1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.1"
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
47 #define HASH_INITVAL ((u32)0xcafef00d)
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
54 * count how many distinct tables do not comply with the strict mode
56 * shared_tables value must be 0 in order to enable the strict mode.
58 * example of the evolution of shared_tables:
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
101 static unsigned int vrf_net_id;
103 /* per netns vrf data */
105 /* protected by rtnl lock */
109 struct ctl_table_header *ctl_hdr;
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
120 struct list_head me_list; /* entry in vrf_map_elem */
124 static void vrf_rx_stats(struct net_device *dev, int len)
126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
128 u64_stats_update_begin(&dstats->syncp);
129 u64_stats_inc(&dstats->rx_packets);
130 u64_stats_add(&dstats->rx_bytes, len);
131 u64_stats_update_end(&dstats->syncp);
134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
136 vrf_dev->stats.tx_errors++;
140 static struct vrf_map *netns_vrf_map(struct net *net)
142 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
144 return &nn_vrf->vmap;
147 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
149 return netns_vrf_map(dev_net(dev));
152 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
154 struct list_head *me_head = &me->vrf_list;
157 if (list_empty(me_head))
160 vrf = list_first_entry(me_head, struct net_vrf, me_list);
165 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
167 struct vrf_map_elem *me;
169 me = kmalloc(sizeof(*me), flags);
176 static void vrf_map_elem_free(struct vrf_map_elem *me)
181 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
182 int ifindex, int users)
184 me->table_id = table_id;
185 me->ifindex = ifindex;
187 INIT_LIST_HEAD(&me->vrf_list);
190 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
193 struct vrf_map_elem *me;
196 key = jhash_1word(table_id, HASH_INITVAL);
197 hash_for_each_possible(vmap->ht, me, hnode, key) {
198 if (me->table_id == table_id)
205 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
207 u32 table_id = me->table_id;
210 key = jhash_1word(table_id, HASH_INITVAL);
211 hash_add(vmap->ht, &me->hnode, key);
214 static void vrf_map_del_elem(struct vrf_map_elem *me)
216 hash_del(&me->hnode);
219 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
221 spin_lock(&vmap->vmap_lock);
224 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
226 spin_unlock(&vmap->vmap_lock);
229 /* called with rtnl lock held */
231 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
233 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
234 struct net_vrf *vrf = netdev_priv(dev);
235 struct vrf_map_elem *new_me, *me;
236 u32 table_id = vrf->tb_id;
237 bool free_new_me = false;
241 /* we pre-allocate elements used in the spin-locked section (so that we
242 * keep the spinlock as short as possible).
244 new_me = vrf_map_elem_alloc(GFP_KERNEL);
248 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
252 me = vrf_map_lookup_elem(vmap, table_id);
255 vrf_map_add_elem(vmap, me);
259 /* we already have an entry in the vrf_map, so it means there is (at
260 * least) a vrf registered on the specific table.
263 if (vmap->strict_mode) {
264 /* vrfs cannot share the same table */
265 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
273 ++vmap->shared_tables;
275 list_add(&vrf->me_list, &me->vrf_list);
280 vrf_map_unlock(vmap);
282 /* clean-up, if needed */
284 vrf_map_elem_free(new_me);
289 /* called with rtnl lock held */
290 static void vrf_map_unregister_dev(struct net_device *dev)
292 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
293 struct net_vrf *vrf = netdev_priv(dev);
294 u32 table_id = vrf->tb_id;
295 struct vrf_map_elem *me;
300 me = vrf_map_lookup_elem(vmap, table_id);
304 list_del(&vrf->me_list);
308 --vmap->shared_tables;
309 } else if (users == 0) {
310 vrf_map_del_elem(me);
312 /* no one will refer to this element anymore */
313 vrf_map_elem_free(me);
317 vrf_map_unlock(vmap);
320 /* return the vrf device index associated with the table_id */
321 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
323 struct vrf_map *vmap = netns_vrf_map(net);
324 struct vrf_map_elem *me;
329 if (!vmap->strict_mode) {
334 me = vrf_map_lookup_elem(vmap, table_id);
340 ifindex = vrf_map_elem_get_vrf_ifindex(me);
343 vrf_map_unlock(vmap);
348 /* by default VRF devices do not have a qdisc and are expected
349 * to be created with only a single queue.
351 static bool qdisc_tx_is_default(const struct net_device *dev)
353 struct netdev_queue *txq;
356 if (dev->num_tx_queues > 1)
359 txq = netdev_get_tx_queue(dev, 0);
360 qdisc = rcu_access_pointer(txq->qdisc);
362 return !qdisc->enqueue;
365 /* Local traffic destined to local address. Reinsert the packet to rx
366 * path, similar to loopback handling.
