]> Git Repo - linux.git/blob - drivers/crypto/bcm/cipher.c
drm/vram-helper: stop using TTM placement flags
[linux.git] / drivers / crypto / bcm / cipher.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/sha.h>
30 #include <crypto/md5.h>
31 #include <crypto/authenc.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha3.h>
35
36 #include "util.h"
37 #include "cipher.h"
38 #include "spu.h"
39 #include "spum.h"
40 #include "spu2.h"
41
42 /* ================= Device Structure ================== */
43
44 struct device_private iproc_priv;
45
46 /* ==================== Parameters ===================== */
47
48 int flow_debug_logging;
49 module_param(flow_debug_logging, int, 0644);
50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51
52 int packet_debug_logging;
53 module_param(packet_debug_logging, int, 0644);
54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55
56 int debug_logging_sleep;
57 module_param(debug_logging_sleep, int, 0644);
58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59
60 /*
61  * The value of these module parameters is used to set the priority for each
62  * algo type when this driver registers algos with the kernel crypto API.
63  * To use a priority other than the default, set the priority in the insmod or
64  * modprobe. Changing the module priority after init time has no effect.
65  *
66  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67  * algos, but more preferred than generic software algos.
68  */
69 static int cipher_pri = 150;
70 module_param(cipher_pri, int, 0644);
71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72
73 static int hash_pri = 100;
74 module_param(hash_pri, int, 0644);
75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76
77 static int aead_pri = 150;
78 module_param(aead_pri, int, 0644);
79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80
81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83  * 0x60 - ring 0
84  * 0x68 - ring 1
85  * 0x70 - ring 2
86  * 0x78 - ring 3
87  */
88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
89 /*
90  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91  * is set dynamically after reading SPU type from device tree.
92  */
93 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
94
95 /* min and max time to sleep before retrying when mbox queue is full. usec */
96 #define MBOX_SLEEP_MIN  800
97 #define MBOX_SLEEP_MAX 1000
98
99 /**
100  * select_channel() - Select a SPU channel to handle a crypto request. Selects
101  * channel in round robin order.
102  *
103  * Return:  channel index
104  */
105 static u8 select_channel(void)
106 {
107         u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108
109         return chan_idx % iproc_priv.spu.num_chan;
110 }
111
112 /**
113  * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114  * receive a SPU response message for an skcipher request. Includes buffers to
115  * catch SPU message headers and the response data.
116  * @mssg:       mailbox message containing the receive sg
117  * @rctx:       crypto request context
118  * @rx_frag_num: number of scatterlist elements required to hold the
119  *              SPU response message
120  * @chunksize:  Number of bytes of response data expected
121  * @stat_pad_len: Number of bytes required to pad the STAT field to
122  *              a 4-byte boundary
123  *
124  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125  * when the request completes, whether the request is handled successfully or
126  * there is an error.
127  *
128  * Returns:
129  *   0 if successful
130  *   < 0 if an error
131  */
132 static int
133 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
134                             struct iproc_reqctx_s *rctx,
135                             u8 rx_frag_num,
136                             unsigned int chunksize, u32 stat_pad_len)
137 {
138         struct spu_hw *spu = &iproc_priv.spu;
139         struct scatterlist *sg; /* used to build sgs in mbox message */
140         struct iproc_ctx_s *ctx = rctx->ctx;
141         u32 datalen;            /* Number of bytes of response data expected */
142
143         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144                                 rctx->gfp);
145         if (!mssg->spu.dst)
146                 return -ENOMEM;
147
148         sg = mssg->spu.dst;
149         sg_init_table(sg, rx_frag_num);
150         /* Space for SPU message header */
151         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152
153         /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155             spu->spu_xts_tweak_in_payload())
156                 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157                            SPU_XTS_TWEAK_SIZE);
158
159         /* Copy in each dst sg entry from request, up to chunksize */
160         datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161                                  rctx->dst_nents, chunksize);
162         if (datalen < chunksize) {
163                 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164                        __func__, chunksize, datalen);
165                 return -EFAULT;
166         }
167
168         if (ctx->cipher.alg == CIPHER_ALG_RC4)
169                 /* Add buffer to catch 260-byte SUPDT field for RC4 */
170                 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
171
172         if (stat_pad_len)
173                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
174
175         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
176         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
177
178         return 0;
179 }
180
181 /**
182  * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
183  * send a SPU request message for an skcipher request. Includes SPU message
184  * headers and the request data.
185  * @mssg:       mailbox message containing the transmit sg
186  * @rctx:       crypto request context
187  * @tx_frag_num: number of scatterlist elements required to construct the
188  *              SPU request message
189  * @chunksize:  Number of bytes of request data
190  * @pad_len:    Number of pad bytes
191  *
192  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
193  * when the request completes, whether the request is handled successfully or
194  * there is an error.
195  *
196  * Returns:
197  *   0 if successful
198  *   < 0 if an error
199  */
200 static int
201 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
202                             struct iproc_reqctx_s *rctx,
203                             u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
204 {
205         struct spu_hw *spu = &iproc_priv.spu;
206         struct scatterlist *sg; /* used to build sgs in mbox message */
207         struct iproc_ctx_s *ctx = rctx->ctx;
208         u32 datalen;            /* Number of bytes of response data expected */
209         u32 stat_len;
210
211         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
212                                 rctx->gfp);
213         if (unlikely(!mssg->spu.src))
214                 return -ENOMEM;
215
216         sg = mssg->spu.src;
217         sg_init_table(sg, tx_frag_num);
218
219         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
220                    BCM_HDR_LEN + ctx->spu_req_hdr_len);
221
222         /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
223         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
224             spu->spu_xts_tweak_in_payload())
225                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
226
227         /* Copy in each src sg entry from request, up to chunksize */
228         datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
229                                  rctx->src_nents, chunksize);
230         if (unlikely(datalen < chunksize)) {
231                 pr_err("%s(): failed to copy src sg to mbox msg",
232                        __func__);
233                 return -EFAULT;
234         }
235
236         if (pad_len)
237                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
238
239         stat_len = spu->spu_tx_status_len();
240         if (stat_len) {
241                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
242                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
243         }
244         return 0;
245 }
246
247 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
248                                 u8 chan_idx)
249 {
250         int err;
251         int retry_cnt = 0;
252         struct device *dev = &(iproc_priv.pdev->dev);
253
254         err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
255         if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
256                 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
257                         /*
258                          * Mailbox queue is full. Since MAY_SLEEP is set, assume
259                          * not in atomic context and we can wait and try again.
260                          */
261                         retry_cnt++;
262                         usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
263                         err = mbox_send_message(iproc_priv.mbox[chan_idx],
264                                                 mssg);
265                         atomic_inc(&iproc_priv.mb_no_spc);
266                 }
267         }
268         if (err < 0) {
269                 atomic_inc(&iproc_priv.mb_send_fail);
270                 return err;
271         }
272
273         /* Check error returned by mailbox controller */
274         err = mssg->error;
275         if (unlikely(err < 0)) {
276                 dev_err(dev, "message error %d", err);
277                 /* Signal txdone for mailbox channel */
278         }
279
280         /* Signal txdone for mailbox channel */
281         mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
282         return err;
283 }
284
285 /**
286  * handle_skcipher_req() - Submit as much of a block cipher request as fits in
287  * a single SPU request message, starting at the current position in the request
288  * data.
289  * @rctx:       Crypto request context
290  *
291  * This may be called on the crypto API thread, or, when a request is so large
292  * it must be broken into multiple SPU messages, on the thread used to invoke
293  * the response callback. When requests are broken into multiple SPU
294  * messages, we assume subsequent messages depend on previous results, and
295  * thus always wait for previous results before submitting the next message.
296  * Because requests are submitted in lock step like this, there is no need
297  * to synchronize access to request data structures.
298  *
299  * Return: -EINPROGRESS: request has been accepted and result will be returned
300  *                       asynchronously
301  *         Any other value indicates an error
302  */
303 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
304 {
305         struct spu_hw *spu = &iproc_priv.spu;
306         struct crypto_async_request *areq = rctx->parent;
307         struct skcipher_request *req =
308             container_of(areq, struct skcipher_request, base);
309         struct iproc_ctx_s *ctx = rctx->ctx;
310         struct spu_cipher_parms cipher_parms;
311         int err;
312         unsigned int chunksize; /* Num bytes of request to submit */
313         int remaining;  /* Bytes of request still to process */
314         int chunk_start;        /* Beginning of data for current SPU msg */
315
316         /* IV or ctr value to use in this SPU msg */
317         u8 local_iv_ctr[MAX_IV_SIZE];
318         u32 stat_pad_len;       /* num bytes to align status field */
319         u32 pad_len;            /* total length of all padding */
320         bool update_key = false;
321         struct brcm_message *mssg;      /* mailbox message */
322
323         /* number of entries in src and dst sg in mailbox message. */
324         u8 rx_frag_num = 2;     /* response header and STATUS */
325         u8 tx_frag_num = 1;     /* request header */
326
327         flow_log("%s\n", __func__);
328
329         cipher_parms.alg = ctx->cipher.alg;
330         cipher_parms.mode = ctx->cipher.mode;
331         cipher_parms.type = ctx->cipher_type;
332         cipher_parms.key_len = ctx->enckeylen;
333         cipher_parms.key_buf = ctx->enckey;
334         cipher_parms.iv_buf = local_iv_ctr;
335         cipher_parms.iv_len = rctx->iv_ctr_len;
336
337         mssg = &rctx->mb_mssg;
338         chunk_start = rctx->src_sent;
339         remaining = rctx->total_todo - chunk_start;
340
341         /* determine the chunk we are breaking off and update the indexes */
342         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
343             (remaining > ctx->max_payload))
344                 chunksize = ctx->max_payload;
345         else
346                 chunksize = remaining;
347
348         rctx->src_sent += chunksize;
349         rctx->total_sent = rctx->src_sent;
350
351         /* Count number of sg entries to be included in this request */
352         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
353         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
354
355         if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
356             rctx->is_encrypt && chunk_start)
357                 /*
358                  * Encrypting non-first first chunk. Copy last block of
359                  * previous result to IV for this chunk.
