2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
70 struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
73 struct extent_io_tree *dirty_pages,
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
76 struct extent_io_tree *pinned_extents);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
83 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_end_io_wq {
89 struct btrfs_fs_info *info;
91 enum btrfs_wq_endio_type metadata;
92 struct list_head list;
93 struct btrfs_work work;
96 static struct kmem_cache *btrfs_end_io_wq_cache;
98 int __init btrfs_end_io_wq_init(void)
100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
101 sizeof(struct btrfs_end_io_wq),
105 if (!btrfs_end_io_wq_cache)
110 void btrfs_end_io_wq_exit(void)
112 kmem_cache_destroy(btrfs_end_io_wq_cache);
116 * async submit bios are used to offload expensive checksumming
117 * onto the worker threads. They checksum file and metadata bios
118 * just before they are sent down the IO stack.
120 struct async_submit_bio {
123 struct list_head list;
124 extent_submit_bio_hook_t *submit_bio_start;
125 extent_submit_bio_hook_t *submit_bio_done;
127 unsigned long bio_flags;
129 * bio_offset is optional, can be used if the pages in the bio
130 * can't tell us where in the file the bio should go
133 struct btrfs_work work;
138 * Lockdep class keys for extent_buffer->lock's in this root. For a given
139 * eb, the lockdep key is determined by the btrfs_root it belongs to and
140 * the level the eb occupies in the tree.
142 * Different roots are used for different purposes and may nest inside each
143 * other and they require separate keysets. As lockdep keys should be
144 * static, assign keysets according to the purpose of the root as indicated
145 * by btrfs_root->objectid. This ensures that all special purpose roots
146 * have separate keysets.
148 * Lock-nesting across peer nodes is always done with the immediate parent
149 * node locked thus preventing deadlock. As lockdep doesn't know this, use
150 * subclass to avoid triggering lockdep warning in such cases.
152 * The key is set by the readpage_end_io_hook after the buffer has passed
153 * csum validation but before the pages are unlocked. It is also set by
154 * btrfs_init_new_buffer on freshly allocated blocks.
156 * We also add a check to make sure the highest level of the tree is the
157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
158 * needs update as well.
160 #ifdef CONFIG_DEBUG_LOCK_ALLOC
161 # if BTRFS_MAX_LEVEL != 8
165 static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
167 const char *name_stem; /* lock name stem */
168 char names[BTRFS_MAX_LEVEL + 1][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
170 } btrfs_lockdep_keysets[] = {
171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
183 { .id = 0, .name_stem = "tree" },
186 void __init btrfs_init_lockdep(void)
190 /* initialize lockdep class names */
191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
195 snprintf(ks->names[j], sizeof(ks->names[j]),
196 "btrfs-%s-%02d", ks->name_stem, j);
200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 struct btrfs_lockdep_keyset *ks;
205 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 /* find the matching keyset, id 0 is the default entry */
208 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
209 if (ks->id == objectid)
212 lockdep_set_class_and_name(&eb->lock,
213 &ks->keys[level], ks->names[level]);
219 * extents on the btree inode are pretty simple, there's one extent
220 * that covers the entire device
222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
223 struct page *page, size_t pg_offset, u64 start, u64 len,
226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
227 struct extent_map_tree *em_tree = &inode->extent_tree;
228 struct extent_map *em;
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
234 em->bdev = fs_info->fs_devices->latest_bdev;
235 read_unlock(&em_tree->lock);
238 read_unlock(&em_tree->lock);
240 em = alloc_extent_map();
242 em = ERR_PTR(-ENOMEM);
247 em->block_len = (u64)-1;
249 em->bdev = fs_info->fs_devices->latest_bdev;
251 write_lock(&em_tree->lock);
252 ret = add_extent_mapping(em_tree, em, 0);
253 if (ret == -EEXIST) {
255 em = lookup_extent_mapping(em_tree, start, len);
262 write_unlock(&em_tree->lock);
268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 return btrfs_crc32c(seed, data, len);
273 void btrfs_csum_final(u32 crc, u8 *result)
275 put_unaligned_le32(~crc, result);
279 * compute the csum for a btree block, and either verify it or write it
280 * into the csum field of the block.
282 static int csum_tree_block(struct btrfs_fs_info *fs_info,
283 struct extent_buffer *buf,
286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 unsigned long cur_len;
290 unsigned long offset = BTRFS_CSUM_SIZE;
292 unsigned long map_start;
293 unsigned long map_len;
296 unsigned long inline_result;
298 len = buf->len - offset;
300 err = map_private_extent_buffer(buf, offset, 32,
301 &kaddr, &map_start, &map_len);
304 cur_len = min(len, map_len - (offset - map_start));
305 crc = btrfs_csum_data(kaddr + offset - map_start,
310 if (csum_size > sizeof(inline_result)) {
311 result = kzalloc(csum_size, GFP_NOFS);
315 result = (char *)&inline_result;
318 btrfs_csum_final(crc, result);
321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 memcpy(&found, result, csum_size);
326 read_extent_buffer(buf, &val, 0, csum_size);
327 btrfs_warn_rl(fs_info,
328 "%s checksum verify failed on %llu wanted %X found %X level %d",
329 fs_info->sb->s_id, buf->start,
330 val, found, btrfs_header_level(buf));
331 if (result != (char *)&inline_result)
336 write_extent_buffer(buf, result, 0, csum_size);
338 if (result != (char *)&inline_result)
344 * we can't consider a given block up to date unless the transid of the
345 * block matches the transid in the parent node's pointer. This is how we
346 * detect blocks that either didn't get written at all or got written
347 * in the wrong place.
349 static int verify_parent_transid(struct extent_io_tree *io_tree,
350 struct extent_buffer *eb, u64 parent_transid,
353 struct extent_state *cached_state = NULL;
355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
364 btrfs_tree_read_lock(eb);
365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 if (extent_buffer_uptodate(eb) &&
371 btrfs_header_generation(eb) == parent_transid) {
375 btrfs_err_rl(eb->fs_info,
376 "parent transid verify failed on %llu wanted %llu found %llu",
378 parent_transid, btrfs_header_generation(eb));
382 * Things reading via commit roots that don't have normal protection,
383 * like send, can have a really old block in cache that may point at a
384 * block that has been freed and re-allocated. So don't clear uptodate
385 * if we find an eb that is under IO (dirty/writeback) because we could
386 * end up reading in the stale data and then writing it back out and
387 * making everybody very sad.
389 if (!extent_buffer_under_io(eb))
390 clear_extent_buffer_uptodate(eb);
392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
393 &cached_state, GFP_NOFS);
395 btrfs_tree_read_unlock_blocking(eb);
400 * Return 0 if the superblock checksum type matches the checksum value of that
401 * algorithm. Pass the raw disk superblock data.
403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
406 struct btrfs_super_block *disk_sb =
407 (struct btrfs_super_block *)raw_disk_sb;
408 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 const int csum_size = sizeof(crc);
414 char result[csum_size];
417 * The super_block structure does not span the whole
418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
419 * is filled with zeros and is included in the checksum.
421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
423 btrfs_csum_final(crc, result);
425 if (memcmp(raw_disk_sb, result, csum_size))
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 btrfs_err(fs_info, "unsupported checksum algorithm %u",
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
443 struct extent_buffer *eb,
446 struct extent_io_tree *io_tree;
451 int failed_mirror = 0;
453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
457 btree_get_extent, mirror_num);
459 if (!verify_parent_transid(io_tree, eb,
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 num_copies = btrfs_num_copies(fs_info,
479 if (!failed_mirror) {
481 failed_mirror = eb->read_mirror;
485 if (mirror_num == failed_mirror)
488 if (mirror_num > num_copies)
492 if (failed && !ret && failed_mirror)
493 repair_eb_io_failure(fs_info, eb, failed_mirror);
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 u64 start = page_offset(page);
507 struct extent_buffer *eb;
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
513 found_start = btrfs_header_bytenr(eb);
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
518 if (WARN_ON(found_start != start))
520 if (WARN_ON(!PageUptodate(page)))
523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526 return csum_tree_block(fs_info, eb, 0);
529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
530 struct extent_buffer *eb)
532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
533 u8 fsid[BTRFS_UUID_SIZE];
536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 fs_devices = fs_devices->seed;
547 #define CORRUPT(reason, eb, root, slot) \
548 btrfs_crit(root->fs_info, \
549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
551 reason, btrfs_header_bytenr(eb), root->objectid, slot)
553 static noinline int check_leaf(struct btrfs_root *root,
554 struct extent_buffer *leaf)
556 struct btrfs_fs_info *fs_info = root->fs_info;
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571 struct btrfs_root *check_root;
573 key.objectid = btrfs_header_owner(leaf);
574 key.type = BTRFS_ROOT_ITEM_KEY;
575 key.offset = (u64)-1;
577 check_root = btrfs_get_fs_root(fs_info, &key, false);
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
582 if (!IS_ERR_OR_NULL(check_root)) {
583 struct extent_buffer *eb;
585 eb = btrfs_root_node(check_root);
586 /* if leaf is the root, then it's fine */
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf, check_root, 0);
590 free_extent_buffer(eb);
593 free_extent_buffer(eb);
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603 BTRFS_LEAF_DATA_SIZE(fs_info)) {
604 CORRUPT("invalid item offset size pair", leaf, root, 0);
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
615 for (slot = 0; slot < nritems - 1; slot++) {
616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 CORRUPT("bad key order", leaf, root, slot);
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
630 if (btrfs_item_offset_nr(leaf, slot) !=
631 btrfs_item_end_nr(leaf, slot + 1)) {
632 CORRUPT("slot offset bad", leaf, root, slot);
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
641 if (btrfs_item_end_nr(leaf, slot) >
642 BTRFS_LEAF_DATA_SIZE(fs_info)) {
643 CORRUPT("slot end outside of leaf", leaf, root, slot);
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653 unsigned long nr = btrfs_header_nritems(node);
654 struct btrfs_key key, next_key;
659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
660 btrfs_crit(root->fs_info,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node->start, root->objectid, nr);
666 for (slot = 0; slot < nr - 1; slot++) {
667 bytenr = btrfs_node_blockptr(node, slot);
668 btrfs_node_key_to_cpu(node, &key, slot);
669 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
672 CORRUPT("invalid item slot", node, root, slot);
677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 CORRUPT("bad key order", node, root, slot);
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 u64 phy_offset, struct page *page,
689 u64 start, u64 end, int mirror)
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 struct btrfs_fs_info *fs_info = root->fs_info;
702 eb = (struct extent_buffer *)page->private;
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
707 extent_buffer_get(eb);
709 reads_done = atomic_dec_and_test(&eb->io_pages);
713 eb->read_mirror = mirror;
714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
719 found_start = btrfs_header_bytenr(eb);
720 if (found_start != eb->start) {
721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 found_start, eb->start);
726 if (check_tree_block_fsid(fs_info, eb)) {
727 btrfs_err_rl(fs_info, "bad fsid on block %llu",
732 found_level = btrfs_header_level(eb);
733 if (found_level >= BTRFS_MAX_LEVEL) {
734 btrfs_err(fs_info, "bad tree block level %d",
735 (int)btrfs_header_level(eb));
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
743 ret = csum_tree_block(fs_info, eb, 1);
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
752 if (found_level == 0 && check_leaf(root, eb)) {
753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
757 if (found_level > 0 && check_node(root, eb))
761 set_extent_buffer_uptodate(eb);
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765 btree_readahead_hook(eb, ret);
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
773 atomic_inc(&eb->io_pages);
774 clear_extent_buffer_uptodate(eb);
776 free_extent_buffer(eb);
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
783 struct extent_buffer *eb;
785 eb = (struct extent_buffer *)page->private;
786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787 eb->read_mirror = failed_mirror;
788 atomic_dec(&eb->io_pages);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790 btree_readahead_hook(eb, -EIO);
791 return -EIO; /* we fixed nothing */
794 static void end_workqueue_bio(struct bio *bio)
796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797 struct btrfs_fs_info *fs_info;
798 struct btrfs_workqueue *wq;
799 btrfs_work_func_t func;
801 fs_info = end_io_wq->info;
802 end_io_wq->error = bio->bi_error;
804 if (bio_op(bio) == REQ_OP_WRITE) {
805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 wq = fs_info->endio_meta_write_workers;
807 func = btrfs_endio_meta_write_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 wq = fs_info->endio_freespace_worker;
810 func = btrfs_freespace_write_helper;
811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 wq = fs_info->endio_raid56_workers;
813 func = btrfs_endio_raid56_helper;
815 wq = fs_info->endio_write_workers;
816 func = btrfs_endio_write_helper;
819 if (unlikely(end_io_wq->metadata ==
820 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 wq = fs_info->endio_repair_workers;
822 func = btrfs_endio_repair_helper;
823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824 wq = fs_info->endio_raid56_workers;
825 func = btrfs_endio_raid56_helper;
826 } else if (end_io_wq->metadata) {