368 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
369 struct dst_entry *dst)
375 skb_dst_set(skb, dst);
377 /* set pkt_type to avoid skb hitting packet taps twice -
378 * once on Tx and again in Rx processing
380 skb->pkt_type = PACKET_LOOPBACK;
382 skb->protocol = eth_type_trans(skb, dev);
384 if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
385 vrf_rx_stats(dev, len);
387 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
389 u64_stats_update_begin(&dstats->syncp);
390 u64_stats_inc(&dstats->rx_drops);
391 u64_stats_update_end(&dstats->syncp);
397 static void vrf_nf_set_untracked(struct sk_buff *skb)
399 if (skb_get_nfct(skb) == 0)
400 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
403 static void vrf_nf_reset_ct(struct sk_buff *skb)
405 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
409 #if IS_ENABLED(CONFIG_IPV6)
410 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
415 vrf_nf_reset_ct(skb);
417 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
418 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
420 if (likely(err == 1))
421 err = dst_output(net, sk, skb);
426 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
427 struct net_device *dev)
429 const struct ipv6hdr *iph;
430 struct net *net = dev_net(skb->dev);
432 int ret = NET_XMIT_DROP;
433 struct dst_entry *dst;
434 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
436 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
441 memset(&fl6, 0, sizeof(fl6));
442 /* needed to match OIF rule */
443 fl6.flowi6_l3mdev = dev->ifindex;
444 fl6.flowi6_iif = LOOPBACK_IFINDEX;
445 fl6.daddr = iph->daddr;
446 fl6.saddr = iph->saddr;
447 fl6.flowlabel = ip6_flowinfo(iph);
448 fl6.flowi6_mark = skb->mark;
449 fl6.flowi6_proto = iph->nexthdr;
451 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
452 if (IS_ERR(dst) || dst == dst_null)
457 /* if dst.dev is the VRF device again this is locally originated traffic
458 * destined to a local address. Short circuit to Rx path.
461 return vrf_local_xmit(skb, dev, dst);
463 skb_dst_set(skb, dst);
465 /* strip the ethernet header added for pass through VRF device */
466 __skb_pull(skb, skb_network_offset(skb));
468 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
469 ret = vrf_ip6_local_out(net, skb->sk, skb);
470 if (unlikely(net_xmit_eval(ret)))
471 dev->stats.tx_errors++;
473 ret = NET_XMIT_SUCCESS;
477 vrf_tx_error(dev, skb);
478 return NET_XMIT_DROP;
481 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
482 struct net_device *dev)
484 vrf_tx_error(dev, skb);
485 return NET_XMIT_DROP;
489 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
490 static int vrf_ip_local_out(struct net *net, struct sock *sk,
495 vrf_nf_reset_ct(skb);
497 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
498 skb, NULL, skb_dst(skb)->dev, dst_output);
499 if (likely(err == 1))
500 err = dst_output(net, sk, skb);
505 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
506 struct net_device *vrf_dev)
509 int ret = NET_XMIT_DROP;
511 struct net *net = dev_net(vrf_dev);
514 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
519 memset(&fl4, 0, sizeof(fl4));
520 /* needed to match OIF rule */
521 fl4.flowi4_l3mdev = vrf_dev->ifindex;
522 fl4.flowi4_iif = LOOPBACK_IFINDEX;
523 fl4.flowi4_tos = RT_TOS(ip4h->tos);
524 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
525 fl4.flowi4_proto = ip4h->protocol;
526 fl4.daddr = ip4h->daddr;
527 fl4.saddr = ip4h->saddr;
529 rt = ip_route_output_flow(net, &fl4, NULL);
535 /* if dst.dev is the VRF device again this is locally originated traffic
536 * destined to a local address. Short circuit to Rx path.