360                  */
361                 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
362                                     rctx->iv_ctr_len,
363                                     chunk_start - rctx->iv_ctr_len);
364
365         if (rctx->iv_ctr_len) {
366                 /* get our local copy of the iv */
367                 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
368                                  rctx->iv_ctr_len);
369
370                 /* generate the next IV if possible */
371                 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
372                     !rctx->is_encrypt) {
373                         /*
374                          * CBC Decrypt: next IV is the last ciphertext block in
375                          * this chunk
376                          */
377                         sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
378                                             rctx->iv_ctr_len,
379                                             rctx->src_sent - rctx->iv_ctr_len);
380                 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
381                         /*
382                          * The SPU hardware increments the counter once for
383                          * each AES block of 16 bytes. So update the counter
384                          * for the next chunk, if there is one. Note that for
385                          * this chunk, the counter has already been copied to
386                          * local_iv_ctr. We can assume a block size of 16,
387                          * because we only support CTR mode for AES, not for
388                          * any other cipher alg.
389                          */
390                         add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
391                 }
392         }
393
394         if (ctx->cipher.alg == CIPHER_ALG_RC4) {
395                 rx_frag_num++;
396                 if (chunk_start) {
397                         /*
398                          * for non-first RC4 chunks, use SUPDT from previous
399                          * response as key for this chunk.
400                          */
401                         cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
402                         update_key = true;
403                         cipher_parms.type = CIPHER_TYPE_UPDT;
404                 } else if (!rctx->is_encrypt) {
405                         /*
406                          * First RC4 chunk. For decrypt, key in pre-built msg
407                          * header may have been changed if encrypt required
408                          * multiple chunks. So revert the key to the
409                          * ctx->enckey value.
410                          */
411                         update_key = true;
412                         cipher_parms.type = CIPHER_TYPE_INIT;
413                 }
414         }
415
416         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
417                 flow_log("max_payload infinite\n");
418         else
419                 flow_log("max_payload %u\n", ctx->max_payload);
420
421         flow_log("sent:%u start:%u remains:%u size:%u\n",
422                  rctx->src_sent, chunk_start, remaining, chunksize);
423
424         /* Copy SPU header template created at setkey time */
425         memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
426                sizeof(rctx->msg_buf.bcm_spu_req_hdr));
427
428         /*
429          * Pass SUPDT field as key. Key field in finish() call is only used
430          * when update_key has been set above for RC4. Will be ignored in
431          * all other cases.
432          */
433         spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
434                                    ctx->spu_req_hdr_len, !(rctx->is_encrypt),
435                                    &cipher_parms, update_key, chunksize);
436
437         atomic64_add(chunksize, &iproc_priv.bytes_out);
438
439         stat_pad_len = spu->spu_wordalign_padlen(chunksize);
440         if (stat_pad_len)
441                 rx_frag_num++;
442         pad_len = stat_pad_len;
443         if (pad_len) {
444                 tx_frag_num++;
445                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
446                                      0, ctx->auth.alg, ctx->auth.mode,
447                                      rctx->total_sent, stat_pad_len);
448         }
449
450         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
451                               ctx->spu_req_hdr_len);
452         packet_log("payload:\n");
453         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
454         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
455
456         /*
457          * Build mailbox message containing SPU request msg and rx buffers
458          * to catch response message
459          */
460         memset(mssg, 0, sizeof(*mssg));
461         mssg->type = BRCM_MESSAGE_SPU;
462         mssg->ctx = rctx;       /* Will be returned in response */
463
464         /* Create rx scatterlist to catch result */
465         rx_frag_num += rctx->dst_nents;
466
467         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
468             spu->spu_xts_tweak_in_payload())
469                 rx_frag_num++;  /* extra sg to insert tweak */
470
471         err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
472                                           stat_pad_len);
473         if (err)
474                 return err;
475
476         /* Create tx scatterlist containing SPU request message */
477         tx_frag_num += rctx->src_nents;
478         if (spu->spu_tx_status_len())
479                 tx_frag_num++;
480
481         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
482             spu->spu_xts_tweak_in_payload())
483                 tx_frag_num++;  /* extra sg to insert tweak */
484
485         err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
486                                           pad_len);
487         if (err)
488                 return err;
489
490         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
491         if (unlikely(err < 0))
492                 return err;
493
494         return -EINPROGRESS;
495 }
496
497 /**
498  * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
499  * total received count for the request and updates global stats.
500  * @rctx:       Crypto request context
501  */
502 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
503 {
504         struct spu_hw *spu = &iproc_priv.spu;
505 #ifdef DEBUG
506         struct crypto_async_request *areq = rctx->parent;
507         struct skcipher_request *req = skcipher_request_cast(areq);
508 #endif
509         struct iproc_ctx_s *ctx = rctx->ctx;
510         u32 payload_len;
511
512         /* See how much data was returned */
513         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
514
515         /*
516          * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
517          * encrypted tweak ("i") value; we don't count those.
518          */
519         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
520             spu->spu_xts_tweak_in_payload() &&
521             (payload_len >= SPU_XTS_TWEAK_SIZE))
522                 payload_len -= SPU_XTS_TWEAK_SIZE;
523
524         atomic64_add(payload_len, &iproc_priv.bytes_in);
525
526         flow_log("%s() offset: %u, bd_len: %u BD:\n",
527                  __func__, rctx->total_received, payload_len);
528
529         dump_sg(req->dst, rctx->total_received, payload_len);
530         if (ctx->cipher.alg == CIPHER_ALG_RC4)
531                 packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
532                             SPU_SUPDT_LEN);
533
534         rctx->total_received += payload_len;
535         if (rctx->total_received == rctx->total_todo) {
536                 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
537                 atomic_inc(
538                    &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
539         }
540 }
541
542 /**
543  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
544  * receive a SPU response message for an ahash request.
545  * @mssg:       mailbox message containing the receive sg
546  * @rctx:       crypto request context
547  * @rx_frag_num: number of scatterlist elements required to hold the
548  *              SPU response message
549  * @digestsize: length of hash digest, in bytes
550  * @stat_pad_len: Number of bytes required to pad the STAT field to
551  *              a 4-byte boundary
552  *
553  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
554  * when the request completes, whether the request is handled successfully or
555  * there is an error.
556  *
557  * Return:
558  *   0 if successful
559  *   < 0 if an error
560  */
561 static int
562 spu_ahash_rx_sg_create(struct brcm_message *mssg,
563                        struct iproc_reqctx_s *rctx,
564                        u8 rx_frag_num, unsigned int digestsize,
565                        u32 stat_pad_len)
566 {
567         struct spu_hw *spu = &iproc_priv.spu;
568         struct scatterlist *sg; /* used to build sgs in mbox message */
569         struct iproc_ctx_s *ctx = rctx->ctx;
570
571         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
572                                 rctx->gfp);
573         if (!mssg->spu.dst)
574                 return -ENOMEM;
575
576         sg = mssg->spu.dst;
577         sg_init_table(sg, rx_frag_num);
578         /* Space for SPU message header */
579         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
580
581         /* Space for digest */
582         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
583
584         if (stat_pad_len)
585                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
586
587         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
588         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
589         return 0;
590 }
591
592 /**
593  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
594  * a SPU request message for an ahash request. Includes SPU message headers and
595  * the request data.
596  * @mssg:       mailbox message containing the transmit sg
597  * @rctx:       crypto request context
598  * @tx_frag_num: number of scatterlist elements required to construct the
599  *              SPU request message
600  * @spu_hdr_len: length in bytes of SPU message header
601  * @hash_carry_len: Number of bytes of data carried over from previous req
602  * @new_data_len: Number of bytes of new request data
603  * @pad_len:    Number of pad bytes
604  *
605  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
606  * when the request completes, whether the request is handled successfully or
607  * there is an error.
608  *
609  * Return:
610  *   0 if successful
611  *   < 0 if an error
612  */
613 static int
614 spu_ahash_tx_sg_create(struct brcm_message *mssg,
615                        struct iproc_reqctx_s *rctx,
616                        u8 tx_frag_num,
617                        u32 spu_hdr_len,
618                        unsigned int hash_carry_len,
619                        unsigned int new_data_len, u32 pad_len)
620 {
621         struct spu_hw *spu = &iproc_priv.spu;
622         struct scatterlist *sg; /* used to build sgs in mbox message */
623         u32 datalen;            /* Number of bytes of response data expected */
624         u32 stat_len;
625
626         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
627                                 rctx->gfp);
628         if (!mssg->spu.src)
629                 return -ENOMEM;
630
631         sg = mssg->spu.src;
632         sg_init_table(sg, tx_frag_num);
633
634         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
635                    BCM_HDR_LEN + spu_hdr_len);
636
637         if (hash_carry_len)
638                 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
639
640         if (new_data_len) {
641                 /* Copy in each src sg entry from request, up to chunksize */
642                 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
643                                          rctx->src_nents, new_data_len);
644                 if (datalen < new_data_len) {
645                         pr_err("%s(): failed to copy src sg to mbox msg",
646                                __func__);
647                         return -EFAULT;
648                 }
649         }
650
651         if (pad_len)
652                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
653
654         stat_len = spu->spu_tx_status_len();
655         if (stat_len) {
656                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
657                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
658         }
659
660         return 0;
661 }
662
663 /**
664  * handle_ahash_req() - Process an asynchronous hash request from the crypto
665  * API.
666  * @rctx:  Crypto request context
667  *
668  * Builds a SPU request message embedded in a mailbox message and submits the
669  * mailbox message on a selected mailbox channel. The SPU request message is
670  * constructed as a scatterlist, including entries from the crypto API's
671  * src scatterlist to avoid copying the data to be hashed. This function is
672  * called either on the thread from the crypto API, or, in the case that the
673  * crypto API request is too large to fit in a single SPU request message,
674  * on the thread that invokes the receive callback with a response message.
675  * Because some operations require the response from one chunk before the next
676  * chunk can be submitted, we always wait for the response for the previous
677  * chunk before submitting the next chunk. Because requests are submitted in
678  * lock step like this, there is no need to synchronize access to request data
679  * structures.
