]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c
Merge patch series "File abstractions needed by Rust Binder"
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_gmc.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51         int r;
52         struct amdgpu_bo_param bp;
53         u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54         uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55         uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56
57         memset(&bp, 0, sizeof(bp));
58         bp.size = PAGE_ALIGN((npdes + 1) * 8);
59         bp.byte_align = PAGE_SIZE;
60         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61         bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62                 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63         bp.type = ttm_bo_type_kernel;
64         bp.resv = NULL;
65         bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66
67         r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68         if (r)
69                 return r;
70
71         r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72         if (unlikely(r != 0))
73                 goto bo_reserve_failure;
74
75         r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76         if (r)
77                 goto bo_pin_failure;
78         r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79         if (r)
80                 goto bo_kmap_failure;
81
82         amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83         return 0;
84
85 bo_kmap_failure:
86         amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88         amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90         amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91         return r;
92 }
93
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105                                uint64_t *addr, uint64_t *flags)
106 {
107         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108
109         switch (bo->tbo.resource->mem_type) {
110         case TTM_PL_TT:
111                 *addr = bo->tbo.ttm->dma_address[0];
112                 break;
113         case TTM_PL_VRAM:
114                 *addr = amdgpu_bo_gpu_offset(bo);
115                 break;
116         default:
117                 *addr = 0;
118                 break;
119         }
120         *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121         amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130         uint64_t pd_addr;
131
132         /* TODO: move that into ASIC specific code */
133         if (adev->asic_type >= CHIP_VEGA10) {
134                 uint64_t flags = AMDGPU_PTE_VALID;
135
136                 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137                 pd_addr |= flags;
138         } else {
139                 pd_addr = amdgpu_bo_gpu_offset(bo);
140         }
141         return pd_addr;
142 }
143
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156                                 uint32_t gpu_page_idx, uint64_t addr,
157                                 uint64_t flags)
158 {
159         void __iomem *ptr = (void *)cpu_pt_addr;
160         uint64_t value;
161
162         /*
163          * The following is for PTE only. GART does not have PDEs.
164         */
165         value = addr & 0x0000FFFFFFFFF000ULL;
166         value |= flags;
167         writeq(value, ptr + (gpu_page_idx * 8));
168
169         return 0;
170 }
171
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183
184         if (!bo->ttm)
185                 return AMDGPU_BO_INVALID_OFFSET;
186
187         if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188                 return AMDGPU_BO_INVALID_OFFSET;
189
190         if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191                 return AMDGPU_BO_INVALID_OFFSET;
192
193         return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195
196 /**
197  * amdgpu_gmc_vram_location - try to find VRAM location
198  *
199  * @adev: amdgpu device structure holding all necessary information
200  * @mc: memory controller structure holding memory information
201  * @base: base address at which to put VRAM
202  *
203  * Function will try to place VRAM at base address provided
204  * as parameter.
205  */
206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207                               u64 base)
208 {
209         uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210         uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211
212         mc->vram_start = base;
213         mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214         if (limit < mc->real_vram_size)
215                 mc->real_vram_size = limit;
216
217         if (vis_limit && vis_limit < mc->visible_vram_size)
218                 mc->visible_vram_size = vis_limit;
219
220         if (mc->real_vram_size < mc->visible_vram_size)
221                 mc->visible_vram_size = mc->real_vram_size;
222
223         if (mc->xgmi.num_physical_nodes == 0) {
224                 mc->fb_start = mc->vram_start;
225                 mc->fb_end = mc->vram_end;
226         }
227         dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228                         mc->mc_vram_size >> 20, mc->vram_start,
229                         mc->vram_end, mc->real_vram_size >> 20);
230 }
231
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233  *
234  * @adev: amdgpu device structure holding all necessary information
235  * @mc: memory controller structure holding memory information
236  *
237  * This function is only used if use GART for FB translation. In such
238  * case, we use sysvm aperture (vmid0 page tables) for both vram
239  * and gart (aka system memory) access.
240  *
241  * GPUVM (and our organization of vmid0 page tables) require sysvm
242  * aperture to be placed at a location aligned with 8 times of native
243  * page size. For example, if vm_context0_cntl.page_table_block_size
244  * is 12, then native page size is 8G (2M*2^12), sysvm should start
245  * with a 64G aligned address. For simplicity, we just put sysvm at
246  * address 0. So vram start at address 0 and gart is right after vram.
