]> Git Repo - linux.git/blob - kernel/exit.c
net: phy: aquantia: wait for the GLOBAL_CFG to start returning real values
[linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97 };
98
99 static __init int kernel_exit_sysctls_init(void)
100 {
101         register_sysctl_init("kernel", kern_exit_table);
102         return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106
107 static atomic_t oops_count = ATOMIC_INIT(0);
108
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111                                char *page)
112 {
113         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
118 static __init int kernel_exit_sysfs_init(void)
119 {
120         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121         return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128         nr_threads--;
129         detach_pid(p, PIDTYPE_PID);
130         if (group_dead) {
131                 detach_pid(p, PIDTYPE_TGID);
132                 detach_pid(p, PIDTYPE_PGID);
133                 detach_pid(p, PIDTYPE_SID);
134
135                 list_del_rcu(&p->tasks);
136                 list_del_init(&p->sibling);
137                 __this_cpu_dec(process_counts);
138         }
139         list_del_rcu(&p->thread_node);
140 }
141
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147         struct signal_struct *sig = tsk->signal;
148         bool group_dead = thread_group_leader(tsk);
149         struct sighand_struct *sighand;
150         struct tty_struct *tty;
151         u64 utime, stime;
152
153         sighand = rcu_dereference_check(tsk->sighand,
154                                         lockdep_tasklist_lock_is_held());
155         spin_lock(&sighand->siglock);
156
157 #ifdef CONFIG_POSIX_TIMERS
158         posix_cpu_timers_exit(tsk);
159         if (group_dead)
160                 posix_cpu_timers_exit_group(tsk);
161 #endif
162
163         if (group_dead) {
164                 tty = sig->tty;
165                 sig->tty = NULL;
166         } else {
167                 /*
168                  * If there is any task waiting for the group exit
169                  * then notify it:
170                  */
171                 if (sig->notify_count > 0 && !--sig->notify_count)
172                         wake_up_process(sig->group_exec_task);
173
174                 if (tsk == sig->curr_target)
175                         sig->curr_target = next_thread(tsk);
176         }
177
178         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179                               sizeof(unsigned long long));
180
181         /*
182          * Accumulate here the counters for all threads as they die. We could
183          * skip the group leader because it is the last user of signal_struct,
184          * but we want to avoid the race with thread_group_cputime() which can
185          * see the empty ->thread_head list.
186          */
187         task_cputime(tsk, &utime, &stime);
188         write_seqlock(&sig->stats_lock);
189         sig->utime += utime;
190         sig->stime += stime;
191         sig->gtime += task_gtime(tsk);
192         sig->min_flt += tsk->min_flt;
193         sig->maj_flt += tsk->maj_flt;
194         sig->nvcsw += tsk->nvcsw;
195         sig->nivcsw += tsk->nivcsw;
196         sig->inblock += task_io_get_inblock(tsk);
197         sig->oublock += task_io_get_oublock(tsk);
198         task_io_accounting_add(&sig->ioac, &tsk->ioac);
199         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200         sig->nr_threads--;
201         __unhash_process(tsk, group_dead);
202         write_sequnlock(&sig->stats_lock);
203
204         /*
205          * Do this under ->siglock, we can race with another thread
206          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207          */
208         flush_sigqueue(&tsk->pending);
209         tsk->sighand = NULL;
210         spin_unlock(&sighand->siglock);
211
212         __cleanup_sighand(sighand);
213         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214         if (group_dead) {
215                 flush_sigqueue(&sig->shared_pending);
216                 tty_kref_put(tty);
217         }
218 }
219
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223
224         kprobe_flush_task(tsk);
225         rethook_flush_task(tsk);
226         perf_event_delayed_put(tsk);
227         trace_sched_process_free(tsk);
228         put_task_struct(tsk);
229 }
230
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233         if (refcount_dec_and_test(&task->rcu_users))
234                 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240
241 void release_task(struct task_struct *p)
242 {
243         struct task_struct *leader;
244         struct pid *thread_pid;
245         int zap_leader;
246 repeat:
247         /* don't need to get the RCU readlock here - the process is dead and
248          * can't be modifying its own credentials. But shut RCU-lockdep up */
249         rcu_read_lock();
250         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251         rcu_read_unlock();
252
253         cgroup_release(p);
254
255         write_lock_irq(&tasklist_lock);
256         ptrace_release_task(p);
257         thread_pid = get_pid(p->thread_pid);
258         __exit_signal(p);
259
260         /*
261          * If we are the last non-leader member of the thread
262          * group, and the leader is zombie, then notify the
263          * group leader's parent process. (if it wants notification.)
264          */
265         zap_leader = 0;
266         leader = p->group_leader;
267         if (leader != p && thread_group_empty(leader)
268                         && leader->exit_state == EXIT_ZOMBIE) {
269                 /*
270                  * If we were the last child thread and the leader has
271                  * exited already, and the leader's parent ignores SIGCHLD,
272                  * then we are the one who should release the leader.
273                  */
274                 zap_leader = do_notify_parent(leader, leader->exit_signal);
275                 if (zap_leader)
276                         leader->exit_state = EXIT_DEAD;
277         }
278
279         write_unlock_irq(&tasklist_lock);
280         seccomp_filter_release(p);
281         proc_flush_pid(thread_pid);
282         put_pid(thread_pid);
283         release_thread(p);
284         put_task_struct_rcu_user(p);
285
286         p = leader;
287         if (unlikely(zap_leader))
288                 goto repeat;
289 }
290
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293         int ret = 0;
294         struct task_struct *task;
295
296         rcu_read_lock();
297
298         /*
299          * Order condition vs @task, such that everything prior to the load
300          * of @task is visible. This is the condition as to why the user called
301          * rcuwait_wake() in the first place. Pairs with set_current_state()
302          * barrier (A) in rcuwait_wait_event().
303          *
304          *    WAIT                WAKE
305          *    [S] tsk = current   [S] cond = true
306          *        MB (A)              MB (B)
307          *    [L] cond            [L] tsk
308          */
309         smp_mb(); /* (B) */
310
311         task = rcu_dereference(w->task);
312         if (task)
313                 ret = wake_up_process(task);
314         rcu_read_unlock();
315
316         return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329                                         struct task_struct *ignored_task)
330 {
331         struct task_struct *p;
332
333         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334                 if ((p == ignored_task) ||
335                     (p->exit_state && thread_group_empty(p)) ||
336                     is_global_init(p->real_parent))
337                         continue;
338
339                 if (task_pgrp(p->real_parent) != pgrp &&
340                     task_session(p->real_parent) == task_session(p))
341                         return 0;
342         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343
344         return 1;
345 }
346
347 int is_current_pgrp_orphaned(void)
348 {
349         int retval;
350
351         read_lock(&tasklist_lock);
352         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353         read_unlock(&tasklist_lock);
354
355         return retval;
356 }
357
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360         struct task_struct *p;
361
362         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
364                         return true;
365         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367         return false;
368 }
369
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378         struct pid *pgrp = task_pgrp(tsk);
379         struct task_struct *ignored_task = tsk;
380
381         if (!parent)
382                 /* exit: our father is in a different pgrp than
383                  * we are and we were the only connection outside.
