2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block *sblock;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
74 u64 physical_for_dev_replace;
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
81 u8 csum[BTRFS_CSUM_SIZE];
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
99 struct btrfs_work work;
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
134 struct list_head csum_list;
137 int pages_per_rd_bio;
142 struct scrub_wr_ctx wr_ctx;
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
151 struct scrub_fixup_nodatasum {
152 struct scrub_ctx *sctx;
153 struct btrfs_device *dev;
155 struct btrfs_root *root;
156 struct btrfs_work work;
160 struct scrub_nocow_inode {
164 struct list_head list;
167 struct scrub_copy_nocow_ctx {
168 struct scrub_ctx *sctx;
172 u64 physical_for_dev_replace;
173 struct list_head inodes;
174 struct btrfs_work work;
177 struct scrub_warning {
178 struct btrfs_path *path;
179 u64 extent_item_size;
185 struct btrfs_device *dev;
191 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
192 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
193 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
195 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
196 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
197 struct btrfs_fs_info *fs_info,
198 struct scrub_block *original_sblock,
199 u64 length, u64 logical,
200 struct scrub_block *sblocks_for_recheck);
201 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
202 struct scrub_block *sblock, int is_metadata,
203 int have_csum, u8 *csum, u64 generation,
205 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
206 struct scrub_block *sblock,
207 int is_metadata, int have_csum,
208 const u8 *csum, u64 generation,
210 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
211 struct scrub_block *sblock_good,
213 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
214 struct scrub_block *sblock_good,
215 int page_num, int force_write);
216 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 static int scrub_checksum_data(struct scrub_block *sblock);
220 static int scrub_checksum_tree_block(struct scrub_block *sblock);
221 static int scrub_checksum_super(struct scrub_block *sblock);
222 static void scrub_block_get(struct scrub_block *sblock);
223 static void scrub_block_put(struct scrub_block *sblock);
224 static void scrub_page_get(struct scrub_page *spage);
225 static void scrub_page_put(struct scrub_page *spage);
226 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
227 struct scrub_page *spage);
228 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
229 u64 physical, struct btrfs_device *dev, u64 flags,
230 u64 gen, int mirror_num, u8 *csum, int force,
231 u64 physical_for_dev_replace);
232 static void scrub_bio_end_io(struct bio *bio, int err);
233 static void scrub_bio_end_io_worker(struct btrfs_work *work);
234 static void scrub_block_complete(struct scrub_block *sblock);
235 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
236 u64 extent_logical, u64 extent_len,
237 u64 *extent_physical,
238 struct btrfs_device **extent_dev,
239 int *extent_mirror_num);
240 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
241 struct scrub_wr_ctx *wr_ctx,
242 struct btrfs_fs_info *fs_info,
243 struct btrfs_device *dev,
245 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
246 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
247 struct scrub_page *spage);
248 static void scrub_wr_submit(struct scrub_ctx *sctx);
249 static void scrub_wr_bio_end_io(struct bio *bio, int err);
250 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
251 static int write_page_nocow(struct scrub_ctx *sctx,
252 u64 physical_for_dev_replace, struct page *page);
253 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
254 struct scrub_copy_nocow_ctx *ctx);
255 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
256 int mirror_num, u64 physical_for_dev_replace);
257 static void copy_nocow_pages_worker(struct btrfs_work *work);
258 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
259 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 atomic_inc(&sctx->bios_in_flight);
267 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 atomic_dec(&sctx->bios_in_flight);
270 wake_up(&sctx->list_wait);
273 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 while (atomic_read(&fs_info->scrub_pause_req)) {
276 mutex_unlock(&fs_info->scrub_lock);
277 wait_event(fs_info->scrub_pause_wait,
278 atomic_read(&fs_info->scrub_pause_req) == 0);
279 mutex_lock(&fs_info->scrub_lock);
283 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 atomic_inc(&fs_info->scrubs_paused);
286 wake_up(&fs_info->scrub_pause_wait);
288 mutex_lock(&fs_info->scrub_lock);
289 __scrub_blocked_if_needed(fs_info);
290 atomic_dec(&fs_info->scrubs_paused);
291 mutex_unlock(&fs_info->scrub_lock);
293 wake_up(&fs_info->scrub_pause_wait);
297 * used for workers that require transaction commits (i.e., for the
300 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
305 * increment scrubs_running to prevent cancel requests from
306 * completing as long as a worker is running. we must also
307 * increment scrubs_paused to prevent deadlocking on pause
308 * requests used for transactions commits (as the worker uses a
309 * transaction context). it is safe to regard the worker
310 * as paused for all matters practical. effectively, we only
311 * avoid cancellation requests from completing.
313 mutex_lock(&fs_info->scrub_lock);
314 atomic_inc(&fs_info->scrubs_running);
315 atomic_inc(&fs_info->scrubs_paused);
316 mutex_unlock(&fs_info->scrub_lock);
319 * check if @scrubs_running=@scrubs_paused condition
320 * inside wait_event() is not an atomic operation.
321 * which means we may inc/dec @scrub_running/paused
322 * at any time. Let's wake up @scrub_pause_wait as
323 * much as we can to let commit transaction blocked less.
325 wake_up(&fs_info->scrub_pause_wait);
327 atomic_inc(&sctx->workers_pending);
330 /* used for workers that require transaction commits */
331 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
336 * see scrub_pending_trans_workers_inc() why we're pretending
337 * to be paused in the scrub counters
339 mutex_lock(&fs_info->scrub_lock);
340 atomic_dec(&fs_info->scrubs_running);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343 atomic_dec(&sctx->workers_pending);
344 wake_up(&fs_info->scrub_pause_wait);
345 wake_up(&sctx->list_wait);
348 static void scrub_free_csums(struct scrub_ctx *sctx)
350 while (!list_empty(&sctx->csum_list)) {
351 struct btrfs_ordered_sum *sum;
352 sum = list_first_entry(&sctx->csum_list,
353 struct btrfs_ordered_sum, list);
354 list_del(&sum->list);
359 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
366 scrub_free_wr_ctx(&sctx->wr_ctx);
368 /* this can happen when scrub is cancelled */
369 if (sctx->curr != -1) {
370 struct scrub_bio *sbio = sctx->bios[sctx->curr];
372 for (i = 0; i < sbio->page_count; i++) {
373 WARN_ON(!sbio->pagev[i]->page);
374 scrub_block_put(sbio->pagev[i]->sblock);
379 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
380 struct scrub_bio *sbio = sctx->bios[i];
387 scrub_free_csums(sctx);
391 static noinline_for_stack
392 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394 struct scrub_ctx *sctx;
396 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
397 int pages_per_rd_bio;
401 * the setting of pages_per_rd_bio is correct for scrub but might
402 * be wrong for the dev_replace code where we might read from
403 * different devices in the initial huge bios. However, that
404 * code is able to correctly handle the case when adding a page
408 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
409 bio_get_nr_vecs(dev->bdev));
411 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
412 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
415 sctx->is_dev_replace = is_dev_replace;
416 sctx->pages_per_rd_bio = pages_per_rd_bio;
418 sctx->dev_root = dev->dev_root;
419 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
420 struct scrub_bio *sbio;
422 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
425 sctx->bios[i] = sbio;
429 sbio->page_count = 0;
430 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
431 scrub_bio_end_io_worker, NULL, NULL);
433 if (i != SCRUB_BIOS_PER_SCTX - 1)
434 sctx->bios[i]->next_free = i + 1;
436 sctx->bios[i]->next_free = -1;
438 sctx->first_free = 0;
439 sctx->nodesize = dev->dev_root->nodesize;
440 sctx->sectorsize = dev->dev_root->sectorsize;
441 atomic_set(&sctx->bios_in_flight, 0);
442 atomic_set(&sctx->workers_pending, 0);
443 atomic_set(&sctx->cancel_req, 0);
444 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
445 INIT_LIST_HEAD(&sctx->csum_list);
447 spin_lock_init(&sctx->list_lock);
448 spin_lock_init(&sctx->stat_lock);
449 init_waitqueue_head(&sctx->list_wait);
451 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
452 fs_info->dev_replace.tgtdev, is_dev_replace);
454 scrub_free_ctx(sctx);
460 scrub_free_ctx(sctx);
461 return ERR_PTR(-ENOMEM);
464 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
471 struct extent_buffer *eb;
472 struct btrfs_inode_item *inode_item;
473 struct scrub_warning *swarn = warn_ctx;
474 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
475 struct inode_fs_paths *ipath = NULL;
476 struct btrfs_root *local_root;
477 struct btrfs_key root_key;
479 root_key.objectid = root;
480 root_key.type = BTRFS_ROOT_ITEM_KEY;
481 root_key.offset = (u64)-1;
482 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
483 if (IS_ERR(local_root)) {
484 ret = PTR_ERR(local_root);
488 ret = inode_item_info(inum, 0, local_root, swarn->path);
490 btrfs_release_path(swarn->path);
494 eb = swarn->path->nodes[0];
495 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
496 struct btrfs_inode_item);
497 isize = btrfs_inode_size(eb, inode_item);
498 nlink = btrfs_inode_nlink(eb, inode_item);