680  *
681  * Return:
682  *   -EINPROGRESS: request has been submitted to SPU and response will be
683  *                 returned asynchronously
684  *   -EAGAIN:      non-final request included a small amount of data, which for
685  *                 efficiency we did not submit to the SPU, but instead stored
686  *                 to be submitted to the SPU with the next part of the request
687  *   other:        an error code
688  */
689 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
690 {
691         struct spu_hw *spu = &iproc_priv.spu;
692         struct crypto_async_request *areq = rctx->parent;
693         struct ahash_request *req = ahash_request_cast(areq);
694         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
695         struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
696         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
697         struct iproc_ctx_s *ctx = rctx->ctx;
698
699         /* number of bytes still to be hashed in this req */
700         unsigned int nbytes_to_hash = 0;
701         int err;
702         unsigned int chunksize = 0;     /* length of hash carry + new data */
703         /*
704          * length of new data, not from hash carry, to be submitted in
705          * this hw request
706          */
707         unsigned int new_data_len;
708
709         unsigned int __maybe_unused chunk_start = 0;
710         u32 db_size;     /* Length of data field, incl gcm and hash padding */
711         int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
712         u32 data_pad_len = 0;   /* length of GCM/CCM padding */
713         u32 stat_pad_len = 0;   /* length of padding to align STATUS word */
714         struct brcm_message *mssg;      /* mailbox message */
715         struct spu_request_opts req_opts;
716         struct spu_cipher_parms cipher_parms;
717         struct spu_hash_parms hash_parms;
718         struct spu_aead_parms aead_parms;
719         unsigned int local_nbuf;
720         u32 spu_hdr_len;
721         unsigned int digestsize;
722         u16 rem = 0;
723
724         /*
725          * number of entries in src and dst sg. Always includes SPU msg header.
726          * rx always includes a buffer to catch digest and STATUS.
727          */
728         u8 rx_frag_num = 3;
729         u8 tx_frag_num = 1;
730
731         flow_log("total_todo %u, total_sent %u\n",
732                  rctx->total_todo, rctx->total_sent);
733
734         memset(&req_opts, 0, sizeof(req_opts));
735         memset(&cipher_parms, 0, sizeof(cipher_parms));
736         memset(&hash_parms, 0, sizeof(hash_parms));
737         memset(&aead_parms, 0, sizeof(aead_parms));
738
739         req_opts.bd_suppress = true;
740         hash_parms.alg = ctx->auth.alg;
741         hash_parms.mode = ctx->auth.mode;
742         hash_parms.type = HASH_TYPE_NONE;
743         hash_parms.key_buf = (u8 *)ctx->authkey;
744         hash_parms.key_len = ctx->authkeylen;
745
746         /*
747          * For hash algorithms below assignment looks bit odd but
748          * it's needed for AES-XCBC and AES-CMAC hash algorithms
749          * to differentiate between 128, 192, 256 bit key values.
750          * Based on the key values, hash algorithm is selected.
751          * For example for 128 bit key, hash algorithm is AES-128.
752          */
753         cipher_parms.type = ctx->cipher_type;
754
755         mssg = &rctx->mb_mssg;
756         chunk_start = rctx->src_sent;
757
758         /*
759          * Compute the amount remaining to hash. This may include data
760          * carried over from previous requests.
761          */
762         nbytes_to_hash = rctx->total_todo - rctx->total_sent;
763         chunksize = nbytes_to_hash;
764         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
765             (chunksize > ctx->max_payload))
766                 chunksize = ctx->max_payload;
767
768         /*
769          * If this is not a final request and the request data is not a multiple
770          * of a full block, then simply park the extra data and prefix it to the
771          * data for the next request.
772          */
773         if (!rctx->is_final) {
774                 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
775                 u16 new_len;  /* len of data to add to hash carry */
776
777                 rem = chunksize % blocksize;   /* remainder */
778                 if (rem) {
779                         /* chunksize not a multiple of blocksize */
780                         chunksize -= rem;
781                         if (chunksize == 0) {
782                                 /* Don't have a full block to submit to hw */
783                                 new_len = rem - rctx->hash_carry_len;
784                                 sg_copy_part_to_buf(req->src, dest, new_len,
785                                                     rctx->src_sent);
786                                 rctx->hash_carry_len = rem;
787                                 flow_log("Exiting with hash carry len: %u\n",
788                                          rctx->hash_carry_len);
789                                 packet_dump("  buf: ",
790                                             rctx->hash_carry,
791                                             rctx->hash_carry_len);
792                                 return -EAGAIN;
793                         }
794                 }
795         }
796
797         /* if we have hash carry, then prefix it to the data in this request */
798         local_nbuf = rctx->hash_carry_len;
799         rctx->hash_carry_len = 0;
800         if (local_nbuf)
801                 tx_frag_num++;
802         new_data_len = chunksize - local_nbuf;
803
804         /* Count number of sg entries to be used in this request */
805         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
806                                        new_data_len);
807
808         /* AES hashing keeps key size in type field, so need to copy it here */
809         if (hash_parms.alg == HASH_ALG_AES)
810                 hash_parms.type = (enum hash_type)cipher_parms.type;
811         else
812                 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
813
814         digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
815                                           hash_parms.type);
816         hash_parms.digestsize = digestsize;
817
818         /* update the indexes */
819         rctx->total_sent += chunksize;
820         /* if you sent a prebuf then that wasn't from this req->src */
821         rctx->src_sent += new_data_len;
822
823         if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
824                 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
825                                                            hash_parms.mode,
826                                                            chunksize,
827                                                            blocksize);
828
829         /*
830          * If a non-first chunk, then include the digest returned from the
831          * previous chunk so that hw can add to it (except for AES types).
832          */
833         if ((hash_parms.type == HASH_TYPE_UPDT) &&
834             (hash_parms.alg != HASH_ALG_AES)) {
835                 hash_parms.key_buf = rctx->incr_hash;
836                 hash_parms.key_len = digestsize;
837         }
838
839         atomic64_add(chunksize, &iproc_priv.bytes_out);
840
841         flow_log("%s() final: %u nbuf: %u ",
842                  __func__, rctx->is_final, local_nbuf);
843
844         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
845                 flow_log("max_payload infinite\n");
846         else
847                 flow_log("max_payload %u\n", ctx->max_payload);
848
849         flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
850
851         /* Prepend SPU header with type 3 BCM header */
852         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
853
854         hash_parms.prebuf_len = local_nbuf;
855         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
856                                               BCM_HDR_LEN,
857                                               &req_opts, &cipher_parms,
858                                               &hash_parms, &aead_parms,
859                                               new_data_len);
860
861         if (spu_hdr_len == 0) {
862                 pr_err("Failed to create SPU request header\n");
863                 return -EFAULT;
864         }
865
866         /*
867          * Determine total length of padding required. Put all padding in one
868          * buffer.
869          */
870         data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
871         db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
872                                    0, 0, hash_parms.pad_len);
873         if (spu->spu_tx_status_len())
874                 stat_pad_len = spu->spu_wordalign_padlen(db_size);
875         if (stat_pad_len)
876                 rx_frag_num++;
877         pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
878         if (pad_len) {
879                 tx_frag_num++;
880                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
881                                      hash_parms.pad_len, ctx->auth.alg,
882                                      ctx->auth.mode, rctx->total_sent,
883                                      stat_pad_len);
884         }
885
886         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
887                               spu_hdr_len);
888         packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
889         flow_log("Data:\n");
890         dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
891         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
892
893         /*
894          * Build mailbox message containing SPU request msg and rx buffers
895          * to catch response message
896          */
897         memset(mssg, 0, sizeof(*mssg));
898         mssg->type = BRCM_MESSAGE_SPU;
899         mssg->ctx = rctx;       /* Will be returned in response */
900
901         /* Create rx scatterlist to catch result */
902         err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
903                                      stat_pad_len);
904         if (err)
905                 return err;
906
907         /* Create tx scatterlist containing SPU request message */
908         tx_frag_num += rctx->src_nents;
909         if (spu->spu_tx_status_len())
910                 tx_frag_num++;
911         err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
912                                      local_nbuf, new_data_len, pad_len);
913         if (err)
914                 return err;
915
916         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
917         if (unlikely(err < 0))
918                 return err;
919
920         return -EINPROGRESS;
921 }
922
923 /**
924  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
925  * for an HMAC request.
926  * @req:  The HMAC request from the crypto API
927  * @ctx:  The session context
928  *
929  * Return: 0 if synchronous hash operation successful
930  *         -EINVAL if the hash algo is unrecognized
931  *         any other value indicates an error
932  */
933 static int spu_hmac_outer_hash(struct ahash_request *req,
934                                struct iproc_ctx_s *ctx)
935 {
936         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
937         unsigned int blocksize =
938                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
939         int rc;
940
941         switch (ctx->auth.alg) {
942         case HASH_ALG_MD5:
943                 rc = do_shash("md5", req->result, ctx->opad, blocksize,
944                               req->result, ctx->digestsize, NULL, 0);
945                 break;
946         case HASH_ALG_SHA1:
947                 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
948                               req->result, ctx->digestsize, NULL, 0);
949                 break;
950         case HASH_ALG_SHA224:
951                 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
952                               req->result, ctx->digestsize, NULL, 0);
953                 break;
954         case HASH_ALG_SHA256:
955                 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
956                               req->result, ctx->digestsize, NULL, 0);
957                 break;
958         case HASH_ALG_SHA384:
959                 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
960                               req->result, ctx->digestsize, NULL, 0);
961                 break;
962         case HASH_ALG_SHA512:
963                 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
964                               req->result, ctx->digestsize, NULL, 0);
965                 break;
966         default:
967                 pr_err("%s() Error : unknown hmac type\n", __func__);
968                 rc = -EINVAL;
969         }
970         return rc;
971 }
972
973 /**
974  * ahash_req_done() - Process a hash result from the SPU hardware.
975  * @rctx: Crypto request context
976  *
977  * Return: 0 if successful
978  *         < 0 if an error
979  */
980 static int ahash_req_done(struct iproc_reqctx_s *rctx)
981 {
982         struct spu_hw *spu = &iproc_priv.spu;
983         struct crypto_async_request *areq = rctx->parent;
984         struct ahash_request *req = ahash_request_cast(areq);
985         struct iproc_ctx_s *ctx = rctx->ctx;
986         int err;
987
988         memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
989
990         if (spu->spu_type == SPU_TYPE_SPUM) {
991                 /* byte swap the output from the UPDT function to network byte
992                  * order
993                  */
994                 if (ctx->auth.alg == HASH_ALG_MD5) {
995                         __swab32s((u32 *)req->result);
996                         __swab32s(((u32 *)req->result) + 1);
997                         __swab32s(((u32 *)req->result) + 2);
998                         __swab32s(((u32 *)req->result) + 3);
999                         __swab32s(((u32 *)req->result) + 4);
1000                 }
1001         }
1002
1003         flow_dump("  digest ", req->result, ctx->digestsize);
1004
1005         /* if this an HMAC then do the outer hash */
1006         if (rctx->is_sw_hmac) {
1007                 err = spu_hmac_outer_hash(req, ctx);
1008                 if (err < 0)
1009                         return err;
1010                 flow_dump("  hmac: ", req->result, ctx->digestsize);
1011         }
1012
1013         if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015                 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016         } else {
1017                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018                 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019         }
1020
1021         return 0;
1022 }
1023
1024 /**
1025  * handle_ahash_resp() - Process a SPU response message for a hash request.