384                  */
385                 parent = tsk->real_parent;
386         else
387                 /* reparent: our child is in a different pgrp than
388                  * we are, and it was the only connection outside.
389                  */
390                 ignored_task = NULL;
391
392         if (task_pgrp(parent) != pgrp &&
393             task_session(parent) == task_session(tsk) &&
394             will_become_orphaned_pgrp(pgrp, ignored_task) &&
395             has_stopped_jobs(pgrp)) {
396                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398         }
399 }
400
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403         struct core_state *core_state;
404
405         /*
406          * Serialize with any possible pending coredump.
407          * We must hold siglock around checking core_state
408          * and setting PF_POSTCOREDUMP.  The core-inducing thread
409          * will increment ->nr_threads for each thread in the
410          * group without PF_POSTCOREDUMP set.
411          */
412         spin_lock_irq(&tsk->sighand->siglock);
413         tsk->flags |= PF_POSTCOREDUMP;
414         core_state = tsk->signal->core_state;
415         spin_unlock_irq(&tsk->sighand->siglock);
416         if (core_state) {
417                 struct core_thread self;
418
419                 self.task = current;
420                 if (self.task->flags & PF_SIGNALED)
421                         self.next = xchg(&core_state->dumper.next, &self);
422                 else
423                         self.task = NULL;
424                 /*
425                  * Implies mb(), the result of xchg() must be visible
426                  * to core_state->dumper.
427                  */
428                 if (atomic_dec_and_test(&core_state->nr_threads))
429                         complete(&core_state->startup);
430
431                 for (;;) {
432                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433                         if (!self.task) /* see coredump_finish() */
434                                 break;
435                         schedule();
436                 }
437                 __set_current_state(TASK_RUNNING);
438         }
439 }
440
441 #ifdef CONFIG_MEMCG
442 /*
443  * A task is exiting.   If it owned this mm, find a new owner for the mm.
444  */
445 void mm_update_next_owner(struct mm_struct *mm)
446 {
447         struct task_struct *c, *g, *p = current;
448
449 retry:
450         /*
451          * If the exiting or execing task is not the owner, it's
452          * someone else's problem.
453          */
454         if (mm->owner != p)
455                 return;
456         /*
457          * The current owner is exiting/execing and there are no other
458          * candidates.  Do not leave the mm pointing to a possibly
459          * freed task structure.
460          */
461         if (atomic_read(&mm->mm_users) <= 1) {
462                 WRITE_ONCE(mm->owner, NULL);
463                 return;
464         }
465
466         read_lock(&tasklist_lock);
467         /*
468          * Search in the children
469          */
470         list_for_each_entry(c, &p->children, sibling) {
471                 if (c->mm == mm)
472                         goto assign_new_owner;
473         }
474
475         /*
476          * Search in the siblings
477          */
478         list_for_each_entry(c, &p->real_parent->children, sibling) {
479                 if (c->mm == mm)
480                         goto assign_new_owner;
481         }
482
483         /*
484          * Search through everything else, we should not get here often.
485          */
486         for_each_process(g) {
487                 if (atomic_read(&mm->mm_users) <= 1)
488                         break;
489                 if (g->flags & PF_KTHREAD)
490                         continue;
491                 for_each_thread(g, c) {
492                         if (c->mm == mm)
493                                 goto assign_new_owner;
494                         if (c->mm)
495                                 break;
496                 }
497         }
498         read_unlock(&tasklist_lock);
499         /*
500          * We found no owner yet mm_users > 1: this implies that we are
501          * most likely racing with swapoff (try_to_unuse()) or /proc or
502          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
503          */
504         WRITE_ONCE(mm->owner, NULL);
505         return;
506
507 assign_new_owner:
508         BUG_ON(c == p);
509         get_task_struct(c);
510         /*
511          * The task_lock protects c->mm from changing.
512          * We always want mm->owner->mm == mm
513          */
514         task_lock(c);
515         /*
516          * Delay read_unlock() till we have the task_lock()
517          * to ensure that c does not slip away underneath us
518          */
519         read_unlock(&tasklist_lock);
520         if (c->mm != mm) {
521                 task_unlock(c);
522                 put_task_struct(c);
523                 goto retry;
524         }
525         WRITE_ONCE(mm->owner, c);
526         lru_gen_migrate_mm(mm);
527         task_unlock(c);
528         put_task_struct(c);
529 }
530 #endif /* CONFIG_MEMCG */
531
532 /*
533  * Turn us into a lazy TLB process if we
534  * aren't already..
535  */
536 static void exit_mm(void)
537 {
538         struct mm_struct *mm = current->mm;
539
540         exit_mm_release(current, mm);
541         if (!mm)
542                 return;
543         mmap_read_lock(mm);
544         mmgrab_lazy_tlb(mm);
545         BUG_ON(mm != current->active_mm);
546         /* more a memory barrier than a real lock */
547         task_lock(current);
548         /*
549          * When a thread stops operating on an address space, the loop
550          * in membarrier_private_expedited() may not observe that
551          * tsk->mm, and the loop in membarrier_global_expedited() may
552          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553          * rq->membarrier_state, so those would not issue an IPI.
554          * Membarrier requires a memory barrier after accessing
555          * user-space memory, before clearing tsk->mm or the
556          * rq->membarrier_state.