499 btrfs_release_path(swarn->path);
501 ipath = init_ipath(4096, local_root, swarn->path);
503 ret = PTR_ERR(ipath);
507 ret = paths_from_inode(inum, ipath);
513 * we deliberately ignore the bit ipath might have been too small to
514 * hold all of the paths here
516 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
517 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
518 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
519 "length %llu, links %u (path: %s)\n", swarn->errstr,
520 swarn->logical, rcu_str_deref(swarn->dev->name),
521 (unsigned long long)swarn->sector, root, inum, offset,
522 min(isize - offset, (u64)PAGE_SIZE), nlink,
523 (char *)(unsigned long)ipath->fspath->val[i]);
529 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
530 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
531 "resolving failed with ret=%d\n", swarn->errstr,
532 swarn->logical, rcu_str_deref(swarn->dev->name),
533 (unsigned long long)swarn->sector, root, inum, offset, ret);
539 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
541 struct btrfs_device *dev;
542 struct btrfs_fs_info *fs_info;
543 struct btrfs_path *path;
544 struct btrfs_key found_key;
545 struct extent_buffer *eb;
546 struct btrfs_extent_item *ei;
547 struct scrub_warning swarn;
548 unsigned long ptr = 0;
554 const int bufsize = 4096;
557 WARN_ON(sblock->page_count < 1);
558 dev = sblock->pagev[0]->dev;
559 fs_info = sblock->sctx->dev_root->fs_info;
561 path = btrfs_alloc_path();
563 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
564 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
565 swarn.sector = (sblock->pagev[0]->physical) >> 9;
566 swarn.logical = sblock->pagev[0]->logical;
567 swarn.errstr = errstr;
569 swarn.msg_bufsize = bufsize;
570 swarn.scratch_bufsize = bufsize;
572 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
580 extent_item_pos = swarn.logical - found_key.objectid;
581 swarn.extent_item_size = found_key.offset;
584 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
585 item_size = btrfs_item_size_nr(eb, path->slots[0]);
587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
589 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
590 item_size, &ref_root,
592 printk_in_rcu(KERN_WARNING
593 "BTRFS: %s at logical %llu on dev %s, "
594 "sector %llu: metadata %s (level %d) in tree "
595 "%llu\n", errstr, swarn.logical,
596 rcu_str_deref(dev->name),
597 (unsigned long long)swarn.sector,
598 ref_level ? "node" : "leaf",
599 ret < 0 ? -1 : ref_level,
600 ret < 0 ? -1 : ref_root);
602 btrfs_release_path(path);
604 btrfs_release_path(path);
607 iterate_extent_inodes(fs_info, found_key.objectid,
609 scrub_print_warning_inode, &swarn);
613 btrfs_free_path(path);
614 kfree(swarn.scratch_buf);
615 kfree(swarn.msg_buf);
618 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
620 struct page *page = NULL;
622 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
625 struct btrfs_key key;
626 struct inode *inode = NULL;
627 struct btrfs_fs_info *fs_info;
628 u64 end = offset + PAGE_SIZE - 1;
629 struct btrfs_root *local_root;
633 key.type = BTRFS_ROOT_ITEM_KEY;
634 key.offset = (u64)-1;
636 fs_info = fixup->root->fs_info;
637 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
639 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
640 if (IS_ERR(local_root)) {
641 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
642 return PTR_ERR(local_root);
645 key.type = BTRFS_INODE_ITEM_KEY;
648 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
649 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
651 return PTR_ERR(inode);
653 index = offset >> PAGE_CACHE_SHIFT;
655 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
661 if (PageUptodate(page)) {
662 if (PageDirty(page)) {
664 * we need to write the data to the defect sector. the
665 * data that was in that sector is not in memory,
666 * because the page was modified. we must not write the
667 * modified page to that sector.
669 * TODO: what could be done here: wait for the delalloc
670 * runner to write out that page (might involve
671 * COW) and see whether the sector is still
672 * referenced afterwards.
674 * For the meantime, we'll treat this error
675 * incorrectable, although there is a chance that a
676 * later scrub will find the bad sector again and that
677 * there's no dirty page in memory, then.
682 fs_info = BTRFS_I(inode)->root->fs_info;
683 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
684 fixup->logical, page,
690 * we need to get good data first. the general readpage path
691 * will call repair_io_failure for us, we just have to make
692 * sure we read the bad mirror.
694 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
695 EXTENT_DAMAGED, GFP_NOFS);
697 /* set_extent_bits should give proper error */
704 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
707 wait_on_page_locked(page);
709 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
710 end, EXTENT_DAMAGED, 0, NULL);
712 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
713 EXTENT_DAMAGED, GFP_NOFS);
725 if (ret == 0 && corrected) {
727 * we only need to call readpage for one of the inodes belonging
728 * to this extent. so make iterate_extent_inodes stop
736 static void scrub_fixup_nodatasum(struct btrfs_work *work)
739 struct scrub_fixup_nodatasum *fixup;
740 struct scrub_ctx *sctx;
741 struct btrfs_trans_handle *trans = NULL;
742 struct btrfs_path *path;
743 int uncorrectable = 0;
745 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
748 path = btrfs_alloc_path();
750 spin_lock(&sctx->stat_lock);
751 ++sctx->stat.malloc_errors;
752 spin_unlock(&sctx->stat_lock);
757 trans = btrfs_join_transaction(fixup->root);
764 * the idea is to trigger a regular read through the standard path. we
765 * read a page from the (failed) logical address by specifying the
766 * corresponding copynum of the failed sector. thus, that readpage is
768 * that is the point where on-the-fly error correction will kick in
769 * (once it's finished) and rewrite the failed sector if a good copy
772 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
773 path, scrub_fixup_readpage,
781 spin_lock(&sctx->stat_lock);
782 ++sctx->stat.corrected_errors;
783 spin_unlock(&sctx->stat_lock);
786 if (trans && !IS_ERR(trans))
787 btrfs_end_transaction(trans, fixup->root);
789 spin_lock(&sctx->stat_lock);
790 ++sctx->stat.uncorrectable_errors;
791 spin_unlock(&sctx->stat_lock);
792 btrfs_dev_replace_stats_inc(
793 &sctx->dev_root->fs_info->dev_replace.
794 num_uncorrectable_read_errors);
795 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
796 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
797 fixup->logical, rcu_str_deref(fixup->dev->name));
800 btrfs_free_path(path);
803 scrub_pending_trans_workers_dec(sctx);
807 * scrub_handle_errored_block gets called when either verification of the
808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
809 * case, this function handles all pages in the bio, even though only one
811 * The goal of this function is to repair the errored block by using the
812 * contents of one of the mirrors.
814 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
816 struct scrub_ctx *sctx = sblock_to_check->sctx;
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
822 unsigned int failed_mirror_index;
823 unsigned int is_metadata;
824 unsigned int have_csum;
826 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
827 struct scrub_block *sblock_bad;
832 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
833 DEFAULT_RATELIMIT_BURST);
835 BUG_ON(sblock_to_check->page_count < 1);
836 fs_info = sctx->dev_root->fs_info;
837 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
839 * if we find an error in a super block, we just report it.
840 * They will get written with the next transaction commit
843 spin_lock(&sctx->stat_lock);
844 ++sctx->stat.super_errors;
845 spin_unlock(&sctx->stat_lock);
848 length = sblock_to_check->page_count * PAGE_SIZE;
849 logical = sblock_to_check->pagev[0]->logical;
850 generation = sblock_to_check->pagev[0]->generation;
851 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
852 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
853 is_metadata = !(sblock_to_check->pagev[0]->flags &
854 BTRFS_EXTENT_FLAG_DATA);
855 have_csum = sblock_to_check->pagev[0]->have_csum;
856 csum = sblock_to_check->pagev[0]->csum;
857 dev = sblock_to_check->pagev[0]->dev;
859 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
860 sblocks_for_recheck = NULL;
865 * read all mirrors one after the other. This includes to
866 * re-read the extent or metadata block that failed (that was
867 * the cause that this fixup code is called) another time,
868 * page by page this time in order to know which pages
869 * caused I/O errors and which ones are good (for all mirrors).
870 * It is the goal to handle the situation when more than one
871 * mirror contains I/O errors, but the errors do not
872 * overlap, i.e. the data can be repaired by selecting the
873 * pages from those mirrors without I/O error on the
874 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
875 * would be that mirror #1 has an I/O error on the first page,
876 * the second page is good, and mirror #2 has an I/O error on
877 * the second page, but the first page is good.
878 * Then the first page of the first mirror can be repaired by
879 * taking the first page of the second mirror, and the
880 * second page of the second mirror can be repaired by
881 * copying the contents of the 2nd page of the 1st mirror.
882 * One more note: if the pages of one mirror contain I/O
883 * errors, the checksum cannot be verified. In order to get
884 * the best data for repairing, the first attempt is to find
885 * a mirror without I/O errors and with a validated checksum.
886 * Only if this is not possible, the pages are picked from
887 * mirrors with I/O errors without considering the checksum.