538 if (rt->dst.dev == vrf_dev)
539 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
541 skb_dst_set(skb, &rt->dst);
543 /* strip the ethernet header added for pass through VRF device */
544 __skb_pull(skb, skb_network_offset(skb));
547 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
551 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
552 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
553 if (unlikely(net_xmit_eval(ret)))
554 vrf_dev->stats.tx_errors++;
556 ret = NET_XMIT_SUCCESS;
561 vrf_tx_error(vrf_dev, skb);
565 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
567 switch (skb->protocol) {
568 case htons(ETH_P_IP):
569 return vrf_process_v4_outbound(skb, dev);
570 case htons(ETH_P_IPV6):
571 return vrf_process_v6_outbound(skb, dev);
573 vrf_tx_error(dev, skb);
574 return NET_XMIT_DROP;
578 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
580 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
583 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
585 u64_stats_update_begin(&dstats->syncp);
586 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
588 u64_stats_inc(&dstats->tx_packets);
589 u64_stats_add(&dstats->tx_bytes, len);
591 u64_stats_inc(&dstats->tx_drops);
593 u64_stats_update_end(&dstats->syncp);
598 static void vrf_finish_direct(struct sk_buff *skb)
600 struct net_device *vrf_dev = skb->dev;
602 if (!list_empty(&vrf_dev->ptype_all) &&
603 likely(skb_headroom(skb) >= ETH_HLEN)) {
604 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
606 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
607 eth_zero_addr(eth->h_dest);
608 eth->h_proto = skb->protocol;
610 dev_queue_xmit_nit(skb, vrf_dev);
612 skb_pull(skb, ETH_HLEN);
615 vrf_nf_reset_ct(skb);
618 #if IS_ENABLED(CONFIG_IPV6)
619 /* modelled after ip6_finish_output2 */
620 static int vrf_finish_output6(struct net *net, struct sock *sk,
623 struct dst_entry *dst = skb_dst(skb);
624 struct net_device *dev = dst->dev;
625 const struct in6_addr *nexthop;
626 struct neighbour *neigh;
629 vrf_nf_reset_ct(skb);
631 skb->protocol = htons(ETH_P_IPV6);
635 nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
636 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
637 if (unlikely(!neigh))
638 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
639 if (!IS_ERR(neigh)) {
640 sock_confirm_neigh(skb, neigh);
641 ret = neigh_output(neigh, skb, false);
647 IP6_INC_STATS(dev_net(dst->dev),
648 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
653 /* modelled after ip6_output */
654 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
656 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
657 net, sk, skb, NULL, skb_dst(skb)->dev,
659 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
662 /* set dst on skb to send packet to us via dev_xmit path. Allows
663 * packet to go through device based features such as qdisc, netfilter
664 * hooks and packet sockets with skb->dev set to vrf device.
666 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
669 struct net_vrf *vrf = netdev_priv(vrf_dev);
670 struct dst_entry *dst = NULL;
671 struct rt6_info *rt6;
675 rt6 = rcu_dereference(vrf->rt6);
683 if (unlikely(!dst)) {
684 vrf_tx_error(vrf_dev, skb);
689 skb_dst_set(skb, dst);
694 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
697 vrf_finish_direct(skb);
699 return vrf_ip6_local_out(net, sk, skb);
702 static int vrf_output6_direct(struct net *net, struct sock *sk,
707 skb->protocol = htons(ETH_P_IPV6);
709 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
710 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
711 NULL, skb->dev, vrf_output6_direct_finish);
713 if (likely(err == 1))
714 vrf_finish_direct(skb);
719 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
724 err = vrf_output6_direct(net, sk, skb);
725 if (likely(err == 1))
726 err = vrf_ip6_local_out(net, sk, skb);
731 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
735 struct net *net = dev_net(vrf_dev);
740 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
741 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
743 if (likely(err == 1))
744 err = vrf_output6_direct(net, sk, skb);
746 if (likely(err == 1))
752 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
756 /* don't divert link scope packets */
757 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
760 vrf_nf_set_untracked(skb);
762 if (qdisc_tx_is_default(vrf_dev) ||
763 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
764 return vrf_ip6_out_direct(vrf_dev, sk, skb);
766 return vrf_ip6_out_redirect(vrf_dev, skb);
770 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
772 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
773 struct net *net = dev_net(dev);
774 struct dst_entry *dst;
776 RCU_INIT_POINTER(vrf->rt6, NULL);
779 /* move dev in dst's to loopback so this VRF device can be deleted
780 * - based on dst_ifdown
784 netdev_ref_replace(dst->dev, net->loopback_dev,
785 &dst->dev_tracker, GFP_KERNEL);
786 dst->dev = net->loopback_dev;
791 static int vrf_rt6_create(struct net_device *dev)
793 int flags = DST_NOPOLICY | DST_NOXFRM;
794 struct net_vrf *vrf = netdev_priv(dev);
795 struct net *net = dev_net(dev);
796 struct rt6_info *rt6;
799 /* IPv6 can be CONFIG enabled and then disabled runtime */
800 if (!ipv6_mod_enabled())
803 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
804 if (!vrf->fib6_table)
807 /* create a dst for routing packets out a VRF device */
808 rt6 = ip6_dst_alloc(net, dev, flags);
812 rt6->dst.output = vrf_output6;
814 rcu_assign_pointer(vrf->rt6, rt6);
821 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
828 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
832 static int vrf_rt6_create(struct net_device *dev)
838 /* modelled after ip_finish_output2 */
839 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
841 struct dst_entry *dst = skb_dst(skb);
842 struct rtable *rt = dst_rtable(dst);
843 struct net_device *dev = dst->dev;
844 unsigned int hh_len = LL_RESERVED_SPACE(dev);
845 struct neighbour *neigh;
846 bool is_v6gw = false;
848 vrf_nf_reset_ct(skb);
850 /* Be paranoid, rather than too clever. */
851 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
852 skb = skb_expand_head(skb, hh_len);
854 dev->stats.tx_errors++;
861 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
862 if (!IS_ERR(neigh)) {
865 sock_confirm_neigh(skb, neigh);
866 /* if crossing protocols, can not use the cached header */
867 ret = neigh_output(neigh, skb, is_v6gw);
873 vrf_tx_error(skb->dev, skb);
877 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
879 struct net_device *dev = skb_dst(skb)->dev;
881 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
884 skb->protocol = htons(ETH_P_IP);
886 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
887 net, sk, skb, NULL, dev,
889 !(IPCB(skb)->flags & IPSKB_REROUTED));
892 /* set dst on skb to send packet to us via dev_xmit path. Allows
893 * packet to go through device based features such as qdisc, netfilter
894 * hooks and packet sockets with skb->dev set to vrf device.