827 wq = fs_info->endio_meta_workers;
828 func = btrfs_endio_meta_helper;
830 wq = fs_info->endio_workers;
831 func = btrfs_endio_helper;
835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 btrfs_queue_work(wq, &end_io_wq->work);
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840 enum btrfs_wq_endio_type metadata)
842 struct btrfs_end_io_wq *end_io_wq;
844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
848 end_io_wq->private = bio->bi_private;
849 end_io_wq->end_io = bio->bi_end_io;
850 end_io_wq->info = info;
851 end_io_wq->error = 0;
852 end_io_wq->bio = bio;
853 end_io_wq->metadata = metadata;
855 bio->bi_private = end_io_wq;
856 bio->bi_end_io = end_workqueue_bio;
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
862 unsigned long limit = min_t(unsigned long,
863 info->thread_pool_size,
864 info->fs_devices->open_devices);
868 static void run_one_async_start(struct btrfs_work *work)
870 struct async_submit_bio *async;
873 async = container_of(work, struct async_submit_bio, work);
874 ret = async->submit_bio_start(async->inode, async->bio,
875 async->mirror_num, async->bio_flags,
881 static void run_one_async_done(struct btrfs_work *work)
883 struct btrfs_fs_info *fs_info;
884 struct async_submit_bio *async;
887 async = container_of(work, struct async_submit_bio, work);
888 fs_info = BTRFS_I(async->inode)->root->fs_info;
890 limit = btrfs_async_submit_limit(fs_info);
891 limit = limit * 2 / 3;
894 * atomic_dec_return implies a barrier for waitqueue_active
896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897 waitqueue_active(&fs_info->async_submit_wait))
898 wake_up(&fs_info->async_submit_wait);
900 /* If an error occurred we just want to clean up the bio and move on */
902 async->bio->bi_error = async->error;
903 bio_endio(async->bio);
907 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 async->bio_flags, async->bio_offset);
911 static void run_one_async_free(struct btrfs_work *work)
913 struct async_submit_bio *async;
915 async = container_of(work, struct async_submit_bio, work);
919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
920 struct bio *bio, int mirror_num,
921 unsigned long bio_flags,
923 extent_submit_bio_hook_t *submit_bio_start,
924 extent_submit_bio_hook_t *submit_bio_done)
926 struct async_submit_bio *async;
928 async = kmalloc(sizeof(*async), GFP_NOFS);
932 async->inode = inode;
934 async->mirror_num = mirror_num;
935 async->submit_bio_start = submit_bio_start;
936 async->submit_bio_done = submit_bio_done;
938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
939 run_one_async_done, run_one_async_free);
941 async->bio_flags = bio_flags;
942 async->bio_offset = bio_offset;
946 atomic_inc(&fs_info->nr_async_submits);
948 if (op_is_sync(bio->bi_opf))
949 btrfs_set_work_high_priority(&async->work);
951 btrfs_queue_work(fs_info->workers, &async->work);
953 while (atomic_read(&fs_info->async_submit_draining) &&
954 atomic_read(&fs_info->nr_async_submits)) {
955 wait_event(fs_info->async_submit_wait,
956 (atomic_read(&fs_info->nr_async_submits) == 0));
962 static int btree_csum_one_bio(struct bio *bio)
964 struct bio_vec *bvec;
965 struct btrfs_root *root;
968 bio_for_each_segment_all(bvec, bio, i) {
969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
986 return btree_csum_one_bio(bio);
989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001 bio->bi_error = ret;
1007 static int check_async_write(unsigned long bio_flags)
1009 if (bio_flags & EXTENT_BIO_TREE_LOG)
1012 if (static_cpu_has(X86_FEATURE_XMM4_2))
1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1019 int mirror_num, unsigned long bio_flags,
1022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1023 int async = check_async_write(bio_flags);
1026 if (bio_op(bio) != REQ_OP_WRITE) {
1028 * called for a read, do the setup so that checksum validation
1029 * can happen in the async kernel threads
1031 ret = btrfs_bio_wq_end_io(fs_info, bio,
1032 BTRFS_WQ_ENDIO_METADATA);
1035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1036 } else if (!async) {
1037 ret = btree_csum_one_bio(bio);
1040 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1043 * kthread helpers are used to submit writes so that
1044 * checksumming can happen in parallel across all CPUs
1046 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048 __btree_submit_bio_start,
1049 __btree_submit_bio_done);
1057 bio->bi_error = ret;
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space *mapping,
1064 struct page *newpage, struct page *page,
1065 enum migrate_mode mode)
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1071 if (PageDirty(page))
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1077 if (page_has_private(page) &&
1078 !try_to_release_page(page, GFP_KERNEL))
1080 return migrate_page(mapping, newpage, page, mode);
1085 static int btree_writepages(struct address_space *mapping,
1086 struct writeback_control *wbc)
1088 struct btrfs_fs_info *fs_info;
1091 if (wbc->sync_mode == WB_SYNC_NONE) {
1093 if (wbc->for_kupdate)
1096 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1097 /* this is a bit racy, but that's ok */
1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1099 BTRFS_DIRTY_METADATA_THRESH);
1103 return btree_write_cache_pages(mapping, wbc);
1106 static int btree_readpage(struct file *file, struct page *page)
1108 struct extent_io_tree *tree;
1109 tree = &BTRFS_I(page->mapping->host)->io_tree;
1110 return extent_read_full_page(tree, page, btree_get_extent, 0);
1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115 if (PageWriteback(page) || PageDirty(page))
1118 return try_release_extent_buffer(page);
1121 static void btree_invalidatepage(struct page *page, unsigned int offset,
1122 unsigned int length)
1124 struct extent_io_tree *tree;
1125 tree = &BTRFS_I(page->mapping->host)->io_tree;
1126 extent_invalidatepage(tree, page, offset);
1127 btree_releasepage(page, GFP_NOFS);
1128 if (PagePrivate(page)) {
1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page));
1132 ClearPagePrivate(page);
1133 set_page_private(page, 0);
1138 static int btree_set_page_dirty(struct page *page)
1141 struct extent_buffer *eb;
1143 BUG_ON(!PagePrivate(page));
1144 eb = (struct extent_buffer *)page->private;
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1147 BUG_ON(!atomic_read(&eb->refs));
1148 btrfs_assert_tree_locked(eb);
1150 return __set_page_dirty_nobuffers(page);
1153 static const struct address_space_operations btree_aops = {
1154 .readpage = btree_readpage,
1155 .writepages = btree_writepages,
1156 .releasepage = btree_releasepage,
1157 .invalidatepage = btree_invalidatepage,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage = btree_migratepage,
1161 .set_page_dirty = btree_set_page_dirty,
1164 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166 struct extent_buffer *buf = NULL;
1167 struct inode *btree_inode = fs_info->btree_inode;
1169 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1173 buf, WAIT_NONE, btree_get_extent, 0);
1174 free_extent_buffer(buf);
1177 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1178 int mirror_num, struct extent_buffer **eb)
1180 struct extent_buffer *buf = NULL;
1181 struct inode *btree_inode = fs_info->btree_inode;
1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1185 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1192 btree_get_extent, mirror_num);
1194 free_extent_buffer(buf);
1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1199 free_extent_buffer(buf);
1201 } else if (extent_buffer_uptodate(buf)) {
1204 free_extent_buffer(buf);
1209 struct extent_buffer *btrfs_find_create_tree_block(
1210 struct btrfs_fs_info *fs_info,
1213 if (btrfs_is_testing(fs_info))
1214 return alloc_test_extent_buffer(fs_info, bytenr);
1215 return alloc_extent_buffer(fs_info, bytenr);
1219 int btrfs_write_tree_block(struct extent_buffer *buf)
1221 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1222 buf->start + buf->len - 1);
1225 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227 return filemap_fdatawait_range(buf->pages[0]->mapping,
1228 buf->start, buf->start + buf->len - 1);
1231 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1234 struct extent_buffer *buf = NULL;
1237 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1241 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1243 free_extent_buffer(buf);
1244 return ERR_PTR(ret);
1250 void clean_tree_block(struct btrfs_fs_info *fs_info,
1251 struct extent_buffer *buf)
1253 if (btrfs_header_generation(buf) ==
1254 fs_info->running_transaction->transid) {
1255 btrfs_assert_tree_locked(buf);
1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1258 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1260 fs_info->dirty_metadata_batch);
1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1262 btrfs_set_lock_blocking(buf);
1263 clear_extent_buffer_dirty(buf);
1268 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1270 struct btrfs_subvolume_writers *writers;
1273 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1275 return ERR_PTR(-ENOMEM);
1277 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280 return ERR_PTR(ret);
1283 init_waitqueue_head(&writers->wait);
1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1290 percpu_counter_destroy(&writers->counter);
1294 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1299 root->commit_root = NULL;
1301 root->orphan_cleanup_state = 0;
1303 root->objectid = objectid;
1304 root->last_trans = 0;
1305 root->highest_objectid = 0;
1306 root->nr_delalloc_inodes = 0;
1307 root->nr_ordered_extents = 0;
1309 root->inode_tree = RB_ROOT;
1310 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1311 root->block_rsv = NULL;
1312 root->orphan_block_rsv = NULL;
1314 INIT_LIST_HEAD(&root->dirty_list);
1315 INIT_LIST_HEAD(&root->root_list);
1316 INIT_LIST_HEAD(&root->delalloc_inodes);
1317 INIT_LIST_HEAD(&root->delalloc_root);
1318 INIT_LIST_HEAD(&root->ordered_extents);
1319 INIT_LIST_HEAD(&root->ordered_root);
1320 INIT_LIST_HEAD(&root->logged_list[0]);
1321 INIT_LIST_HEAD(&root->logged_list[1]);
1322 spin_lock_init(&root->orphan_lock);
1323 spin_lock_init(&root->inode_lock);
1324 spin_lock_init(&root->delalloc_lock);
1325 spin_lock_init(&root->ordered_extent_lock);
1326 spin_lock_init(&root->accounting_lock);
1327 spin_lock_init(&root->log_extents_lock[0]);
1328 spin_lock_init(&root->log_extents_lock[1]);
1329 mutex_init(&root->objectid_mutex);
1330 mutex_init(&root->log_mutex);
1331 mutex_init(&root->ordered_extent_mutex);
1332 mutex_init(&root->delalloc_mutex);
1333 init_waitqueue_head(&root->log_writer_wait);
1334 init_waitqueue_head(&root->log_commit_wait[0]);
1335 init_waitqueue_head(&root->log_commit_wait[1]);
1336 INIT_LIST_HEAD(&root->log_ctxs[0]);
1337 INIT_LIST_HEAD(&root->log_ctxs[1]);
1338 atomic_set(&root->log_commit[0], 0);
1339 atomic_set(&root->log_commit[1], 0);
1340 atomic_set(&root->log_writers, 0);
1341 atomic_set(&root->log_batch, 0);
1342 atomic_set(&root->orphan_inodes, 0);
1343 refcount_set(&root->refs, 1);
1344 atomic_set(&root->will_be_snapshoted, 0);
1345 atomic64_set(&root->qgroup_meta_rsv, 0);
1346 root->log_transid = 0;
1347 root->log_transid_committed = -1;
1348 root->last_log_commit = 0;
1350 extent_io_tree_init(&root->dirty_log_pages,
1351 fs_info->btree_inode->i_mapping);
1353 memset(&root->root_key, 0, sizeof(root->root_key));
1354 memset(&root->root_item, 0, sizeof(root->root_item));
1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1357 root->defrag_trans_start = fs_info->generation;
1359 root->defrag_trans_start = 0;
1360 root->root_key.objectid = objectid;
1363 spin_lock_init(&root->root_item_lock);
1366 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1371 root->fs_info = fs_info;
1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1376 /* Should only be used by the testing infrastructure */
1377 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1379 struct btrfs_root *root;
1382 return ERR_PTR(-EINVAL);
1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1386 return ERR_PTR(-ENOMEM);
1388 /* We don't use the stripesize in selftest, set it as sectorsize */
1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1390 root->alloc_bytenr = 0;
1396 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info,
1400 struct extent_buffer *leaf;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct btrfs_root *root;
1403 struct btrfs_key key;
1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1409 return ERR_PTR(-ENOMEM);
1411 __setup_root(root, fs_info, objectid);
1412 root->root_key.objectid = objectid;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = 0;
1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1418 ret = PTR_ERR(leaf);
1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1424 btrfs_set_header_bytenr(leaf, leaf->start);
1425 btrfs_set_header_generation(leaf, trans->transid);
1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427 btrfs_set_header_owner(leaf, objectid);
1430 write_extent_buffer_fsid(leaf, fs_info->fsid);
1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1432 btrfs_mark_buffer_dirty(leaf);
1434 root->commit_root = btrfs_root_node(root);
1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437 root->root_item.flags = 0;
1438 root->root_item.byte_limit = 0;
1439 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1440 btrfs_set_root_generation(&root->root_item, trans->transid);
1441 btrfs_set_root_level(&root->root_item, 0);
1442 btrfs_set_root_refs(&root->root_item, 1);
1443 btrfs_set_root_used(&root->root_item, leaf->len);
1444 btrfs_set_root_last_snapshot(&root->root_item, 0);
1445 btrfs_set_root_dirid(&root->root_item, 0);
1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1448 root->root_item.drop_level = 0;
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1457 btrfs_tree_unlock(leaf);
1463 btrfs_tree_unlock(leaf);
1464 free_extent_buffer(root->commit_root);
1465 free_extent_buffer(leaf);
1469 return ERR_PTR(ret);
1472 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1473 struct btrfs_fs_info *fs_info)
1475 struct btrfs_root *root;
1476 struct extent_buffer *leaf;
1478 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1480 return ERR_PTR(-ENOMEM);
1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489 * DON'T set REF_COWS for log trees
1491 * log trees do not get reference counted because they go away
1492 * before a real commit is actually done. They do store pointers
1493 * to file data extents, and those reference counts still get
1494 * updated (along with back refs to the log tree).