888 * If the latter is the case, at the end, the checksum of the
889 * repaired area is verified in order to correctly maintain
893 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
894 sizeof(*sblocks_for_recheck),
896 if (!sblocks_for_recheck) {
897 spin_lock(&sctx->stat_lock);
898 sctx->stat.malloc_errors++;
899 sctx->stat.read_errors++;
900 sctx->stat.uncorrectable_errors++;
901 spin_unlock(&sctx->stat_lock);
902 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
906 /* setup the context, map the logical blocks and alloc the pages */
907 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
908 logical, sblocks_for_recheck);
910 spin_lock(&sctx->stat_lock);
911 sctx->stat.read_errors++;
912 sctx->stat.uncorrectable_errors++;
913 spin_unlock(&sctx->stat_lock);
914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
918 sblock_bad = sblocks_for_recheck + failed_mirror_index;
920 /* build and submit the bios for the failed mirror, check checksums */
921 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
922 csum, generation, sctx->csum_size);
924 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
925 sblock_bad->no_io_error_seen) {
927 * the error disappeared after reading page by page, or
928 * the area was part of a huge bio and other parts of the
929 * bio caused I/O errors, or the block layer merged several
930 * read requests into one and the error is caused by a
931 * different bio (usually one of the two latter cases is
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.unverified_errors++;
936 spin_unlock(&sctx->stat_lock);
938 if (sctx->is_dev_replace)
939 scrub_write_block_to_dev_replace(sblock_bad);
943 if (!sblock_bad->no_io_error_seen) {
944 spin_lock(&sctx->stat_lock);
945 sctx->stat.read_errors++;
946 spin_unlock(&sctx->stat_lock);
947 if (__ratelimit(&_rs))
948 scrub_print_warning("i/o error", sblock_to_check);
949 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
950 } else if (sblock_bad->checksum_error) {
951 spin_lock(&sctx->stat_lock);
952 sctx->stat.csum_errors++;
953 spin_unlock(&sctx->stat_lock);
954 if (__ratelimit(&_rs))
955 scrub_print_warning("checksum error", sblock_to_check);
956 btrfs_dev_stat_inc_and_print(dev,
957 BTRFS_DEV_STAT_CORRUPTION_ERRS);
958 } else if (sblock_bad->header_error) {
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.verify_errors++;
961 spin_unlock(&sctx->stat_lock);
962 if (__ratelimit(&_rs))
963 scrub_print_warning("checksum/header error",
965 if (sblock_bad->generation_error)
966 btrfs_dev_stat_inc_and_print(dev,
967 BTRFS_DEV_STAT_GENERATION_ERRS);
969 btrfs_dev_stat_inc_and_print(dev,
970 BTRFS_DEV_STAT_CORRUPTION_ERRS);
973 if (sctx->readonly) {
974 ASSERT(!sctx->is_dev_replace);
978 if (!is_metadata && !have_csum) {
979 struct scrub_fixup_nodatasum *fixup_nodatasum;
982 WARN_ON(sctx->is_dev_replace);
985 * !is_metadata and !have_csum, this means that the data
986 * might not be COW'ed, that it might be modified
987 * concurrently. The general strategy to work on the
988 * commit root does not help in the case when COW is not
991 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
992 if (!fixup_nodatasum)
993 goto did_not_correct_error;
994 fixup_nodatasum->sctx = sctx;
995 fixup_nodatasum->dev = dev;
996 fixup_nodatasum->logical = logical;
997 fixup_nodatasum->root = fs_info->extent_root;
998 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
999 scrub_pending_trans_workers_inc(sctx);
1000 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1001 scrub_fixup_nodatasum, NULL, NULL);
1002 btrfs_queue_work(fs_info->scrub_workers,
1003 &fixup_nodatasum->work);
1008 * now build and submit the bios for the other mirrors, check
1010 * First try to pick the mirror which is completely without I/O
1011 * errors and also does not have a checksum error.
1012 * If one is found, and if a checksum is present, the full block
1013 * that is known to contain an error is rewritten. Afterwards
1014 * the block is known to be corrected.
1015 * If a mirror is found which is completely correct, and no
1016 * checksum is present, only those pages are rewritten that had
1017 * an I/O error in the block to be repaired, since it cannot be
1018 * determined, which copy of the other pages is better (and it
1019 * could happen otherwise that a correct page would be
1020 * overwritten by a bad one).
1022 for (mirror_index = 0;
1023 mirror_index < BTRFS_MAX_MIRRORS &&
1024 sblocks_for_recheck[mirror_index].page_count > 0;
1026 struct scrub_block *sblock_other;
1028 if (mirror_index == failed_mirror_index)
1030 sblock_other = sblocks_for_recheck + mirror_index;
1032 /* build and submit the bios, check checksums */
1033 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1034 have_csum, csum, generation,
1037 if (!sblock_other->header_error &&
1038 !sblock_other->checksum_error &&
1039 sblock_other->no_io_error_seen) {
1040 if (sctx->is_dev_replace) {
1041 scrub_write_block_to_dev_replace(sblock_other);
1043 int force_write = is_metadata || have_csum;
1045 ret = scrub_repair_block_from_good_copy(
1046 sblock_bad, sblock_other,
1050 goto corrected_error;
1055 * for dev_replace, pick good pages and write to the target device.
1057 if (sctx->is_dev_replace) {
1059 for (page_num = 0; page_num < sblock_bad->page_count;
1064 for (mirror_index = 0;
1065 mirror_index < BTRFS_MAX_MIRRORS &&
1066 sblocks_for_recheck[mirror_index].page_count > 0;
1068 struct scrub_block *sblock_other =
1069 sblocks_for_recheck + mirror_index;
1070 struct scrub_page *page_other =
1071 sblock_other->pagev[page_num];
1073 if (!page_other->io_error) {
1074 ret = scrub_write_page_to_dev_replace(
1075 sblock_other, page_num);
1077 /* succeeded for this page */
1081 btrfs_dev_replace_stats_inc(
1083 fs_info->dev_replace.
1091 * did not find a mirror to fetch the page
1092 * from. scrub_write_page_to_dev_replace()
1093 * handles this case (page->io_error), by
1094 * filling the block with zeros before
1095 * submitting the write request
1098 ret = scrub_write_page_to_dev_replace(
1099 sblock_bad, page_num);
1101 btrfs_dev_replace_stats_inc(
1102 &sctx->dev_root->fs_info->
1103 dev_replace.num_write_errors);
1111 * for regular scrub, repair those pages that are errored.
1112 * In case of I/O errors in the area that is supposed to be
1113 * repaired, continue by picking good copies of those pages.
1114 * Select the good pages from mirrors to rewrite bad pages from
1115 * the area to fix. Afterwards verify the checksum of the block
1116 * that is supposed to be repaired. This verification step is
1117 * only done for the purpose of statistic counting and for the
1118 * final scrub report, whether errors remain.
1119 * A perfect algorithm could make use of the checksum and try
1120 * all possible combinations of pages from the different mirrors
1121 * until the checksum verification succeeds. For example, when
1122 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1123 * of mirror #2 is readable but the final checksum test fails,
1124 * then the 2nd page of mirror #3 could be tried, whether now
1125 * the final checksum succeedes. But this would be a rare
1126 * exception and is therefore not implemented. At least it is
1127 * avoided that the good copy is overwritten.
1128 * A more useful improvement would be to pick the sectors
1129 * without I/O error based on sector sizes (512 bytes on legacy
1130 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1131 * mirror could be repaired by taking 512 byte of a different
1132 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1133 * area are unreadable.
1136 /* can only fix I/O errors from here on */
1137 if (sblock_bad->no_io_error_seen)
1138 goto did_not_correct_error;
1141 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144 if (!page_bad->io_error)
1147 for (mirror_index = 0;
1148 mirror_index < BTRFS_MAX_MIRRORS &&
1149 sblocks_for_recheck[mirror_index].page_count > 0;
1151 struct scrub_block *sblock_other = sblocks_for_recheck +
1153 struct scrub_page *page_other = sblock_other->pagev[
1156 if (!page_other->io_error) {
1157 ret = scrub_repair_page_from_good_copy(
1158 sblock_bad, sblock_other, page_num, 0);
1160 page_bad->io_error = 0;
1161 break; /* succeeded for this page */
1166 if (page_bad->io_error) {
1167 /* did not find a mirror to copy the page from */
1173 if (is_metadata || have_csum) {
1175 * need to verify the checksum now that all
1176 * sectors on disk are repaired (the write
1177 * request for data to be repaired is on its way).
1178 * Just be lazy and use scrub_recheck_block()
1179 * which re-reads the data before the checksum
1180 * is verified, but most likely the data comes out
1181 * of the page cache.
1183 scrub_recheck_block(fs_info, sblock_bad,
1184 is_metadata, have_csum, csum,
1185 generation, sctx->csum_size);
1186 if (!sblock_bad->header_error &&
1187 !sblock_bad->checksum_error &&
1188 sblock_bad->no_io_error_seen)
1189 goto corrected_error;
1191 goto did_not_correct_error;
1194 spin_lock(&sctx->stat_lock);
1195 sctx->stat.corrected_errors++;
1196 spin_unlock(&sctx->stat_lock);
1197 printk_ratelimited_in_rcu(KERN_ERR
1198 "BTRFS: fixed up error at logical %llu on dev %s\n",
1199 logical, rcu_str_deref(dev->name));
1202 did_not_correct_error:
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
1206 printk_ratelimited_in_rcu(KERN_ERR
1207 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1208 logical, rcu_str_deref(dev->name));
1212 if (sblocks_for_recheck) {
1213 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215 struct scrub_block *sblock = sblocks_for_recheck +
1219 for (page_index = 0; page_index < sblock->page_count;
1221 sblock->pagev[page_index]->sblock = NULL;
1222 scrub_page_put(sblock->pagev[page_index]);
1225 kfree(sblocks_for_recheck);
1231 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1232 struct btrfs_fs_info *fs_info,
1233 struct scrub_block *original_sblock,
1234 u64 length, u64 logical,
1235 struct scrub_block *sblocks_for_recheck)
1242 * note: the two members ref_count and outstanding_pages
1243 * are not used (and not set) in the blocks that are used for
1244 * the recheck procedure
1248 while (length > 0) {
1249 u64 sublen = min_t(u64, length, PAGE_SIZE);
1250 u64 mapped_length = sublen;
1251 struct btrfs_bio *bbio = NULL;
1254 * with a length of PAGE_SIZE, each returned stripe
1255 * represents one mirror
1257 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1258 &mapped_length, &bbio, 0);
1259 if (ret || !bbio || mapped_length < sublen) {
1264 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1265 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267 struct scrub_block *sblock;
1268 struct scrub_page *page;
1270 if (mirror_index >= BTRFS_MAX_MIRRORS)
1273 sblock = sblocks_for_recheck + mirror_index;
1274 sblock->sctx = sctx;
1275 page = kzalloc(sizeof(*page), GFP_NOFS);
1278 spin_lock(&sctx->stat_lock);
1279 sctx->stat.malloc_errors++;
1280 spin_unlock(&sctx->stat_lock);
1284 scrub_page_get(page);
1285 sblock->pagev[page_index] = page;
1286 page->logical = logical;
1287 page->physical = bbio->stripes[mirror_index].physical;
1288 BUG_ON(page_index >= original_sblock->page_count);
1289 page->physical_for_dev_replace =
1290 original_sblock->pagev[page_index]->
1291 physical_for_dev_replace;
1292 /* for missing devices, dev->bdev is NULL */
1293 page->dev = bbio->stripes[mirror_index].dev;
1294 page->mirror_num = mirror_index + 1;
1295 sblock->page_count++;
1296 page->page = alloc_page(GFP_NOFS);
1310 * this function will check the on disk data for checksum errors, header
1311 * errors and read I/O errors. If any I/O errors happen, the exact pages
1312 * which are errored are marked as being bad. The goal is to enable scrub
1313 * to take those pages that are not errored from all the mirrors so that
1314 * the pages that are errored in the just handled mirror can be repaired.