896 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
899 struct net_vrf *vrf = netdev_priv(vrf_dev);
900 struct dst_entry *dst = NULL;
905 rth = rcu_dereference(vrf->rth);
913 if (unlikely(!dst)) {
914 vrf_tx_error(vrf_dev, skb);
919 skb_dst_set(skb, dst);
924 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
927 vrf_finish_direct(skb);
929 return vrf_ip_local_out(net, sk, skb);
932 static int vrf_output_direct(struct net *net, struct sock *sk,
937 skb->protocol = htons(ETH_P_IP);
939 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
940 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
941 NULL, skb->dev, vrf_output_direct_finish);
943 if (likely(err == 1))
944 vrf_finish_direct(skb);
949 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
954 err = vrf_output_direct(net, sk, skb);
955 if (likely(err == 1))
956 err = vrf_ip_local_out(net, sk, skb);
961 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
965 struct net *net = dev_net(vrf_dev);
970 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
971 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
973 if (likely(err == 1))
974 err = vrf_output_direct(net, sk, skb);
976 if (likely(err == 1))
982 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
986 /* don't divert multicast or local broadcast */
987 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
988 ipv4_is_lbcast(ip_hdr(skb)->daddr))
991 vrf_nf_set_untracked(skb);
993 if (qdisc_tx_is_default(vrf_dev) ||
994 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
995 return vrf_ip_out_direct(vrf_dev, sk, skb);
997 return vrf_ip_out_redirect(vrf_dev, skb);
1000 /* called with rcu lock held */
1001 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1003 struct sk_buff *skb,
1008 return vrf_ip_out(vrf_dev, sk, skb);
1010 return vrf_ip6_out(vrf_dev, sk, skb);
1017 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1019 struct rtable *rth = rtnl_dereference(vrf->rth);
1020 struct net *net = dev_net(dev);
1021 struct dst_entry *dst;
1023 RCU_INIT_POINTER(vrf->rth, NULL);
1026 /* move dev in dst's to loopback so this VRF device can be deleted
1027 * - based on dst_ifdown
1031 netdev_ref_replace(dst->dev, net->loopback_dev,
1032 &dst->dev_tracker, GFP_KERNEL);
1033 dst->dev = net->loopback_dev;
1038 static int vrf_rtable_create(struct net_device *dev)
1040 struct net_vrf *vrf = netdev_priv(dev);
1043 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1046 /* create a dst for routing packets out through a VRF device */
1047 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1051 rth->dst.output = vrf_output;
1053 rcu_assign_pointer(vrf->rth, rth);
1058 /**************************** device handling ********************/
1060 /* cycle interface to flush neighbor cache and move routes across tables */
1061 static void cycle_netdev(struct net_device *dev,
1062 struct netlink_ext_ack *extack)
1064 unsigned int flags = dev->flags;
1067 if (!netif_running(dev))
1070 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1072 ret = dev_change_flags(dev, flags, extack);
1076 "Failed to cycle device %s; route tables might be wrong!\n",
1081 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1082 struct netlink_ext_ack *extack)
1086 /* do not allow loopback device to be enslaved to a VRF.
1087 * The vrf device acts as the loopback for the vrf.