1026  * Checks if the entire crypto API request has been processed, and if so,
1027  * invokes post processing on the result.
1028  * @rctx: Crypto request context
1029  */
1030 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031 {
1032         struct iproc_ctx_s *ctx = rctx->ctx;
1033 #ifdef DEBUG
1034         struct crypto_async_request *areq = rctx->parent;
1035         struct ahash_request *req = ahash_request_cast(areq);
1036         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037         unsigned int blocksize =
1038                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039 #endif
1040         /*
1041          * Save hash to use as input to next op if incremental. Might be copying
1042          * too much, but that's easier than figuring out actual digest size here
1043          */
1044         memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045
1046         flow_log("%s() blocksize:%u digestsize:%u\n",
1047                  __func__, blocksize, ctx->digestsize);
1048
1049         atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050
1051         if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052                 ahash_req_done(rctx);
1053 }
1054
1055 /**
1056  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058  * message headers and the response data.
1059  * @mssg:       mailbox message containing the receive sg
1060  * @rctx:       crypto request context
1061  * @rx_frag_num: number of scatterlist elements required to hold the
1062  *              SPU response message
1063  * @assoc_len:  Length of associated data included in the crypto request
1064  * @ret_iv_len: Length of IV returned in response
1065  * @resp_len:   Number of bytes of response data expected to be written to
1066  *              dst buffer from crypto API
1067  * @digestsize: Length of hash digest, in bytes
1068  * @stat_pad_len: Number of bytes required to pad the STAT field to
1069  *              a 4-byte boundary
1070  *
1071  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072  * when the request completes, whether the request is handled successfully or
1073  * there is an error.
1074  *
1075  * Returns:
1076  *   0 if successful
1077  *   < 0 if an error
1078  */
1079 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080                                  struct aead_request *req,
1081                                  struct iproc_reqctx_s *rctx,
1082                                  u8 rx_frag_num,
1083                                  unsigned int assoc_len,
1084                                  u32 ret_iv_len, unsigned int resp_len,
1085                                  unsigned int digestsize, u32 stat_pad_len)
1086 {
1087         struct spu_hw *spu = &iproc_priv.spu;
1088         struct scatterlist *sg; /* used to build sgs in mbox message */
1089         struct iproc_ctx_s *ctx = rctx->ctx;
1090         u32 datalen;            /* Number of bytes of response data expected */
1091         u32 assoc_buf_len;
1092         u8 data_padlen = 0;
1093
1094         if (ctx->is_rfc4543) {
1095                 /* RFC4543: only pad after data, not after AAD */
1096                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097                                                           assoc_len + resp_len);
1098                 assoc_buf_len = assoc_len;
1099         } else {
1100                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101                                                           resp_len);
1102                 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103                                                 assoc_len, ret_iv_len,
1104                                                 rctx->is_encrypt);
1105         }
1106
1107         if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108                 /* ICV (after data) must be in the next 32-bit word for CCM */
1109                 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110                                                          resp_len +
1111                                                          data_padlen);
1112
1113         if (data_padlen)
1114                 /* have to catch gcm pad in separate buffer */
1115                 rx_frag_num++;
1116
1117         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118                                 rctx->gfp);
1119         if (!mssg->spu.dst)
1120                 return -ENOMEM;
1121
1122         sg = mssg->spu.dst;
1123         sg_init_table(sg, rx_frag_num);
1124
1125         /* Space for SPU message header */
1126         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127
1128         if (assoc_buf_len) {
1129                 /*
1130                  * Don't write directly to req->dst, because SPU may pad the
1131                  * assoc data in the response
1132                  */
1133                 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134                 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135         }
1136
1137         if (resp_len) {
1138                 /*
1139                  * Copy in each dst sg entry from request, up to chunksize.
1140                  * dst sg catches just the data. digest caught in separate buf.
1141                  */
1142                 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143                                          rctx->dst_nents, resp_len);
1144                 if (datalen < (resp_len)) {
1145                         pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146                                __func__, resp_len, datalen);
1147                         return -EFAULT;
1148                 }
1149         }
1150
1151         /* If GCM/CCM data is padded, catch padding in separate buffer */
1152         if (data_padlen) {
1153                 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154                 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155         }
1156
1157         /* Always catch ICV in separate buffer */
1158         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159
1160         flow_log("stat_pad_len %u\n", stat_pad_len);
1161         if (stat_pad_len) {
1162                 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164         }
1165
1166         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168
1169         return 0;
1170 }
1171
1172 /**
1173  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174  * SPU request message for an AEAD request. Includes SPU message headers and the
1175  * request data.
1176  * @mssg:       mailbox message containing the transmit sg
1177  * @rctx:       crypto request context
1178  * @tx_frag_num: number of scatterlist elements required to construct the
1179  *              SPU request message
1180  * @spu_hdr_len: length of SPU message header in bytes
1181  * @assoc:      crypto API associated data scatterlist
1182  * @assoc_len:  length of associated data
1183  * @assoc_nents: number of scatterlist entries containing assoc data
1184  * @aead_iv_len: length of AEAD IV, if included
1185  * @chunksize:  Number of bytes of request data
1186  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187  * @pad_len:    Number of pad bytes
1188  * @incl_icv:   If true, write separate ICV buffer after data and
1189  *              any padding
1190  *
1191  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192  * when the request completes, whether the request is handled successfully or
1193  * there is an error.
1194  *
1195  * Return:
1196  *   0 if successful
1197  *   < 0 if an error
1198  */
1199 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200                                  struct iproc_reqctx_s *rctx,
1201                                  u8 tx_frag_num,
1202                                  u32 spu_hdr_len,
1203                                  struct scatterlist *assoc,
1204                                  unsigned int assoc_len,
1205                                  int assoc_nents,
1206                                  unsigned int aead_iv_len,
1207                                  unsigned int chunksize,
1208                                  u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209 {
1210         struct spu_hw *spu = &iproc_priv.spu;
1211         struct scatterlist *sg; /* used to build sgs in mbox message */
1212         struct scatterlist *assoc_sg = assoc;
1213         struct iproc_ctx_s *ctx = rctx->ctx;
1214         u32 datalen;            /* Number of bytes of data to write */
1215         u32 written;            /* Number of bytes of data written */
1216         u32 assoc_offset = 0;
1217         u32 stat_len;
1218
1219         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220                                 rctx->gfp);
1221         if (!mssg->spu.src)
1222                 return -ENOMEM;
1223
1224         sg = mssg->spu.src;
1225         sg_init_table(sg, tx_frag_num);
1226
1227         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228                    BCM_HDR_LEN + spu_hdr_len);
1229
1230         if (assoc_len) {
1231                 /* Copy in each associated data sg entry from request */
1232                 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233                                          assoc_nents, assoc_len);
1234                 if (written < assoc_len) {
1235                         pr_err("%s(): failed to copy assoc sg to mbox msg",
1236                                __func__);
1237                         return -EFAULT;
1238                 }
1239         }
1240
1241         if (aead_iv_len)
1242                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243
1244         if (aad_pad_len) {
1245                 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246                 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247         }
1248
1249         datalen = chunksize;
1250         if ((chunksize > ctx->digestsize) && incl_icv)
1251                 datalen -= ctx->digestsize;
1252         if (datalen) {
1253                 /* For aead, a single msg should consume the entire src sg */
1254                 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255                                          rctx->src_nents, datalen);
1256                 if (written < datalen) {
1257                         pr_err("%s(): failed to copy src sg to mbox msg",
1258                                __func__);
1259                         return -EFAULT;
1260                 }
1261         }
1262
1263         if (pad_len) {
1264                 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266         }
1267
1268         if (incl_icv)
1269                 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270
1271         stat_len = spu->spu_tx_status_len();
1272         if (stat_len) {
1273                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275         }
1276         return 0;
1277 }
1278
1279 /**
1280  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281  * current AEAD request.
1282  * @rctx:  Crypto request context
1283  *
1284  * Unlike other operation types, we assume the length of the request fits in
1285  * a single SPU request message. aead_enqueue() makes sure this is true.
1286  * Comments for other op types regarding threads applies here as well.
1287  *
1288  * Unlike incremental hash ops, where the spu returns the entire hash for
1289  * truncated algs like sha-224, the SPU returns just the truncated hash in
1290  * response to aead requests. So digestsize is always ctx->digestsize here.
1291  *
1292  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293  *                       returned asynchronously
1294  *         Any other value indicates an error
1295  */
1296 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297 {
1298         struct spu_hw *spu = &iproc_priv.spu;
1299         struct crypto_async_request *areq = rctx->parent;
1300         struct aead_request *req = container_of(areq,
1301                                                 struct aead_request, base);
1302         struct iproc_ctx_s *ctx = rctx->ctx;
1303         int err;
1304         unsigned int chunksize;
1305         unsigned int resp_len;
1306         u32 spu_hdr_len;
1307         u32 db_size;
1308         u32 stat_pad_len;
1309         u32 pad_len;
1310         struct brcm_message *mssg;      /* mailbox message */
1311         struct spu_request_opts req_opts;
1312         struct spu_cipher_parms cipher_parms;
1313         struct spu_hash_parms hash_parms;
1314         struct spu_aead_parms aead_parms;
1315         int assoc_nents = 0;
1316         bool incl_icv = false;
1317         unsigned int digestsize = ctx->digestsize;
1318
1319         /* number of entries in src and dst sg. Always includes SPU msg header.