557          */
558         smp_mb__after_spinlock();
559         local_irq_disable();
560         current->mm = NULL;
561         membarrier_update_current_mm(NULL);
562         enter_lazy_tlb(mm, current);
563         local_irq_enable();
564         task_unlock(current);
565         mmap_read_unlock(mm);
566         mm_update_next_owner(mm);
567         mmput(mm);
568         if (test_thread_flag(TIF_MEMDIE))
569                 exit_oom_victim();
570 }
571
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574         struct task_struct *t;
575
576         for_each_thread(p, t) {
577                 if (!(t->flags & PF_EXITING))
578                         return t;
579         }
580         return NULL;
581 }
582
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584                                                 struct list_head *dead)
585         __releases(&tasklist_lock)
586         __acquires(&tasklist_lock)
587 {
588         struct pid_namespace *pid_ns = task_active_pid_ns(father);
589         struct task_struct *reaper = pid_ns->child_reaper;
590         struct task_struct *p, *n;
591
592         if (likely(reaper != father))
593                 return reaper;
594
595         reaper = find_alive_thread(father);
596         if (reaper) {
597                 pid_ns->child_reaper = reaper;
598                 return reaper;
599         }
600
601         write_unlock_irq(&tasklist_lock);
602
603         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604                 list_del_init(&p->ptrace_entry);
605                 release_task(p);
606         }
607
608         zap_pid_ns_processes(pid_ns);
609         write_lock_irq(&tasklist_lock);
610
611         return father;
612 }
613
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622                                            struct task_struct *child_reaper)
623 {
624         struct task_struct *thread, *reaper;
625
626         thread = find_alive_thread(father);
627         if (thread)
628                 return thread;
629
630         if (father->signal->has_child_subreaper) {
631                 unsigned int ns_level = task_pid(father)->level;
632                 /*
633                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
634                  * We can't check reaper != child_reaper to ensure we do not
635                  * cross the namespaces, the exiting parent could be injected
636                  * by setns() + fork().
637                  * We check pid->level, this is slightly more efficient than
638                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639                  */
640                 for (reaper = father->real_parent;
641                      task_pid(reaper)->level == ns_level;
642                      reaper = reaper->real_parent) {
643                         if (reaper == &init_task)
644                                 break;
645                         if (!reaper->signal->is_child_subreaper)
646                                 continue;
647                         thread = find_alive_thread(reaper);
648                         if (thread)
649                                 return thread;
650                 }
651         }
652
653         return child_reaper;
654 }
655
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660                                 struct list_head *dead)
661 {
662         if (unlikely(p->exit_state == EXIT_DEAD))
663                 return;
664
665         /* We don't want people slaying init. */
666         p->exit_signal = SIGCHLD;
667
668         /* If it has exited notify the new parent about this child's death. */
669         if (!p->ptrace &&
670             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671                 if (do_notify_parent(p, p->exit_signal)) {
672                         p->exit_state = EXIT_DEAD;
673                         list_add(&p->ptrace_entry, dead);
674                 }
675         }
676
677         kill_orphaned_pgrp(p, father);
678 }
679
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *      as a result of our exiting, and if they have any stopped
686  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689                                         struct list_head *dead)
690 {
691         struct task_struct *p, *t, *reaper;
692
693         if (unlikely(!list_empty(&father->ptraced)))
694                 exit_ptrace(father, dead);
695
696         /* Can drop and reacquire tasklist_lock */
697         reaper = find_child_reaper(father, dead);
698         if (list_empty(&father->children))
699                 return;
700
701         reaper = find_new_reaper(father, reaper);
702         list_for_each_entry(p, &father->children, sibling) {
703                 for_each_thread(p, t) {
704                         RCU_INIT_POINTER(t->real_parent, reaper);
705                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706                         if (likely(!t->ptrace))
707                                 t->parent = t->real_parent;
708                         if (t->pdeath_signal)
709                                 group_send_sig_info(t->pdeath_signal,
710                                                     SEND_SIG_NOINFO, t,
711                                                     PIDTYPE_TGID);
712                 }
713                 /*
714                  * If this is a threaded reparent there is no need to
715                  * notify anyone anything has happened.
716                  */
717                 if (!same_thread_group(reaper, father))
718                         reparent_leader(father, p, dead);
719         }
720         list_splice_tail_init(&father->children, &reaper->children);
721 }
722
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729         bool autoreap;
730         struct task_struct *p, *n;
731         LIST_HEAD(dead);
732
733         write_lock_irq(&tasklist_lock);
734         forget_original_parent(tsk, &dead);
735
736         if (group_dead)
737                 kill_orphaned_pgrp(tsk->group_leader, NULL);
738
739         tsk->exit_state = EXIT_ZOMBIE;
740         /*
741          * sub-thread or delay_group_leader(), wake up the
742          * PIDFD_THREAD waiters.
743          */
744         if (!thread_group_empty(tsk))
745                 do_notify_pidfd(tsk);
746
747         if (unlikely(tsk->ptrace)) {
748                 int sig = thread_group_leader(tsk) &&
749                                 thread_group_empty(tsk) &&
750                                 !ptrace_reparented(tsk) ?
751                         tsk->exit_signal : SIGCHLD;
752                 autoreap = do_notify_parent(tsk, sig);
753         } else if (thread_group_leader(tsk)) {
754                 autoreap = thread_group_empty(tsk) &&
755                         do_notify_parent(tsk, tsk->exit_signal);
756         } else {
757                 autoreap = true;
758         }
759
760         if (autoreap) {
761                 tsk->exit_state = EXIT_DEAD;
762                 list_add(&tsk->ptrace_entry, &dead);
763         }
764
765         /* mt-exec, de_thread() is waiting for group leader */
766         if (unlikely(tsk->signal->notify_count < 0))
767                 wake_up_process(tsk->signal->group_exec_task);
768         write_unlock_irq(&tasklist_lock);
769
770         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
771                 list_del_init(&p->ptrace_entry);
772                 release_task(p);
773         }
774 }
775
776 #ifdef CONFIG_DEBUG_STACK_USAGE
777 static void check_stack_usage(void)
778 {
779         static DEFINE_SPINLOCK(low_water_lock);
780         static int lowest_to_date = THREAD_SIZE;
781         unsigned long free;
782
783         free = stack_not_used(current);
784
785         if (free >= lowest_to_date)
786                 return;
787
788         spin_lock(&low_water_lock);
789         if (free < lowest_to_date) {
790                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
791                         current->comm, task_pid_nr(current), free);
792                 lowest_to_date = free;
793         }
794         spin_unlock(&low_water_lock);
795 }
796 #else
797 static inline void check_stack_usage(void) {}
798 #endif
799
800 static void synchronize_group_exit(struct task_struct *tsk, long code)
801 {
802         struct sighand_struct *sighand = tsk->sighand;
803         struct signal_struct *signal = tsk->signal;
804
805         spin_lock_irq(&sighand->siglock);
806         signal->quick_threads--;
807         if ((signal->quick_threads == 0) &&
808             !(signal->flags & SIGNAL_GROUP_EXIT)) {
809                 signal->flags = SIGNAL_GROUP_EXIT;
810                 signal->group_exit_code = code;
811                 signal->group_stop_count = 0;
812         }
813         spin_unlock_irq(&sighand->siglock);
814 }
815
816 void __noreturn do_exit(long code)
817 {
818         struct task_struct *tsk = current;
819         int group_dead;
820
821         WARN_ON(irqs_disabled());
822
823         synchronize_group_exit(tsk, code);
824
825         WARN_ON(tsk->plug);
826
827         kcov_task_exit(tsk);
828         kmsan_task_exit(tsk);
829
830         coredump_task_exit(tsk);
831         ptrace_event(PTRACE_EVENT_EXIT, code);
832         user_events_exit(tsk);
833
834         io_uring_files_cancel();
835         exit_signals(tsk);  /* sets PF_EXITING */
836
837         acct_update_integrals(tsk);
838         group_dead = atomic_dec_and_test(&tsk->signal->live);
839         if (group_dead) {
840                 /*
841                  * If the last thread of global init has exited, panic
842                  * immediately to get a useable coredump.