1089 if (port_dev == dev_net(dev)->loopback_dev) {
1090 NL_SET_ERR_MSG(extack,
1091 "Can not enslave loopback device to a VRF");
1095 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1096 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1100 cycle_netdev(port_dev, extack);
1105 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1109 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1110 struct netlink_ext_ack *extack)
1112 if (netif_is_l3_master(port_dev)) {
1113 NL_SET_ERR_MSG(extack,
1114 "Can not enslave an L3 master device to a VRF");
1118 if (netif_is_l3_slave(port_dev))
1121 return do_vrf_add_slave(dev, port_dev, extack);
1124 /* inverse of do_vrf_add_slave */
1125 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1127 netdev_upper_dev_unlink(port_dev, dev);
1128 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1130 cycle_netdev(port_dev, NULL);
1135 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1137 return do_vrf_del_slave(dev, port_dev);
1140 static void vrf_dev_uninit(struct net_device *dev)
1142 struct net_vrf *vrf = netdev_priv(dev);
1144 vrf_rtable_release(dev, vrf);
1145 vrf_rt6_release(dev, vrf);
1148 static int vrf_dev_init(struct net_device *dev)
1150 struct net_vrf *vrf = netdev_priv(dev);
1152 /* create the default dst which points back to us */
1153 if (vrf_rtable_create(dev) != 0)
1156 if (vrf_rt6_create(dev) != 0)
1159 dev->flags = IFF_MASTER | IFF_NOARP;
1161 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1162 dev->operstate = IF_OPER_UP;
1163 netdev_lockdep_set_classes(dev);
1167 vrf_rtable_release(dev, vrf);
1172 static const struct net_device_ops vrf_netdev_ops = {
1173 .ndo_init = vrf_dev_init,
1174 .ndo_uninit = vrf_dev_uninit,
1175 .ndo_start_xmit = vrf_xmit,
1176 .ndo_set_mac_address = eth_mac_addr,
1177 .ndo_add_slave = vrf_add_slave,
1178 .ndo_del_slave = vrf_del_slave,
1181 static u32 vrf_fib_table(const struct net_device *dev)
1183 struct net_vrf *vrf = netdev_priv(dev);
1188 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1194 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1195 struct sk_buff *skb,
1196 struct net_device *dev)
1198 struct net *net = dev_net(dev);
1200 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1201 skb = NULL; /* kfree_skb(skb) handled by nf code */
1206 static int vrf_prepare_mac_header(struct sk_buff *skb,
1207 struct net_device *vrf_dev, u16 proto)
1212 /* in general, we do not know if there is enough space in the head of
1213 * the packet for hosting the mac header.
1215 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1217 /* no space in the skb head */
1220 __skb_push(skb, ETH_HLEN);
1221 eth = (struct ethhdr *)skb->data;
1223 skb_reset_mac_header(skb);
1224 skb_reset_mac_len(skb);
1226 /* we set the ethernet destination and the source addresses to the
1227 * address of the VRF device.
1229 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1230 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1231 eth->h_proto = htons(proto);
1233 /* the destination address of the Ethernet frame corresponds to the
1234 * address set on the VRF interface; therefore, the packet is intended
1235 * to be processed locally.
1237 skb->protocol = eth->h_proto;
1238 skb->pkt_type = PACKET_HOST;
1240 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1242 skb_pull_inline(skb, ETH_HLEN);
1247 /* prepare and add the mac header to the packet if it was not set previously.
1248 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1249 * If the mac header was already set, the original mac header is left
1250 * untouched and the function returns immediately.
1252 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1253 struct net_device *vrf_dev,
1254 u16 proto, struct net_device *orig_dev)
1256 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1259 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1262 #if IS_ENABLED(CONFIG_IPV6)
1263 /* neighbor handling is done with actual device; do not want
1264 * to flip skb->dev for those ndisc packets. This really fails
1265 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1268 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1270 const struct ipv6hdr *iph = ipv6_hdr(skb);
1273 if (iph->nexthdr == NEXTHDR_ICMP) {
1274 const struct icmp6hdr *icmph;
1275 struct icmp6hdr _icmph;
1277 icmph = skb_header_pointer(skb, sizeof(*iph),
1278 sizeof(_icmph), &_icmph);
1282 switch (icmph->icmp6_type) {
1283 case NDISC_ROUTER_SOLICITATION:
1284 case NDISC_ROUTER_ADVERTISEMENT:
1285 case NDISC_NEIGHBOUR_SOLICITATION:
1286 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1287 case NDISC_REDIRECT:
1297 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1298 const struct net_device *dev,
1301 const struct sk_buff *skb,
1304 struct net_vrf *vrf = netdev_priv(dev);
1306 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1309 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1312 const struct ipv6hdr *iph = ipv6_hdr(skb);
1313 struct flowi6 fl6 = {
1314 .flowi6_iif = ifindex,
1315 .flowi6_mark = skb->mark,
1316 .flowi6_proto = iph->nexthdr,
1317 .daddr = iph->daddr,
1318 .saddr = iph->saddr,
1319 .flowlabel = ip6_flowinfo(iph),
1321 struct net *net = dev_net(vrf_dev);
1322 struct rt6_info *rt6;
1324 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1325 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1329 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1332 skb_dst_set(skb, &rt6->dst);
1335 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1336 struct sk_buff *skb)
1338 int orig_iif = skb->skb_iif;
1339 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1340 bool is_ndisc = ipv6_ndisc_frame(skb);
1342 /* loopback, multicast & non-ND link-local traffic; do not push through
1343 * packet taps again. Reset pkt_type for upper layers to process skb.