1316 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1317 struct scrub_block *sblock, int is_metadata,
1318 int have_csum, u8 *csum, u64 generation,
1323 sblock->no_io_error_seen = 1;
1324 sblock->header_error = 0;
1325 sblock->checksum_error = 0;
1327 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329 struct scrub_page *page = sblock->pagev[page_num];
1331 if (page->dev->bdev == NULL) {
1333 sblock->no_io_error_seen = 0;
1337 WARN_ON(!page->page);
1338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1341 sblock->no_io_error_seen = 0;
1344 bio->bi_bdev = page->dev->bdev;
1345 bio->bi_iter.bi_sector = page->physical >> 9;
1347 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1348 if (btrfsic_submit_bio_wait(READ, bio))
1349 sblock->no_io_error_seen = 0;
1354 if (sblock->no_io_error_seen)
1355 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1356 have_csum, csum, generation,
1362 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1363 struct scrub_block *sblock,
1364 int is_metadata, int have_csum,
1365 const u8 *csum, u64 generation,
1369 u8 calculated_csum[BTRFS_CSUM_SIZE];
1371 void *mapped_buffer;
1373 WARN_ON(!sblock->pagev[0]->page);
1375 struct btrfs_header *h;
1377 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1378 h = (struct btrfs_header *)mapped_buffer;
1380 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1381 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1382 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384 sblock->header_error = 1;
1385 } else if (generation != btrfs_stack_header_generation(h)) {
1386 sblock->header_error = 1;
1387 sblock->generation_error = 1;
1394 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1397 for (page_num = 0;;) {
1398 if (page_num == 0 && is_metadata)
1399 crc = btrfs_csum_data(
1400 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1401 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405 kunmap_atomic(mapped_buffer);
1407 if (page_num >= sblock->page_count)
1409 WARN_ON(!sblock->pagev[page_num]->page);
1411 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1414 btrfs_csum_final(crc, calculated_csum);
1415 if (memcmp(calculated_csum, csum, csum_size))
1416 sblock->checksum_error = 1;
1419 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1420 struct scrub_block *sblock_good,
1426 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1429 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1440 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1441 struct scrub_block *sblock_good,
1442 int page_num, int force_write)
1444 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1445 struct scrub_page *page_good = sblock_good->pagev[page_num];
1447 BUG_ON(page_bad->page == NULL);
1448 BUG_ON(page_good->page == NULL);
1449 if (force_write || sblock_bad->header_error ||
1450 sblock_bad->checksum_error || page_bad->io_error) {
1454 if (!page_bad->dev->bdev) {
1455 printk_ratelimited(KERN_WARNING "BTRFS: "
1456 "scrub_repair_page_from_good_copy(bdev == NULL) "
1457 "is unexpected!\n");
1461 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1464 bio->bi_bdev = page_bad->dev->bdev;
1465 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1468 if (PAGE_SIZE != ret) {
1473 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1474 btrfs_dev_stat_inc_and_print(page_bad->dev,
1475 BTRFS_DEV_STAT_WRITE_ERRS);
1476 btrfs_dev_replace_stats_inc(
1477 &sblock_bad->sctx->dev_root->fs_info->
1478 dev_replace.num_write_errors);
1488 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1492 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1495 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497 btrfs_dev_replace_stats_inc(
1498 &sblock->sctx->dev_root->fs_info->dev_replace.
1503 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1506 struct scrub_page *spage = sblock->pagev[page_num];
1508 BUG_ON(spage->page == NULL);
1509 if (spage->io_error) {
1510 void *mapped_buffer = kmap_atomic(spage->page);
1512 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1513 flush_dcache_page(spage->page);
1514 kunmap_atomic(mapped_buffer);
1516 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1519 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1520 struct scrub_page *spage)
1522 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1523 struct scrub_bio *sbio;
1526 mutex_lock(&wr_ctx->wr_lock);
1528 if (!wr_ctx->wr_curr_bio) {
1529 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531 if (!wr_ctx->wr_curr_bio) {
1532 mutex_unlock(&wr_ctx->wr_lock);
1535 wr_ctx->wr_curr_bio->sctx = sctx;
1536 wr_ctx->wr_curr_bio->page_count = 0;
1538 sbio = wr_ctx->wr_curr_bio;
1539 if (sbio->page_count == 0) {
1542 sbio->physical = spage->physical_for_dev_replace;
1543 sbio->logical = spage->logical;
1544 sbio->dev = wr_ctx->tgtdev;
1547 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549 mutex_unlock(&wr_ctx->wr_lock);
1555 bio->bi_private = sbio;
1556 bio->bi_end_io = scrub_wr_bio_end_io;
1557 bio->bi_bdev = sbio->dev->bdev;
1558 bio->bi_iter.bi_sector = sbio->physical >> 9;
1560 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1561 spage->physical_for_dev_replace ||
1562 sbio->logical + sbio->page_count * PAGE_SIZE !=
1564 scrub_wr_submit(sctx);
1568 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1569 if (ret != PAGE_SIZE) {
1570 if (sbio->page_count < 1) {
1573 mutex_unlock(&wr_ctx->wr_lock);
1576 scrub_wr_submit(sctx);
1580 sbio->pagev[sbio->page_count] = spage;
1581 scrub_page_get(spage);
1583 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1584 scrub_wr_submit(sctx);
1585 mutex_unlock(&wr_ctx->wr_lock);
1590 static void scrub_wr_submit(struct scrub_ctx *sctx)
1592 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1593 struct scrub_bio *sbio;
1595 if (!wr_ctx->wr_curr_bio)
1598 sbio = wr_ctx->wr_curr_bio;
1599 wr_ctx->wr_curr_bio = NULL;
1600 WARN_ON(!sbio->bio->bi_bdev);
1601 scrub_pending_bio_inc(sctx);
1602 /* process all writes in a single worker thread. Then the block layer
1603 * orders the requests before sending them to the driver which
1604 * doubled the write performance on spinning disks when measured
1606 btrfsic_submit_bio(WRITE, sbio->bio);
1609 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611 struct scrub_bio *sbio = bio->bi_private;
1612 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1617 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1618 scrub_wr_bio_end_io_worker, NULL, NULL);
1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1622 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 struct scrub_ctx *sctx = sbio->sctx;
1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1630 struct btrfs_dev_replace *dev_replace =
1631 &sbio->sctx->dev_root->fs_info->dev_replace;
1633 for (i = 0; i < sbio->page_count; i++) {
1634 struct scrub_page *spage = sbio->pagev[i];
1636 spage->io_error = 1;
1637 btrfs_dev_replace_stats_inc(&dev_replace->
1642 for (i = 0; i < sbio->page_count; i++)
1643 scrub_page_put(sbio->pagev[i]);
1647 scrub_pending_bio_dec(sctx);
1650 static int scrub_checksum(struct scrub_block *sblock)
1655 WARN_ON(sblock->page_count < 1);
1656 flags = sblock->pagev[0]->flags;
1658 if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 ret = scrub_checksum_data(sblock);
1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 ret = scrub_checksum_tree_block(sblock);
1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 (void)scrub_checksum_super(sblock);
1667 scrub_handle_errored_block(sblock);
1672 static int scrub_checksum_data(struct scrub_block *sblock)
1674 struct scrub_ctx *sctx = sblock->sctx;
1675 u8 csum[BTRFS_CSUM_SIZE];
1684 BUG_ON(sblock->page_count < 1);
1685 if (!sblock->pagev[0]->have_csum)
1688 on_disk_csum = sblock->pagev[0]->csum;
1689 page = sblock->pagev[0]->page;
1690 buffer = kmap_atomic(page);
1692 len = sctx->sectorsize;
1695 u64 l = min_t(u64, len, PAGE_SIZE);
1697 crc = btrfs_csum_data(buffer, crc, l);
1698 kunmap_atomic(buffer);
1703 BUG_ON(index >= sblock->page_count);
1704 BUG_ON(!sblock->pagev[index]->page);
1705 page = sblock->pagev[index]->page;
1706 buffer = kmap_atomic(page);
1709 btrfs_csum_final(crc, csum);
1710 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1716 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1718 struct scrub_ctx *sctx = sblock->sctx;
1719 struct btrfs_header *h;
1720 struct btrfs_root *root = sctx->dev_root;
1721 struct btrfs_fs_info *fs_info = root->fs_info;
1722 u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1725 void *mapped_buffer;
1734 BUG_ON(sblock->page_count < 1);
1735 page = sblock->pagev[0]->page;
1736 mapped_buffer = kmap_atomic(page);
1737 h = (struct btrfs_header *)mapped_buffer;
1738 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1741 * we don't use the getter functions here, as we
1742 * a) don't have an extent buffer and
1743 * b) the page is already kmapped
1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1759 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1760 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1761 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1764 u64 l = min_t(u64, len, mapped_size);
1766 crc = btrfs_csum_data(p, crc, l);
1767 kunmap_atomic(mapped_buffer);
1772 BUG_ON(index >= sblock->page_count);
1773 BUG_ON(!sblock->pagev[index]->page);
1774 page = sblock->pagev[index]->page;
1775 mapped_buffer = kmap_atomic(page);
1776 mapped_size = PAGE_SIZE;
1780 btrfs_csum_final(crc, calculated_csum);
1781 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1784 return fail || crc_fail;
1787 static int scrub_checksum_super(struct scrub_block *sblock)
1789 struct btrfs_super_block *s;
1790 struct scrub_ctx *sctx = sblock->sctx;
1791 struct btrfs_root *root = sctx->dev_root;
1792 struct btrfs_fs_info *fs_info = root->fs_info;
1793 u8 calculated_csum[BTRFS_CSUM_SIZE];
1794 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796 void *mapped_buffer;
1805 BUG_ON(sblock->page_count < 1);
1806 page = sblock->pagev[0]->page;
1807 mapped_buffer = kmap_atomic(page);
1808 s = (struct btrfs_super_block *)mapped_buffer;
1809 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1814 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1817 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1820 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1821 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1822 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1825 u64 l = min_t(u64, len, mapped_size);
1827 crc = btrfs_csum_data(p, crc, l);
1828 kunmap_atomic(mapped_buffer);
1833 BUG_ON(index >= sblock->page_count);
1834 BUG_ON(!sblock->pagev[index]->page);
1835 page = sblock->pagev[index]->page;
1836 mapped_buffer = kmap_atomic(page);
1837 mapped_size = PAGE_SIZE;
1841 btrfs_csum_final(crc, calculated_csum);
1842 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1845 if (fail_cor + fail_gen) {
1847 * if we find an error in a super block, we just report it.