843                  */
844                 if (unlikely(is_global_init(tsk)))
845                         panic("Attempted to kill init! exitcode=0x%08x\n",
846                                 tsk->signal->group_exit_code ?: (int)code);
847
848 #ifdef CONFIG_POSIX_TIMERS
849                 hrtimer_cancel(&tsk->signal->real_timer);
850                 exit_itimers(tsk);
851 #endif
852                 if (tsk->mm)
853                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
854         }
855         acct_collect(code, group_dead);
856         if (group_dead)
857                 tty_audit_exit();
858         audit_free(tsk);
859
860         tsk->exit_code = code;
861         taskstats_exit(tsk, group_dead);
862
863         exit_mm();
864
865         if (group_dead)
866                 acct_process();
867         trace_sched_process_exit(tsk);
868
869         exit_sem(tsk);
870         exit_shm(tsk);
871         exit_files(tsk);
872         exit_fs(tsk);
873         if (group_dead)
874                 disassociate_ctty(1);
875         exit_task_namespaces(tsk);
876         exit_task_work(tsk);
877         exit_thread(tsk);
878
879         /*
880          * Flush inherited counters to the parent - before the parent
881          * gets woken up by child-exit notifications.
882          *
883          * because of cgroup mode, must be called before cgroup_exit()
884          */
885         perf_event_exit_task(tsk);
886
887         sched_autogroup_exit_task(tsk);
888         cgroup_exit(tsk);
889
890         /*
891          * FIXME: do that only when needed, using sched_exit tracepoint
892          */
893         flush_ptrace_hw_breakpoint(tsk);
894
895         exit_tasks_rcu_start();
896         exit_notify(tsk, group_dead);
897         proc_exit_connector(tsk);
898         mpol_put_task_policy(tsk);
899 #ifdef CONFIG_FUTEX
900         if (unlikely(current->pi_state_cache))
901                 kfree(current->pi_state_cache);
902 #endif
903         /*
904          * Make sure we are holding no locks:
905          */
906         debug_check_no_locks_held();
907
908         if (tsk->io_context)
909                 exit_io_context(tsk);
910
911         if (tsk->splice_pipe)
912                 free_pipe_info(tsk->splice_pipe);
913
914         if (tsk->task_frag.page)
915                 put_page(tsk->task_frag.page);
916
917         exit_task_stack_account(tsk);
918
919         check_stack_usage();
920         preempt_disable();
921         if (tsk->nr_dirtied)
922                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
923         exit_rcu();
924         exit_tasks_rcu_finish();
925
926         lockdep_free_task(tsk);
927         do_task_dead();
928 }
929
930 void __noreturn make_task_dead(int signr)
931 {
932         /*
933          * Take the task off the cpu after something catastrophic has
934          * happened.
935          *
936          * We can get here from a kernel oops, sometimes with preemption off.
937          * Start by checking for critical errors.
938          * Then fix up important state like USER_DS and preemption.
939          * Then do everything else.
940          */
941         struct task_struct *tsk = current;
942         unsigned int limit;
943
944         if (unlikely(in_interrupt()))
945                 panic("Aiee, killing interrupt handler!");
946         if (unlikely(!tsk->pid))
947                 panic("Attempted to kill the idle task!");
948
949         if (unlikely(irqs_disabled())) {
950                 pr_info("note: %s[%d] exited with irqs disabled\n",
951                         current->comm, task_pid_nr(current));
952                 local_irq_enable();
953         }
954         if (unlikely(in_atomic())) {
955                 pr_info("note: %s[%d] exited with preempt_count %d\n",
956                         current->comm, task_pid_nr(current),
957                         preempt_count());
958                 preempt_count_set(PREEMPT_ENABLED);
959         }
960
961         /*
962          * Every time the system oopses, if the oops happens while a reference
963          * to an object was held, the reference leaks.
964          * If the oops doesn't also leak memory, repeated oopsing can cause
965          * reference counters to wrap around (if they're not using refcount_t).
966          * This means that repeated oopsing can make unexploitable-looking bugs
967          * exploitable through repeated oopsing.
968          * To make sure this can't happen, place an upper bound on how often the
969          * kernel may oops without panic().
970          */
971         limit = READ_ONCE(oops_limit);
972         if (atomic_inc_return(&oops_count) >= limit && limit)
973                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
974
975         /*
976          * We're taking recursive faults here in make_task_dead. Safest is to just
977          * leave this task alone and wait for reboot.
978          */
979         if (unlikely(tsk->flags & PF_EXITING)) {
980                 pr_alert("Fixing recursive fault but reboot is needed!\n");
981                 futex_exit_recursive(tsk);
982                 tsk->exit_state = EXIT_DEAD;
983                 refcount_inc(&tsk->rcu_users);
984                 do_task_dead();
985         }
986
987         do_exit(signr);
988 }
989
990 SYSCALL_DEFINE1(exit, int, error_code)
991 {
992         do_exit((error_code&0xff)<<8);
993 }
994
995 /*
996  * Take down every thread in the group.  This is called by fatal signals
997  * as well as by sys_exit_group (below).
998  */
999 void __noreturn
1000 do_group_exit(int exit_code)
1001 {
1002         struct signal_struct *sig = current->signal;
1003
1004         if (sig->flags & SIGNAL_GROUP_EXIT)
1005                 exit_code = sig->group_exit_code;
1006         else if (sig->group_exec_task)
1007                 exit_code = 0;
1008         else {
1009                 struct sighand_struct *const sighand = current->sighand;
1010
1011                 spin_lock_irq(&sighand->siglock);
1012                 if (sig->flags & SIGNAL_GROUP_EXIT)
1013                         /* Another thread got here before we took the lock.  */
1014                         exit_code = sig->group_exit_code;
1015                 else if (sig->group_exec_task)
1016                         exit_code = 0;
1017                 else {
1018                         sig->group_exit_code = exit_code;
1019                         sig->flags = SIGNAL_GROUP_EXIT;
1020                         zap_other_threads(current);
1021                 }
1022                 spin_unlock_irq(&sighand->siglock);
1023         }
1024
1025         do_exit(exit_code);
1026         /* NOTREACHED */
1027 }
1028
1029 /*
1030  * this kills every thread in the thread group. Note that any externally
1031  * wait4()-ing process will get the correct exit code - even if this
1032  * thread is not the thread group leader.