247  */
248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250         u64 hive_vram_start = 0;
251         u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252         mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253         mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254         mc->gart_start = hive_vram_end + 1;
255         mc->gart_end = mc->gart_start + mc->gart_size - 1;
256         mc->fb_start = hive_vram_start;
257         mc->fb_end = hive_vram_end;
258         dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259                         mc->mc_vram_size >> 20, mc->vram_start,
260                         mc->vram_end, mc->real_vram_size >> 20);
261         dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262                         mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264
265 /**
266  * amdgpu_gmc_gart_location - try to find GART location
267  *
268  * @adev: amdgpu device structure holding all necessary information
269  * @mc: memory controller structure holding memory information
270  * @gart_placement: GART placement policy with respect to VRAM
271  *
272  * Function will place try to place GART before or after VRAM.
273  * If GART size is bigger than space left then we ajust GART size.
274  * Thus function will never fails.
275  */
276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277                               enum amdgpu_gart_placement gart_placement)
278 {
279         const uint64_t four_gb = 0x100000000ULL;
280         u64 size_af, size_bf;
281         /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282         u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283
284         /* VCE doesn't like it when BOs cross a 4GB segment, so align
285          * the GART base on a 4GB boundary as well.
286          */
287         size_bf = mc->fb_start;
288         size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289
290         if (mc->gart_size > max(size_bf, size_af)) {
291                 dev_warn(adev->dev, "limiting GART\n");
292                 mc->gart_size = max(size_bf, size_af);
293         }
294
295         switch (gart_placement) {
296         case AMDGPU_GART_PLACEMENT_HIGH:
297                 mc->gart_start = max_mc_address - mc->gart_size + 1;
298                 break;
299         case AMDGPU_GART_PLACEMENT_LOW:
300                 mc->gart_start = 0;
301                 break;
302         case AMDGPU_GART_PLACEMENT_BEST_FIT:
303         default:
304                 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305                     (size_af < mc->gart_size))
306                         mc->gart_start = 0;
307                 else
308                         mc->gart_start = max_mc_address - mc->gart_size + 1;
309                 break;
310         }
311
312         mc->gart_start &= ~(four_gb - 1);
313         mc->gart_end = mc->gart_start + mc->gart_size - 1;
314         dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315                         mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317
318 /**
319  * amdgpu_gmc_agp_location - try to find AGP location
320  * @adev: amdgpu device structure holding all necessary information
321  * @mc: memory controller structure holding memory information
322  *
323  * Function will place try to find a place for the AGP BAR in the MC address
324  * space.
325  *
326  * AGP BAR will be assigned the largest available hole in the address space.
327  * Should be called after VRAM and GART locations are setup.
328  */
329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331         const uint64_t sixteen_gb = 1ULL << 34;
332         const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333         u64 size_af, size_bf;
334
335         if (mc->fb_start > mc->gart_start) {
336                 size_bf = (mc->fb_start & sixteen_gb_mask) -
337                         ALIGN(mc->gart_end + 1, sixteen_gb);
338                 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339         } else {
340                 size_bf = mc->fb_start & sixteen_gb_mask;
341                 size_af = (mc->gart_start & sixteen_gb_mask) -
342                         ALIGN(mc->fb_end + 1, sixteen_gb);
343         }
344
345         if (size_bf > size_af) {
346                 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347                 mc->agp_size = size_bf;
348         } else {
349                 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350                 mc->agp_size = size_af;
351         }
352
353         mc->agp_end = mc->agp_start + mc->agp_size - 1;
354         dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355                         mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357
358 /**
359  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360  * @adev: amdgpu device structure holding all necessary information
361  * @mc: memory controller structure holding memory information
362  *
363  * To disable the AGP aperture, you need to set the start to a larger
364  * value than the end.  This function sets the default value which
365  * can then be overridden using amdgpu_gmc_agp_location() if you want
366  * to enable the AGP aperture on a specific chip.