1848 * They will get written with the next transaction commit
1851 spin_lock(&sctx->stat_lock);
1852 ++sctx->stat.super_errors;
1853 spin_unlock(&sctx->stat_lock);
1855 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1856 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1859 BTRFS_DEV_STAT_GENERATION_ERRS);
1862 return fail_cor + fail_gen;
1865 static void scrub_block_get(struct scrub_block *sblock)
1867 atomic_inc(&sblock->ref_count);
1870 static void scrub_block_put(struct scrub_block *sblock)
1872 if (atomic_dec_and_test(&sblock->ref_count)) {
1875 for (i = 0; i < sblock->page_count; i++)
1876 scrub_page_put(sblock->pagev[i]);
1881 static void scrub_page_get(struct scrub_page *spage)
1883 atomic_inc(&spage->ref_count);
1886 static void scrub_page_put(struct scrub_page *spage)
1888 if (atomic_dec_and_test(&spage->ref_count)) {
1890 __free_page(spage->page);
1895 static void scrub_submit(struct scrub_ctx *sctx)
1897 struct scrub_bio *sbio;
1899 if (sctx->curr == -1)
1902 sbio = sctx->bios[sctx->curr];
1904 scrub_pending_bio_inc(sctx);
1906 if (!sbio->bio->bi_bdev) {
1908 * this case should not happen. If btrfs_map_block() is
1909 * wrong, it could happen for dev-replace operations on
1910 * missing devices when no mirrors are available, but in
1911 * this case it should already fail the mount.
1912 * This case is handled correctly (but _very_ slowly).
1914 printk_ratelimited(KERN_WARNING
1915 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1916 bio_endio(sbio->bio, -EIO);
1918 btrfsic_submit_bio(READ, sbio->bio);
1922 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1923 struct scrub_page *spage)
1925 struct scrub_block *sblock = spage->sblock;
1926 struct scrub_bio *sbio;
1931 * grab a fresh bio or wait for one to become available
1933 while (sctx->curr == -1) {
1934 spin_lock(&sctx->list_lock);
1935 sctx->curr = sctx->first_free;
1936 if (sctx->curr != -1) {
1937 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1938 sctx->bios[sctx->curr]->next_free = -1;
1939 sctx->bios[sctx->curr]->page_count = 0;
1940 spin_unlock(&sctx->list_lock);
1942 spin_unlock(&sctx->list_lock);
1943 wait_event(sctx->list_wait, sctx->first_free != -1);
1946 sbio = sctx->bios[sctx->curr];
1947 if (sbio->page_count == 0) {
1950 sbio->physical = spage->physical;
1951 sbio->logical = spage->logical;
1952 sbio->dev = spage->dev;
1955 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1961 bio->bi_private = sbio;
1962 bio->bi_end_io = scrub_bio_end_io;
1963 bio->bi_bdev = sbio->dev->bdev;
1964 bio->bi_iter.bi_sector = sbio->physical >> 9;
1966 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968 sbio->logical + sbio->page_count * PAGE_SIZE !=
1970 sbio->dev != spage->dev) {
1975 sbio->pagev[sbio->page_count] = spage;
1976 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1977 if (ret != PAGE_SIZE) {
1978 if (sbio->page_count < 1) {
1987 scrub_block_get(sblock); /* one for the page added to the bio */
1988 atomic_inc(&sblock->outstanding_pages);
1990 if (sbio->page_count == sctx->pages_per_rd_bio)
1996 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1997 u64 physical, struct btrfs_device *dev, u64 flags,
1998 u64 gen, int mirror_num, u8 *csum, int force,
1999 u64 physical_for_dev_replace)
2001 struct scrub_block *sblock;
2004 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006 spin_lock(&sctx->stat_lock);
2007 sctx->stat.malloc_errors++;
2008 spin_unlock(&sctx->stat_lock);
2012 /* one ref inside this function, plus one for each page added to
2014 atomic_set(&sblock->ref_count, 1);
2015 sblock->sctx = sctx;
2016 sblock->no_io_error_seen = 1;
2018 for (index = 0; len > 0; index++) {
2019 struct scrub_page *spage;
2020 u64 l = min_t(u64, len, PAGE_SIZE);
2022 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2025 spin_lock(&sctx->stat_lock);
2026 sctx->stat.malloc_errors++;
2027 spin_unlock(&sctx->stat_lock);
2028 scrub_block_put(sblock);
2031 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2032 scrub_page_get(spage);
2033 sblock->pagev[index] = spage;
2034 spage->sblock = sblock;
2036 spage->flags = flags;
2037 spage->generation = gen;
2038 spage->logical = logical;
2039 spage->physical = physical;
2040 spage->physical_for_dev_replace = physical_for_dev_replace;
2041 spage->mirror_num = mirror_num;
2043 spage->have_csum = 1;
2044 memcpy(spage->csum, csum, sctx->csum_size);
2046 spage->have_csum = 0;
2048 sblock->page_count++;
2049 spage->page = alloc_page(GFP_NOFS);
2055 physical_for_dev_replace += l;
2058 WARN_ON(sblock->page_count == 0);
2059 for (index = 0; index < sblock->page_count; index++) {
2060 struct scrub_page *spage = sblock->pagev[index];
2063 ret = scrub_add_page_to_rd_bio(sctx, spage);
2065 scrub_block_put(sblock);
2073 /* last one frees, either here or in bio completion for last page */
2074 scrub_block_put(sblock);
2078 static void scrub_bio_end_io(struct bio *bio, int err)
2080 struct scrub_bio *sbio = bio->bi_private;
2081 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2086 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2089 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2092 struct scrub_ctx *sctx = sbio->sctx;
2095 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097 for (i = 0; i < sbio->page_count; i++) {
2098 struct scrub_page *spage = sbio->pagev[i];
2100 spage->io_error = 1;
2101 spage->sblock->no_io_error_seen = 0;
2105 /* now complete the scrub_block items that have all pages completed */
2106 for (i = 0; i < sbio->page_count; i++) {
2107 struct scrub_page *spage = sbio->pagev[i];
2108 struct scrub_block *sblock = spage->sblock;
2110 if (atomic_dec_and_test(&sblock->outstanding_pages))
2111 scrub_block_complete(sblock);
2112 scrub_block_put(sblock);
2117 spin_lock(&sctx->list_lock);
2118 sbio->next_free = sctx->first_free;
2119 sctx->first_free = sbio->index;
2120 spin_unlock(&sctx->list_lock);
2122 if (sctx->is_dev_replace &&
2123 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2124 mutex_lock(&sctx->wr_ctx.wr_lock);
2125 scrub_wr_submit(sctx);
2126 mutex_unlock(&sctx->wr_ctx.wr_lock);
2129 scrub_pending_bio_dec(sctx);
2132 static void scrub_block_complete(struct scrub_block *sblock)
2134 if (!sblock->no_io_error_seen) {
2135 scrub_handle_errored_block(sblock);
2138 * if has checksum error, write via repair mechanism in
2139 * dev replace case, otherwise write here in dev replace
2142 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2143 scrub_write_block_to_dev_replace(sblock);
2147 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2150 struct btrfs_ordered_sum *sum = NULL;
2151 unsigned long index;
2152 unsigned long num_sectors;
2154 while (!list_empty(&sctx->csum_list)) {
2155 sum = list_first_entry(&sctx->csum_list,
2156 struct btrfs_ordered_sum, list);
2157 if (sum->bytenr > logical)
2159 if (sum->bytenr + sum->len > logical)
2162 ++sctx->stat.csum_discards;
2163 list_del(&sum->list);
2170 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2171 num_sectors = sum->len / sctx->sectorsize;
2172 memcpy(csum, sum->sums + index, sctx->csum_size);
2173 if (index == num_sectors - 1) {
2174 list_del(&sum->list);
2180 /* scrub extent tries to collect up to 64 kB for each bio */
2181 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2182 u64 physical, struct btrfs_device *dev, u64 flags,
2183 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2186 u8 csum[BTRFS_CSUM_SIZE];
2189 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2190 blocksize = sctx->sectorsize;
2191 spin_lock(&sctx->stat_lock);
2192 sctx->stat.data_extents_scrubbed++;
2193 sctx->stat.data_bytes_scrubbed += len;
2194 spin_unlock(&sctx->stat_lock);
2195 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2196 blocksize = sctx->nodesize;
2197 spin_lock(&sctx->stat_lock);
2198 sctx->stat.tree_extents_scrubbed++;
2199 sctx->stat.tree_bytes_scrubbed += len;
2200 spin_unlock(&sctx->stat_lock);
2202 blocksize = sctx->sectorsize;
2207 u64 l = min_t(u64, len, blocksize);
2210 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2211 /* push csums to sbio */
2212 have_csum = scrub_find_csum(sctx, logical, l, csum);
2214 ++sctx->stat.no_csum;
2215 if (sctx->is_dev_replace && !have_csum) {
2216 ret = copy_nocow_pages(sctx, logical, l,
2218 physical_for_dev_replace);
2219 goto behind_scrub_pages;
2222 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2223 mirror_num, have_csum ? csum : NULL, 0,
2224 physical_for_dev_replace);
2231 physical_for_dev_replace += l;
2237 * Given a physical address, this will calculate it's
2238 * logical offset. if this is a parity stripe, it will return
2239 * the most left data stripe's logical offset.