1033  */
1034 SYSCALL_DEFINE1(exit_group, int, error_code)
1035 {
1036         do_group_exit((error_code & 0xff) << 8);
1037         /* NOTREACHED */
1038         return 0;
1039 }
1040
1041 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1042 {
1043         return  wo->wo_type == PIDTYPE_MAX ||
1044                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1045 }
1046
1047 static int
1048 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1049 {
1050         if (!eligible_pid(wo, p))
1051                 return 0;
1052
1053         /*
1054          * Wait for all children (clone and not) if __WALL is set or
1055          * if it is traced by us.
1056          */
1057         if (ptrace || (wo->wo_flags & __WALL))
1058                 return 1;
1059
1060         /*
1061          * Otherwise, wait for clone children *only* if __WCLONE is set;
1062          * otherwise, wait for non-clone children *only*.
1063          *
1064          * Note: a "clone" child here is one that reports to its parent
1065          * using a signal other than SIGCHLD, or a non-leader thread which
1066          * we can only see if it is traced by us.
1067          */
1068         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1069                 return 0;
1070
1071         return 1;
1072 }
1073
1074 /*
1075  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1076  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1077  * the lock and this task is uninteresting.  If we return nonzero, we have
1078  * released the lock and the system call should return.
1079  */
1080 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1081 {
1082         int state, status;
1083         pid_t pid = task_pid_vnr(p);
1084         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1085         struct waitid_info *infop;
1086
1087         if (!likely(wo->wo_flags & WEXITED))
1088                 return 0;
1089
1090         if (unlikely(wo->wo_flags & WNOWAIT)) {
1091                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1092                         ? p->signal->group_exit_code : p->exit_code;
1093                 get_task_struct(p);
1094                 read_unlock(&tasklist_lock);
1095                 sched_annotate_sleep();
1096                 if (wo->wo_rusage)
1097                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1098                 put_task_struct(p);
1099                 goto out_info;
1100         }
1101         /*
1102          * Move the task's state to DEAD/TRACE, only one thread can do this.
1103          */
1104         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1105                 EXIT_TRACE : EXIT_DEAD;
1106         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1107                 return 0;
1108         /*
1109          * We own this thread, nobody else can reap it.
1110          */
1111         read_unlock(&tasklist_lock);
1112         sched_annotate_sleep();
1113
1114         /*
1115          * Check thread_group_leader() to exclude the traced sub-threads.
1116          */
1117         if (state == EXIT_DEAD && thread_group_leader(p)) {
1118                 struct signal_struct *sig = p->signal;
1119                 struct signal_struct *psig = current->signal;
1120                 unsigned long maxrss;
1121                 u64 tgutime, tgstime;
1122
1123                 /*
1124                  * The resource counters for the group leader are in its
1125                  * own task_struct.  Those for dead threads in the group
1126                  * are in its signal_struct, as are those for the child
1127                  * processes it has previously reaped.  All these
1128                  * accumulate in the parent's signal_struct c* fields.
1129                  *
1130                  * We don't bother to take a lock here to protect these
1131                  * p->signal fields because the whole thread group is dead
1132                  * and nobody can change them.
1133                  *
1134                  * psig->stats_lock also protects us from our sub-threads
1135                  * which can reap other children at the same time.
1136                  *
1137                  * We use thread_group_cputime_adjusted() to get times for
1138                  * the thread group, which consolidates times for all threads
1139                  * in the group including the group leader.
1140                  */
1141                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1142                 write_seqlock_irq(&psig->stats_lock);
1143                 psig->cutime += tgutime + sig->cutime;
1144                 psig->cstime += tgstime + sig->cstime;
1145                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1146                 psig->cmin_flt +=
1147                         p->min_flt + sig->min_flt + sig->cmin_flt;
1148                 psig->cmaj_flt +=
1149                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1150                 psig->cnvcsw +=
1151                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1152                 psig->cnivcsw +=
1153                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1154                 psig->cinblock +=
1155                         task_io_get_inblock(p) +
1156                         sig->inblock + sig->cinblock;
1157                 psig->coublock +=
1158                         task_io_get_oublock(p) +
1159                         sig->oublock + sig->coublock;
1160                 maxrss = max(sig->maxrss, sig->cmaxrss);
1161                 if (psig->cmaxrss < maxrss)
1162                         psig->cmaxrss = maxrss;
1163                 task_io_accounting_add(&psig->ioac, &p->ioac);
1164                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1165                 write_sequnlock_irq(&psig->stats_lock);
1166         }
1167
1168         if (wo->wo_rusage)
1169                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1170         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1171                 ? p->signal->group_exit_code : p->exit_code;
1172         wo->wo_stat = status;
1173
1174         if (state == EXIT_TRACE) {
1175                 write_lock_irq(&tasklist_lock);
1176                 /* We dropped tasklist, ptracer could die and untrace */
1177                 ptrace_unlink(p);
1178
1179                 /* If parent wants a zombie, don't release it now */
1180                 state = EXIT_ZOMBIE;
1181                 if (do_notify_parent(p, p->exit_signal))
1182                         state = EXIT_DEAD;
1183                 p->exit_state = state;
1184                 write_unlock_irq(&tasklist_lock);
1185         }
1186         if (state == EXIT_DEAD)
1187                 release_task(p);
1188
1189 out_info:
1190         infop = wo->wo_info;
1191         if (infop) {
1192                 if ((status & 0x7f) == 0) {
1193                         infop->cause = CLD_EXITED;
1194                         infop->status = status >> 8;
1195                 } else {
1196                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1197                         infop->status = status & 0x7f;
1198                 }
1199                 infop->pid = pid;
1200                 infop->uid = uid;
1201         }
1202
1203         return pid;
1204 }
1205
1206 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1207 {
1208         if (ptrace) {
1209                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1210                         return &p->exit_code;
1211         } else {
1212                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1213                         return &p->signal->group_exit_code;
1214         }
1215         return NULL;
1216 }
1217
1218 /**
1219  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1220  * @wo: wait options
1221  * @ptrace: is the wait for ptrace
1222  * @p: task to wait for
1223  *
1224  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1225  *
1226  * CONTEXT:
1227  * read_lock(&tasklist_lock), which is released if return value is
1228  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1229  *
1230  * RETURNS:
1231  * 0 if wait condition didn't exist and search for other wait conditions
1232  * should continue.  Non-zero return, -errno on failure and @p's pid on
1233  * success, implies that tasklist_lock is released and wait condition
1234  * search should terminate.