1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1501 return ERR_CAST(leaf);
1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1505 btrfs_set_header_bytenr(leaf, leaf->start);
1506 btrfs_set_header_generation(leaf, trans->transid);
1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511 write_extent_buffer_fsid(root->node, fs_info->fsid);
1512 btrfs_mark_buffer_dirty(root->node);
1513 btrfs_tree_unlock(root->node);
1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info)
1520 struct btrfs_root *log_root;
1522 log_root = alloc_log_tree(trans, fs_info);
1523 if (IS_ERR(log_root))
1524 return PTR_ERR(log_root);
1525 WARN_ON(fs_info->log_root_tree);
1526 fs_info->log_root_tree = log_root;
1530 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root)
1533 struct btrfs_fs_info *fs_info = root->fs_info;
1534 struct btrfs_root *log_root;
1535 struct btrfs_inode_item *inode_item;
1537 log_root = alloc_log_tree(trans, fs_info);
1538 if (IS_ERR(log_root))
1539 return PTR_ERR(log_root);
1541 log_root->last_trans = trans->transid;
1542 log_root->root_key.offset = root->root_key.objectid;
1544 inode_item = &log_root->root_item.inode;
1545 btrfs_set_stack_inode_generation(inode_item, 1);
1546 btrfs_set_stack_inode_size(inode_item, 3);
1547 btrfs_set_stack_inode_nlink(inode_item, 1);
1548 btrfs_set_stack_inode_nbytes(inode_item,
1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1552 btrfs_set_root_node(&log_root->root_item, log_root->node);
1554 WARN_ON(root->log_root);
1555 root->log_root = log_root;
1556 root->log_transid = 0;
1557 root->log_transid_committed = -1;
1558 root->last_log_commit = 0;
1562 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1563 struct btrfs_key *key)
1565 struct btrfs_root *root;
1566 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1567 struct btrfs_path *path;
1571 path = btrfs_alloc_path();
1573 return ERR_PTR(-ENOMEM);
1575 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1581 __setup_root(root, fs_info, key->objectid);
1583 ret = btrfs_find_root(tree_root, key, path,
1584 &root->root_item, &root->root_key);
1591 generation = btrfs_root_generation(&root->root_item);
1592 root->node = read_tree_block(fs_info,
1593 btrfs_root_bytenr(&root->root_item),
1595 if (IS_ERR(root->node)) {
1596 ret = PTR_ERR(root->node);
1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1600 free_extent_buffer(root->node);
1603 root->commit_root = btrfs_root_node(root);
1605 btrfs_free_path(path);
1611 root = ERR_PTR(ret);
1615 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1616 struct btrfs_key *location)
1618 struct btrfs_root *root;
1620 root = btrfs_read_tree_root(tree_root, location);
1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1626 btrfs_check_and_init_root_item(&root->root_item);
1632 int btrfs_init_fs_root(struct btrfs_root *root)
1635 struct btrfs_subvolume_writers *writers;
1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1640 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1645 writers = btrfs_alloc_subvolume_writers();
1646 if (IS_ERR(writers)) {
1647 ret = PTR_ERR(writers);
1650 root->subv_writers = writers;
1652 btrfs_init_free_ino_ctl(root);
1653 spin_lock_init(&root->ino_cache_lock);
1654 init_waitqueue_head(&root->ino_cache_wait);
1656 ret = get_anon_bdev(&root->anon_dev);
1660 mutex_lock(&root->objectid_mutex);
1661 ret = btrfs_find_highest_objectid(root,
1662 &root->highest_objectid);
1664 mutex_unlock(&root->objectid_mutex);
1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1670 mutex_unlock(&root->objectid_mutex);
1674 /* the caller is responsible to call free_fs_root */
1678 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681 struct btrfs_root *root;
1683 spin_lock(&fs_info->fs_roots_radix_lock);
1684 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1685 (unsigned long)root_id);
1686 spin_unlock(&fs_info->fs_roots_radix_lock);
1690 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1691 struct btrfs_root *root)
1695 ret = radix_tree_preload(GFP_NOFS);
1699 spin_lock(&fs_info->fs_roots_radix_lock);
1700 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1701 (unsigned long)root->root_key.objectid,
1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1705 spin_unlock(&fs_info->fs_roots_radix_lock);
1706 radix_tree_preload_end();
1711 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1712 struct btrfs_key *location,
1715 struct btrfs_root *root;
1716 struct btrfs_path *path;
1717 struct btrfs_key key;
1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1721 return fs_info->tree_root;
1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1723 return fs_info->extent_root;
1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1725 return fs_info->chunk_root;
1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1727 return fs_info->dev_root;
1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1729 return fs_info->csum_root;
1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1731 return fs_info->quota_root ? fs_info->quota_root :
1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1734 return fs_info->uuid_root ? fs_info->uuid_root :
1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1737 return fs_info->free_space_root ? fs_info->free_space_root :
1740 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1743 return ERR_PTR(-ENOENT);
1747 root = btrfs_read_fs_root(fs_info->tree_root, location);
1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1756 ret = btrfs_init_fs_root(root);
1760 path = btrfs_alloc_path();
1765 key.objectid = BTRFS_ORPHAN_OBJECTID;
1766 key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 key.offset = location->objectid;
1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1770 btrfs_free_path(path);
1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1776 ret = btrfs_insert_fs_root(fs_info, root);
1778 if (ret == -EEXIST) {
1787 return ERR_PTR(ret);
1790 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1794 struct btrfs_device *device;
1795 struct backing_dev_info *bdi;
1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801 bdi = device->bdev->bd_bdi;
1802 if (bdi_congested(bdi, bdi_bits)) {
1811 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1815 err = bdi_setup_and_register(bdi, "btrfs");
1819 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1820 bdi->congested_fn = btrfs_congested_fn;
1821 bdi->congested_data = info;
1822 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1827 * called by the kthread helper functions to finally call the bio end_io
1828 * functions. This is where read checksum verification actually happens
1830 static void end_workqueue_fn(struct btrfs_work *work)
1833 struct btrfs_end_io_wq *end_io_wq;
1835 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1836 bio = end_io_wq->bio;
1838 bio->bi_error = end_io_wq->error;
1839 bio->bi_private = end_io_wq->private;
1840 bio->bi_end_io = end_io_wq->end_io;
1841 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845 static int cleaner_kthread(void *arg)
1847 struct btrfs_root *root = arg;
1848 struct btrfs_fs_info *fs_info = root->fs_info;
1850 struct btrfs_trans_handle *trans;
1855 /* Make the cleaner go to sleep early. */
1856 if (btrfs_need_cleaner_sleep(fs_info))
1860 * Do not do anything if we might cause open_ctree() to block
1861 * before we have finished mounting the filesystem.
1863 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866 if (!mutex_trylock(&fs_info->cleaner_mutex))
1870 * Avoid the problem that we change the status of the fs
1871 * during the above check and trylock.
1873 if (btrfs_need_cleaner_sleep(fs_info)) {
1874 mutex_unlock(&fs_info->cleaner_mutex);
1878 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1879 btrfs_run_delayed_iputs(fs_info);
1880 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1882 again = btrfs_clean_one_deleted_snapshot(root);
1883 mutex_unlock(&fs_info->cleaner_mutex);
1886 * The defragger has dealt with the R/O remount and umount,
1887 * needn't do anything special here.
1889 btrfs_run_defrag_inodes(fs_info);
1892 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1893 * with relocation (btrfs_relocate_chunk) and relocation
1894 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1895 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1896 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1897 * unused block groups.
1899 btrfs_delete_unused_bgs(fs_info);
1902 set_current_state(TASK_INTERRUPTIBLE);
1903 if (!kthread_should_stop())
1905 __set_current_state(TASK_RUNNING);
1907 } while (!kthread_should_stop());
1910 * Transaction kthread is stopped before us and wakes us up.
1911 * However we might have started a new transaction and COWed some
1912 * tree blocks when deleting unused block groups for example. So
1913 * make sure we commit the transaction we started to have a clean
1914 * shutdown when evicting the btree inode - if it has dirty pages
1915 * when we do the final iput() on it, eviction will trigger a
1916 * writeback for it which will fail with null pointer dereferences
1917 * since work queues and other resources were already released and
1918 * destroyed by the time the iput/eviction/writeback is made.
1920 trans = btrfs_attach_transaction(root);
1921 if (IS_ERR(trans)) {
1922 if (PTR_ERR(trans) != -ENOENT)
1924 "cleaner transaction attach returned %ld",
1929 ret = btrfs_commit_transaction(trans);
1932 "cleaner open transaction commit returned %d",
1939 static int transaction_kthread(void *arg)
1941 struct btrfs_root *root = arg;
1942 struct btrfs_fs_info *fs_info = root->fs_info;
1943 struct btrfs_trans_handle *trans;
1944 struct btrfs_transaction *cur;
1947 unsigned long delay;
1951 cannot_commit = false;
1952 delay = HZ * fs_info->commit_interval;
1953 mutex_lock(&fs_info->transaction_kthread_mutex);
1955 spin_lock(&fs_info->trans_lock);
1956 cur = fs_info->running_transaction;
1958 spin_unlock(&fs_info->trans_lock);
1962 now = get_seconds();
1963 if (cur->state < TRANS_STATE_BLOCKED &&
1964 (now < cur->start_time ||
1965 now - cur->start_time < fs_info->commit_interval)) {
1966 spin_unlock(&fs_info->trans_lock);
1970 transid = cur->transid;
1971 spin_unlock(&fs_info->trans_lock);
1973 /* If the file system is aborted, this will always fail. */
1974 trans = btrfs_attach_transaction(root);
1975 if (IS_ERR(trans)) {
1976 if (PTR_ERR(trans) != -ENOENT)
1977 cannot_commit = true;
1980 if (transid == trans->transid) {
1981 btrfs_commit_transaction(trans);
1983 btrfs_end_transaction(trans);
1986 wake_up_process(fs_info->cleaner_kthread);
1987 mutex_unlock(&fs_info->transaction_kthread_mutex);
1989 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1990 &fs_info->fs_state)))
1991 btrfs_cleanup_transaction(fs_info);
1992 set_current_state(TASK_INTERRUPTIBLE);
1993 if (!kthread_should_stop() &&
1994 (!btrfs_transaction_blocked(fs_info) ||
1996 schedule_timeout(delay);
1997 __set_current_state(TASK_RUNNING);
1998 } while (!kthread_should_stop());
2003 * this will find the highest generation in the array of
2004 * root backups. The index of the highest array is returned,
2005 * or -1 if we can't find anything.
2007 * We check to make sure the array is valid by comparing the
2008 * generation of the latest root in the array with the generation
2009 * in the super block. If they don't match we pitch it.
2011 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014 int newest_index = -1;
2015 struct btrfs_root_backup *root_backup;
2018 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2019 root_backup = info->super_copy->super_roots + i;
2020 cur = btrfs_backup_tree_root_gen(root_backup);
2021 if (cur == newest_gen)
2025 /* check to see if we actually wrapped around */
2026 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2027 root_backup = info->super_copy->super_roots;
2028 cur = btrfs_backup_tree_root_gen(root_backup);
2029 if (cur == newest_gen)
2032 return newest_index;
2037 * find the oldest backup so we know where to store new entries
2038 * in the backup array. This will set the backup_root_index
2039 * field in the fs_info struct
2041 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044 int newest_index = -1;
2046 newest_index = find_newest_super_backup(info, newest_gen);
2047 /* if there was garbage in there, just move along */
2048 if (newest_index == -1) {
2049 info->backup_root_index = 0;
2051 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2056 * copy all the root pointers into the super backup array.