367  *
368  */
369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370                                 struct amdgpu_gmc *mc)
371 {
372         mc->agp_start = 0xffffffffffff;
373         mc->agp_end = 0;
374         mc->agp_size = 0;
375 }
376
377 /**
378  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379  *
380  * @addr: 48 bit physical address, page aligned (36 significant bits)
381  * @pasid: 16 bit process address space identifier
382  */
383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385         return addr << 4 | pasid;
386 }
387
388 /**
389  * amdgpu_gmc_filter_faults - filter VM faults
390  *
391  * @adev: amdgpu device structure
392  * @ih: interrupt ring that the fault received from
393  * @addr: address of the VM fault
394  * @pasid: PASID of the process causing the fault
395  * @timestamp: timestamp of the fault
396  *
397  * Returns:
398  * True if the fault was filtered and should not be processed further.
399  * False if the fault is a new one and needs to be handled.
400  */
401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402                               struct amdgpu_ih_ring *ih, uint64_t addr,
403                               uint16_t pasid, uint64_t timestamp)
404 {
405         struct amdgpu_gmc *gmc = &adev->gmc;
406         uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407         struct amdgpu_gmc_fault *fault;
408         uint32_t hash;
409
410         /* Stale retry fault if timestamp goes backward */
411         if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412                 return true;
413
414         /* If we don't have space left in the ring buffer return immediately */
415         stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416                 AMDGPU_GMC_FAULT_TIMEOUT;
417         if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418                 return true;
419
420         /* Try to find the fault in the hash */
421         hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422         fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423         while (fault->timestamp >= stamp) {
424                 uint64_t tmp;
425
426                 if (atomic64_read(&fault->key) == key) {
427                         /*
428                          * if we get a fault which is already present in
429                          * the fault_ring and the timestamp of
430                          * the fault is after the expired timestamp,
431                          * then this is a new fault that needs to be added
432                          * into the fault ring.
433                          */
434                         if (fault->timestamp_expiry != 0 &&
435                             amdgpu_ih_ts_after(fault->timestamp_expiry,
436                                                timestamp))
437                                 break;
438                         else
439                                 return true;
440                 }
441
442                 tmp = fault->timestamp;
443                 fault = &gmc->fault_ring[fault->next];
444
445                 /* Check if the entry was reused */
446                 if (fault->timestamp >= tmp)
447                         break;
448         }
449
450         /* Add the fault to the ring */
451         fault = &gmc->fault_ring[gmc->last_fault];
452         atomic64_set(&fault->key, key);
453         fault->timestamp = timestamp;
454
455         /* And update the hash */
456         fault->next = gmc->fault_hash[hash].idx;
457         gmc->fault_hash[hash].idx = gmc->last_fault++;
458         return false;
459 }
460
461 /**
462  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463  *
464  * @adev: amdgpu device structure
465  * @addr: address of the VM fault
466  * @pasid: PASID of the process causing the fault
467  *
468  * Remove the address from fault filter, then future vm fault on this address
469  * will pass to retry fault handler to recover.
470  */
471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472                                      uint16_t pasid)
473 {
474         struct amdgpu_gmc *gmc = &adev->gmc;
475         uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476         struct amdgpu_ih_ring *ih;
477         struct amdgpu_gmc_fault *fault;
478         uint32_t last_wptr;
479         uint64_t last_ts;
480         uint32_t hash;
481         uint64_t tmp;
482
483         if (adev->irq.retry_cam_enabled)
484                 return;
485
486         ih = &adev->irq.ih1;
487         /* Get the WPTR of the last entry in IH ring */
488         last_wptr = amdgpu_ih_get_wptr(adev, ih);
489         /* Order wptr with ring data. */
490         rmb();
491         /* Get the timetamp of the last entry in IH ring */
492         last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493
494         hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495         fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496         do {
497                 if (atomic64_read(&fault->key) == key) {
498                         /*
499                          * Update the timestamp when this fault
500                          * expired.