2241 * return 0 if it is a data stripe, 1 means parity stripe.
2243 static int get_raid56_logic_offset(u64 physical, int num,
2244 struct map_lookup *map, u64 *offset)
2253 last_offset = (physical - map->stripes[num].physical) *
2254 nr_data_stripes(map);
2255 *offset = last_offset;
2256 for (i = 0; i < nr_data_stripes(map); i++) {
2257 *offset = last_offset + i * map->stripe_len;
2259 stripe_nr = *offset;
2260 do_div(stripe_nr, map->stripe_len);
2261 do_div(stripe_nr, nr_data_stripes(map));
2263 /* Work out the disk rotation on this stripe-set */
2264 rot = do_div(stripe_nr, map->num_stripes);
2265 /* calculate which stripe this data locates */
2267 stripe_index = rot % map->num_stripes;
2268 if (stripe_index == num)
2270 if (stripe_index < num)
2273 *offset = last_offset + j * map->stripe_len;
2277 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2278 struct map_lookup *map,
2279 struct btrfs_device *scrub_dev,
2280 int num, u64 base, u64 length,
2283 struct btrfs_path *path;
2284 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2285 struct btrfs_root *root = fs_info->extent_root;
2286 struct btrfs_root *csum_root = fs_info->csum_root;
2287 struct btrfs_extent_item *extent;
2288 struct blk_plug plug;
2293 struct extent_buffer *l;
2294 struct btrfs_key key;
2301 struct reada_control *reada1;
2302 struct reada_control *reada2;
2303 struct btrfs_key key_start;
2304 struct btrfs_key key_end;
2305 u64 increment = map->stripe_len;
2308 u64 extent_physical;
2310 struct btrfs_device *extent_dev;
2311 int extent_mirror_num;
2315 physical = map->stripes[num].physical;
2317 do_div(nstripes, map->stripe_len);
2318 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2319 offset = map->stripe_len * num;
2320 increment = map->stripe_len * map->num_stripes;
2322 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2323 int factor = map->num_stripes / map->sub_stripes;
2324 offset = map->stripe_len * (num / map->sub_stripes);
2325 increment = map->stripe_len * factor;
2326 mirror_num = num % map->sub_stripes + 1;
2327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2328 increment = map->stripe_len;
2329 mirror_num = num % map->num_stripes + 1;
2330 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2331 increment = map->stripe_len;
2332 mirror_num = num % map->num_stripes + 1;
2333 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2334 BTRFS_BLOCK_GROUP_RAID6)) {
2335 get_raid56_logic_offset(physical, num, map, &offset);
2336 increment = map->stripe_len * nr_data_stripes(map);
2339 increment = map->stripe_len;
2343 path = btrfs_alloc_path();
2348 * work on commit root. The related disk blocks are static as
2349 * long as COW is applied. This means, it is save to rewrite
2350 * them to repair disk errors without any race conditions
2352 path->search_commit_root = 1;
2353 path->skip_locking = 1;
2356 * trigger the readahead for extent tree csum tree and wait for
2357 * completion. During readahead, the scrub is officially paused
2358 * to not hold off transaction commits
2360 logical = base + offset;
2361 physical_end = physical + nstripes * map->stripe_len;
2362 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2363 BTRFS_BLOCK_GROUP_RAID6)) {
2364 get_raid56_logic_offset(physical_end, num,
2368 logic_end = logical + increment * nstripes;
2370 wait_event(sctx->list_wait,
2371 atomic_read(&sctx->bios_in_flight) == 0);
2372 scrub_blocked_if_needed(fs_info);
2374 /* FIXME it might be better to start readahead at commit root */
2375 key_start.objectid = logical;
2376 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2377 key_start.offset = (u64)0;
2378 key_end.objectid = logic_end;
2379 key_end.type = BTRFS_METADATA_ITEM_KEY;
2380 key_end.offset = (u64)-1;
2381 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2383 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2384 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2385 key_start.offset = logical;
2386 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2387 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2388 key_end.offset = logic_end;
2389 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2391 if (!IS_ERR(reada1))
2392 btrfs_reada_wait(reada1);
2393 if (!IS_ERR(reada2))
2394 btrfs_reada_wait(reada2);
2398 * collect all data csums for the stripe to avoid seeking during
2399 * the scrub. This might currently (crc32) end up to be about 1MB
2401 blk_start_plug(&plug);
2404 * now find all extents for each stripe and scrub them
2407 while (physical < physical_end) {
2408 /* for raid56, we skip parity stripe */
2409 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2410 BTRFS_BLOCK_GROUP_RAID6)) {
2411 ret = get_raid56_logic_offset(physical, num,
2420 if (atomic_read(&fs_info->scrub_cancel_req) ||
2421 atomic_read(&sctx->cancel_req)) {
2426 * check to see if we have to pause
2428 if (atomic_read(&fs_info->scrub_pause_req)) {
2429 /* push queued extents */
2430 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2432 mutex_lock(&sctx->wr_ctx.wr_lock);
2433 scrub_wr_submit(sctx);
2434 mutex_unlock(&sctx->wr_ctx.wr_lock);
2435 wait_event(sctx->list_wait,
2436 atomic_read(&sctx->bios_in_flight) == 0);
2437 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2438 scrub_blocked_if_needed(fs_info);
2441 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2442 key.type = BTRFS_METADATA_ITEM_KEY;
2444 key.type = BTRFS_EXTENT_ITEM_KEY;
2445 key.objectid = logical;
2446 key.offset = (u64)-1;
2448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2453 ret = btrfs_previous_extent_item(root, path, 0);
2457 /* there's no smaller item, so stick with the
2459 btrfs_release_path(path);
2460 ret = btrfs_search_slot(NULL, root, &key,
2472 slot = path->slots[0];
2473 if (slot >= btrfs_header_nritems(l)) {
2474 ret = btrfs_next_leaf(root, path);
2483 btrfs_item_key_to_cpu(l, &key, slot);
2485 if (key.type == BTRFS_METADATA_ITEM_KEY)
2486 bytes = root->nodesize;
2490 if (key.objectid + bytes <= logical)
2493 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2494 key.type != BTRFS_METADATA_ITEM_KEY)
2497 if (key.objectid >= logical + map->stripe_len) {
2498 /* out of this device extent */
2499 if (key.objectid >= logic_end)
2504 extent = btrfs_item_ptr(l, slot,
2505 struct btrfs_extent_item);
2506 flags = btrfs_extent_flags(l, extent);
2507 generation = btrfs_extent_generation(l, extent);
2509 if (key.objectid < logical &&
2510 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2512 "scrub: tree block %llu spanning "
2513 "stripes, ignored. logical=%llu",
2514 key.objectid, logical);
2519 extent_logical = key.objectid;
2523 * trim extent to this stripe
2525 if (extent_logical < logical) {
2526 extent_len -= logical - extent_logical;
2527 extent_logical = logical;
2529 if (extent_logical + extent_len >
2530 logical + map->stripe_len) {
2531 extent_len = logical + map->stripe_len -
2535 extent_physical = extent_logical - logical + physical;
2536 extent_dev = scrub_dev;
2537 extent_mirror_num = mirror_num;
2539 scrub_remap_extent(fs_info, extent_logical,
2540 extent_len, &extent_physical,
2542 &extent_mirror_num);
2544 ret = btrfs_lookup_csums_range(csum_root, logical,
2545 logical + map->stripe_len - 1,
2546 &sctx->csum_list, 1);
2550 ret = scrub_extent(sctx, extent_logical, extent_len,
2551 extent_physical, extent_dev, flags,
2552 generation, extent_mirror_num,
2553 extent_logical - logical + physical);
2557 scrub_free_csums(sctx);
2558 if (extent_logical + extent_len <
2559 key.objectid + bytes) {
2560 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2561 BTRFS_BLOCK_GROUP_RAID6)) {
2563 * loop until we find next data stripe
2564 * or we have finished all stripes.