2057 * this will bump the backup pointer by one when it is
2060 static void backup_super_roots(struct btrfs_fs_info *info)
2063 struct btrfs_root_backup *root_backup;
2066 next_backup = info->backup_root_index;
2067 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2068 BTRFS_NUM_BACKUP_ROOTS;
2071 * just overwrite the last backup if we're at the same generation
2072 * this happens only at umount
2074 root_backup = info->super_for_commit->super_roots + last_backup;
2075 if (btrfs_backup_tree_root_gen(root_backup) ==
2076 btrfs_header_generation(info->tree_root->node))
2077 next_backup = last_backup;
2079 root_backup = info->super_for_commit->super_roots + next_backup;
2082 * make sure all of our padding and empty slots get zero filled
2083 * regardless of which ones we use today
2085 memset(root_backup, 0, sizeof(*root_backup));
2087 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2090 btrfs_set_backup_tree_root_gen(root_backup,
2091 btrfs_header_generation(info->tree_root->node));
2093 btrfs_set_backup_tree_root_level(root_backup,
2094 btrfs_header_level(info->tree_root->node));
2096 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2097 btrfs_set_backup_chunk_root_gen(root_backup,
2098 btrfs_header_generation(info->chunk_root->node));
2099 btrfs_set_backup_chunk_root_level(root_backup,
2100 btrfs_header_level(info->chunk_root->node));
2102 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2103 btrfs_set_backup_extent_root_gen(root_backup,
2104 btrfs_header_generation(info->extent_root->node));
2105 btrfs_set_backup_extent_root_level(root_backup,
2106 btrfs_header_level(info->extent_root->node));
2109 * we might commit during log recovery, which happens before we set
2110 * the fs_root. Make sure it is valid before we fill it in.
2112 if (info->fs_root && info->fs_root->node) {
2113 btrfs_set_backup_fs_root(root_backup,
2114 info->fs_root->node->start);
2115 btrfs_set_backup_fs_root_gen(root_backup,
2116 btrfs_header_generation(info->fs_root->node));
2117 btrfs_set_backup_fs_root_level(root_backup,
2118 btrfs_header_level(info->fs_root->node));
2121 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2122 btrfs_set_backup_dev_root_gen(root_backup,
2123 btrfs_header_generation(info->dev_root->node));
2124 btrfs_set_backup_dev_root_level(root_backup,
2125 btrfs_header_level(info->dev_root->node));
2127 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2128 btrfs_set_backup_csum_root_gen(root_backup,
2129 btrfs_header_generation(info->csum_root->node));
2130 btrfs_set_backup_csum_root_level(root_backup,
2131 btrfs_header_level(info->csum_root->node));
2133 btrfs_set_backup_total_bytes(root_backup,
2134 btrfs_super_total_bytes(info->super_copy));
2135 btrfs_set_backup_bytes_used(root_backup,
2136 btrfs_super_bytes_used(info->super_copy));
2137 btrfs_set_backup_num_devices(root_backup,
2138 btrfs_super_num_devices(info->super_copy));
2141 * if we don't copy this out to the super_copy, it won't get remembered
2142 * for the next commit
2144 memcpy(&info->super_copy->super_roots,
2145 &info->super_for_commit->super_roots,
2146 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2150 * this copies info out of the root backup array and back into
2151 * the in-memory super block. It is meant to help iterate through
2152 * the array, so you send it the number of backups you've already
2153 * tried and the last backup index you used.
2155 * this returns -1 when it has tried all the backups
2157 static noinline int next_root_backup(struct btrfs_fs_info *info,
2158 struct btrfs_super_block *super,
2159 int *num_backups_tried, int *backup_index)
2161 struct btrfs_root_backup *root_backup;
2162 int newest = *backup_index;
2164 if (*num_backups_tried == 0) {
2165 u64 gen = btrfs_super_generation(super);
2167 newest = find_newest_super_backup(info, gen);
2171 *backup_index = newest;
2172 *num_backups_tried = 1;
2173 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2174 /* we've tried all the backups, all done */
2177 /* jump to the next oldest backup */
2178 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2179 BTRFS_NUM_BACKUP_ROOTS;
2180 *backup_index = newest;
2181 *num_backups_tried += 1;
2183 root_backup = super->super_roots + newest;
2185 btrfs_set_super_generation(super,
2186 btrfs_backup_tree_root_gen(root_backup));
2187 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2188 btrfs_set_super_root_level(super,
2189 btrfs_backup_tree_root_level(root_backup));
2190 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193 * fixme: the total bytes and num_devices need to match or we should
2196 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2197 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2201 /* helper to cleanup workers */
2202 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204 btrfs_destroy_workqueue(fs_info->fixup_workers);
2205 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2206 btrfs_destroy_workqueue(fs_info->workers);
2207 btrfs_destroy_workqueue(fs_info->endio_workers);
2208 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2209 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2210 btrfs_destroy_workqueue(fs_info->rmw_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2212 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2213 btrfs_destroy_workqueue(fs_info->submit_workers);
2214 btrfs_destroy_workqueue(fs_info->delayed_workers);
2215 btrfs_destroy_workqueue(fs_info->caching_workers);
2216 btrfs_destroy_workqueue(fs_info->readahead_workers);
2217 btrfs_destroy_workqueue(fs_info->flush_workers);
2218 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2219 btrfs_destroy_workqueue(fs_info->extent_workers);
2221 * Now that all other work queues are destroyed, we can safely destroy
2222 * the queues used for metadata I/O, since tasks from those other work
2223 * queues can do metadata I/O operations.
2225 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2226 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2229 static void free_root_extent_buffers(struct btrfs_root *root)
2232 free_extent_buffer(root->node);
2233 free_extent_buffer(root->commit_root);
2235 root->commit_root = NULL;
2239 /* helper to cleanup tree roots */
2240 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2242 free_root_extent_buffers(info->tree_root);
2244 free_root_extent_buffers(info->dev_root);
2245 free_root_extent_buffers(info->extent_root);
2246 free_root_extent_buffers(info->csum_root);
2247 free_root_extent_buffers(info->quota_root);
2248 free_root_extent_buffers(info->uuid_root);
2250 free_root_extent_buffers(info->chunk_root);
2251 free_root_extent_buffers(info->free_space_root);
2254 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2257 struct btrfs_root *gang[8];
2260 while (!list_empty(&fs_info->dead_roots)) {
2261 gang[0] = list_entry(fs_info->dead_roots.next,
2262 struct btrfs_root, root_list);
2263 list_del(&gang[0]->root_list);
2265 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2266 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2268 free_extent_buffer(gang[0]->node);
2269 free_extent_buffer(gang[0]->commit_root);
2270 btrfs_put_fs_root(gang[0]);
2275 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2280 for (i = 0; i < ret; i++)
2281 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2284 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2285 btrfs_free_log_root_tree(NULL, fs_info);
2286 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2290 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2292 mutex_init(&fs_info->scrub_lock);
2293 atomic_set(&fs_info->scrubs_running, 0);
2294 atomic_set(&fs_info->scrub_pause_req, 0);
2295 atomic_set(&fs_info->scrubs_paused, 0);
2296 atomic_set(&fs_info->scrub_cancel_req, 0);
2297 init_waitqueue_head(&fs_info->scrub_pause_wait);
2298 fs_info->scrub_workers_refcnt = 0;
2301 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2303 spin_lock_init(&fs_info->balance_lock);
2304 mutex_init(&fs_info->balance_mutex);
2305 atomic_set(&fs_info->balance_running, 0);
2306 atomic_set(&fs_info->balance_pause_req, 0);
2307 atomic_set(&fs_info->balance_cancel_req, 0);
2308 fs_info->balance_ctl = NULL;
2309 init_waitqueue_head(&fs_info->balance_wait_q);
2312 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2314 struct inode *inode = fs_info->btree_inode;
2316 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2317 set_nlink(inode, 1);
2319 * we set the i_size on the btree inode to the max possible int.
2320 * the real end of the address space is determined by all of
2321 * the devices in the system
2323 inode->i_size = OFFSET_MAX;
2324 inode->i_mapping->a_ops = &btree_aops;
2326 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2327 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2328 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2329 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2331 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2333 BTRFS_I(inode)->root = fs_info->tree_root;
2334 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2335 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2336 btrfs_insert_inode_hash(inode);
2339 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2341 fs_info->dev_replace.lock_owner = 0;
2342 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2343 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2344 rwlock_init(&fs_info->dev_replace.lock);
2345 atomic_set(&fs_info->dev_replace.read_locks, 0);
2346 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2347 init_waitqueue_head(&fs_info->replace_wait);
2348 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2351 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2353 spin_lock_init(&fs_info->qgroup_lock);
2354 mutex_init(&fs_info->qgroup_ioctl_lock);
2355 fs_info->qgroup_tree = RB_ROOT;
2356 fs_info->qgroup_op_tree = RB_ROOT;
2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358 fs_info->qgroup_seq = 1;
2359 fs_info->qgroup_ulist = NULL;
2360 fs_info->qgroup_rescan_running = false;
2361 mutex_init(&fs_info->qgroup_rescan_lock);
2364 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2365 struct btrfs_fs_devices *fs_devices)
2367 int max_active = fs_info->thread_pool_size;
2368 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2371 btrfs_alloc_workqueue(fs_info, "worker",
2372 flags | WQ_HIGHPRI, max_active, 16);
2374 fs_info->delalloc_workers =
2375 btrfs_alloc_workqueue(fs_info, "delalloc",
2376 flags, max_active, 2);
2378 fs_info->flush_workers =
2379 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2380 flags, max_active, 0);
2382 fs_info->caching_workers =
2383 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2386 * a higher idle thresh on the submit workers makes it much more
2387 * likely that bios will be send down in a sane order to the
2390 fs_info->submit_workers =
2391 btrfs_alloc_workqueue(fs_info, "submit", flags,
2392 min_t(u64, fs_devices->num_devices,
2395 fs_info->fixup_workers =
2396 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2399 * endios are largely parallel and should have a very
2402 fs_info->endio_workers =
2403 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2404 fs_info->endio_meta_workers =
2405 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2407 fs_info->endio_meta_write_workers =
2408 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2410 fs_info->endio_raid56_workers =
2411 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2413 fs_info->endio_repair_workers =
2414 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2415 fs_info->rmw_workers =
2416 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2417 fs_info->endio_write_workers =
2418 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2420 fs_info->endio_freespace_worker =
2421 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2423 fs_info->delayed_workers =
2424 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2426 fs_info->readahead_workers =
2427 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2429 fs_info->qgroup_rescan_workers =
2430 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2431 fs_info->extent_workers =
2432 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2433 min_t(u64, fs_devices->num_devices,
2436 if (!(fs_info->workers && fs_info->delalloc_workers &&
2437 fs_info->submit_workers && fs_info->flush_workers &&
2438 fs_info->endio_workers && fs_info->endio_meta_workers &&
2439 fs_info->endio_meta_write_workers &&
2440 fs_info->endio_repair_workers &&
2441 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2442 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2443 fs_info->caching_workers && fs_info->readahead_workers &&
2444 fs_info->fixup_workers && fs_info->delayed_workers &&
2445 fs_info->extent_workers &&
2446 fs_info->qgroup_rescan_workers)) {
2453 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2454 struct btrfs_fs_devices *fs_devices)
2457 struct btrfs_root *log_tree_root;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 u64 bytenr = btrfs_super_log_root(disk_super);
2461 if (fs_devices->rw_devices == 0) {
2462 btrfs_warn(fs_info, "log replay required on RO media");
2466 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2470 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2472 log_tree_root->node = read_tree_block(fs_info, bytenr,
2473 fs_info->generation + 1);
2474 if (IS_ERR(log_tree_root->node)) {
2475 btrfs_warn(fs_info, "failed to read log tree");
2476 ret = PTR_ERR(log_tree_root->node);
2477 kfree(log_tree_root);
2479 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2480 btrfs_err(fs_info, "failed to read log tree");
2481 free_extent_buffer(log_tree_root->node);
2482 kfree(log_tree_root);
2485 /* returns with log_tree_root freed on success */