1320          */
1321         u8 rx_frag_num = 2;     /* and STATUS */
1322         u8 tx_frag_num = 1;
1323
1324         /* doing the whole thing at once */
1325         chunksize = rctx->total_todo;
1326
1327         flow_log("%s: chunksize %u\n", __func__, chunksize);
1328
1329         memset(&req_opts, 0, sizeof(req_opts));
1330         memset(&hash_parms, 0, sizeof(hash_parms));
1331         memset(&aead_parms, 0, sizeof(aead_parms));
1332
1333         req_opts.is_inbound = !(rctx->is_encrypt);
1334         req_opts.auth_first = ctx->auth_first;
1335         req_opts.is_aead = true;
1336         req_opts.is_esp = ctx->is_esp;
1337
1338         cipher_parms.alg = ctx->cipher.alg;
1339         cipher_parms.mode = ctx->cipher.mode;
1340         cipher_parms.type = ctx->cipher_type;
1341         cipher_parms.key_buf = ctx->enckey;
1342         cipher_parms.key_len = ctx->enckeylen;
1343         cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344         cipher_parms.iv_len = rctx->iv_ctr_len;
1345
1346         hash_parms.alg = ctx->auth.alg;
1347         hash_parms.mode = ctx->auth.mode;
1348         hash_parms.type = HASH_TYPE_NONE;
1349         hash_parms.key_buf = (u8 *)ctx->authkey;
1350         hash_parms.key_len = ctx->authkeylen;
1351         hash_parms.digestsize = digestsize;
1352
1353         if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354             (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355                 hash_parms.key_len = SHA224_DIGEST_SIZE;
1356
1357         aead_parms.assoc_size = req->assoclen;
1358         if (ctx->is_esp && !ctx->is_rfc4543) {
1359                 /*
1360                  * 8-byte IV is included assoc data in request. SPU2
1361                  * expects AAD to include just SPI and seqno. So
1362                  * subtract off the IV len.
1363                  */
1364                 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1365
1366                 if (rctx->is_encrypt) {
1367                         aead_parms.return_iv = true;
1368                         aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1369                         aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370                 }
1371         } else {
1372                 aead_parms.ret_iv_len = 0;
1373         }
1374
1375         /*
1376          * Count number of sg entries from the crypto API request that are to
1377          * be included in this mailbox message. For dst sg, don't count space
1378          * for digest. Digest gets caught in a separate buffer and copied back
1379          * to dst sg when processing response.
1380          */
1381         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383         if (aead_parms.assoc_size)
1384                 assoc_nents = spu_sg_count(rctx->assoc, 0,
1385                                            aead_parms.assoc_size);
1386
1387         mssg = &rctx->mb_mssg;
1388
1389         rctx->total_sent = chunksize;
1390         rctx->src_sent = chunksize;
1391         if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392                                     aead_parms.assoc_size,
1393                                     aead_parms.ret_iv_len,
1394                                     rctx->is_encrypt))
1395                 rx_frag_num++;
1396
1397         aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398                                                 rctx->iv_ctr_len);
1399
1400         if (ctx->auth.alg == HASH_ALG_AES)
1401                 hash_parms.type = (enum hash_type)ctx->cipher_type;
1402
1403         /* General case AAD padding (CCM and RFC4543 special cases below) */
1404         aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405                                                  aead_parms.assoc_size);
1406
1407         /* General case data padding (CCM decrypt special case below) */
1408         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409                                                            chunksize);
1410
1411         if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412                 /*
1413                  * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414                  * 128-bit aligned
1415                  */
1416                 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417                                          ctx->cipher.mode,
1418                                          aead_parms.assoc_size + 2);
1419
1420                 /*
1421                  * And when decrypting CCM, need to pad without including
1422                  * size of ICV which is tacked on to end of chunk
1423                  */
1424                 if (!rctx->is_encrypt)
1425                         aead_parms.data_pad_len =
1426                                 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427                                                         chunksize - digestsize);
1428
1429                 /* CCM also requires software to rewrite portions of IV: */
1430                 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431                                        chunksize, rctx->is_encrypt,
1432                                        ctx->is_esp);
1433         }
1434
1435         if (ctx->is_rfc4543) {
1436                 /*
1437                  * RFC4543: data is included in AAD, so don't pad after AAD
1438                  * and pad data based on both AAD + data size
1439                  */
1440                 aead_parms.aad_pad_len = 0;
1441                 if (!rctx->is_encrypt)
1442                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443                                         ctx->cipher.mode,
1444                                         aead_parms.assoc_size + chunksize -
1445                                         digestsize);
1446                 else
1447                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448                                         ctx->cipher.mode,
1449                                         aead_parms.assoc_size + chunksize);
1450
1451                 req_opts.is_rfc4543 = true;
1452         }
1453
1454         if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455                 incl_icv = true;
1456                 tx_frag_num++;
1457                 /* Copy ICV from end of src scatterlist to digest buf */
1458                 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459                                     req->assoclen + rctx->total_sent -
1460                                     digestsize);
1461         }
1462
1463         atomic64_add(chunksize, &iproc_priv.bytes_out);
1464
1465         flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466
1467         /* Prepend SPU header with type 3 BCM header */
1468         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469
1470         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471                                               BCM_HDR_LEN, &req_opts,
1472                                               &cipher_parms, &hash_parms,
1473                                               &aead_parms, chunksize);
1474
1475         /* Determine total length of padding. Put all padding in one buffer. */
1476         db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477                                    chunksize, aead_parms.aad_pad_len,
1478                                    aead_parms.data_pad_len, 0);
1479
1480         stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481
1482         if (stat_pad_len)
1483                 rx_frag_num++;
1484         pad_len = aead_parms.data_pad_len + stat_pad_len;
1485         if (pad_len) {
1486                 tx_frag_num++;
1487                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488                                      aead_parms.data_pad_len, 0,
1489                                      ctx->auth.alg, ctx->auth.mode,
1490                                      rctx->total_sent, stat_pad_len);
1491         }
1492
1493         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494                               spu_hdr_len);
1495         dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496         packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497         packet_log("BD:\n");
1498         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500
1501         /*
1502          * Build mailbox message containing SPU request msg and rx buffers
1503          * to catch response message
1504          */
1505         memset(mssg, 0, sizeof(*mssg));
1506         mssg->type = BRCM_MESSAGE_SPU;
1507         mssg->ctx = rctx;       /* Will be returned in response */
1508
1509         /* Create rx scatterlist to catch result */
1510         rx_frag_num += rctx->dst_nents;
1511         resp_len = chunksize;
1512
1513         /*
1514          * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515          * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516          * sends entire digest back.
1517          */
1518         rx_frag_num++;
1519
1520         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521              (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522                 /*
1523                  * Input is ciphertxt plus ICV, but ICV not incl
1524                  * in output.
1525                  */
1526                 resp_len -= ctx->digestsize;
1527                 if (resp_len == 0)
1528                         /* no rx frags to catch output data */
1529                         rx_frag_num -= rctx->dst_nents;
1530         }
1531
1532         err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533                                     aead_parms.assoc_size,
1534                                     aead_parms.ret_iv_len, resp_len, digestsize,
1535                                     stat_pad_len);
1536         if (err)
1537                 return err;
1538
1539         /* Create tx scatterlist containing SPU request message */
1540         tx_frag_num += rctx->src_nents;
1541         tx_frag_num += assoc_nents;
1542         if (aead_parms.aad_pad_len)
1543                 tx_frag_num++;
1544         if (aead_parms.iv_len)
1545                 tx_frag_num++;
1546         if (spu->spu_tx_status_len())
1547                 tx_frag_num++;
1548         err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549                                     rctx->assoc, aead_parms.assoc_size,
1550                                     assoc_nents, aead_parms.iv_len, chunksize,
1551                                     aead_parms.aad_pad_len, pad_len, incl_icv);
1552         if (err)
1553                 return err;
1554
1555         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556         if (unlikely(err < 0))
1557                 return err;
1558
1559         return -EINPROGRESS;
1560 }
1561
1562 /**
1563  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564  * @rctx:  Crypto request context
1565  */
1566 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567 {
1568         struct spu_hw *spu = &iproc_priv.spu;
1569         struct crypto_async_request *areq = rctx->parent;
1570         struct aead_request *req = container_of(areq,
1571                                                 struct aead_request, base);
1572         struct iproc_ctx_s *ctx = rctx->ctx;
1573         u32 payload_len;
1574         unsigned int icv_offset;
1575         u32 result_len;
1576
1577         /* See how much data was returned */
1578         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579         flow_log("payload_len %u\n", payload_len);
1580
1581         /* only count payload */
1582         atomic64_add(payload_len, &iproc_priv.bytes_in);
1583
1584         if (req->assoclen)
1585                 packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1586                             req->assoclen);
1587
1588         /*
1589          * Copy the ICV back to the destination
1590          * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591          * API doesn't expect ICV in dst buffer.
1592          */
1593         result_len = req->cryptlen;
1594         if (rctx->is_encrypt) {
1595                 icv_offset = req->assoclen + rctx->total_sent;
1596                 packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597                 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598                 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599                                       ctx->digestsize, icv_offset);
1600                 result_len += ctx->digestsize;
1601         }
1602
1603         packet_log("response data:  ");
1604         dump_sg(req->dst, req->assoclen, result_len);
1605
1606         atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607         if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608                 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609                         atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610                 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611                         atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612                 else
1613                         atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614         } else {
1615                 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616         }
1617 }
1618
1619 /**
1620  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621  * @rctx:  request context
1622  *
1623  * Mailbox scatterlists are allocated for each chunk. So free them after
1624  * processing each chunk.
1625  */
1626 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627 {
1628         /* mailbox message used to tx request */
1629         struct brcm_message *mssg = &rctx->mb_mssg;
1630
1631         kfree(mssg->spu.src);
1632         kfree(mssg->spu.dst);
1633         memset(mssg, 0, sizeof(struct brcm_message));
1634 }
1635
1636 /**
1637  * finish_req() - Used to invoke the complete callback from the requester when
1638  * a request has been handled asynchronously.
1639  * @rctx:  Request context
1640  * @err:   Indicates whether the request was successful or not
1641  *
1642  * Ensures that cleanup has been done for request
1643  */
1644 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645 {
1646         struct crypto_async_request *areq = rctx->parent;
1647
1648         flow_log("%s() err:%d\n\n", __func__, err);
1649
1650         /* No harm done if already called */
1651         spu_chunk_cleanup(rctx);
1652
1653         if (areq)
1654                 areq->complete(areq, err);
1655 }
1656
1657 /**
1658  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659  * @cl:         mailbox client structure for SPU driver
1660  * @msg:        mailbox message containing SPU response
1661  */
1662 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663 {
1664         struct spu_hw *spu = &iproc_priv.spu;
1665         struct brcm_message *mssg = msg;
1666         struct iproc_reqctx_s *rctx;
1667         int err;
1668
1669         rctx = mssg->ctx;
1670         if (unlikely(!rctx)) {
1671                 /* This is fatal */
1672                 pr_err("%s(): no request context", __func__);
1673                 err = -EFAULT;
1674                 goto cb_finish;
1675         }
1676
1677         /* process the SPU status */
1678         err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679         if (err != 0) {
1680                 if (err == SPU_INVALID_ICV)
1681                         atomic_inc(&iproc_priv.bad_icv);
1682                 err = -EBADMSG;
1683                 goto cb_finish;
1684         }
1685
1686         /* Process the SPU response message */
1687         switch (rctx->ctx->alg->type) {
1688         case CRYPTO_ALG_TYPE_SKCIPHER:
1689                 handle_skcipher_resp(rctx);
1690                 break;
1691         case CRYPTO_ALG_TYPE_AHASH:
1692                 handle_ahash_resp(rctx);
1693                 break;
1694         case CRYPTO_ALG_TYPE_AEAD:
1695                 handle_aead_resp(rctx);
1696                 break;
1697         default:
1698                 err = -EINVAL;
1699                 goto cb_finish;
1700         }
1701
1702         /*
1703          * If this response does not complete the request, then send the next
1704          * request chunk.