2567 physical += map->stripe_len;
2568 ret = get_raid56_logic_offset(
2572 } while (physical < physical_end && ret);
2574 physical += map->stripe_len;
2575 logical += increment;
2577 if (logical < key.objectid + bytes) {
2582 if (physical >= physical_end) {
2590 btrfs_release_path(path);
2592 logical += increment;
2593 physical += map->stripe_len;
2594 spin_lock(&sctx->stat_lock);
2596 sctx->stat.last_physical = map->stripes[num].physical +
2599 sctx->stat.last_physical = physical;
2600 spin_unlock(&sctx->stat_lock);
2605 /* push queued extents */
2607 mutex_lock(&sctx->wr_ctx.wr_lock);
2608 scrub_wr_submit(sctx);
2609 mutex_unlock(&sctx->wr_ctx.wr_lock);
2611 blk_finish_plug(&plug);
2612 btrfs_free_path(path);
2613 return ret < 0 ? ret : 0;
2616 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2617 struct btrfs_device *scrub_dev,
2618 u64 chunk_tree, u64 chunk_objectid,
2619 u64 chunk_offset, u64 length,
2620 u64 dev_offset, int is_dev_replace)
2622 struct btrfs_mapping_tree *map_tree =
2623 &sctx->dev_root->fs_info->mapping_tree;
2624 struct map_lookup *map;
2625 struct extent_map *em;
2629 read_lock(&map_tree->map_tree.lock);
2630 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2631 read_unlock(&map_tree->map_tree.lock);
2636 map = (struct map_lookup *)em->bdev;
2637 if (em->start != chunk_offset)
2640 if (em->len < length)
2643 for (i = 0; i < map->num_stripes; ++i) {
2644 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2645 map->stripes[i].physical == dev_offset) {
2646 ret = scrub_stripe(sctx, map, scrub_dev, i,
2647 chunk_offset, length,
2654 free_extent_map(em);
2659 static noinline_for_stack
2660 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2661 struct btrfs_device *scrub_dev, u64 start, u64 end,
2664 struct btrfs_dev_extent *dev_extent = NULL;
2665 struct btrfs_path *path;
2666 struct btrfs_root *root = sctx->dev_root;
2667 struct btrfs_fs_info *fs_info = root->fs_info;
2674 struct extent_buffer *l;
2675 struct btrfs_key key;
2676 struct btrfs_key found_key;
2677 struct btrfs_block_group_cache *cache;
2678 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2680 path = btrfs_alloc_path();
2685 path->search_commit_root = 1;
2686 path->skip_locking = 1;
2688 key.objectid = scrub_dev->devid;
2690 key.type = BTRFS_DEV_EXTENT_KEY;
2693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2697 if (path->slots[0] >=
2698 btrfs_header_nritems(path->nodes[0])) {
2699 ret = btrfs_next_leaf(root, path);
2706 slot = path->slots[0];
2708 btrfs_item_key_to_cpu(l, &found_key, slot);
2710 if (found_key.objectid != scrub_dev->devid)
2713 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2716 if (found_key.offset >= end)
2719 if (found_key.offset < key.offset)
2722 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2723 length = btrfs_dev_extent_length(l, dev_extent);
2725 if (found_key.offset + length <= start)
2728 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2729 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2730 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2733 * get a reference on the corresponding block group to prevent
2734 * the chunk from going away while we scrub it
2736 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2738 /* some chunks are removed but not committed to disk yet,
2739 * continue scrubbing */
2743 dev_replace->cursor_right = found_key.offset + length;
2744 dev_replace->cursor_left = found_key.offset;
2745 dev_replace->item_needs_writeback = 1;
2746 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2747 chunk_offset, length, found_key.offset,
2751 * flush, submit all pending read and write bios, afterwards
2753 * Note that in the dev replace case, a read request causes
2754 * write requests that are submitted in the read completion
2755 * worker. Therefore in the current situation, it is required
2756 * that all write requests are flushed, so that all read and
2757 * write requests are really completed when bios_in_flight
2760 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2762 mutex_lock(&sctx->wr_ctx.wr_lock);
2763 scrub_wr_submit(sctx);
2764 mutex_unlock(&sctx->wr_ctx.wr_lock);
2766 wait_event(sctx->list_wait,
2767 atomic_read(&sctx->bios_in_flight) == 0);
2768 atomic_inc(&fs_info->scrubs_paused);
2769 wake_up(&fs_info->scrub_pause_wait);
2772 * must be called before we decrease @scrub_paused.
2773 * make sure we don't block transaction commit while
2774 * we are waiting pending workers finished.
2776 wait_event(sctx->list_wait,
2777 atomic_read(&sctx->workers_pending) == 0);
2778 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2780 mutex_lock(&fs_info->scrub_lock);
2781 __scrub_blocked_if_needed(fs_info);
2782 atomic_dec(&fs_info->scrubs_paused);
2783 mutex_unlock(&fs_info->scrub_lock);
2784 wake_up(&fs_info->scrub_pause_wait);
2786 btrfs_put_block_group(cache);
2789 if (is_dev_replace &&
2790 atomic64_read(&dev_replace->num_write_errors) > 0) {
2794 if (sctx->stat.malloc_errors > 0) {
2799 dev_replace->cursor_left = dev_replace->cursor_right;
2800 dev_replace->item_needs_writeback = 1;
2802 key.offset = found_key.offset + length;
2803 btrfs_release_path(path);
2806 btrfs_free_path(path);
2809 * ret can still be 1 from search_slot or next_leaf,
2810 * that's not an error
2812 return ret < 0 ? ret : 0;
2815 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2816 struct btrfs_device *scrub_dev)
2822 struct btrfs_root *root = sctx->dev_root;
2824 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2827 gen = root->fs_info->last_trans_committed;
2829 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2830 bytenr = btrfs_sb_offset(i);
2831 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2834 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2835 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2840 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2846 * get a reference count on fs_info->scrub_workers. start worker if necessary
2848 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2853 int max_active = fs_info->thread_pool_size;
2855 if (fs_info->scrub_workers_refcnt == 0) {
2857 fs_info->scrub_workers =
2858 btrfs_alloc_workqueue("btrfs-scrub", flags,
2861 fs_info->scrub_workers =
2862 btrfs_alloc_workqueue("btrfs-scrub", flags,
2864 if (!fs_info->scrub_workers) {
2868 fs_info->scrub_wr_completion_workers =
2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2871 if (!fs_info->scrub_wr_completion_workers) {
2875 fs_info->scrub_nocow_workers =
2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2877 if (!fs_info->scrub_nocow_workers) {
2882 ++fs_info->scrub_workers_refcnt;
2887 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2889 if (--fs_info->scrub_workers_refcnt == 0) {
2890 btrfs_destroy_workqueue(fs_info->scrub_workers);
2891 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2892 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2894 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2897 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2898 u64 end, struct btrfs_scrub_progress *progress,
2899 int readonly, int is_dev_replace)
2901 struct scrub_ctx *sctx;
2903 struct btrfs_device *dev;
2904 struct rcu_string *name;
2906 if (btrfs_fs_closing(fs_info))
2909 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2911 * in this case scrub is unable to calculate the checksum
2912 * the way scrub is implemented. Do not handle this
2913 * situation at all because it won't ever happen.
2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2921 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2922 /* not supported for data w/o checksums */
2924 "scrub: size assumption sectorsize != PAGE_SIZE "
2925 "(%d != %lu) fails",
2926 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2930 if (fs_info->chunk_root->nodesize >
2931 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2932 fs_info->chunk_root->sectorsize >
2933 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2935 * would exhaust the array bounds of pagev member in
2936 * struct scrub_block
2938 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 fs_info->chunk_root->nodesize,
2941 SCRUB_MAX_PAGES_PER_BLOCK,
2942 fs_info->chunk_root->sectorsize,
2943 SCRUB_MAX_PAGES_PER_BLOCK);
2948 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2949 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2950 if (!dev || (dev->missing && !is_dev_replace)) {
2951 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2955 if (!is_dev_replace && !readonly && !dev->writeable) {
2956 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2958 name = rcu_dereference(dev->name);
2959 btrfs_err(fs_info, "scrub: device %s is not writable",
2965 mutex_lock(&fs_info->scrub_lock);
2966 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2967 mutex_unlock(&fs_info->scrub_lock);
2968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972 btrfs_dev_replace_lock(&fs_info->dev_replace);
2973 if (dev->scrub_device ||
2975 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2976 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2977 mutex_unlock(&fs_info->scrub_lock);
2978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2979 return -EINPROGRESS;
2981 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2983 ret = scrub_workers_get(fs_info, is_dev_replace);
2985 mutex_unlock(&fs_info->scrub_lock);
2986 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990 sctx = scrub_setup_ctx(dev, is_dev_replace);
2992 mutex_unlock(&fs_info->scrub_lock);
2993 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2994 scrub_workers_put(fs_info);
2995 return PTR_ERR(sctx);
2997 sctx->readonly = readonly;
2998 dev->scrub_device = sctx;
2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3002 * checking @scrub_pause_req here, we can avoid
3003 * race between committing transaction and scrubbing.
3005 __scrub_blocked_if_needed(fs_info);
3006 atomic_inc(&fs_info->scrubs_running);
3007 mutex_unlock(&fs_info->scrub_lock);
3009 if (!is_dev_replace) {
3011 * by holding device list mutex, we can
3012 * kick off writing super in log tree sync.