501                          */
502                         fault->timestamp_expiry = last_ts;
503                         break;
504                 }
505
506                 tmp = fault->timestamp;
507                 fault = &gmc->fault_ring[fault->next];
508         } while (fault->timestamp < tmp);
509 }
510
511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513         int r;
514
515         /* umc ras block */
516         r = amdgpu_umc_ras_sw_init(adev);
517         if (r)
518                 return r;
519
520         /* mmhub ras block */
521         r = amdgpu_mmhub_ras_sw_init(adev);
522         if (r)
523                 return r;
524
525         /* hdp ras block */
526         r = amdgpu_hdp_ras_sw_init(adev);
527         if (r)
528                 return r;
529
530         /* mca.x ras block */
531         r = amdgpu_mca_mp0_ras_sw_init(adev);
532         if (r)
533                 return r;
534
535         r = amdgpu_mca_mp1_ras_sw_init(adev);
536         if (r)
537                 return r;
538
539         r = amdgpu_mca_mpio_ras_sw_init(adev);
540         if (r)
541                 return r;
542
543         /* xgmi ras block */
544         r = amdgpu_xgmi_ras_sw_init(adev);
545         if (r)
546                 return r;
547
548         return 0;
549 }
550
551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553         return 0;
554 }
555
556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558
559 }
560
561         /*
562          * The latest engine allocation on gfx9/10 is:
563          * Engine 2, 3: firmware
564          * Engine 0, 1, 4~16: amdgpu ring,
565          *                    subject to change when ring number changes
566          * Engine 17: Gart flushes
567          */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP             0x1FFF3
569
570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572         struct amdgpu_ring *ring;
573         unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574         unsigned i;
575         unsigned vmhub, inv_eng;
576
577         /* init the vm inv eng for all vmhubs */
578         for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
579                 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
580                 /* reserve engine 5 for firmware */
581                 if (adev->enable_mes)
582                         vm_inv_engs[i] &= ~(1 << 5);
583                 /* reserve mmhub engine 3 for firmware */
584                 if (adev->enable_umsch_mm)
585                         vm_inv_engs[i] &= ~(1 << 3);
586         }
587
588         for (i = 0; i < adev->num_rings; ++i) {
589                 ring = adev->rings[i];
590                 vmhub = ring->vm_hub;
591
592                 if (ring == &adev->mes.ring[0] ||
593                     ring == &adev->mes.ring[1] ||
594                     ring == &adev->umsch_mm.ring)
595                         continue;
596
597                 inv_eng = ffs(vm_inv_engs[vmhub]);
598                 if (!inv_eng) {
599                         dev_err(adev->dev, "no VM inv eng for ring %s\n",
600                                 ring->name);
601                         return -EINVAL;
602                 }
603
604                 ring->vm_inv_eng = inv_eng - 1;
605                 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
606
607                 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
608                          ring->name, ring->vm_inv_eng, ring->vm_hub);
609         }
610
611         return 0;
612 }
613
614 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
615                               uint32_t vmhub, uint32_t flush_type)
616 {
617         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
618         struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
619         struct dma_fence *fence;
620         struct amdgpu_job *job;
621         int r;
622
623         if (!hub->sdma_invalidation_workaround || vmid ||
624             !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
625             !ring->sched.ready) {
626                 /*
627                  * A GPU reset should flush all TLBs anyway, so no need to do
628                  * this while one is ongoing.
629                  */
630                 if (!down_read_trylock(&adev->reset_domain->sem))
631                         return;
632
633                 if (adev->gmc.flush_tlb_needs_extra_type_2)
634                         adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
635                                                            vmhub, 2);
636
637                 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
638                         adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
639                                                            vmhub, 0);
640
641                 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
642                                                    flush_type);
643                 up_read(&adev->reset_domain->sem);
644                 return;
645         }
646
647         /* The SDMA on Navi 1x has a bug which can theoretically result in memory
648          * corruption if an invalidation happens at the same time as an VA
649          * translation. Avoid this by doing the invalidation from the SDMA
650          * itself at least for GART.
651          */
652         mutex_lock(&adev->mman.gtt_window_lock);
653         r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
654                                      AMDGPU_FENCE_OWNER_UNDEFINED,
655                                      16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
656                                      &job);
657         if (r)
658                 goto error_alloc;
659
660         job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
661         job->vm_needs_flush = true;
662         job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
663         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
664         fence = amdgpu_job_submit(job);
665         mutex_unlock(&adev->mman.gtt_window_lock);
666
667         dma_fence_wait(fence, false);
668         dma_fence_put(fence);
669
670         return;
671
672 error_alloc:
673         mutex_unlock(&adev->mman.gtt_window_lock);
674         dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
675 }
676
677 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
678                                    uint32_t flush_type, bool all_hub,
679                                    uint32_t inst)
680 {
681         u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
682                 adev->usec_timeout;
683         struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
684         struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
685         unsigned int ndw;
686         int r;
687         uint32_t seq;
688
689         /*
690          * A GPU reset should flush all TLBs anyway, so no need to do
691          * this while one is ongoing.