2486 ret = btrfs_recover_log_trees(log_tree_root);
2488 btrfs_handle_fs_error(fs_info, ret,
2489 "Failed to recover log tree");
2490 free_extent_buffer(log_tree_root->node);
2491 kfree(log_tree_root);
2495 if (fs_info->sb->s_flags & MS_RDONLY) {
2496 ret = btrfs_commit_super(fs_info);
2504 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2506 struct btrfs_root *tree_root = fs_info->tree_root;
2507 struct btrfs_root *root;
2508 struct btrfs_key location;
2511 BUG_ON(!fs_info->tree_root);
2513 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514 location.type = BTRFS_ROOT_ITEM_KEY;
2515 location.offset = 0;
2517 root = btrfs_read_tree_root(tree_root, &location);
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->extent_root = root;
2523 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524 root = btrfs_read_tree_root(tree_root, &location);
2526 return PTR_ERR(root);
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 fs_info->dev_root = root;
2529 btrfs_init_devices_late(fs_info);
2531 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532 root = btrfs_read_tree_root(tree_root, &location);
2534 return PTR_ERR(root);
2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536 fs_info->csum_root = root;
2538 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539 root = btrfs_read_tree_root(tree_root, &location);
2540 if (!IS_ERR(root)) {
2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543 fs_info->quota_root = root;
2546 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547 root = btrfs_read_tree_root(tree_root, &location);
2549 ret = PTR_ERR(root);
2553 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554 fs_info->uuid_root = root;
2557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559 root = btrfs_read_tree_root(tree_root, &location);
2561 return PTR_ERR(root);
2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563 fs_info->free_space_root = root;
2569 int open_ctree(struct super_block *sb,
2570 struct btrfs_fs_devices *fs_devices,
2578 struct btrfs_key location;
2579 struct buffer_head *bh;
2580 struct btrfs_super_block *disk_super;
2581 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582 struct btrfs_root *tree_root;
2583 struct btrfs_root *chunk_root;
2586 int num_backups_tried = 0;
2587 int backup_index = 0;
2589 int clear_free_space_tree = 0;
2591 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2593 if (!tree_root || !chunk_root) {
2598 ret = init_srcu_struct(&fs_info->subvol_srcu);
2604 ret = setup_bdi(fs_info, &fs_info->bdi);
2610 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2615 fs_info->dirty_metadata_batch = PAGE_SIZE *
2616 (1 + ilog2(nr_cpu_ids));
2618 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2621 goto fail_dirty_metadata_bytes;
2624 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2627 goto fail_delalloc_bytes;
2630 fs_info->btree_inode = new_inode(sb);
2631 if (!fs_info->btree_inode) {
2633 goto fail_bio_counter;
2636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2640 INIT_LIST_HEAD(&fs_info->trans_list);
2641 INIT_LIST_HEAD(&fs_info->dead_roots);
2642 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2643 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2644 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2645 spin_lock_init(&fs_info->delalloc_root_lock);
2646 spin_lock_init(&fs_info->trans_lock);
2647 spin_lock_init(&fs_info->fs_roots_radix_lock);
2648 spin_lock_init(&fs_info->delayed_iput_lock);
2649 spin_lock_init(&fs_info->defrag_inodes_lock);
2650 spin_lock_init(&fs_info->free_chunk_lock);
2651 spin_lock_init(&fs_info->tree_mod_seq_lock);
2652 spin_lock_init(&fs_info->super_lock);
2653 spin_lock_init(&fs_info->qgroup_op_lock);
2654 spin_lock_init(&fs_info->buffer_lock);
2655 spin_lock_init(&fs_info->unused_bgs_lock);
2656 rwlock_init(&fs_info->tree_mod_log_lock);
2657 mutex_init(&fs_info->unused_bg_unpin_mutex);
2658 mutex_init(&fs_info->delete_unused_bgs_mutex);
2659 mutex_init(&fs_info->reloc_mutex);
2660 mutex_init(&fs_info->delalloc_root_mutex);
2661 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2662 seqlock_init(&fs_info->profiles_lock);
2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2665 INIT_LIST_HEAD(&fs_info->space_info);
2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2667 INIT_LIST_HEAD(&fs_info->unused_bgs);
2668 btrfs_mapping_init(&fs_info->mapping_tree);
2669 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 BTRFS_BLOCK_RSV_GLOBAL);
2671 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2672 BTRFS_BLOCK_RSV_DELALLOC);
2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677 BTRFS_BLOCK_RSV_DELOPS);
2678 atomic_set(&fs_info->nr_async_submits, 0);
2679 atomic_set(&fs_info->async_delalloc_pages, 0);
2680 atomic_set(&fs_info->async_submit_draining, 0);
2681 atomic_set(&fs_info->nr_async_bios, 0);
2682 atomic_set(&fs_info->defrag_running, 0);
2683 atomic_set(&fs_info->qgroup_op_seq, 0);
2684 atomic_set(&fs_info->reada_works_cnt, 0);
2685 atomic64_set(&fs_info->tree_mod_seq, 0);
2686 fs_info->fs_frozen = 0;
2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2689 fs_info->metadata_ratio = 0;
2690 fs_info->defrag_inodes = RB_ROOT;
2691 fs_info->free_chunk_space = 0;
2692 fs_info->tree_mod_log = RB_ROOT;
2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2695 /* readahead state */
2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2697 spin_lock_init(&fs_info->reada_lock);
2699 fs_info->thread_pool_size = min_t(unsigned long,
2700 num_online_cpus() + 2, 8);
2702 INIT_LIST_HEAD(&fs_info->ordered_roots);
2703 spin_lock_init(&fs_info->ordered_root_lock);
2704 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2706 if (!fs_info->delayed_root) {
2710 btrfs_init_delayed_root(fs_info->delayed_root);
2712 btrfs_init_scrub(fs_info);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714 fs_info->check_integrity_print_mask = 0;
2716 btrfs_init_balance(fs_info);
2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2719 sb->s_blocksize = 4096;
2720 sb->s_blocksize_bits = blksize_bits(4096);
2721 sb->s_bdi = &fs_info->bdi;
2723 btrfs_init_btree_inode(fs_info);
2725 spin_lock_init(&fs_info->block_group_cache_lock);
2726 fs_info->block_group_cache_tree = RB_ROOT;
2727 fs_info->first_logical_byte = (u64)-1;
2729 extent_io_tree_init(&fs_info->freed_extents[0],
2730 fs_info->btree_inode->i_mapping);
2731 extent_io_tree_init(&fs_info->freed_extents[1],
2732 fs_info->btree_inode->i_mapping);
2733 fs_info->pinned_extents = &fs_info->freed_extents[0];
2734 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2736 mutex_init(&fs_info->ordered_operations_mutex);
2737 mutex_init(&fs_info->tree_log_mutex);
2738 mutex_init(&fs_info->chunk_mutex);
2739 mutex_init(&fs_info->transaction_kthread_mutex);
2740 mutex_init(&fs_info->cleaner_mutex);
2741 mutex_init(&fs_info->volume_mutex);
2742 mutex_init(&fs_info->ro_block_group_mutex);
2743 init_rwsem(&fs_info->commit_root_sem);
2744 init_rwsem(&fs_info->cleanup_work_sem);
2745 init_rwsem(&fs_info->subvol_sem);
2746 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2748 btrfs_init_dev_replace_locks(fs_info);
2749 btrfs_init_qgroup(fs_info);
2751 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2752 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2754 init_waitqueue_head(&fs_info->transaction_throttle);
2755 init_waitqueue_head(&fs_info->transaction_wait);
2756 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2757 init_waitqueue_head(&fs_info->async_submit_wait);
2759 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2761 /* Usable values until the real ones are cached from the superblock */
2762 fs_info->nodesize = 4096;
2763 fs_info->sectorsize = 4096;
2764 fs_info->stripesize = 4096;
2766 ret = btrfs_alloc_stripe_hash_table(fs_info);
2772 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2774 invalidate_bdev(fs_devices->latest_bdev);
2777 * Read super block and check the signature bytes only
2779 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2786 * We want to check superblock checksum, the type is stored inside.
2787 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2789 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2790 btrfs_err(fs_info, "superblock checksum mismatch");
2797 * super_copy is zeroed at allocation time and we never touch the
2798 * following bytes up to INFO_SIZE, the checksum is calculated from
2799 * the whole block of INFO_SIZE
2801 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2802 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2803 sizeof(*fs_info->super_for_commit));
2806 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2808 ret = btrfs_check_super_valid(fs_info);
2810 btrfs_err(fs_info, "superblock contains fatal errors");
2815 disk_super = fs_info->super_copy;
2816 if (!btrfs_super_root(disk_super))
2819 /* check FS state, whether FS is broken. */
2820 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2821 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2824 * run through our array of backup supers and setup
2825 * our ring pointer to the oldest one
2827 generation = btrfs_super_generation(disk_super);
2828 find_oldest_super_backup(fs_info, generation);
2831 * In the long term, we'll store the compression type in the super
2832 * block, and it'll be used for per file compression control.
2834 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2836 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2842 features = btrfs_super_incompat_flags(disk_super) &
2843 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2846 "cannot mount because of unsupported optional features (%llx)",
2852 features = btrfs_super_incompat_flags(disk_super);
2853 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2854 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2855 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2857 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2858 btrfs_info(fs_info, "has skinny extents");
2861 * flag our filesystem as having big metadata blocks if
2862 * they are bigger than the page size
2864 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2865 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2867 "flagging fs with big metadata feature");
2868 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2871 nodesize = btrfs_super_nodesize(disk_super);
2872 sectorsize = btrfs_super_sectorsize(disk_super);
2873 stripesize = sectorsize;
2874 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2875 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2877 /* Cache block sizes */
2878 fs_info->nodesize = nodesize;
2879 fs_info->sectorsize = sectorsize;
2880 fs_info->stripesize = stripesize;
2883 * mixed block groups end up with duplicate but slightly offset
2884 * extent buffers for the same range. It leads to corruptions
2886 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2887 (sectorsize != nodesize)) {
2889 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2890 nodesize, sectorsize);
2895 * Needn't use the lock because there is no other task which will
2898 btrfs_set_super_incompat_flags(disk_super, features);
2900 features = btrfs_super_compat_ro_flags(disk_super) &
2901 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2902 if (!(sb->s_flags & MS_RDONLY) && features) {
2904 "cannot mount read-write because of unsupported optional features (%llx)",
2910 max_active = fs_info->thread_pool_size;
2912 ret = btrfs_init_workqueues(fs_info, fs_devices);
2915 goto fail_sb_buffer;
2918 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2919 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2922 sb->s_blocksize = sectorsize;
2923 sb->s_blocksize_bits = blksize_bits(sectorsize);
2925 mutex_lock(&fs_info->chunk_mutex);
2926 ret = btrfs_read_sys_array(fs_info);
2927 mutex_unlock(&fs_info->chunk_mutex);
2929 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2930 goto fail_sb_buffer;
2933 generation = btrfs_super_chunk_root_generation(disk_super);
2935 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2937 chunk_root->node = read_tree_block(fs_info,
2938 btrfs_super_chunk_root(disk_super),
2940 if (IS_ERR(chunk_root->node) ||
2941 !extent_buffer_uptodate(chunk_root->node)) {
2942 btrfs_err(fs_info, "failed to read chunk root");
2943 if (!IS_ERR(chunk_root->node))
2944 free_extent_buffer(chunk_root->node);
2945 chunk_root->node = NULL;
2946 goto fail_tree_roots;
2948 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2949 chunk_root->commit_root = btrfs_root_node(chunk_root);
2951 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2952 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2954 ret = btrfs_read_chunk_tree(fs_info);
2956 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2957 goto fail_tree_roots;
2961 * keep the device that is marked to be the target device for the
2962 * dev_replace procedure
2964 btrfs_close_extra_devices(fs_devices, 0);
2966 if (!fs_devices->latest_bdev) {
2967 btrfs_err(fs_info, "failed to read devices");
2968 goto fail_tree_roots;
2972 generation = btrfs_super_generation(disk_super);
2974 tree_root->node = read_tree_block(fs_info,
2975 btrfs_super_root(disk_super),
2977 if (IS_ERR(tree_root->node) ||
2978 !extent_buffer_uptodate(tree_root->node)) {
2979 btrfs_warn(fs_info, "failed to read tree root");
2980 if (!IS_ERR(tree_root->node))
2981 free_extent_buffer(tree_root->node);
2982 tree_root->node = NULL;
2983 goto recovery_tree_root;
2986 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2987 tree_root->commit_root = btrfs_root_node(tree_root);
2988 btrfs_set_root_refs(&tree_root->root_item, 1);
2990 mutex_lock(&tree_root->objectid_mutex);
2991 ret = btrfs_find_highest_objectid(tree_root,
2992 &tree_root->highest_objectid);