1235  */
1236 static int wait_task_stopped(struct wait_opts *wo,
1237                                 int ptrace, struct task_struct *p)
1238 {
1239         struct waitid_info *infop;
1240         int exit_code, *p_code, why;
1241         uid_t uid = 0; /* unneeded, required by compiler */
1242         pid_t pid;
1243
1244         /*
1245          * Traditionally we see ptrace'd stopped tasks regardless of options.
1246          */
1247         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1248                 return 0;
1249
1250         if (!task_stopped_code(p, ptrace))
1251                 return 0;
1252
1253         exit_code = 0;
1254         spin_lock_irq(&p->sighand->siglock);
1255
1256         p_code = task_stopped_code(p, ptrace);
1257         if (unlikely(!p_code))
1258                 goto unlock_sig;
1259
1260         exit_code = *p_code;
1261         if (!exit_code)
1262                 goto unlock_sig;
1263
1264         if (!unlikely(wo->wo_flags & WNOWAIT))
1265                 *p_code = 0;
1266
1267         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1268 unlock_sig:
1269         spin_unlock_irq(&p->sighand->siglock);
1270         if (!exit_code)
1271                 return 0;
1272
1273         /*
1274          * Now we are pretty sure this task is interesting.
1275          * Make sure it doesn't get reaped out from under us while we
1276          * give up the lock and then examine it below.  We don't want to
1277          * keep holding onto the tasklist_lock while we call getrusage and
1278          * possibly take page faults for user memory.
1279          */
1280         get_task_struct(p);
1281         pid = task_pid_vnr(p);
1282         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1283         read_unlock(&tasklist_lock);
1284         sched_annotate_sleep();
1285         if (wo->wo_rusage)
1286                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1287         put_task_struct(p);
1288
1289         if (likely(!(wo->wo_flags & WNOWAIT)))
1290                 wo->wo_stat = (exit_code << 8) | 0x7f;
1291
1292         infop = wo->wo_info;
1293         if (infop) {
1294                 infop->cause = why;
1295                 infop->status = exit_code;
1296                 infop->pid = pid;
1297                 infop->uid = uid;
1298         }
1299         return pid;
1300 }
1301
1302 /*
1303  * Handle do_wait work for one task in a live, non-stopped state.
1304  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1305  * the lock and this task is uninteresting.  If we return nonzero, we have
1306  * released the lock and the system call should return.
1307  */
1308 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1309 {
1310         struct waitid_info *infop;
1311         pid_t pid;
1312         uid_t uid;
1313
1314         if (!unlikely(wo->wo_flags & WCONTINUED))
1315                 return 0;
1316
1317         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1318                 return 0;
1319
1320         spin_lock_irq(&p->sighand->siglock);
1321         /* Re-check with the lock held.  */
1322         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1323                 spin_unlock_irq(&p->sighand->siglock);
1324                 return 0;
1325         }
1326         if (!unlikely(wo->wo_flags & WNOWAIT))
1327                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1328         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1329         spin_unlock_irq(&p->sighand->siglock);
1330
1331         pid = task_pid_vnr(p);
1332         get_task_struct(p);
1333         read_unlock(&tasklist_lock);
1334         sched_annotate_sleep();
1335         if (wo->wo_rusage)
1336                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1337         put_task_struct(p);
1338
1339         infop = wo->wo_info;
1340         if (!infop) {
1341                 wo->wo_stat = 0xffff;
1342         } else {
1343                 infop->cause = CLD_CONTINUED;
1344                 infop->pid = pid;
1345                 infop->uid = uid;
1346                 infop->status = SIGCONT;
1347         }
1348         return pid;
1349 }
1350
1351 /*
1352  * Consider @p for a wait by @parent.
1353  *
1354  * -ECHILD should be in ->notask_error before the first call.
1355  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1356  * Returns zero if the search for a child should continue;
1357  * then ->notask_error is 0 if @p is an eligible child,
1358  * or still -ECHILD.
1359  */
1360 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1361                                 struct task_struct *p)
1362 {
1363         /*
1364          * We can race with wait_task_zombie() from another thread.
1365          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1366          * can't confuse the checks below.
1367          */
1368         int exit_state = READ_ONCE(p->exit_state);
1369         int ret;
1370
1371         if (unlikely(exit_state == EXIT_DEAD))
1372                 return 0;
1373
1374         ret = eligible_child(wo, ptrace, p);
1375         if (!ret)
1376                 return ret;
1377
1378         if (unlikely(exit_state == EXIT_TRACE)) {
1379                 /*
1380                  * ptrace == 0 means we are the natural parent. In this case
1381                  * we should clear notask_error, debugger will notify us.
1382                  */
1383                 if (likely(!ptrace))
1384                         wo->notask_error = 0;
1385                 return 0;
1386         }
1387
1388         if (likely(!ptrace) && unlikely(p->ptrace)) {
1389                 /*
1390                  * If it is traced by its real parent's group, just pretend
1391                  * the caller is ptrace_do_wait() and reap this child if it
1392                  * is zombie.
1393                  *
1394                  * This also hides group stop state from real parent; otherwise
1395                  * a single stop can be reported twice as group and ptrace stop.
1396                  * If a ptracer wants to distinguish these two events for its
1397                  * own children it should create a separate process which takes
1398                  * the role of real parent.
1399                  */
1400                 if (!ptrace_reparented(p))
1401                         ptrace = 1;
1402         }
1403
1404         /* slay zombie? */
1405         if (exit_state == EXIT_ZOMBIE) {
1406                 /* we don't reap group leaders with subthreads */
1407                 if (!delay_group_leader(p)) {
1408                         /*
1409                          * A zombie ptracee is only visible to its ptracer.
1410                          * Notification and reaping will be cascaded to the
1411                          * real parent when the ptracer detaches.
1412                          */
1413                         if (unlikely(ptrace) || likely(!p->ptrace))
1414                                 return wait_task_zombie(wo, p);
1415                 }
1416
1417                 /*
1418                  * Allow access to stopped/continued state via zombie by
1419                  * falling through.  Clearing of notask_error is complex.
1420                  *
1421                  * When !@ptrace:
1422                  *
1423                  * If WEXITED is set, notask_error should naturally be
1424                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1425                  * so, if there are live subthreads, there are events to
1426                  * wait for.  If all subthreads are dead, it's still safe
1427                  * to clear - this function will be called again in finite
1428                  * amount time once all the subthreads are released and
1429                  * will then return without clearing.
1430                  *
1431                  * When @ptrace:
1432                  *
1433                  * Stopped state is per-task and thus can't change once the
1434                  * target task dies.  Only continued and exited can happen.
1435                  * Clear notask_error if WCONTINUED | WEXITED.
1436                  */
1437                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1438                         wo->notask_error = 0;
1439         } else {
1440                 /*
1441                  * @p is alive and it's gonna stop, continue or exit, so
1442                  * there always is something to wait for.