692          */
693         if (!down_read_trylock(&adev->reset_domain->sem))
694                 return 0;
695
696         if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
697                 if (adev->gmc.flush_tlb_needs_extra_type_2)
698                         adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
699                                                                  2, all_hub,
700                                                                  inst);
701
702                 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
703                         adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
704                                                                  0, all_hub,
705                                                                  inst);
706
707                 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
708                                                          flush_type, all_hub,
709                                                          inst);
710                 r = 0;
711         } else {
712                 /* 2 dwords flush + 8 dwords fence */
713                 ndw = kiq->pmf->invalidate_tlbs_size + 8;
714
715                 if (adev->gmc.flush_tlb_needs_extra_type_2)
716                         ndw += kiq->pmf->invalidate_tlbs_size;
717
718                 if (adev->gmc.flush_tlb_needs_extra_type_0)
719                         ndw += kiq->pmf->invalidate_tlbs_size;
720
721                 spin_lock(&adev->gfx.kiq[inst].ring_lock);
722                 r = amdgpu_ring_alloc(ring, ndw);
723                 if (r) {
724                         spin_unlock(&adev->gfx.kiq[inst].ring_lock);
725                         goto error_unlock_reset;
726                 }
727                 if (adev->gmc.flush_tlb_needs_extra_type_2)
728                         kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
729
730                 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
731                         kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
732
733                 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
734                 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
735                 if (r) {
736                         amdgpu_ring_undo(ring);
737                         spin_unlock(&adev->gfx.kiq[inst].ring_lock);
738                         goto error_unlock_reset;
739                 }
740
741                 amdgpu_ring_commit(ring);
742                 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
743                 if (amdgpu_fence_wait_polling(ring, seq, usec_timeout) < 1) {
744                         dev_err(adev->dev, "timeout waiting for kiq fence\n");
745                         r = -ETIME;
746                 }
747         }
748
749 error_unlock_reset:
750         up_read(&adev->reset_domain->sem);
751         return r;
752 }
753
754 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
755                                       uint32_t reg0, uint32_t reg1,
756                                       uint32_t ref, uint32_t mask,
757                                       uint32_t xcc_inst)
758 {
759         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
760         struct amdgpu_ring *ring = &kiq->ring;
761         signed long r, cnt = 0;
762         unsigned long flags;
763         uint32_t seq;
764
765         if (adev->mes.ring[0].sched.ready) {
766                 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
767                                               ref, mask);
768                 return;
769         }
770
771         spin_lock_irqsave(&kiq->ring_lock, flags);
772         amdgpu_ring_alloc(ring, 32);
773         amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
774                                             ref, mask);
775         r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
776         if (r)
777                 goto failed_undo;
778
779         amdgpu_ring_commit(ring);
780         spin_unlock_irqrestore(&kiq->ring_lock, flags);
781
782         r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
783
784         /* don't wait anymore for IRQ context */
785         if (r < 1 && in_interrupt())
786                 goto failed_kiq;
787
788         might_sleep();
789         while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
790                !amdgpu_reset_pending(adev->reset_domain)) {
791
792                 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
793                 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
794         }
795
796         if (cnt > MAX_KIQ_REG_TRY)
797                 goto failed_kiq;
798
799         return;
800
801 failed_undo:
802         amdgpu_ring_undo(ring);
803         spin_unlock_irqrestore(&kiq->ring_lock, flags);
804 failed_kiq:
805         dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
806 }
807
808 /**
809  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
810  * @adev: amdgpu_device pointer
811  *
812  * Check and set if an the device @adev supports Trusted Memory
813  * Zones (TMZ).