2994 mutex_unlock(&tree_root->objectid_mutex);
2995 goto recovery_tree_root;
2998 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3000 mutex_unlock(&tree_root->objectid_mutex);
3002 ret = btrfs_read_roots(fs_info);
3004 goto recovery_tree_root;
3006 fs_info->generation = generation;
3007 fs_info->last_trans_committed = generation;
3009 ret = btrfs_recover_balance(fs_info);
3011 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3012 goto fail_block_groups;
3015 ret = btrfs_init_dev_stats(fs_info);
3017 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3018 goto fail_block_groups;
3021 ret = btrfs_init_dev_replace(fs_info);
3023 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3024 goto fail_block_groups;
3027 btrfs_close_extra_devices(fs_devices, 1);
3029 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3031 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3033 goto fail_block_groups;
3036 ret = btrfs_sysfs_add_device(fs_devices);
3038 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3040 goto fail_fsdev_sysfs;
3043 ret = btrfs_sysfs_add_mounted(fs_info);
3045 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3046 goto fail_fsdev_sysfs;
3049 ret = btrfs_init_space_info(fs_info);
3051 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3055 ret = btrfs_read_block_groups(fs_info);
3057 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3060 fs_info->num_tolerated_disk_barrier_failures =
3061 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3062 if (fs_info->fs_devices->missing_devices >
3063 fs_info->num_tolerated_disk_barrier_failures &&
3064 !(sb->s_flags & MS_RDONLY)) {
3066 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3067 fs_info->fs_devices->missing_devices,
3068 fs_info->num_tolerated_disk_barrier_failures);
3072 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3074 if (IS_ERR(fs_info->cleaner_kthread))
3077 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3079 "btrfs-transaction");
3080 if (IS_ERR(fs_info->transaction_kthread))
3083 if (!btrfs_test_opt(fs_info, SSD) &&
3084 !btrfs_test_opt(fs_info, NOSSD) &&
3085 !fs_info->fs_devices->rotating) {
3086 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3087 btrfs_set_opt(fs_info->mount_opt, SSD);
3091 * Mount does not set all options immediately, we can do it now and do
3092 * not have to wait for transaction commit
3094 btrfs_apply_pending_changes(fs_info);
3096 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3097 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3098 ret = btrfsic_mount(fs_info, fs_devices,
3099 btrfs_test_opt(fs_info,
3100 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3102 fs_info->check_integrity_print_mask);
3105 "failed to initialize integrity check module: %d",
3109 ret = btrfs_read_qgroup_config(fs_info);
3111 goto fail_trans_kthread;
3113 /* do not make disk changes in broken FS or nologreplay is given */
3114 if (btrfs_super_log_root(disk_super) != 0 &&
3115 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3116 ret = btrfs_replay_log(fs_info, fs_devices);
3123 ret = btrfs_find_orphan_roots(fs_info);
3127 if (!(sb->s_flags & MS_RDONLY)) {
3128 ret = btrfs_cleanup_fs_roots(fs_info);
3132 mutex_lock(&fs_info->cleaner_mutex);
3133 ret = btrfs_recover_relocation(tree_root);
3134 mutex_unlock(&fs_info->cleaner_mutex);
3136 btrfs_warn(fs_info, "failed to recover relocation: %d",
3143 location.objectid = BTRFS_FS_TREE_OBJECTID;
3144 location.type = BTRFS_ROOT_ITEM_KEY;
3145 location.offset = 0;
3147 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3148 if (IS_ERR(fs_info->fs_root)) {
3149 err = PTR_ERR(fs_info->fs_root);
3153 if (sb->s_flags & MS_RDONLY)
3156 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3157 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3158 clear_free_space_tree = 1;
3159 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3160 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3161 btrfs_warn(fs_info, "free space tree is invalid");
3162 clear_free_space_tree = 1;
3165 if (clear_free_space_tree) {
3166 btrfs_info(fs_info, "clearing free space tree");
3167 ret = btrfs_clear_free_space_tree(fs_info);
3170 "failed to clear free space tree: %d", ret);
3171 close_ctree(fs_info);
3176 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3177 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3178 btrfs_info(fs_info, "creating free space tree");
3179 ret = btrfs_create_free_space_tree(fs_info);
3182 "failed to create free space tree: %d", ret);
3183 close_ctree(fs_info);
3188 down_read(&fs_info->cleanup_work_sem);
3189 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3190 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3191 up_read(&fs_info->cleanup_work_sem);
3192 close_ctree(fs_info);
3195 up_read(&fs_info->cleanup_work_sem);
3197 ret = btrfs_resume_balance_async(fs_info);
3199 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3200 close_ctree(fs_info);
3204 ret = btrfs_resume_dev_replace_async(fs_info);
3206 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3207 close_ctree(fs_info);
3211 btrfs_qgroup_rescan_resume(fs_info);
3213 if (!fs_info->uuid_root) {
3214 btrfs_info(fs_info, "creating UUID tree");
3215 ret = btrfs_create_uuid_tree(fs_info);
3218 "failed to create the UUID tree: %d", ret);
3219 close_ctree(fs_info);
3222 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3223 fs_info->generation !=
3224 btrfs_super_uuid_tree_generation(disk_super)) {
3225 btrfs_info(fs_info, "checking UUID tree");
3226 ret = btrfs_check_uuid_tree(fs_info);
3229 "failed to check the UUID tree: %d", ret);
3230 close_ctree(fs_info);
3234 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3236 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3239 * backuproot only affect mount behavior, and if open_ctree succeeded,
3240 * no need to keep the flag
3242 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3247 btrfs_free_qgroup_config(fs_info);
3249 kthread_stop(fs_info->transaction_kthread);
3250 btrfs_cleanup_transaction(fs_info);
3251 btrfs_free_fs_roots(fs_info);
3253 kthread_stop(fs_info->cleaner_kthread);
3256 * make sure we're done with the btree inode before we stop our
3259 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3262 btrfs_sysfs_remove_mounted(fs_info);
3265 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3268 btrfs_put_block_group_cache(fs_info);
3271 free_root_pointers(fs_info, 1);
3272 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3275 btrfs_stop_all_workers(fs_info);
3276 btrfs_free_block_groups(fs_info);
3279 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3281 iput(fs_info->btree_inode);
3283 percpu_counter_destroy(&fs_info->bio_counter);
3284 fail_delalloc_bytes:
3285 percpu_counter_destroy(&fs_info->delalloc_bytes);
3286 fail_dirty_metadata_bytes:
3287 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3289 bdi_destroy(&fs_info->bdi);
3291 cleanup_srcu_struct(&fs_info->subvol_srcu);
3293 btrfs_free_stripe_hash_table(fs_info);
3294 btrfs_close_devices(fs_info->fs_devices);
3298 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3299 goto fail_tree_roots;
3301 free_root_pointers(fs_info, 0);
3303 /* don't use the log in recovery mode, it won't be valid */
3304 btrfs_set_super_log_root(disk_super, 0);
3306 /* we can't trust the free space cache either */
3307 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3309 ret = next_root_backup(fs_info, fs_info->super_copy,
3310 &num_backups_tried, &backup_index);
3312 goto fail_block_groups;
3313 goto retry_root_backup;
3316 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3319 set_buffer_uptodate(bh);
3321 struct btrfs_device *device = (struct btrfs_device *)
3324 btrfs_warn_rl_in_rcu(device->fs_info,
3325 "lost page write due to IO error on %s",
3326 rcu_str_deref(device->name));
3327 /* note, we don't set_buffer_write_io_error because we have
3328 * our own ways of dealing with the IO errors
3330 clear_buffer_uptodate(bh);
3331 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3337 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3338 struct buffer_head **bh_ret)
3340 struct buffer_head *bh;
3341 struct btrfs_super_block *super;
3344 bytenr = btrfs_sb_offset(copy_num);
3345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3348 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3350 * If we fail to read from the underlying devices, as of now
3351 * the best option we have is to mark it EIO.
3356 super = (struct btrfs_super_block *)bh->b_data;
3357 if (btrfs_super_bytenr(super) != bytenr ||
3358 btrfs_super_magic(super) != BTRFS_MAGIC) {
3368 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3370 struct buffer_head *bh;
3371 struct buffer_head *latest = NULL;
3372 struct btrfs_super_block *super;
3377 /* we would like to check all the supers, but that would make
3378 * a btrfs mount succeed after a mkfs from a different FS.
3379 * So, we need to add a special mount option to scan for
3380 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3382 for (i = 0; i < 1; i++) {
3383 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3387 super = (struct btrfs_super_block *)bh->b_data;
3389 if (!latest || btrfs_super_generation(super) > transid) {
3392 transid = btrfs_super_generation(super);
3399 return ERR_PTR(ret);
3405 * this should be called twice, once with wait == 0 and
3406 * once with wait == 1. When wait == 0 is done, all the buffer heads
3407 * we write are pinned.
3409 * They are released when wait == 1 is done.
3410 * max_mirrors must be the same for both runs, and it indicates how
3411 * many supers on this one device should be written.
3413 * max_mirrors == 0 means to write them all.
3415 static int write_dev_supers(struct btrfs_device *device,
3416 struct btrfs_super_block *sb,
3417 int wait, int max_mirrors)
3419 struct buffer_head *bh;
3426 if (max_mirrors == 0)
3427 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3429 for (i = 0; i < max_mirrors; i++) {
3430 bytenr = btrfs_sb_offset(i);
3431 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3432 device->commit_total_bytes)
3436 bh = __find_get_block(device->bdev, bytenr / 4096,
3437 BTRFS_SUPER_INFO_SIZE);
3443 if (!buffer_uptodate(bh))
3446 /* drop our reference */
3449 /* drop the reference from the wait == 0 run */
3453 btrfs_set_super_bytenr(sb, bytenr);
3456 crc = btrfs_csum_data((const char *)sb +
3457 BTRFS_CSUM_SIZE, crc,
3458 BTRFS_SUPER_INFO_SIZE -
3460 btrfs_csum_final(crc, sb->csum);
3463 * one reference for us, and we leave it for the
3466 bh = __getblk(device->bdev, bytenr / 4096,
3467 BTRFS_SUPER_INFO_SIZE);
3469 btrfs_err(device->fs_info,
3470 "couldn't get super buffer head for bytenr %llu",
3476 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3478 /* one reference for submit_bh */
3481 set_buffer_uptodate(bh);
3483 bh->b_end_io = btrfs_end_buffer_write_sync;
3484 bh->b_private = device;
3488 * we fua the first super. The others we allow
3492 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3493 REQ_SYNC | REQ_FUA, bh);
3495 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3500 return errors < i ? 0 : -1;
3504 * endio for the write_dev_flush, this will wake anyone waiting
3505 * for the barrier when it is done
3507 static void btrfs_end_empty_barrier(struct bio *bio)
3509 if (bio->bi_private)
3510 complete(bio->bi_private);
3515 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3516 * sent down. With wait == 1, it waits for the previous flush.
3518 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3521 static int write_dev_flush(struct btrfs_device *device, int wait)
3523 struct request_queue *q = bdev_get_queue(device->bdev);
3527 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3531 bio = device->flush_bio;
3535 wait_for_completion(&device->flush_wait);
3537 if (bio->bi_error) {
3538 ret = bio->bi_error;
3539 btrfs_dev_stat_inc_and_print(device,
3540 BTRFS_DEV_STAT_FLUSH_ERRS);
3543 /* drop the reference from the wait == 0 run */
3545 device->flush_bio = NULL;
3551 * one reference for us, and we leave it for the
3554 device->flush_bio = NULL;
3555 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3559 bio->bi_end_io = btrfs_end_empty_barrier;
3560 bio->bi_bdev = device->bdev;
3561 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3562 init_completion(&device->flush_wait);
3563 bio->bi_private = &device->flush_wait;
3564 device->flush_bio = bio;
3567 btrfsic_submit_bio(bio);
3573 * send an empty flush down to each device in parallel,
3574 * then wait for them
3576 static int barrier_all_devices(struct btrfs_fs_info *info)
3578 struct list_head *head;
3579 struct btrfs_device *dev;
3580 int errors_send = 0;
3581 int errors_wait = 0;
3584 /* send down all the barriers */
3585 head = &info->fs_devices->devices;
3586 list_for_each_entry_rcu(dev, head, dev_list) {
3593 if (!dev->in_fs_metadata || !dev->writeable)
3596 ret = write_dev_flush(dev, 0);
3601 /* wait for all the barriers */
3602 list_for_each_entry_rcu(dev, head, dev_list) {
3609 if (!dev->in_fs_metadata || !dev->writeable)
3612 ret = write_dev_flush(dev, 1);
3616 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3617 errors_wait > info->num_tolerated_disk_barrier_failures)
3622 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3625 int min_tolerated = INT_MAX;
3627 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3628 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3629 min_tolerated = min(min_tolerated,
3630 btrfs_raid_array[BTRFS_RAID_SINGLE].
3631 tolerated_failures);
3633 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3634 if (raid_type == BTRFS_RAID_SINGLE)
3636 if (!(flags & btrfs_raid_group[raid_type]))
3638 min_tolerated = min(min_tolerated,
3639 btrfs_raid_array[raid_type].