1443                  */
1444                 wo->notask_error = 0;
1445         }
1446
1447         /*
1448          * Wait for stopped.  Depending on @ptrace, different stopped state
1449          * is used and the two don't interact with each other.
1450          */
1451         ret = wait_task_stopped(wo, ptrace, p);
1452         if (ret)
1453                 return ret;
1454
1455         /*
1456          * Wait for continued.  There's only one continued state and the
1457          * ptracer can consume it which can confuse the real parent.  Don't
1458          * use WCONTINUED from ptracer.  You don't need or want it.
1459          */
1460         return wait_task_continued(wo, p);
1461 }
1462
1463 /*
1464  * Do the work of do_wait() for one thread in the group, @tsk.
1465  *
1466  * -ECHILD should be in ->notask_error before the first call.
1467  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1468  * Returns zero if the search for a child should continue; then
1469  * ->notask_error is 0 if there were any eligible children,
1470  * or still -ECHILD.
1471  */
1472 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1473 {
1474         struct task_struct *p;
1475
1476         list_for_each_entry(p, &tsk->children, sibling) {
1477                 int ret = wait_consider_task(wo, 0, p);
1478
1479                 if (ret)
1480                         return ret;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1487 {
1488         struct task_struct *p;
1489
1490         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1491                 int ret = wait_consider_task(wo, 1, p);
1492
1493                 if (ret)
1494                         return ret;
1495         }
1496
1497         return 0;
1498 }
1499
1500 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1501 {
1502         if (!eligible_pid(wo, p))
1503                 return false;
1504
1505         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1506                 return false;
1507
1508         return true;
1509 }
1510
1511 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1512                                 int sync, void *key)
1513 {
1514         struct wait_opts *wo = container_of(wait, struct wait_opts,
1515                                                 child_wait);
1516         struct task_struct *p = key;
1517
1518         if (pid_child_should_wake(wo, p))
1519                 return default_wake_function(wait, mode, sync, key);
1520
1521         return 0;
1522 }
1523
1524 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1525 {
1526         __wake_up_sync_key(&parent->signal->wait_chldexit,
1527                            TASK_INTERRUPTIBLE, p);
1528 }
1529
1530 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1531                                  struct task_struct *target)
1532 {
1533         struct task_struct *parent =
1534                 !ptrace ? target->real_parent : target->parent;
1535
1536         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1537                                      same_thread_group(current, parent));
1538 }
1539
1540 /*
1541  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1542  * and tracee lists to find the target task.
1543  */
1544 static int do_wait_pid(struct wait_opts *wo)
1545 {
1546         bool ptrace;
1547         struct task_struct *target;
1548         int retval;
1549
1550         ptrace = false;
1551         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1552         if (target && is_effectively_child(wo, ptrace, target)) {
1553                 retval = wait_consider_task(wo, ptrace, target);
1554                 if (retval)
1555                         return retval;
1556         }
1557
1558         ptrace = true;
1559         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1560         if (target && target->ptrace &&
1561             is_effectively_child(wo, ptrace, target)) {
1562                 retval = wait_consider_task(wo, ptrace, target);
1563                 if (retval)
1564                         return retval;
1565         }
1566
1567         return 0;
1568 }
1569
1570 long __do_wait(struct wait_opts *wo)
1571 {
1572         long retval;
1573
1574         /*
1575          * If there is nothing that can match our criteria, just get out.
1576          * We will clear ->notask_error to zero if we see any child that
1577          * might later match our criteria, even if we are not able to reap
1578          * it yet.
1579          */
1580         wo->notask_error = -ECHILD;
1581         if ((wo->wo_type < PIDTYPE_MAX) &&
1582            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1583                 goto notask;
1584
1585         read_lock(&tasklist_lock);
1586
1587         if (wo->wo_type == PIDTYPE_PID) {
1588                 retval = do_wait_pid(wo);
1589                 if (retval)
1590                         return retval;
1591         } else {
1592                 struct task_struct *tsk = current;
1593
1594                 do {
1595                         retval = do_wait_thread(wo, tsk);
1596                         if (retval)
1597                                 return retval;
1598
1599                         retval = ptrace_do_wait(wo, tsk);
1600                         if (retval)
1601                                 return retval;
1602
1603                         if (wo->wo_flags & __WNOTHREAD)
1604                                 break;
1605                 } while_each_thread(current, tsk);
1606         }
1607         read_unlock(&tasklist_lock);
1608
1609 notask:
1610         retval = wo->notask_error;
1611         if (!retval && !(wo->wo_flags & WNOHANG))
1612                 return -ERESTARTSYS;
1613
1614         return retval;
1615 }
1616
1617 static long do_wait(struct wait_opts *wo)
1618 {
1619         int retval;
1620
1621         trace_sched_process_wait(wo->wo_pid);
1622
1623         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1624         wo->child_wait.private = current;
1625         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1626
1627         do {
1628                 set_current_state(TASK_INTERRUPTIBLE);
1629                 retval = __do_wait(wo);
1630                 if (retval != -ERESTARTSYS)
1631                         break;
1632                 if (signal_pending(current))
1633                         break;
1634                 schedule();
1635         } while (1);
1636
1637         __set_current_state(TASK_RUNNING);
1638         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1639         return retval;
1640 }
1641
1642 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1643                           struct waitid_info *infop, int options,
1644                           struct rusage *ru)
1645 {
1646         unsigned int f_flags = 0;
1647         struct pid *pid = NULL;
1648         enum pid_type type;
1649
1650         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1651                         __WNOTHREAD|__WCLONE|__WALL))
1652                 return -EINVAL;
1653         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654                 return -EINVAL;
1655
1656         switch (which) {
1657         case P_ALL:
1658                 type = PIDTYPE_MAX;
1659                 break;
1660         case P_PID:
1661                 type = PIDTYPE_PID;
1662                 if (upid <= 0)
1663                         return -EINVAL;
1664
1665                 pid = find_get_pid(upid);
1666                 break;
1667         case P_PGID:
1668                 type = PIDTYPE_PGID;
1669                 if (upid < 0)
1670                         return -EINVAL;
1671
1672                 if (upid)
1673                         pid = find_get_pid(upid);
1674                 else
1675                         pid = get_task_pid(current, PIDTYPE_PGID);
1676                 break;
1677         case P_PIDFD:
