root(inode->root)) {
737 if (should_async_write(bbio) &&
738 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
741 ret = btrfs_bio_csum(bbio);
744 } else if (use_append ||
745 (btrfs_is_zoned(fs_info) && inode &&
746 inode->flags & BTRFS_INODE_NODATASUM)) {
747 ret = btrfs_alloc_dummy_sum(bbio);
753 __btrfs_submit_bio(bio, bioc, &smap, mirror_num);
755 return map_length == length;
758 if (map_length < length)
759 btrfs_cleanup_bio(bbio);
761 btrfs_bio_counter_dec(fs_info);
762 btrfs_bio_end_io(orig_bbio, ret);
763 /* Do not submit another chunk */
767 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
769 /* If bbio->inode is not populated, its file_offset must be 0. */
770 ASSERT(bbio->inode || bbio->file_offset == 0);
772 while (!btrfs_submit_chunk(bbio, mirror_num))
777 * Submit a repair write.
779 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
780 * RAID setup. Here we only want to write the one bad copy, so we do the
781 * mapping ourselves and submit the bio directly.
783 * The I/O is issued synchronously to block the repair read completion from
786 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
787 u64 length, u64 logical, struct folio *folio,
788 unsigned int folio_offset, int mirror_num)
790 struct btrfs_io_stripe smap = { 0 };
795 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
798 if (btrfs_repair_one_zone(fs_info, logical))
802 * Avoid races with device replace and make sure our bioc has devices
803 * associated to its stripes that don't go away while we are doing the
804 * read repair operation.
806 btrfs_bio_counter_inc_blocked(fs_info);
807 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
809 goto out_counter_dec;
811 if (!smap.dev->bdev ||
812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
814 goto out_counter_dec;
817 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
818 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
819 ret = bio_add_folio(&bio, folio, length, folio_offset);
821 ret = submit_bio_wait(&bio);
823 /* try to remap that extent elsewhere? */
824 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
828 btrfs_info_rl_in_rcu(fs_info,
829 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
830 ino, start, btrfs_dev_name(smap.dev),
831 smap.physical >> SECTOR_SHIFT);
837 btrfs_bio_counter_dec(fs_info);
842 * Submit a btrfs_bio based repair write.
844 * If @dev_replace is true, the write would be submitted to dev-replace target.
846 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
848 struct btrfs_fs_info *fs_info = bbio->fs_info;
849 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
850 u64 length = bbio->bio.bi_iter.bi_size;
851 struct btrfs_io_stripe smap = { 0 };
855 ASSERT(mirror_num > 0);
856 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
857 ASSERT(!bbio->inode);
859 btrfs_bio_counter_inc_blocked(fs_info);
860 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
865 ASSERT(smap.dev == fs_info->dev_replace.srcdev);
866 smap.dev = fs_info->dev_replace.tgtdev;
868 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
872 btrfs_bio_counter_dec(fs_info);
873 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
876 int __init btrfs_bioset_init(void)
878 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
879 offsetof(struct btrfs_bio, bio),
882 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
883 offsetof(struct btrfs_bio, bio), 0))
884 goto out_free_bioset;
885 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
886 offsetof(struct btrfs_bio, bio),
888 goto out_free_clone_bioset;
889 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
890 sizeof(struct btrfs_failed_bio)))
891 goto out_free_repair_bioset;
894 out_free_repair_bioset:
895 bioset_exit(&btrfs_repair_bioset);
896 out_free_clone_bioset:
897 bioset_exit(&btrfs_clone_bioset);
899 bioset_exit(&btrfs_bioset);
903 void __cold btrfs_bioset_exit(void)
905 mempool_exit(&btrfs_failed_bio_pool);
906 bioset_exit(&btrfs_repair_bioset);
907 bioset_exit(&btrfs_clone_bioset);
908 bioset_exit(&btrfs_bioset);