3014 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3015 ret = scrub_supers(sctx, dev);
3016 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3024 atomic_dec(&fs_info->scrubs_running);
3025 wake_up(&fs_info->scrub_pause_wait);
3027 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3030 memcpy(progress, &sctx->stat, sizeof(*progress));
3032 mutex_lock(&fs_info->scrub_lock);
3033 dev->scrub_device = NULL;
3034 scrub_workers_put(fs_info);
3035 mutex_unlock(&fs_info->scrub_lock);
3037 scrub_free_ctx(sctx);
3042 void btrfs_scrub_pause(struct btrfs_root *root)
3044 struct btrfs_fs_info *fs_info = root->fs_info;
3046 mutex_lock(&fs_info->scrub_lock);
3047 atomic_inc(&fs_info->scrub_pause_req);
3048 while (atomic_read(&fs_info->scrubs_paused) !=
3049 atomic_read(&fs_info->scrubs_running)) {
3050 mutex_unlock(&fs_info->scrub_lock);
3051 wait_event(fs_info->scrub_pause_wait,
3052 atomic_read(&fs_info->scrubs_paused) ==
3053 atomic_read(&fs_info->scrubs_running));
3054 mutex_lock(&fs_info->scrub_lock);
3056 mutex_unlock(&fs_info->scrub_lock);
3059 void btrfs_scrub_continue(struct btrfs_root *root)
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3063 atomic_dec(&fs_info->scrub_pause_req);
3064 wake_up(&fs_info->scrub_pause_wait);
3067 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069 mutex_lock(&fs_info->scrub_lock);
3070 if (!atomic_read(&fs_info->scrubs_running)) {
3071 mutex_unlock(&fs_info->scrub_lock);
3075 atomic_inc(&fs_info->scrub_cancel_req);
3076 while (atomic_read(&fs_info->scrubs_running)) {
3077 mutex_unlock(&fs_info->scrub_lock);
3078 wait_event(fs_info->scrub_pause_wait,
3079 atomic_read(&fs_info->scrubs_running) == 0);
3080 mutex_lock(&fs_info->scrub_lock);
3082 atomic_dec(&fs_info->scrub_cancel_req);
3083 mutex_unlock(&fs_info->scrub_lock);
3088 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3089 struct btrfs_device *dev)
3091 struct scrub_ctx *sctx;
3093 mutex_lock(&fs_info->scrub_lock);
3094 sctx = dev->scrub_device;
3096 mutex_unlock(&fs_info->scrub_lock);
3099 atomic_inc(&sctx->cancel_req);
3100 while (dev->scrub_device) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 wait_event(fs_info->scrub_pause_wait,
3103 dev->scrub_device == NULL);
3104 mutex_lock(&fs_info->scrub_lock);
3106 mutex_unlock(&fs_info->scrub_lock);
3111 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3112 struct btrfs_scrub_progress *progress)
3114 struct btrfs_device *dev;
3115 struct scrub_ctx *sctx = NULL;
3117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3118 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3120 sctx = dev->scrub_device;
3122 memcpy(progress, &sctx->stat, sizeof(*progress));
3123 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3125 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3128 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3129 u64 extent_logical, u64 extent_len,
3130 u64 *extent_physical,
3131 struct btrfs_device **extent_dev,
3132 int *extent_mirror_num)
3135 struct btrfs_bio *bbio = NULL;
3138 mapped_length = extent_len;
3139 ret = btrfs_map_block(fs_info, READ, extent_logical,
3140 &mapped_length, &bbio, 0);
3141 if (ret || !bbio || mapped_length < extent_len ||
3142 !bbio->stripes[0].dev->bdev) {
3147 *extent_physical = bbio->stripes[0].physical;
3148 *extent_mirror_num = bbio->mirror_num;
3149 *extent_dev = bbio->stripes[0].dev;
3153 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3154 struct scrub_wr_ctx *wr_ctx,
3155 struct btrfs_fs_info *fs_info,
3156 struct btrfs_device *dev,
3159 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3161 mutex_init(&wr_ctx->wr_lock);
3162 wr_ctx->wr_curr_bio = NULL;
3163 if (!is_dev_replace)
3166 WARN_ON(!dev->bdev);
3167 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3168 bio_get_nr_vecs(dev->bdev));
3169 wr_ctx->tgtdev = dev;
3170 atomic_set(&wr_ctx->flush_all_writes, 0);
3174 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3176 mutex_lock(&wr_ctx->wr_lock);
3177 kfree(wr_ctx->wr_curr_bio);
3178 wr_ctx->wr_curr_bio = NULL;
3179 mutex_unlock(&wr_ctx->wr_lock);
3182 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3183 int mirror_num, u64 physical_for_dev_replace)
3185 struct scrub_copy_nocow_ctx *nocow_ctx;
3186 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3188 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3190 spin_lock(&sctx->stat_lock);
3191 sctx->stat.malloc_errors++;
3192 spin_unlock(&sctx->stat_lock);
3196 scrub_pending_trans_workers_inc(sctx);
3198 nocow_ctx->sctx = sctx;
3199 nocow_ctx->logical = logical;
3200 nocow_ctx->len = len;
3201 nocow_ctx->mirror_num = mirror_num;
3202 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3203 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3204 copy_nocow_pages_worker, NULL, NULL);
3205 INIT_LIST_HEAD(&nocow_ctx->inodes);
3206 btrfs_queue_work(fs_info->scrub_nocow_workers,
3212 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3214 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3215 struct scrub_nocow_inode *nocow_inode;
3217 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220 nocow_inode->inum = inum;
3221 nocow_inode->offset = offset;
3222 nocow_inode->root = root;
3223 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3227 #define COPY_COMPLETE 1
3229 static void copy_nocow_pages_worker(struct btrfs_work *work)
3231 struct scrub_copy_nocow_ctx *nocow_ctx =
3232 container_of(work, struct scrub_copy_nocow_ctx, work);
3233 struct scrub_ctx *sctx = nocow_ctx->sctx;
3234 u64 logical = nocow_ctx->logical;
3235 u64 len = nocow_ctx->len;
3236 int mirror_num = nocow_ctx->mirror_num;
3237 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3239 struct btrfs_trans_handle *trans = NULL;
3240 struct btrfs_fs_info *fs_info;
3241 struct btrfs_path *path;
3242 struct btrfs_root *root;
3243 int not_written = 0;
3245 fs_info = sctx->dev_root->fs_info;
3246 root = fs_info->extent_root;
3248 path = btrfs_alloc_path();
3250 spin_lock(&sctx->stat_lock);
3251 sctx->stat.malloc_errors++;
3252 spin_unlock(&sctx->stat_lock);
3257 trans = btrfs_join_transaction(root);
3258 if (IS_ERR(trans)) {
3263 ret = iterate_inodes_from_logical(logical, fs_info, path,
3264 record_inode_for_nocow, nocow_ctx);
3265 if (ret != 0 && ret != -ENOENT) {
3266 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3267 "phys %llu, len %llu, mir %u, ret %d",
3268 logical, physical_for_dev_replace, len, mirror_num,
3274 btrfs_end_transaction(trans, root);
3276 while (!list_empty(&nocow_ctx->inodes)) {
3277 struct scrub_nocow_inode *entry;
3278 entry = list_first_entry(&nocow_ctx->inodes,
3279 struct scrub_nocow_inode,
3281 list_del_init(&entry->list);
3282 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3283 entry->root, nocow_ctx);
3285 if (ret == COPY_COMPLETE) {
3293 while (!list_empty(&nocow_ctx->inodes)) {
3294 struct scrub_nocow_inode *entry;
3295 entry = list_first_entry(&nocow_ctx->inodes,
3296 struct scrub_nocow_inode,
3298 list_del_init(&entry->list);
3301 if (trans && !IS_ERR(trans))
3302 btrfs_end_transaction(trans, root);
3304 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3305 num_uncorrectable_read_errors);
3307 btrfs_free_path(path);
3310 scrub_pending_trans_workers_dec(sctx);
3313 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3314 struct scrub_copy_nocow_ctx *nocow_ctx)
3316 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3317 struct btrfs_key key;
3318 struct inode *inode;
3320 struct btrfs_root *local_root;
3321 struct btrfs_ordered_extent *ordered;
3322 struct extent_map *em;
3323 struct extent_state *cached_state = NULL;
3324 struct extent_io_tree *io_tree;
3325 u64 physical_for_dev_replace;
3326 u64 len = nocow_ctx->len;
3327 u64 lockstart = offset, lockend = offset + len - 1;
3328 unsigned long index;
3333 key.objectid = root;
3334 key.type = BTRFS_ROOT_ITEM_KEY;
3335 key.offset = (u64)-1;
3337 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3339 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3340 if (IS_ERR(local_root)) {
3341 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3342 return PTR_ERR(local_root);
3345 key.type = BTRFS_INODE_ITEM_KEY;
3346 key.objectid = inum;
3348 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3349 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3351 return PTR_ERR(inode);
3353 /* Avoid truncate/dio/punch hole.. */
3354 mutex_lock(&inode->i_mutex);
3355 inode_dio_wait(inode);
3357 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3358 io_tree = &BTRFS_I(inode)->io_tree;
3360 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3361 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3363 btrfs_put_ordered_extent(ordered);
3367 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3374 * This extent does not actually cover the logical extent anymore,
3375 * move on to the next inode.
3377 if (em->block_start > nocow_ctx->logical ||
3378 em->block_start + em->block_len < nocow_ctx->logical + len) {
3379 free_extent_map(em);
3382 free_extent_map(em);
3384 while (len >= PAGE_CACHE_SIZE) {
3385 index = offset >> PAGE_CACHE_SHIFT;
3387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3389 btrfs_err(fs_info, "find_or_create_page() failed");
3394 if (PageUptodate(page)) {
3395 if (PageDirty(page))
3398 ClearPageError(page);
3399 err = extent_read_full_page_nolock(io_tree, page,
3401 nocow_ctx->mirror_num);
3409 * If the page has been remove from the page cache,
3410 * the data on it is meaningless, because it may be
3411 * old one, the new data may be written into the new
3412 * page in the page cache.
3414 if (page->mapping != inode->i_mapping) {
3416 page_cache_release(page);
3419 if (!PageUptodate(page)) {
3424 err = write_page_nocow(nocow_ctx->sctx,
3425 physical_for_dev_replace, page);
3430 page_cache_release(page);
3435 offset += PAGE_CACHE_SIZE;
3436 physical_for_dev_replace += PAGE_CACHE_SIZE;
3437 len -= PAGE_CACHE_SIZE;
3439 ret = COPY_COMPLETE;
3441 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444 mutex_unlock(&inode->i_mutex);
3449 static int write_page_nocow(struct scrub_ctx *sctx,
3450 u64 physical_for_dev_replace, struct page *page)
3453 struct btrfs_device *dev;
3456 dev = sctx->wr_ctx.tgtdev;
3460 printk_ratelimited(KERN_WARNING
3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3466 spin_lock(&sctx->stat_lock);
3467 sctx->stat.malloc_errors++;
3468 spin_unlock(&sctx->stat_lock);
3471 bio->bi_iter.bi_size = 0;
3472 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3473 bio->bi_bdev = dev->bdev;
3474 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3475 if (ret != PAGE_CACHE_SIZE) {
3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3482 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3483 goto leave_with_eio;