1705          */
1706         if (rctx->total_sent < rctx->total_todo) {
1707                 /* Deallocate anything specific to previous chunk */
1708                 spu_chunk_cleanup(rctx);
1709
1710                 switch (rctx->ctx->alg->type) {
1711                 case CRYPTO_ALG_TYPE_SKCIPHER:
1712                         err = handle_skcipher_req(rctx);
1713                         break;
1714                 case CRYPTO_ALG_TYPE_AHASH:
1715                         err = handle_ahash_req(rctx);
1716                         if (err == -EAGAIN)
1717                                 /*
1718                                  * we saved data in hash carry, but tell crypto
1719                                  * API we successfully completed request.
1720                                  */
1721                                 err = 0;
1722                         break;
1723                 case CRYPTO_ALG_TYPE_AEAD:
1724                         err = handle_aead_req(rctx);
1725                         break;
1726                 default:
1727                         err = -EINVAL;
1728                 }
1729
1730                 if (err == -EINPROGRESS)
1731                         /* Successfully submitted request for next chunk */
1732                         return;
1733         }
1734
1735 cb_finish:
1736         finish_req(rctx, err);
1737 }
1738
1739 /* ==================== Kernel Cryptographic API ==================== */
1740
1741 /**
1742  * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1743  * @req:        Crypto API request
1744  * @encrypt:    true if encrypting; false if decrypting
1745  *
1746  * Return: -EINPROGRESS if request accepted and result will be returned
1747  *                      asynchronously
1748  *         < 0 if an error
1749  */
1750 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1751 {
1752         struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1753         struct iproc_ctx_s *ctx =
1754             crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1755         int err;
1756
1757         flow_log("%s() enc:%u\n", __func__, encrypt);
1758
1759         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761         rctx->parent = &req->base;
1762         rctx->is_encrypt = encrypt;
1763         rctx->bd_suppress = false;
1764         rctx->total_todo = req->cryptlen;
1765         rctx->src_sent = 0;
1766         rctx->total_sent = 0;
1767         rctx->total_received = 0;
1768         rctx->ctx = ctx;
1769
1770         /* Initialize current position in src and dst scatterlists */
1771         rctx->src_sg = req->src;
1772         rctx->src_nents = 0;
1773         rctx->src_skip = 0;
1774         rctx->dst_sg = req->dst;
1775         rctx->dst_nents = 0;
1776         rctx->dst_skip = 0;
1777
1778         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779             ctx->cipher.mode == CIPHER_MODE_CTR ||
1780             ctx->cipher.mode == CIPHER_MODE_OFB ||
1781             ctx->cipher.mode == CIPHER_MODE_XTS ||
1782             ctx->cipher.mode == CIPHER_MODE_GCM ||
1783             ctx->cipher.mode == CIPHER_MODE_CCM) {
1784                 rctx->iv_ctr_len =
1785                     crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1786                 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1787         } else {
1788                 rctx->iv_ctr_len = 0;
1789         }
1790
1791         /* Choose a SPU to process this request */
1792         rctx->chan_idx = select_channel();
1793         err = handle_skcipher_req(rctx);
1794         if (err != -EINPROGRESS)
1795                 /* synchronous result */
1796                 spu_chunk_cleanup(rctx);
1797
1798         return err;
1799 }
1800
1801 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1802                       unsigned int keylen)
1803 {
1804         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1805         int err;
1806
1807         err = verify_skcipher_des_key(cipher, key);
1808         if (err)
1809                 return err;
1810
1811         ctx->cipher_type = CIPHER_TYPE_DES;
1812         return 0;
1813 }
1814
1815 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1816                            unsigned int keylen)
1817 {
1818         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1819         int err;
1820
1821         err = verify_skcipher_des3_key(cipher, key);
1822         if (err)
1823                 return err;
1824
1825         ctx->cipher_type = CIPHER_TYPE_3DES;
1826         return 0;
1827 }
1828
1829 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1830                       unsigned int keylen)
1831 {
1832         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1833
1834         if (ctx->cipher.mode == CIPHER_MODE_XTS)
1835                 /* XTS includes two keys of equal length */
1836                 keylen = keylen / 2;
1837
1838         switch (keylen) {
1839         case AES_KEYSIZE_128:
1840                 ctx->cipher_type = CIPHER_TYPE_AES128;
1841                 break;
1842         case AES_KEYSIZE_192:
1843                 ctx->cipher_type = CIPHER_TYPE_AES192;
1844                 break;
1845         case AES_KEYSIZE_256:
1846                 ctx->cipher_type = CIPHER_TYPE_AES256;
1847                 break;
1848         default:
1849                 return -EINVAL;
1850         }
1851         WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1852                 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1853         return 0;
1854 }
1855
1856 static int rc4_setkey(struct crypto_skcipher *cipher, const u8 *key,
1857                       unsigned int keylen)
1858 {
1859         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1860         int i;
1861
1862         ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1863
1864         ctx->enckey[0] = 0x00;  /* 0x00 */
1865         ctx->enckey[1] = 0x00;  /* i    */
1866         ctx->enckey[2] = 0x00;  /* 0x00 */
1867         ctx->enckey[3] = 0x00;  /* j    */
1868         for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1869                 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1870
1871         ctx->cipher_type = CIPHER_TYPE_INIT;
1872
1873         return 0;
1874 }
1875
1876 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1877                              unsigned int keylen)
1878 {
1879         struct spu_hw *spu = &iproc_priv.spu;
1880         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1881         struct spu_cipher_parms cipher_parms;
1882         u32 alloc_len = 0;
1883         int err;
1884
1885         flow_log("skcipher_setkey() keylen: %d\n", keylen);
1886         flow_dump("  key: ", key, keylen);
1887
1888         switch (ctx->cipher.alg) {
1889         case CIPHER_ALG_DES:
1890                 err = des_setkey(cipher, key, keylen);
1891                 break;
1892         case CIPHER_ALG_3DES:
1893                 err = threedes_setkey(cipher, key, keylen);
1894                 break;
1895         case CIPHER_ALG_AES:
1896                 err = aes_setkey(cipher, key, keylen);
1897                 break;
1898         case CIPHER_ALG_RC4:
1899                 err = rc4_setkey(cipher, key, keylen);
1900                 break;
1901         default:
1902                 pr_err("%s() Error: unknown cipher alg\n", __func__);
1903                 err = -EINVAL;
1904         }
1905         if (err)
1906                 return err;
1907
1908         /* RC4 already populated ctx->enkey */
1909         if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1910                 memcpy(ctx->enckey, key, keylen);
1911                 ctx->enckeylen = keylen;
1912         }
1913         /* SPU needs XTS keys in the reverse order the crypto API presents */
1914         if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1915             (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1916                 unsigned int xts_keylen = keylen / 2;
1917
1918                 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1919                 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1920         }
1921
1922         if (spu->spu_type == SPU_TYPE_SPUM)
1923                 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1924         else if (spu->spu_type == SPU_TYPE_SPU2)
1925                 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1926         memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1927         cipher_parms.iv_buf = NULL;
1928         cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1929         flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1930
1931         cipher_parms.alg = ctx->cipher.alg;
1932         cipher_parms.mode = ctx->cipher.mode;
1933         cipher_parms.type = ctx->cipher_type;
1934         cipher_parms.key_buf = ctx->enckey;
1935         cipher_parms.key_len = ctx->enckeylen;
1936
1937         /* Prepend SPU request message with BCM header */
1938         memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1939         ctx->spu_req_hdr_len =
1940             spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1941                                      &cipher_parms);
1942
1943         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1944                                                           ctx->enckeylen,
1945                                                           false);
1946
1947         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1948
1949         return 0;
1950 }
1951
1952 static int skcipher_encrypt(struct skcipher_request *req)
1953 {
1954         flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1955
1956         return skcipher_enqueue(req, true);
1957 }
1958
1959 static int skcipher_decrypt(struct skcipher_request *req)
1960 {
1961         flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1962         return skcipher_enqueue(req, false);
1963 }
1964
1965 static int ahash_enqueue(struct ahash_request *req)
1966 {
1967         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1968         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1969         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1970         int err;
1971         const char *alg_name;
1972
1973         flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1974
1975         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1976                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1977         rctx->parent = &req->base;
1978         rctx->ctx = ctx;
1979         rctx->bd_suppress = true;
1980         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1981
1982         /* Initialize position in src scatterlist */
1983         rctx->src_sg = req->src;
1984         rctx->src_skip = 0;
1985         rctx->src_nents = 0;
1986         rctx->dst_sg = NULL;
1987         rctx->dst_skip = 0;
1988         rctx->dst_nents = 0;
1989
1990         /* SPU2 hardware does not compute hash of zero length data */
1991         if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1992             (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1993                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1994                 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1995                          rctx->is_final ? "" : "non-", alg_name);
1996                 err = do_shash((unsigned char *)alg_name, req->result,
1997                                NULL, 0, NULL, 0, ctx->authkey,
1998                                ctx->authkeylen);
1999                 if (err < 0)
2000                         flow_log("Hash request failed with error %d\n", err);
2001                 return err;
2002         }
2003         /* Choose a SPU to process this request */
2004         rctx->chan_idx = select_channel();
2005
2006         err = handle_ahash_req(rctx);
2007         if (err != -EINPROGRESS)
2008                 /* synchronous result */
2009                 spu_chunk_cleanup(rctx);
2010
2011         if (err == -EAGAIN)
2012                 /*
2013                  * we saved data in hash carry, but tell crypto API
2014                  * we successfully completed request.