1678                 type = PIDTYPE_PID;
1679                 if (upid < 0)
1680                         return -EINVAL;
1681
1682                 pid = pidfd_get_pid(upid, &f_flags);
1683                 if (IS_ERR(pid))
1684                         return PTR_ERR(pid);
1685
1686                 break;
1687         default:
1688                 return -EINVAL;
1689         }
1690
1691         wo->wo_type     = type;
1692         wo->wo_pid      = pid;
1693         wo->wo_flags    = options;
1694         wo->wo_info     = infop;
1695         wo->wo_rusage   = ru;
1696         if (f_flags & O_NONBLOCK)
1697                 wo->wo_flags |= WNOHANG;
1698
1699         return 0;
1700 }
1701
1702 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1703                           int options, struct rusage *ru)
1704 {
1705         struct wait_opts wo;
1706         long ret;
1707
1708         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1709         if (ret)
1710                 return ret;
1711
1712         ret = do_wait(&wo);
1713         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1714                 ret = -EAGAIN;
1715
1716         put_pid(wo.wo_pid);
1717         return ret;
1718 }
1719
1720 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1721                 infop, int, options, struct rusage __user *, ru)
1722 {
1723         struct rusage r;
1724         struct waitid_info info = {.status = 0};
1725         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1726         int signo = 0;
1727
1728         if (err > 0) {
1729                 signo = SIGCHLD;
1730                 err = 0;
1731                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1732                         return -EFAULT;
1733         }
1734         if (!infop)
1735                 return err;
1736
1737         if (!user_write_access_begin(infop, sizeof(*infop)))
1738                 return -EFAULT;
1739
1740         unsafe_put_user(signo, &infop->si_signo, Efault);
1741         unsafe_put_user(0, &infop->si_errno, Efault);
1742         unsafe_put_user(info.cause, &infop->si_code, Efault);
1743         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1744         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1745         unsafe_put_user(info.status, &infop->si_status, Efault);
1746         user_write_access_end();
1747         return err;
1748 Efault:
1749         user_write_access_end();
1750         return -EFAULT;
1751 }
1752
1753 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1754                   struct rusage *ru)
1755 {
1756         struct wait_opts wo;
1757         struct pid *pid = NULL;
1758         enum pid_type type;
1759         long ret;
1760
1761         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1762                         __WNOTHREAD|__WCLONE|__WALL))
1763                 return -EINVAL;
1764
1765         /* -INT_MIN is not defined */
1766         if (upid == INT_MIN)
1767                 return -ESRCH;
1768
1769         if (upid == -1)
1770                 type = PIDTYPE_MAX;
1771         else if (upid < 0) {
1772                 type = PIDTYPE_PGID;
1773                 pid = find_get_pid(-upid);
1774         } else if (upid == 0) {
1775                 type = PIDTYPE_PGID;
1776                 pid = get_task_pid(current, PIDTYPE_PGID);
1777         } else /* upid > 0 */ {
1778                 type = PIDTYPE_PID;
1779                 pid = find_get_pid(upid);
1780         }
1781
1782         wo.wo_type      = type;
1783         wo.wo_pid       = pid;
1784         wo.wo_flags     = options | WEXITED;
1785         wo.wo_info      = NULL;
1786         wo.wo_stat      = 0;
1787         wo.wo_rusage    = ru;
1788         ret = do_wait(&wo);
1789         put_pid(pid);
1790         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1791                 ret = -EFAULT;
1792
1793         return ret;
1794 }
1795
1796 int kernel_wait(pid_t pid, int *stat)
1797 {
1798         struct wait_opts wo = {
1799                 .wo_type        = PIDTYPE_PID,
1800                 .wo_pid         = find_get_pid(pid),
1801                 .wo_flags       = WEXITED,
1802         };
1803         int ret;
1804
1805         ret = do_wait(&wo);
1806         if (ret > 0 && wo.wo_stat)
1807                 *stat = wo.wo_stat;
1808         put_pid(wo.wo_pid);
1809         return ret;
1810 }
1811
1812 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1813                 int, options, struct rusage __user *, ru)
1814 {
1815         struct rusage r;
1816         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1817
1818         if (err > 0) {
1819                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1820                         return -EFAULT;
1821         }
1822         return err;
1823 }
1824
1825 #ifdef __ARCH_WANT_SYS_WAITPID
1826
1827 /*
1828  * sys_waitpid() remains for compatibility. waitpid() should be
1829  * implemented by calling sys_wait4() from libc.a.
1830  */
1831 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1832 {
1833         return kernel_wait4(pid, stat_addr, options, NULL);
1834 }
1835
1836 #endif
1837
1838 #ifdef CONFIG_COMPAT
1839 COMPAT_SYSCALL_DEFINE4(wait4,
1840         compat_pid_t, pid,
1841         compat_uint_t __user *, stat_addr,
1842         int, options,
1843         struct compat_rusage __user *, ru)
1844 {
1845         struct rusage r;
1846         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1847         if (err > 0) {
1848                 if (ru && put_compat_rusage(&r, ru))
1849                         return -EFAULT;
1850         }
1851         return err;
1852 }
1853
1854 COMPAT_SYSCALL_DEFINE5(waitid,
1855                 int, which, compat_pid_t, pid,
1856                 struct compat_siginfo __user *, infop, int, options,
1857                 struct compat_rusage __user *, uru)
1858 {
1859         struct rusage ru;
1860         struct waitid_info info = {.status = 0};
1861         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1862         int signo = 0;
1863         if (err > 0) {
1864                 signo = SIGCHLD;
1865                 err = 0;
1866                 if (uru) {
1867                         /* kernel_waitid() overwrites everything in ru */
1868                         if (COMPAT_USE_64BIT_TIME)
1869                                 err = copy_to_user(uru, &ru, sizeof(ru));
1870                         else
1871                                 err = put_compat_rusage(&ru, uru);
1872                         if (err)
1873                                 return -EFAULT;
1874                 }
1875         }
1876
1877         if (!infop)
1878                 return err;
1879
1880         if (!user_write_access_begin(infop, sizeof(*infop)))
1881                 return -EFAULT;
1882
1883         unsafe_put_user(signo, &infop->si_signo, Efault);
1884         unsafe_put_user(0, &infop->si_errno, Efault);
1885         unsafe_put_user(info.cause, &infop->si_code, Efault);
1886         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1887         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1888         unsafe_put_user(info.status, &infop->si_status, Efault);
1889         user_write_access_end();
1890         return err;
1891 Efault:
1892         user_write_access_end();
1893         return -EFAULT;
1894 }
1895 #endif
1896
1897 /*
1898  * This needs to be __function_aligned as GCC implicitly makes any
1899  * implementation of abort() cold and drops alignment specified by
1900  * -falign-functions=N.
1901  *
1902  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1903  */
1904 __weak __function_aligned void abort(void)
1905 {
1906         BUG();
1907
1908         /* if that doesn't kill us, halt */
1909         panic("Oops failed to kill thread");
1910 }
1911 EXPORT_SYMBOL(abort);
This page took 0.135057 seconds and 4 git commands to generate.