1344 * For non-loopback strict packets, determine the dst using the original
1347 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1349 skb->skb_iif = vrf_dev->ifindex;
1350 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1352 if (skb->pkt_type == PACKET_LOOPBACK)
1353 skb->pkt_type = PACKET_HOST;
1355 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1360 /* if packet is NDISC then keep the ingress interface */
1362 struct net_device *orig_dev = skb->dev;
1364 vrf_rx_stats(vrf_dev, skb->len);
1366 skb->skb_iif = vrf_dev->ifindex;
1368 if (!list_empty(&vrf_dev->ptype_all)) {
1371 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1375 skb_push(skb, skb->mac_len);
1376 dev_queue_xmit_nit(skb, vrf_dev);
1377 skb_pull(skb, skb->mac_len);
1381 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1385 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1387 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1393 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1394 struct sk_buff *skb)
1400 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1401 struct sk_buff *skb)
1403 struct net_device *orig_dev = skb->dev;
1406 skb->skb_iif = vrf_dev->ifindex;
1407 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1409 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1412 /* loopback traffic; do not push through packet taps again.
1413 * Reset pkt_type for upper layers to process skb
1415 if (skb->pkt_type == PACKET_LOOPBACK) {
1416 skb->pkt_type = PACKET_HOST;
1420 vrf_rx_stats(vrf_dev, skb->len);
1422 if (!list_empty(&vrf_dev->ptype_all)) {
1425 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1428 skb_push(skb, skb->mac_len);
1429 dev_queue_xmit_nit(skb, vrf_dev);
1430 skb_pull(skb, skb->mac_len);
1434 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1439 /* called with rcu lock held */
1440 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1441 struct sk_buff *skb,
1446 return vrf_ip_rcv(vrf_dev, skb);
1448 return vrf_ip6_rcv(vrf_dev, skb);
1454 #if IS_ENABLED(CONFIG_IPV6)
1455 /* send to link-local or multicast address via interface enslaved to
1456 * VRF device. Force lookup to VRF table without changing flow struct
1457 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1458 * is taken on the dst by this function.
1460 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1463 struct net *net = dev_net(dev);
1464 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1465 struct dst_entry *dst = NULL;
1466 struct rt6_info *rt;
1468 /* VRF device does not have a link-local address and
1469 * sending packets to link-local or mcast addresses over
1470 * a VRF device does not make sense
1472 if (fl6->flowi6_oif == dev->ifindex) {
1473 dst = &net->ipv6.ip6_null_entry->dst;
1477 if (!ipv6_addr_any(&fl6->saddr))
1478 flags |= RT6_LOOKUP_F_HAS_SADDR;
1480 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1488 static const struct l3mdev_ops vrf_l3mdev_ops = {
1489 .l3mdev_fib_table = vrf_fib_table,
1490 .l3mdev_l3_rcv = vrf_l3_rcv,
1491 .l3mdev_l3_out = vrf_l3_out,
1492 #if IS_ENABLED(CONFIG_IPV6)
1493 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1497 static void vrf_get_drvinfo(struct net_device *dev,
1498 struct ethtool_drvinfo *info)
1500 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1501 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1504 static const struct ethtool_ops vrf_ethtool_ops = {
1505 .get_drvinfo = vrf_get_drvinfo,
1508 static inline size_t vrf_fib_rule_nl_size(void)
1512 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1513 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1514 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1515 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1520 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1522 struct fib_rule_hdr *frh;
1523 struct nlmsghdr *nlh;
1524 struct sk_buff *skb;
1527 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1528 !ipv6_mod_enabled())
1531 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1535 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1537 goto nla_put_failure;
1539 /* rule only needs to appear once */
1540 nlh->nlmsg_flags |= NLM_F_EXCL;
1542 frh = nlmsg_data(nlh);