814  */
815 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
816 {
817         switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
818         /* RAVEN */
819         case IP_VERSION(9, 2, 2):
820         case IP_VERSION(9, 1, 0):
821         /* RENOIR looks like RAVEN */
822         case IP_VERSION(9, 3, 0):
823         /* GC 10.3.7 */
824         case IP_VERSION(10, 3, 7):
825         /* GC 11.0.1 */
826         case IP_VERSION(11, 0, 1):
827                 if (amdgpu_tmz == 0) {
828                         adev->gmc.tmz_enabled = false;
829                         dev_info(adev->dev,
830                                  "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
831                 } else {
832                         adev->gmc.tmz_enabled = true;
833                         dev_info(adev->dev,
834                                  "Trusted Memory Zone (TMZ) feature enabled\n");
835                 }
836                 break;
837         case IP_VERSION(10, 1, 10):
838         case IP_VERSION(10, 1, 1):
839         case IP_VERSION(10, 1, 2):
840         case IP_VERSION(10, 1, 3):
841         case IP_VERSION(10, 3, 0):
842         case IP_VERSION(10, 3, 2):
843         case IP_VERSION(10, 3, 4):
844         case IP_VERSION(10, 3, 5):
845         case IP_VERSION(10, 3, 6):
846         /* VANGOGH */
847         case IP_VERSION(10, 3, 1):
848         /* YELLOW_CARP*/
849         case IP_VERSION(10, 3, 3):
850         case IP_VERSION(11, 0, 4):
851         case IP_VERSION(11, 5, 0):
852         case IP_VERSION(11, 5, 1):
853         case IP_VERSION(11, 5, 2):
854                 /* Don't enable it by default yet.
855                  */
856                 if (amdgpu_tmz < 1) {
857                         adev->gmc.tmz_enabled = false;
858                         dev_info(adev->dev,
859                                  "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
860                 } else {
861                         adev->gmc.tmz_enabled = true;
862                         dev_info(adev->dev,
863                                  "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
864                 }
865                 break;
866         default:
867                 adev->gmc.tmz_enabled = false;
868                 dev_info(adev->dev,
869                          "Trusted Memory Zone (TMZ) feature not supported\n");
870                 break;
871         }
872 }
873
874 /**
875  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
876  * @adev: amdgpu_device pointer
877  *
878  * Set a per asic default for the no-retry parameter.
879  *
880  */
881 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
882 {
883         struct amdgpu_gmc *gmc = &adev->gmc;
884         uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
885         bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
886                                 gc_ver == IP_VERSION(9, 4, 0) ||
887                                 gc_ver == IP_VERSION(9, 4, 1) ||
888                                 gc_ver == IP_VERSION(9, 4, 2) ||
889                                 gc_ver == IP_VERSION(9, 4, 3) ||
890                                 gc_ver == IP_VERSION(9, 4, 4) ||
891                                 gc_ver >= IP_VERSION(10, 3, 0));
892
893         if (!amdgpu_sriov_xnack_support(adev))
894                 gmc->noretry = 1;
895         else
896                 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
897 }
898
899 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
900                                    bool enable)
901 {
902         struct amdgpu_vmhub *hub;
903         u32 tmp, reg, i;
904
905         hub = &adev->vmhub[hub_type];
906         for (i = 0; i < 16; i++) {
907                 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
908
909                 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
910                         RREG32_SOC15_IP(GC, reg) :
911                         RREG32_SOC15_IP(MMHUB, reg);
912
913                 if (enable)
914                         tmp |= hub->vm_cntx_cntl_vm_fault;
915                 else
916                         tmp &= ~hub->vm_cntx_cntl_vm_fault;
917
918                 (hub_type == AMDGPU_GFXHUB(0)) ?
919                         WREG32_SOC15_IP(GC, reg, tmp) :
920                         WREG32_SOC15_IP(MMHUB, reg, tmp);
921         }
922 }
923
924 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
925 {
926         unsigned size;
927
928         /*
929          * Some ASICs need to reserve a region of video memory to avoid access
930          * from driver
931          */
932         adev->mman.stolen_reserved_offset = 0;
933         adev->mman.stolen_reserved_size = 0;
934
935         /*
936          * TODO:
937          * Currently there is a bug where some memory client outside
938          * of the driver writes to first 8M of VRAM on S3 resume,
939          * this overrides GART which by default gets placed in first 8M and
940          * causes VM_FAULTS once GTT is accessed.
941          * Keep the stolen memory reservation until the while this is not solved.