3640 tolerated_failures);
3643 if (min_tolerated == INT_MAX) {
3644 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3648 return min_tolerated;
3651 int btrfs_calc_num_tolerated_disk_barrier_failures(
3652 struct btrfs_fs_info *fs_info)
3654 struct btrfs_ioctl_space_info space;
3655 struct btrfs_space_info *sinfo;
3656 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3657 BTRFS_BLOCK_GROUP_SYSTEM,
3658 BTRFS_BLOCK_GROUP_METADATA,
3659 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3662 int num_tolerated_disk_barrier_failures =
3663 (int)fs_info->fs_devices->num_devices;
3665 for (i = 0; i < ARRAY_SIZE(types); i++) {
3666 struct btrfs_space_info *tmp;
3670 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3671 if (tmp->flags == types[i]) {
3681 down_read(&sinfo->groups_sem);
3682 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3685 if (list_empty(&sinfo->block_groups[c]))
3688 btrfs_get_block_group_info(&sinfo->block_groups[c],
3690 if (space.total_bytes == 0 || space.used_bytes == 0)
3692 flags = space.flags;
3694 num_tolerated_disk_barrier_failures = min(
3695 num_tolerated_disk_barrier_failures,
3696 btrfs_get_num_tolerated_disk_barrier_failures(
3699 up_read(&sinfo->groups_sem);
3702 return num_tolerated_disk_barrier_failures;
3705 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3707 struct list_head *head;
3708 struct btrfs_device *dev;
3709 struct btrfs_super_block *sb;
3710 struct btrfs_dev_item *dev_item;
3714 int total_errors = 0;
3717 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3718 backup_super_roots(fs_info);
3720 sb = fs_info->super_for_commit;
3721 dev_item = &sb->dev_item;
3723 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3724 head = &fs_info->fs_devices->devices;
3725 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3728 ret = barrier_all_devices(fs_info);
3731 &fs_info->fs_devices->device_list_mutex);
3732 btrfs_handle_fs_error(fs_info, ret,
3733 "errors while submitting device barriers.");
3738 list_for_each_entry_rcu(dev, head, dev_list) {
3743 if (!dev->in_fs_metadata || !dev->writeable)
3746 btrfs_set_stack_device_generation(dev_item, 0);
3747 btrfs_set_stack_device_type(dev_item, dev->type);
3748 btrfs_set_stack_device_id(dev_item, dev->devid);
3749 btrfs_set_stack_device_total_bytes(dev_item,
3750 dev->commit_total_bytes);
3751 btrfs_set_stack_device_bytes_used(dev_item,
3752 dev->commit_bytes_used);
3753 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3754 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3755 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3756 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3757 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3759 flags = btrfs_super_flags(sb);
3760 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3762 ret = write_dev_supers(dev, sb, 0, max_mirrors);
3766 if (total_errors > max_errors) {
3767 btrfs_err(fs_info, "%d errors while writing supers",
3769 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3771 /* FUA is masked off if unsupported and can't be the reason */
3772 btrfs_handle_fs_error(fs_info, -EIO,
3773 "%d errors while writing supers",
3779 list_for_each_entry_rcu(dev, head, dev_list) {
3782 if (!dev->in_fs_metadata || !dev->writeable)
3785 ret = write_dev_supers(dev, sb, 1, max_mirrors);
3789 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3790 if (total_errors > max_errors) {
3791 btrfs_handle_fs_error(fs_info, -EIO,
3792 "%d errors while writing supers",
3799 /* Drop a fs root from the radix tree and free it. */
3800 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801 struct btrfs_root *root)
3803 spin_lock(&fs_info->fs_roots_radix_lock);
3804 radix_tree_delete(&fs_info->fs_roots_radix,
3805 (unsigned long)root->root_key.objectid);
3806 spin_unlock(&fs_info->fs_roots_radix_lock);
3808 if (btrfs_root_refs(&root->root_item) == 0)
3809 synchronize_srcu(&fs_info->subvol_srcu);
3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812 btrfs_free_log(NULL, root);
3813 if (root->reloc_root) {
3814 free_extent_buffer(root->reloc_root->node);
3815 free_extent_buffer(root->reloc_root->commit_root);
3816 btrfs_put_fs_root(root->reloc_root);
3817 root->reloc_root = NULL;
3821 if (root->free_ino_pinned)
3822 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3823 if (root->free_ino_ctl)
3824 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3828 static void free_fs_root(struct btrfs_root *root)
3830 iput(root->ino_cache_inode);
3831 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833 root->orphan_block_rsv = NULL;
3835 free_anon_bdev(root->anon_dev);
3836 if (root->subv_writers)
3837 btrfs_free_subvolume_writers(root->subv_writers);
3838 free_extent_buffer(root->node);
3839 free_extent_buffer(root->commit_root);
3840 kfree(root->free_ino_ctl);
3841 kfree(root->free_ino_pinned);
3843 btrfs_put_fs_root(root);
3846 void btrfs_free_fs_root(struct btrfs_root *root)
3851 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3853 u64 root_objectid = 0;
3854 struct btrfs_root *gang[8];
3857 unsigned int ret = 0;
3861 index = srcu_read_lock(&fs_info->subvol_srcu);
3862 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863 (void **)gang, root_objectid,
3866 srcu_read_unlock(&fs_info->subvol_srcu, index);
3869 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3871 for (i = 0; i < ret; i++) {
3872 /* Avoid to grab roots in dead_roots */
3873 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3877 /* grab all the search result for later use */
3878 gang[i] = btrfs_grab_fs_root(gang[i]);
3880 srcu_read_unlock(&fs_info->subvol_srcu, index);
3882 for (i = 0; i < ret; i++) {
3885 root_objectid = gang[i]->root_key.objectid;
3886 err = btrfs_orphan_cleanup(gang[i]);
3889 btrfs_put_fs_root(gang[i]);
3894 /* release the uncleaned roots due to error */
3895 for (; i < ret; i++) {
3897 btrfs_put_fs_root(gang[i]);
3902 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3904 struct btrfs_root *root = fs_info->tree_root;
3905 struct btrfs_trans_handle *trans;
3907 mutex_lock(&fs_info->cleaner_mutex);
3908 btrfs_run_delayed_iputs(fs_info);
3909 mutex_unlock(&fs_info->cleaner_mutex);
3910 wake_up_process(fs_info->cleaner_kthread);
3912 /* wait until ongoing cleanup work done */
3913 down_write(&fs_info->cleanup_work_sem);
3914 up_write(&fs_info->cleanup_work_sem);
3916 trans = btrfs_join_transaction(root);
3918 return PTR_ERR(trans);
3919 return btrfs_commit_transaction(trans);
3922 void close_ctree(struct btrfs_fs_info *fs_info)
3924 struct btrfs_root *root = fs_info->tree_root;
3927 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3929 /* wait for the qgroup rescan worker to stop */
3930 btrfs_qgroup_wait_for_completion(fs_info, false);
3932 /* wait for the uuid_scan task to finish */
3933 down(&fs_info->uuid_tree_rescan_sem);
3934 /* avoid complains from lockdep et al., set sem back to initial state */
3935 up(&fs_info->uuid_tree_rescan_sem);
3937 /* pause restriper - we want to resume on mount */
3938 btrfs_pause_balance(fs_info);
3940 btrfs_dev_replace_suspend_for_unmount(fs_info);
3942 btrfs_scrub_cancel(fs_info);
3944 /* wait for any defraggers to finish */
3945 wait_event(fs_info->transaction_wait,
3946 (atomic_read(&fs_info->defrag_running) == 0));
3948 /* clear out the rbtree of defraggable inodes */
3949 btrfs_cleanup_defrag_inodes(fs_info);
3951 cancel_work_sync(&fs_info->async_reclaim_work);
3953 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3955 * If the cleaner thread is stopped and there are
3956 * block groups queued for removal, the deletion will be
3957 * skipped when we quit the cleaner thread.
3959 btrfs_delete_unused_bgs(fs_info);
3961 ret = btrfs_commit_super(fs_info);
3963 btrfs_err(fs_info, "commit super ret %d", ret);
3966 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3967 btrfs_error_commit_super(fs_info);
3969 kthread_stop(fs_info->transaction_kthread);
3970 kthread_stop(fs_info->cleaner_kthread);
3972 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3974 btrfs_free_qgroup_config(fs_info);
3976 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977 btrfs_info(fs_info, "at unmount delalloc count %lld",
3978 percpu_counter_sum(&fs_info->delalloc_bytes));
3981 btrfs_sysfs_remove_mounted(fs_info);
3982 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3984 btrfs_free_fs_roots(fs_info);
3986 btrfs_put_block_group_cache(fs_info);
3989 * we must make sure there is not any read request to
3990 * submit after we stopping all workers.
3992 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3993 btrfs_stop_all_workers(fs_info);
3995 btrfs_free_block_groups(fs_info);
3997 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998 free_root_pointers(fs_info, 1);
4000 iput(fs_info->btree_inode);
4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004 btrfsic_unmount(fs_info->fs_devices);
4007 btrfs_close_devices(fs_info->fs_devices);
4008 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4010 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011 percpu_counter_destroy(&fs_info->delalloc_bytes);
4012 percpu_counter_destroy(&fs_info->bio_counter);
4013 bdi_destroy(&fs_info->bdi);
4014 cleanup_srcu_struct(&fs_info->subvol_srcu);
4016 btrfs_free_stripe_hash_table(fs_info);
4018 __btrfs_free_block_rsv(root->orphan_block_rsv);
4019 root->orphan_block_rsv = NULL;
4021 mutex_lock(&fs_info->chunk_mutex);
4022 while (!list_empty(&fs_info->pinned_chunks)) {
4023 struct extent_map *em;
4025 em = list_first_entry(&fs_info->pinned_chunks,
4026 struct extent_map, list);
4027 list_del_init(&em->list);
4028 free_extent_map(em);
4030 mutex_unlock(&fs_info->chunk_mutex);
4033 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4037 struct inode *btree_inode = buf->pages[0]->mapping->host;
4039 ret = extent_buffer_uptodate(buf);
4043 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044 parent_transid, atomic);
4050 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4052 struct btrfs_fs_info *fs_info;
4053 struct btrfs_root *root;
4054 u64 transid = btrfs_header_generation(buf);
4057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4059 * This is a fast path so only do this check if we have sanity tests
4060 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4061 * outside of the sanity tests.
4063 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4066 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067 fs_info = root->fs_info;
4068 btrfs_assert_tree_locked(buf);
4069 if (transid != fs_info->generation)
4070 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071 buf->start, transid, fs_info->generation);
4072 was_dirty = set_extent_buffer_dirty(buf);
4074 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
4076 fs_info->dirty_metadata_batch);
4077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079 btrfs_print_leaf(fs_info, buf);
4085 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4089 * looks as though older kernels can get into trouble with
4090 * this code, they end up stuck in balance_dirty_pages forever
4094 if (current->flags & PF_MEMALLOC)
4098 btrfs_balance_delayed_items(fs_info);
4100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101 BTRFS_DIRTY_METADATA_THRESH);
4103 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4107 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4109 __btrfs_btree_balance_dirty(fs_info, 1);
4112 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4114 __btrfs_btree_balance_dirty(fs_info, 0);
4117 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4119 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120 struct btrfs_fs_info *fs_info = root->fs_info;
4122 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4125 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4127 struct btrfs_super_block *sb = fs_info->super_copy;
4128 u64 nodesize = btrfs_super_nodesize(sb);
4129 u64 sectorsize = btrfs_super_sectorsize(sb);
4132 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4133 btrfs_err(fs_info, "no valid FS found");
4136 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4137 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4138 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4139 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4140 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4141 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4144 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4145 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4146 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4149 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4150 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4151 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4156 * Check sectorsize and nodesize first, other check will need it.
4157 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4160 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4161 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4164 /* Only PAGE SIZE is supported yet */
4165 if (sectorsize != PAGE_SIZE) {
4167 "sectorsize %llu not supported yet, only support %lu",
4168 sectorsize, PAGE_SIZE);
4171 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4172 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4173 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4176 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4177 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4178 le32_to_cpu(sb->__unused_leafsize), nodesize);
4182 /* Root alignment check */
4183 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4184 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4185 btrfs_super_root(sb));
4188 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4189 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4190 btrfs_super_chunk_root(sb));
4193 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4194 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4195 btrfs_super_log_root(sb));
4199 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201 "dev_item UUID does not match fsid: %pU != %pU",
4202 fs_info->fsid, sb->dev_item.fsid);
4207 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4210 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4211 btrfs_err(fs_info, "bytes_used is too small %llu",
4212 btrfs_super_bytes_used(sb));
4215 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4216 btrfs_err(fs_info, "invalid stripesize %u",
4217 btrfs_super_stripesize(sb));
4220 if (btrfs_super_num_devices(sb) > (1UL << 31))
4221 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4222 btrfs_super_num_devices(sb));
4223 if (btrfs_super_num_devices(sb) == 0) {
4224 btrfs_err(fs_info, "number of devices is 0");
4228 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4229 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4230 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4235 * Obvious sys_chunk_array corruptions, it must hold at least one key
4238 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4239 btrfs_err(fs_info, "system chunk array too big %u > %u",
4240 btrfs_super_sys_array_size(sb),
4241 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4244 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4245 + sizeof(struct btrfs_chunk)) {
4246 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4247 btrfs_super_sys_array_size(sb),
4248 sizeof(struct btrfs_disk_key)
4249 + sizeof(struct btrfs_chunk));
4254 * The generation is a global counter, we'll trust it more than the others
4255 * but it's still possible that it's the one that's wrong.