1543 memset(frh, 0, sizeof(*frh));
1544 frh->family = family;
1545 frh->action = FR_ACT_TO_TBL;
1547 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1548 goto nla_put_failure;
1550 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1551 goto nla_put_failure;
1553 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1554 goto nla_put_failure;
1556 nlmsg_end(skb, nlh);
1558 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1559 skb->sk = dev_net(dev)->rtnl;
1561 err = fib_nl_newrule(skb, nlh, NULL);
1565 err = fib_nl_delrule(skb, nlh, NULL);
1579 static int vrf_add_fib_rules(const struct net_device *dev)
1583 err = vrf_fib_rule(dev, AF_INET, true);
1587 err = vrf_fib_rule(dev, AF_INET6, true);
1591 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1592 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1597 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1598 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1605 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1607 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1610 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1612 vrf_fib_rule(dev, AF_INET6, false);
1616 vrf_fib_rule(dev, AF_INET, false);
1619 netdev_err(dev, "Failed to add FIB rules.\n");
1623 static void vrf_setup(struct net_device *dev)
1627 /* Initialize the device structure. */
1628 dev->netdev_ops = &vrf_netdev_ops;
1629 dev->l3mdev_ops = &vrf_l3mdev_ops;
1630 dev->ethtool_ops = &vrf_ethtool_ops;
1631 dev->needs_free_netdev = true;
1633 /* Fill in device structure with ethernet-generic values. */
1634 eth_hw_addr_random(dev);
1636 /* don't acquire vrf device's netif_tx_lock when transmitting */
1637 dev->features |= NETIF_F_LLTX;
1639 /* don't allow vrf devices to change network namespaces. */
1640 dev->features |= NETIF_F_NETNS_LOCAL;
1642 /* does not make sense for a VLAN to be added to a vrf device */
1643 dev->features |= NETIF_F_VLAN_CHALLENGED;
1645 /* enable offload features */
1646 dev->features |= NETIF_F_GSO_SOFTWARE;
1647 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1648 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1650 dev->hw_features = dev->features;
1651 dev->hw_enc_features = dev->features;
1653 /* default to no qdisc; user can add if desired */
1654 dev->priv_flags |= IFF_NO_QUEUE;
1655 dev->priv_flags |= IFF_NO_RX_HANDLER;
1656 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1658 /* VRF devices do not care about MTU, but if the MTU is set
1659 * too low then the ipv4 and ipv6 protocols are disabled
1660 * which breaks networking.
1662 dev->min_mtu = IPV6_MIN_MTU;
1663 dev->max_mtu = IP6_MAX_MTU;
1664 dev->mtu = dev->max_mtu;
1666 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1669 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1670 struct netlink_ext_ack *extack)
1672 if (tb[IFLA_ADDRESS]) {
1673 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1674 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1677 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1678 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1679 return -EADDRNOTAVAIL;
1685 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1687 struct net_device *port_dev;
1688 struct list_head *iter;
1690 netdev_for_each_lower_dev(dev, port_dev, iter)
1691 vrf_del_slave(dev, port_dev);
1693 vrf_map_unregister_dev(dev);
1695 unregister_netdevice_queue(dev, head);
1698 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1699 struct nlattr *tb[], struct nlattr *data[],
1700 struct netlink_ext_ack *extack)
1702 struct net_vrf *vrf = netdev_priv(dev);
1703 struct netns_vrf *nn_vrf;
1704 bool *add_fib_rules;
1708 if (!data || !data[IFLA_VRF_TABLE]) {
1709 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1713 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1714 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1715 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1716 "Invalid VRF table id");
1720 dev->priv_flags |= IFF_L3MDEV_MASTER;
1722 err = register_netdevice(dev);
1726 /* mapping between table_id and vrf;
1727 * note: such binding could not be done in the dev init function
1728 * because dev->ifindex id is not available yet.