2015                  */
2016                 err = 0;
2017
2018         return err;
2019 }
2020
2021 static int __ahash_init(struct ahash_request *req)
2022 {
2023         struct spu_hw *spu = &iproc_priv.spu;
2024         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2025         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2026         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2027
2028         flow_log("%s()\n", __func__);
2029
2030         /* Initialize the context */
2031         rctx->hash_carry_len = 0;
2032         rctx->is_final = 0;
2033
2034         rctx->total_todo = 0;
2035         rctx->src_sent = 0;
2036         rctx->total_sent = 0;
2037         rctx->total_received = 0;
2038
2039         ctx->digestsize = crypto_ahash_digestsize(tfm);
2040         /* If we add a hash whose digest is larger, catch it here. */
2041         WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2042
2043         rctx->is_sw_hmac = false;
2044
2045         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2046                                                           true);
2047
2048         return 0;
2049 }
2050
2051 /**
2052  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2053  * @ctx:  Crypto session context
2054  *
2055  * SPU-2 does not support incremental hashing (we'll have to revisit and
2056  * condition based on chip revision or device tree entry if future versions do
2057  * support incremental hash)
2058  *
2059  * SPU-M also doesn't support incremental hashing of AES-XCBC
2060  *
2061  * Return: true if incremental hashing is not supported
2062  *         false otherwise
2063  */
2064 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2065 {
2066         struct spu_hw *spu = &iproc_priv.spu;
2067
2068         if (spu->spu_type == SPU_TYPE_SPU2)
2069                 return true;
2070
2071         if ((ctx->auth.alg == HASH_ALG_AES) &&
2072             (ctx->auth.mode == HASH_MODE_XCBC))
2073                 return true;
2074
2075         /* Otherwise, incremental hashing is supported */
2076         return false;
2077 }
2078
2079 static int ahash_init(struct ahash_request *req)
2080 {
2081         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2082         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2083         const char *alg_name;
2084         struct crypto_shash *hash;
2085         int ret;
2086         gfp_t gfp;
2087
2088         if (spu_no_incr_hash(ctx)) {
2089                 /*
2090                  * If we get an incremental hashing request and it's not
2091                  * supported by the hardware, we need to handle it in software
2092                  * by calling synchronous hash functions.
2093                  */
2094                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2095                 hash = crypto_alloc_shash(alg_name, 0, 0);
2096                 if (IS_ERR(hash)) {
2097                         ret = PTR_ERR(hash);
2098                         goto err;
2099                 }
2100
2101                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2102                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2103                 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2104                                      crypto_shash_descsize(hash), gfp);
2105                 if (!ctx->shash) {
2106                         ret = -ENOMEM;
2107                         goto err_hash;
2108                 }
2109                 ctx->shash->tfm = hash;
2110
2111                 /* Set the key using data we already have from setkey */
2112                 if (ctx->authkeylen > 0) {
2113                         ret = crypto_shash_setkey(hash, ctx->authkey,
2114                                                   ctx->authkeylen);
2115                         if (ret)
2116                                 goto err_shash;
2117                 }
2118
2119                 /* Initialize hash w/ this key and other params */
2120                 ret = crypto_shash_init(ctx->shash);
2121                 if (ret)
2122                         goto err_shash;
2123         } else {
2124                 /* Otherwise call the internal function which uses SPU hw */
2125                 ret = __ahash_init(req);
2126         }
2127
2128         return ret;
2129
2130 err_shash:
2131         kfree(ctx->shash);
2132 err_hash:
2133         crypto_free_shash(hash);
2134 err:
2135         return ret;
2136 }
2137
2138 static int __ahash_update(struct ahash_request *req)
2139 {
2140         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2141
2142         flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2143
2144         if (!req->nbytes)
2145                 return 0;
2146         rctx->total_todo += req->nbytes;
2147         rctx->src_sent = 0;
2148
2149         return ahash_enqueue(req);
2150 }
2151
2152 static int ahash_update(struct ahash_request *req)
2153 {
2154         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2155         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2156         u8 *tmpbuf;
2157         int ret;
2158         int nents;
2159         gfp_t gfp;
2160
2161         if (spu_no_incr_hash(ctx)) {
2162                 /*
2163                  * If we get an incremental hashing request and it's not
2164                  * supported by the hardware, we need to handle it in software
2165                  * by calling synchronous hash functions.
2166                  */
2167                 if (req->src)
2168                         nents = sg_nents(req->src);
2169                 else
2170                         return -EINVAL;
2171
2172                 /* Copy data from req scatterlist to tmp buffer */
2173                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2174                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2175                 tmpbuf = kmalloc(req->nbytes, gfp);
2176                 if (!tmpbuf)
2177                         return -ENOMEM;
2178
2179                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2180                                 req->nbytes) {
2181                         kfree(tmpbuf);
2182                         return -EINVAL;
2183                 }
2184
2185                 /* Call synchronous update */
2186                 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2187                 kfree(tmpbuf);
2188         } else {
2189                 /* Otherwise call the internal function which uses SPU hw */
2190                 ret = __ahash_update(req);
2191         }
2192
2193         return ret;
2194 }
2195
2196 static int __ahash_final(struct ahash_request *req)
2197 {
2198         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2199
2200         flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2201
2202         rctx->is_final = 1;
2203
2204         return ahash_enqueue(req);
2205 }
2206
2207 static int ahash_final(struct ahash_request *req)
2208 {
2209         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2210         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2211         int ret;
2212
2213         if (spu_no_incr_hash(ctx)) {
2214                 /*
2215                  * If we get an incremental hashing request and it's not
2216                  * supported by the hardware, we need to handle it in software
2217                  * by calling synchronous hash functions.
2218                  */
2219                 ret = crypto_shash_final(ctx->shash, req->result);
2220
2221                 /* Done with hash, can deallocate it now */
2222                 crypto_free_shash(ctx->shash->tfm);
2223                 kfree(ctx->shash);
2224
2225         } else {
2226                 /* Otherwise call the internal function which uses SPU hw */
2227                 ret = __ahash_final(req);
2228         }
2229
2230         return ret;
2231 }
2232
2233 static int __ahash_finup(struct ahash_request *req)
2234 {
2235         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236
2237         flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2238
2239         rctx->total_todo += req->nbytes;
2240         rctx->src_sent = 0;
2241         rctx->is_final = 1;
2242
2243         return ahash_enqueue(req);
2244 }
2245
2246 static int ahash_finup(struct ahash_request *req)
2247 {
2248         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2249         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2250         u8 *tmpbuf;
2251         int ret;
2252         int nents;
2253         gfp_t gfp;
2254
2255         if (spu_no_incr_hash(ctx)) {
2256                 /*
2257                  * If we get an incremental hashing request and it's not
2258                  * supported by the hardware, we need to handle it in software
2259                  * by calling synchronous hash functions.
2260                  */
2261                 if (req->src) {
2262                         nents = sg_nents(req->src);
2263                 } else {
2264                         ret = -EINVAL;
2265                         goto ahash_finup_exit;
2266                 }
2267
2268                 /* Copy data from req scatterlist to tmp buffer */
2269                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2270                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2271                 tmpbuf = kmalloc(req->nbytes, gfp);
2272                 if (!tmpbuf) {
2273                         ret = -ENOMEM;
2274                         goto ahash_finup_exit;
2275                 }
2276
2277                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2278                                 req->nbytes) {
2279                         ret = -EINVAL;
2280                         goto ahash_finup_free;
2281                 }
2282
2283                 /* Call synchronous update */
2284                 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2285                                          req->result);
2286         } else {
2287                 /* Otherwise call the internal function which uses SPU hw */
2288                 return __ahash_finup(req);
2289         }
2290 ahash_finup_free:
2291         kfree(tmpbuf);
2292
2293 ahash_finup_exit:
2294         /* Done with hash, can deallocate it now */
2295         crypto_free_shash(ctx->shash->tfm);
2296         kfree(ctx->shash);
2297         return ret;
2298 }
2299
2300 static int ahash_digest(struct ahash_request *req)
2301 {
2302         int err;
2303
2304         flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2305
2306         /* whole thing at once */
2307         err = __ahash_init(req);
2308         if (!err)
2309                 err = __ahash_finup(req);
2310
2311         return err;
2312 }
2313
2314 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2315                         unsigned int keylen)
2316 {
2317         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2318
2319         flow_log("%s() ahash:%p key:%p keylen:%u\n",
2320                  __func__, ahash, key, keylen);
2321         flow_dump("  key: ", key, keylen);
2322
2323         if (ctx->auth.alg == HASH_ALG_AES) {
2324                 switch (keylen) {
2325                 case AES_KEYSIZE_128:
2326                         ctx->cipher_type = CIPHER_TYPE_AES128;
2327                         break;
2328                 case AES_KEYSIZE_192:
2329                         ctx->cipher_type = CIPHER_TYPE_AES192;
2330                         break;
2331                 case AES_KEYSIZE_256:
2332                         ctx->cipher_type = CIPHER_TYPE_AES256;
2333                         break;
2334                 default:
2335                         pr_err("%s() Error: Invalid key length\n", __func__);
2336                         return -EINVAL;
2337                 }
2338         } else {
2339                 pr_err("%s() Error: unknown hash alg\n", __func__);
2340                 return -EINVAL;
2341         }
2342         memcpy(ctx->authkey, key, keylen);
2343         ctx->authkeylen = keylen;
2344
2345         return 0;
2346 }
2347
2348 static int ahash_export(struct ahash_request *req, void *out)
2349 {
2350         const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2351         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2352
2353         spu_exp->total_todo = rctx->total_todo;
2354         spu_exp->total_sent = rctx->total_sent;
2355         spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2356         memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2357         spu_exp->hash_carry_len = rctx->hash_carry_len;
2358         memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2359
2360         return 0;
2361 }
2362
2363 static int ahash_import(struct ahash_request *req, const void *in)
2364 {
2365         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2366         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2367
2368         rctx->total_todo = spu_exp->total_todo;
2369         rctx->total_sent = spu_exp->total_sent;
2370         rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2371         memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2372         rctx->hash_carry_len = spu_exp->hash_carry_len;
2373         memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2374
2375         return 0;
2376 }
2377
2378 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2379                              unsigned int keylen)
2380 {
2381         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2382         unsigned int blocksize =
2383                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2384         unsigned int digestsize = crypto_ahash_digestsize(ahash);
2385         unsigned int index;
2386         int rc;
2387
2388         flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2389                  __func__, ahash, key, keylen, blocksize, digestsize);
2390         flow_dump("  key: ", key, keylen);
2391
2392         if (keylen > blocksize) {
2393                 switch (ctx->auth.alg) {
2394                 case HASH_ALG_MD5:
2395                         rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2396                                       0, NULL, 0);
2397                         break;
2398                 case HASH_ALG_SHA1:
2399                         rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2400                                       0, NULL, 0);
2401                         break;
2402                 case HASH_ALG_SHA224:
2403                         rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2404                                       0, NULL, 0);
2405                         break;
2406                 case HASH_ALG_SHA256:
2407                         rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2408                                       0, NULL, 0);
2409                         break;
2410                 case HASH_ALG_SHA384:
2411                         rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2412                                       0, NULL, 0);
2413                         break;
2414                 case HASH_ALG_SHA512:
2415                         rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2416                                       0, NULL, 0);
2417                         break;
2418                 case HASH_ALG_SHA3_224:
2419                         rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2420                                       NULL, 0, NULL, 0);
2421                         break;
2422                 case HASH_ALG_SHA3_256:
2423                         rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2424                                       NULL, 0, NULL, 0);
2425                         break;
2426                 case HASH_ALG_SHA3_384:
2427                         rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2428                                       NULL, 0, NULL, 0);
2429                         break;
2430                 case HASH_ALG_SHA3_512:
2431                         rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2432                                       NULL, 0, NULL, 0);
2433                         break;
2434                 default:
2435                         pr_err("%s() Error: unknown hash alg\n", __func__);
2436                         return -EINVAL;
2437                 }
2438                 if (rc < 0) {
2439                         pr_err("%s() Error %d computing shash for %s\n",
2440                                __func__, rc, hash_alg_name[ctx->auth.alg]);
2441                         return rc;
2442                 }
2443                 ctx->authkeylen = digestsize;
2444
2445                 flow_log("  keylen > digestsize... hashed\n");
2446                 flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2447         } else {
2448                 memcpy(ctx->authkey, key, keylen);
2449                 ctx->authkeylen = keylen;
2450         }
2451
2452         /*
2453          * Full HMAC operation in SPUM is not verified,
2454          * So keeping the generation of IPAD, OPAD and
2455          * outer hashing in software.