4257 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259 "suspicious: generation < chunk_root_generation: %llu < %llu",
4260 btrfs_super_generation(sb),
4261 btrfs_super_chunk_root_generation(sb));
4262 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4263 && btrfs_super_cache_generation(sb) != (u64)-1)
4265 "suspicious: generation < cache_generation: %llu < %llu",
4266 btrfs_super_generation(sb),
4267 btrfs_super_cache_generation(sb));
4272 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274 mutex_lock(&fs_info->cleaner_mutex);
4275 btrfs_run_delayed_iputs(fs_info);
4276 mutex_unlock(&fs_info->cleaner_mutex);
4278 down_write(&fs_info->cleanup_work_sem);
4279 up_write(&fs_info->cleanup_work_sem);
4281 /* cleanup FS via transaction */
4282 btrfs_cleanup_transaction(fs_info);
4285 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287 struct btrfs_ordered_extent *ordered;
4289 spin_lock(&root->ordered_extent_lock);
4291 * This will just short circuit the ordered completion stuff which will
4292 * make sure the ordered extent gets properly cleaned up.
4294 list_for_each_entry(ordered, &root->ordered_extents,
4296 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4297 spin_unlock(&root->ordered_extent_lock);
4300 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302 struct btrfs_root *root;
4303 struct list_head splice;
4305 INIT_LIST_HEAD(&splice);
4307 spin_lock(&fs_info->ordered_root_lock);
4308 list_splice_init(&fs_info->ordered_roots, &splice);
4309 while (!list_empty(&splice)) {
4310 root = list_first_entry(&splice, struct btrfs_root,
4312 list_move_tail(&root->ordered_root,
4313 &fs_info->ordered_roots);
4315 spin_unlock(&fs_info->ordered_root_lock);
4316 btrfs_destroy_ordered_extents(root);
4319 spin_lock(&fs_info->ordered_root_lock);
4321 spin_unlock(&fs_info->ordered_root_lock);
4324 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4325 struct btrfs_fs_info *fs_info)
4327 struct rb_node *node;
4328 struct btrfs_delayed_ref_root *delayed_refs;
4329 struct btrfs_delayed_ref_node *ref;
4332 delayed_refs = &trans->delayed_refs;
4334 spin_lock(&delayed_refs->lock);
4335 if (atomic_read(&delayed_refs->num_entries) == 0) {
4336 spin_unlock(&delayed_refs->lock);
4337 btrfs_info(fs_info, "delayed_refs has NO entry");
4341 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4342 struct btrfs_delayed_ref_head *head;
4343 struct btrfs_delayed_ref_node *tmp;
4344 bool pin_bytes = false;
4346 head = rb_entry(node, struct btrfs_delayed_ref_head,
4348 if (!mutex_trylock(&head->mutex)) {
4349 refcount_inc(&head->node.refs);
4350 spin_unlock(&delayed_refs->lock);
4352 mutex_lock(&head->mutex);
4353 mutex_unlock(&head->mutex);
4354 btrfs_put_delayed_ref(&head->node);
4355 spin_lock(&delayed_refs->lock);
4358 spin_lock(&head->lock);
4359 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4362 list_del(&ref->list);
4363 if (!list_empty(&ref->add_list))
4364 list_del(&ref->add_list);
4365 atomic_dec(&delayed_refs->num_entries);
4366 btrfs_put_delayed_ref(ref);
4368 if (head->must_insert_reserved)
4370 btrfs_free_delayed_extent_op(head->extent_op);
4371 delayed_refs->num_heads--;
4372 if (head->processing == 0)
4373 delayed_refs->num_heads_ready--;
4374 atomic_dec(&delayed_refs->num_entries);
4375 head->node.in_tree = 0;
4376 rb_erase(&head->href_node, &delayed_refs->href_root);
4377 spin_unlock(&head->lock);
4378 spin_unlock(&delayed_refs->lock);
4379 mutex_unlock(&head->mutex);
4382 btrfs_pin_extent(fs_info, head->node.bytenr,
4383 head->node.num_bytes, 1);
4384 btrfs_put_delayed_ref(&head->node);
4386 spin_lock(&delayed_refs->lock);
4389 spin_unlock(&delayed_refs->lock);
4394 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396 struct btrfs_inode *btrfs_inode;
4397 struct list_head splice;
4399 INIT_LIST_HEAD(&splice);
4401 spin_lock(&root->delalloc_lock);
4402 list_splice_init(&root->delalloc_inodes, &splice);
4404 while (!list_empty(&splice)) {
4405 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4408 list_del_init(&btrfs_inode->delalloc_inodes);
4409 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4410 &btrfs_inode->runtime_flags);
4411 spin_unlock(&root->delalloc_lock);
4413 btrfs_invalidate_inodes(btrfs_inode->root);
4415 spin_lock(&root->delalloc_lock);
4418 spin_unlock(&root->delalloc_lock);
4421 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423 struct btrfs_root *root;
4424 struct list_head splice;
4426 INIT_LIST_HEAD(&splice);
4428 spin_lock(&fs_info->delalloc_root_lock);
4429 list_splice_init(&fs_info->delalloc_roots, &splice);
4430 while (!list_empty(&splice)) {
4431 root = list_first_entry(&splice, struct btrfs_root,
4433 list_del_init(&root->delalloc_root);
4434 root = btrfs_grab_fs_root(root);
4436 spin_unlock(&fs_info->delalloc_root_lock);
4438 btrfs_destroy_delalloc_inodes(root);
4439 btrfs_put_fs_root(root);
4441 spin_lock(&fs_info->delalloc_root_lock);
4443 spin_unlock(&fs_info->delalloc_root_lock);
4446 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4447 struct extent_io_tree *dirty_pages,
4451 struct extent_buffer *eb;
4456 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4461 clear_extent_bits(dirty_pages, start, end, mark);
4462 while (start <= end) {
4463 eb = find_extent_buffer(fs_info, start);
4464 start += fs_info->nodesize;
4467 wait_on_extent_buffer_writeback(eb);
4469 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471 clear_extent_buffer_dirty(eb);
4472 free_extent_buffer_stale(eb);
4479 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4480 struct extent_io_tree *pinned_extents)
4482 struct extent_io_tree *unpin;
4488 unpin = pinned_extents;
4491 ret = find_first_extent_bit(unpin, 0, &start, &end,
4492 EXTENT_DIRTY, NULL);
4496 clear_extent_dirty(unpin, start, end);
4497 btrfs_error_unpin_extent_range(fs_info, start, end);
4502 if (unpin == &fs_info->freed_extents[0])
4503 unpin = &fs_info->freed_extents[1];
4505 unpin = &fs_info->freed_extents[0];
4513 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515 struct inode *inode;
4517 inode = cache->io_ctl.inode;
4519 invalidate_inode_pages2(inode->i_mapping);
4520 BTRFS_I(inode)->generation = 0;
4521 cache->io_ctl.inode = NULL;
4524 btrfs_put_block_group(cache);
4527 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4528 struct btrfs_fs_info *fs_info)
4530 struct btrfs_block_group_cache *cache;
4532 spin_lock(&cur_trans->dirty_bgs_lock);
4533 while (!list_empty(&cur_trans->dirty_bgs)) {
4534 cache = list_first_entry(&cur_trans->dirty_bgs,
4535 struct btrfs_block_group_cache,
4538 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4539 spin_unlock(&cur_trans->dirty_bgs_lock);
4543 if (!list_empty(&cache->io_list)) {
4544 spin_unlock(&cur_trans->dirty_bgs_lock);
4545 list_del_init(&cache->io_list);
4546 btrfs_cleanup_bg_io(cache);
4547 spin_lock(&cur_trans->dirty_bgs_lock);
4550 list_del_init(&cache->dirty_list);
4551 spin_lock(&cache->lock);
4552 cache->disk_cache_state = BTRFS_DC_ERROR;
4553 spin_unlock(&cache->lock);
4555 spin_unlock(&cur_trans->dirty_bgs_lock);
4556 btrfs_put_block_group(cache);
4557 spin_lock(&cur_trans->dirty_bgs_lock);
4559 spin_unlock(&cur_trans->dirty_bgs_lock);
4561 while (!list_empty(&cur_trans->io_bgs)) {
4562 cache = list_first_entry(&cur_trans->io_bgs,
4563 struct btrfs_block_group_cache,
4566 btrfs_err(fs_info, "orphan block group on io_bgs list");
4570 list_del_init(&cache->io_list);
4571 spin_lock(&cache->lock);
4572 cache->disk_cache_state = BTRFS_DC_ERROR;
4573 spin_unlock(&cache->lock);
4574 btrfs_cleanup_bg_io(cache);
4578 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4579 struct btrfs_fs_info *fs_info)
4581 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4582 ASSERT(list_empty(&cur_trans->dirty_bgs));
4583 ASSERT(list_empty(&cur_trans->io_bgs));
4585 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587 cur_trans->state = TRANS_STATE_COMMIT_START;
4588 wake_up(&fs_info->transaction_blocked_wait);
4590 cur_trans->state = TRANS_STATE_UNBLOCKED;
4591 wake_up(&fs_info->transaction_wait);
4593 btrfs_destroy_delayed_inodes(fs_info);
4594 btrfs_assert_delayed_root_empty(fs_info);
4596 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598 btrfs_destroy_pinned_extent(fs_info,
4599 fs_info->pinned_extents);
4601 cur_trans->state =TRANS_STATE_COMPLETED;
4602 wake_up(&cur_trans->commit_wait);
4605 memset(cur_trans, 0, sizeof(*cur_trans));
4606 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4610 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612 struct btrfs_transaction *t;
4614 mutex_lock(&fs_info->transaction_kthread_mutex);
4616 spin_lock(&fs_info->trans_lock);
4617 while (!list_empty(&fs_info->trans_list)) {
4618 t = list_first_entry(&fs_info->trans_list,
4619 struct btrfs_transaction, list);
4620 if (t->state >= TRANS_STATE_COMMIT_START) {
4621 refcount_inc(&t->use_count);
4622 spin_unlock(&fs_info->trans_lock);
4623 btrfs_wait_for_commit(fs_info, t->transid);
4624 btrfs_put_transaction(t);
4625 spin_lock(&fs_info->trans_lock);
4628 if (t == fs_info->running_transaction) {
4629 t->state = TRANS_STATE_COMMIT_DOING;
4630 spin_unlock(&fs_info->trans_lock);
4632 * We wait for 0 num_writers since we don't hold a trans
4633 * handle open currently for this transaction.
4635 wait_event(t->writer_wait,
4636 atomic_read(&t->num_writers) == 0);
4638 spin_unlock(&fs_info->trans_lock);
4640 btrfs_cleanup_one_transaction(t, fs_info);
4642 spin_lock(&fs_info->trans_lock);
4643 if (t == fs_info->running_transaction)
4644 fs_info->running_transaction = NULL;
4645 list_del_init(&t->list);
4646 spin_unlock(&fs_info->trans_lock);
4648 btrfs_put_transaction(t);
4649 trace_btrfs_transaction_commit(fs_info->tree_root);
4650 spin_lock(&fs_info->trans_lock);
4652 spin_unlock(&fs_info->trans_lock);
4653 btrfs_destroy_all_ordered_extents(fs_info);
4654 btrfs_destroy_delayed_inodes(fs_info);
4655 btrfs_assert_delayed_root_empty(fs_info);
4656 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4657 btrfs_destroy_all_delalloc_inodes(fs_info);
4658 mutex_unlock(&fs_info->transaction_kthread_mutex);
4663 static const struct extent_io_ops btree_extent_io_ops = {
4664 /* mandatory callbacks */
4665 .submit_bio_hook = btree_submit_bio_hook,
4666 .readpage_end_io_hook = btree_readpage_end_io_hook,
4667 /* note we're sharing with inode.c for the merge bio hook */
4668 .merge_bio_hook = btrfs_merge_bio_hook,
4669 .readpage_io_failed_hook = btree_io_failed_hook,
4671 /* optional callbacks */