1730 vrf->ifindex = dev->ifindex;
1732 err = vrf_map_register_dev(dev, extack);
1734 unregister_netdevice(dev);
1739 nn_vrf = net_generic(net, vrf_net_id);
1741 add_fib_rules = &nn_vrf->add_fib_rules;
1742 if (*add_fib_rules) {
1743 err = vrf_add_fib_rules(dev);
1745 vrf_map_unregister_dev(dev);
1746 unregister_netdevice(dev);
1749 *add_fib_rules = false;
1756 static size_t vrf_nl_getsize(const struct net_device *dev)
1758 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1761 static int vrf_fillinfo(struct sk_buff *skb,
1762 const struct net_device *dev)
1764 struct net_vrf *vrf = netdev_priv(dev);
1766 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1769 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1770 const struct net_device *slave_dev)
1772 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1775 static int vrf_fill_slave_info(struct sk_buff *skb,
1776 const struct net_device *vrf_dev,
1777 const struct net_device *slave_dev)
1779 struct net_vrf *vrf = netdev_priv(vrf_dev);
1781 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1787 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1788 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1791 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1793 .priv_size = sizeof(struct net_vrf),
1795 .get_size = vrf_nl_getsize,
1796 .policy = vrf_nl_policy,
1797 .validate = vrf_validate,
1798 .fill_info = vrf_fillinfo,
1800 .get_slave_size = vrf_get_slave_size,
1801 .fill_slave_info = vrf_fill_slave_info,
1803 .newlink = vrf_newlink,
1804 .dellink = vrf_dellink,
1806 .maxtype = IFLA_VRF_MAX,
1809 static int vrf_device_event(struct notifier_block *unused,
1810 unsigned long event, void *ptr)
1812 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1814 /* only care about unregister events to drop slave references */
1815 if (event == NETDEV_UNREGISTER) {
1816 struct net_device *vrf_dev;
1818 if (!netif_is_l3_slave(dev))
1821 vrf_dev = netdev_master_upper_dev_get(dev);
1822 vrf_del_slave(vrf_dev, dev);
1828 static struct notifier_block vrf_notifier_block __read_mostly = {
1829 .notifier_call = vrf_device_event,
1832 static int vrf_map_init(struct vrf_map *vmap)
1834 spin_lock_init(&vmap->vmap_lock);
1835 hash_init(vmap->ht);
1837 vmap->strict_mode = false;
1842 #ifdef CONFIG_SYSCTL
1843 static bool vrf_strict_mode(struct vrf_map *vmap)
1848 strict_mode = vmap->strict_mode;
1849 vrf_map_unlock(vmap);
1854 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1861 cur_mode = &vmap->strict_mode;
1862 if (*cur_mode == new_mode)
1866 /* disable strict mode */
1869 if (vmap->shared_tables) {
1870 /* we cannot allow strict_mode because there are some
1871 * vrfs that share one or more tables.
1877 /* no tables are shared among vrfs, so we can go back
1878 * to 1:1 association between a vrf with its table.
1884 vrf_map_unlock(vmap);
1889 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1890 void *buffer, size_t *lenp, loff_t *ppos)
1892 struct net *net = (struct net *)table->extra1;
1893 struct vrf_map *vmap = netns_vrf_map(net);
1894 int proc_strict_mode = 0;
1895 struct ctl_table tmp = {
1896 .procname = table->procname,
1897 .data = &proc_strict_mode,
1898 .maxlen = sizeof(int),
1899 .mode = table->mode,
1900 .extra1 = SYSCTL_ZERO,
1901 .extra2 = SYSCTL_ONE,
1906 proc_strict_mode = vrf_strict_mode(vmap);
1908 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1910 if (write && ret == 0)
1911 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1916 static const struct ctl_table vrf_table[] = {
1918 .procname = "strict_mode",
1920 .maxlen = sizeof(int),
1922 .proc_handler = vrf_shared_table_handler,
1923 /* set by the vrf_netns_init */
1928 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1930 struct ctl_table *table;
1932 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1936 /* init the extra1 parameter with the reference to current netns */
1937 table[0].extra1 = net;
1939 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1940 ARRAY_SIZE(vrf_table));
1941 if (!nn_vrf->ctl_hdr) {
1949 static void vrf_netns_exit_sysctl(struct net *net)
1951 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1952 const struct ctl_table *table;
1954 table = nn_vrf->ctl_hdr->ctl_table_arg;
1955 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1959 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1964 static void vrf_netns_exit_sysctl(struct net *net)
1969 /* Initialize per network namespace state */
1970 static int __net_init vrf_netns_init(struct net *net)
1972 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974 nn_vrf->add_fib_rules = true;
1975 vrf_map_init(&nn_vrf->vmap);
1977 return vrf_netns_init_sysctl(net, nn_vrf);
1980 static void __net_exit vrf_netns_exit(struct net *net)
1982 vrf_netns_exit_sysctl(net);
1985 static struct pernet_operations vrf_net_ops __net_initdata = {
1986 .init = vrf_netns_init,
1987 .exit = vrf_netns_exit,
1989 .size = sizeof(struct netns_vrf),
1992 static int __init vrf_init_module(void)
1996 register_netdevice_notifier(&vrf_notifier_block);
1998 rc = register_pernet_subsys(&vrf_net_ops);
2002 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2003 vrf_ifindex_lookup_by_table_id);
2007 rc = rtnl_link_register(&vrf_link_ops);
2009 goto table_lookup_unreg;
2014 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2015 vrf_ifindex_lookup_by_table_id);
2018 unregister_pernet_subsys(&vrf_net_ops);
2021 unregister_netdevice_notifier(&vrf_notifier_block);
2025 module_init(vrf_init_module);
2026 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2027 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2028 MODULE_LICENSE("GPL");
2029 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2030 MODULE_VERSION(DRV_VERSION);