942          */
943         switch (adev->asic_type) {
944         case CHIP_VEGA10:
945                 adev->mman.keep_stolen_vga_memory = true;
946                 /*
947                  * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
948                  */
949 #ifdef CONFIG_X86
950                 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
951                         adev->mman.stolen_reserved_offset = 0x500000;
952                         adev->mman.stolen_reserved_size = 0x200000;
953                 }
954 #endif
955                 break;
956         case CHIP_RAVEN:
957         case CHIP_RENOIR:
958                 adev->mman.keep_stolen_vga_memory = true;
959                 break;
960         default:
961                 adev->mman.keep_stolen_vga_memory = false;
962                 break;
963         }
964
965         if (amdgpu_sriov_vf(adev) ||
966             !amdgpu_device_has_display_hardware(adev)) {
967                 size = 0;
968         } else {
969                 size = amdgpu_gmc_get_vbios_fb_size(adev);
970
971                 if (adev->mman.keep_stolen_vga_memory)
972                         size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
973         }
974
975         /* set to 0 if the pre-OS buffer uses up most of vram */
976         if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
977                 size = 0;
978
979         if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
980                 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
981                 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
982         } else {
983                 adev->mman.stolen_vga_size = size;
984                 adev->mman.stolen_extended_size = 0;
985         }
986 }
987
988 /**
989  * amdgpu_gmc_init_pdb0 - initialize PDB0
990  *
991  * @adev: amdgpu_device pointer
992  *
993  * This function is only used when GART page table is used
994  * for FB address translatioin. In such a case, we construct
995  * a 2-level system VM page table: PDB0->PTB, to cover both
996  * VRAM of the hive and system memory.
997  *
998  * PDB0 is static, initialized once on driver initialization.
999  * The first n entries of PDB0 are used as PTE by setting
1000  * P bit to 1, pointing to VRAM. The n+1'th entry points
1001  * to a big PTB covering system memory.
1002  *
1003  */
1004 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1005 {
1006         int i;
1007         uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1008         /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1009          */
1010         u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1011         u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1012         u64 vram_addr = adev->vm_manager.vram_base_offset -
1013                 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1014         u64 vram_end = vram_addr + vram_size;
1015         u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1016         int idx;
1017
1018         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1019                 return;
1020
1021         flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1022         flags |= AMDGPU_PTE_WRITEABLE;
1023         flags |= AMDGPU_PTE_SNOOPED;
1024         flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1025         flags |= AMDGPU_PDE_PTE_FLAG(adev);
1026
1027         /* The first n PDE0 entries are used as PTE,
1028          * pointing to vram
1029          */
1030         for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1031                 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1032
1033         /* The n+1'th PDE0 entry points to a huge
1034          * PTB who has more than 512 entries each
1035          * pointing to a 4K system page
1036          */
1037         flags = AMDGPU_PTE_VALID;
1038         flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1039         /* Requires gart_ptb_gpu_pa to be 4K aligned */
1040         amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1041         drm_dev_exit(idx);
1042 }
1043
1044 /**
1045  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1046  * address
1047  *
1048  * @adev: amdgpu_device pointer
1049  * @mc_addr: MC address of buffer
1050  */
1051 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1052 {
1053         return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1054 }
1055
1056 /**
1057  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1058  * GPU's view
1059  *
1060  * @adev: amdgpu_device pointer
1061  * @bo: amdgpu buffer object
1062  */
1063 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1064 {
1065         return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1066 }
1067
1068 /**
1069  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1070  * from CPU's view
1071  *
1072  * @adev: amdgpu_device pointer
1073  * @bo: amdgpu buffer object
1074  */
1075 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1076 {
1077         return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1078 }
1079
1080 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1081 {
1082         struct amdgpu_bo *vram_bo = NULL;
1083         uint64_t vram_gpu = 0;
1084         void *vram_ptr = NULL;
1085
1086         int ret, size = 0x100000;
1087         uint8_t cptr[10];
1088
1089         ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1090                                 AMDGPU_GEM_DOMAIN_VRAM,
1091                                 &vram_bo,
1092                                 &vram_gpu,
1093                                 &vram_ptr);
1094         if (ret)
1095                 return ret;
1096
1097         memset(vram_ptr, 0x86, size);
1098         memset(cptr, 0x86, 10);
1099
1100         /**
1101          * Check the start, the mid, and the end of the memory if the content of
1102          * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1103          * workable.
1104          *
1105          * Note: If check the each byte of whole 1M bo, it will cost too many
1106          * seconds, so here, we just pick up three parts for emulation.
1107          */
1108         ret = memcmp(vram_ptr, cptr, 10);
1109         if (ret) {
1110                 ret = -EIO;
1111                 goto release_buffer;
1112         }
1113
1114         ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1115         if (ret) {
1116                 ret = -EIO;
1117                 goto release_buffer;
1118         }
1119
1120         ret = memcmp(vram_ptr + size - 10, cptr, 10);
1121         if (ret) {
1122                 ret = -EIO;
1123                 goto release_buffer;
1124         }
1125
1126 release_buffer:
1127         amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1128                         &vram_ptr);
1129
1130         return ret;
1131 }
1132
1133 static ssize_t current_memory_partition_show(
1134         struct device *dev, struct device_attribute *addr, char *buf)
1135 {
1136         struct drm_device *ddev = dev_get_drvdata(dev);
1137         struct amdgpu_device *adev = drm_to_adev(ddev);
1138         enum amdgpu_memory_partition mode;
1139
1140         mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1141         switch (mode) {
1142         case AMDGPU_NPS1_PARTITION_MODE:
1143                 return sysfs_emit(buf, "NPS1\n");
1144         case AMDGPU_NPS2_PARTITION_MODE:
1145                 return sysfs_emit(buf, "NPS2\n");
1146         case AMDGPU_NPS3_PARTITION_MODE:
1147                 return sysfs_emit(buf, "NPS3\n");
1148         case AMDGPU_NPS4_PARTITION_MODE:
1149                 return sysfs_emit(buf, "NPS4\n");
1150         case AMDGPU_NPS6_PARTITION_MODE:
1151                 return sysfs_emit(buf, "NPS6\n");
1152         case AMDGPU_NPS8_PARTITION_MODE:
1153                 return sysfs_emit(buf, "NPS8\n");
1154         default:
1155                 return sysfs_emit(buf, "UNKNOWN\n");
1156         }
1157 }
1158
1159 static DEVICE_ATTR_RO(current_memory_partition);
1160
1161 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1162 {
1163         if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1164                 return 0;
1165
1166         return device_create_file(adev->dev,
1167                                   &dev_attr_current_memory_partition);
1168 }
1169
1170 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1171 {
1172         device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1173 }
1174
1175 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1176                                  struct amdgpu_mem_partition_info *mem_ranges,
1177                                  int exp_ranges)
1178 {
1179         struct amdgpu_gmc_memrange *ranges;
1180         int range_cnt, ret, i, j;
1181         uint32_t nps_type;
1182
1183         if (!mem_ranges)
1184                 return -EINVAL;
1185
1186         ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1187                                             &range_cnt);
1188
1189         if (ret)
1190                 return ret;
1191
1192         /* TODO: For now, expect ranges and partition count to be the same.
1193          * Adjust if there are holes expected in any NPS domain.
1194          */
1195         if (range_cnt != exp_ranges) {
1196                 dev_warn(
1197                         adev->dev,
1198                         "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1199                         exp_ranges, nps_type, range_cnt);
1200                 ret = -EINVAL;
1201                 goto err;
1202         }
1203
1204         for (i = 0; i < exp_ranges; ++i) {
1205                 if (ranges[i].base_address >= ranges[i].limit_address) {
1206                         dev_warn(
1207                                 adev->dev,
1208                                 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1209                                 nps_type, i, ranges[i].base_address,
1210                                 ranges[i].limit_address);
1211                         ret = -EINVAL;
1212                         goto err;
1213                 }
1214
1215                 /* Check for overlaps, not expecting any now */
1216                 for (j = i - 1; j >= 0; j--) {
1217                         if (max(ranges[j].base_address,
1218                                 ranges[i].base_address) <=
1219                             min(ranges[j].limit_address,
1220                                 ranges[i].limit_address)) {
1221                                 dev_warn(
1222                                         adev->dev,
1223                                         "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1224                                         ranges[j].base_address,
1225                                         ranges[j].limit_address,
1226                                         ranges[i].base_address,
1227                                         ranges[i].limit_address);
1228                                 ret = -EINVAL;
1229                                 goto err;
1230                         }
1231                 }
1232
1233                 mem_ranges[i].range.fpfn =
1234                         (ranges[i].base_address -
1235                          adev->vm_manager.vram_base_offset) >>
1236                         AMDGPU_GPU_PAGE_SHIFT;
1237                 mem_ranges[i].range.lpfn =
1238                         (ranges[i].limit_address -
1239                          adev->vm_manager.vram_base_offset) >>
1240                         AMDGPU_GPU_PAGE_SHIFT;
1241                 mem_ranges[i].size =
1242                         ranges[i].limit_address - ranges[i].base_address + 1;
1243         }
1244
1245 err:
1246         kfree(ranges);
1247
1248         return ret;
1249 }
This page took 0.106838 seconds and 4 git commands to generate.