2456          */
2457         if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2458                 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2459                 memset(ctx->ipad + ctx->authkeylen, 0,
2460                        blocksize - ctx->authkeylen);
2461                 ctx->authkeylen = 0;
2462                 memcpy(ctx->opad, ctx->ipad, blocksize);
2463
2464                 for (index = 0; index < blocksize; index++) {
2465                         ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2466                         ctx->opad[index] ^= HMAC_OPAD_VALUE;
2467                 }
2468
2469                 flow_dump("  ipad: ", ctx->ipad, blocksize);
2470                 flow_dump("  opad: ", ctx->opad, blocksize);
2471         }
2472         ctx->digestsize = digestsize;
2473         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2474
2475         return 0;
2476 }
2477
2478 static int ahash_hmac_init(struct ahash_request *req)
2479 {
2480         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2481         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2482         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2483         unsigned int blocksize =
2484                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2485
2486         flow_log("ahash_hmac_init()\n");
2487
2488         /* init the context as a hash */
2489         ahash_init(req);
2490
2491         if (!spu_no_incr_hash(ctx)) {
2492                 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2493                 rctx->is_sw_hmac = true;
2494                 ctx->auth.mode = HASH_MODE_HASH;
2495                 /* start with a prepended ipad */
2496                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2497                 rctx->hash_carry_len = blocksize;
2498                 rctx->total_todo += blocksize;
2499         }
2500
2501         return 0;
2502 }
2503
2504 static int ahash_hmac_update(struct ahash_request *req)
2505 {
2506         flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2507
2508         if (!req->nbytes)
2509                 return 0;
2510
2511         return ahash_update(req);
2512 }
2513
2514 static int ahash_hmac_final(struct ahash_request *req)
2515 {
2516         flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2517
2518         return ahash_final(req);
2519 }
2520
2521 static int ahash_hmac_finup(struct ahash_request *req)
2522 {
2523         flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2524
2525         return ahash_finup(req);
2526 }
2527
2528 static int ahash_hmac_digest(struct ahash_request *req)
2529 {
2530         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2531         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2532         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2533         unsigned int blocksize =
2534                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2535
2536         flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2537
2538         /* Perform initialization and then call finup */
2539         __ahash_init(req);
2540
2541         if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2542                 /*
2543                  * SPU2 supports full HMAC implementation in the
2544                  * hardware, need not to generate IPAD, OPAD and
2545                  * outer hash in software.
2546                  * Only for hash key len > hash block size, SPU2
2547                  * expects to perform hashing on the key, shorten
2548                  * it to digest size and feed it as hash key.
2549                  */
2550                 rctx->is_sw_hmac = false;
2551                 ctx->auth.mode = HASH_MODE_HMAC;
2552         } else {
2553                 rctx->is_sw_hmac = true;
2554                 ctx->auth.mode = HASH_MODE_HASH;
2555                 /* start with a prepended ipad */
2556                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2557                 rctx->hash_carry_len = blocksize;
2558                 rctx->total_todo += blocksize;
2559         }
2560
2561         return __ahash_finup(req);
2562 }
2563
2564 /* aead helpers */
2565
2566 static int aead_need_fallback(struct aead_request *req)
2567 {
2568         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2569         struct spu_hw *spu = &iproc_priv.spu;
2570         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2571         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2572         u32 payload_len;
2573
2574         /*
2575          * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2576          * and AAD are both 0 bytes long. So use fallback in this case.
2577          */
2578         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2579              (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2580             (req->assoclen == 0)) {
2581                 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2582                     (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2583                         flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2584                         return 1;
2585                 }
2586         }
2587
2588         /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2589         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2590             (spu->spu_type == SPU_TYPE_SPUM) &&
2591             (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2592             (ctx->digestsize != 16)) {
2593                 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2594                          __func__, ctx->digestsize);
2595                 return 1;
2596         }
2597
2598         /*
2599          * SPU-M on NSP has an issue where AES-CCM hash is not correct
2600          * when AAD size is 0
2601          */
2602         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2603             (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2604             (req->assoclen == 0)) {
2605                 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2606                          __func__);
2607                 return 1;
2608         }
2609
2610         /*
2611          * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2612          * 16 or 20 bytes long. So use fallback in this case.
2613          */
2614         if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2615             ctx->cipher.alg == CIPHER_ALG_AES &&
2616             rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2617             req->assoclen != 16 && req->assoclen != 20) {
2618                 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2619                          " other than 16 or 20 bytes\n");
2620                 return 1;
2621         }
2622
2623         payload_len = req->cryptlen;
2624         if (spu->spu_type == SPU_TYPE_SPUM)
2625                 payload_len += req->assoclen;
2626
2627         flow_log("%s() payload len: %u\n", __func__, payload_len);
2628
2629         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2630                 return 0;
2631         else
2632                 return payload_len > ctx->max_payload;
2633 }
2634
2635 static void aead_complete(struct crypto_async_request *areq, int err)
2636 {
2637         struct aead_request *req =
2638             container_of(areq, struct aead_request, base);
2639         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2640         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2641
2642         flow_log("%s() err:%d\n", __func__, err);
2643
2644         areq->tfm = crypto_aead_tfm(aead);
2645
2646         areq->complete = rctx->old_complete;
2647         areq->data = rctx->old_data;
2648
2649         areq->complete(areq, err);
2650 }
2651
2652 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2653 {
2654         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2655         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2656         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2657         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2658         int err;
2659         u32 req_flags;
2660
2661         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2662
2663         if (ctx->fallback_cipher) {
2664                 /* Store the cipher tfm and then use the fallback tfm */
2665                 rctx->old_tfm = tfm;
2666                 aead_request_set_tfm(req, ctx->fallback_cipher);
2667                 /*
2668                  * Save the callback and chain ourselves in, so we can restore
2669                  * the tfm
2670                  */
2671                 rctx->old_complete = req->base.complete;
2672                 rctx->old_data = req->base.data;
2673                 req_flags = aead_request_flags(req);
2674                 aead_request_set_callback(req, req_flags, aead_complete, req);
2675                 err = is_encrypt ? crypto_aead_encrypt(req) :
2676                     crypto_aead_decrypt(req);
2677
2678                 if (err == 0) {
2679                         /*
2680                          * fallback was synchronous (did not return
2681                          * -EINPROGRESS). So restore request state here.
2682                          */
2683                         aead_request_set_callback(req, req_flags,
2684                                                   rctx->old_complete, req);
2685                         req->base.data = rctx->old_data;
2686                         aead_request_set_tfm(req, aead);
2687                         flow_log("%s() fallback completed successfully\n\n",
2688                                  __func__);
2689                 }
2690         } else {
2691                 err = -EINVAL;
2692         }
2693
2694         return err;
2695 }
2696
2697 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2698 {
2699         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2700         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2701         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2702         int err;
2703
2704         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2705
2706         if (req->assoclen > MAX_ASSOC_SIZE) {
2707                 pr_err
2708                     ("%s() Error: associated data too long. (%u > %u bytes)\n",
2709                      __func__, req->assoclen, MAX_ASSOC_SIZE);
2710                 return -EINVAL;
2711         }
2712
2713         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2714                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2715         rctx->parent = &req->base;
2716         rctx->is_encrypt = is_encrypt;
2717         rctx->bd_suppress = false;
2718         rctx->total_todo = req->cryptlen;
2719         rctx->src_sent = 0;
2720         rctx->total_sent = 0;
2721         rctx->total_received = 0;
2722         rctx->is_sw_hmac = false;
2723         rctx->ctx = ctx;
2724         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2725
2726         /* assoc data is at start of src sg */
2727         rctx->assoc = req->src;
2728
2729         /*
2730          * Init current position in src scatterlist to be after assoc data.
2731          * src_skip set to buffer offset where data begins. (Assoc data could
2732          * end in the middle of a buffer.)
2733          */
2734         if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2735                              &rctx->src_skip) < 0) {
2736                 pr_err("%s() Error: Unable to find start of src data\n",
2737                        __func__);
2738                 return -EINVAL;
2739         }
2740
2741         rctx->src_nents = 0;
2742         rctx->dst_nents = 0;
2743         if (req->dst == req->src) {
2744                 rctx->dst_sg = rctx->src_sg;
2745                 rctx->dst_skip = rctx->src_skip;
2746         } else {
2747                 /*
2748                  * Expect req->dst to have room for assoc data followed by
2749                  * output data and ICV, if encrypt. So initialize dst_sg
2750                  * to point beyond assoc len offset.
2751                  */
2752                 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2753                                      &rctx->dst_skip) < 0) {
2754                         pr_err("%s() Error: Unable to find start of dst data\n",
2755                                __func__);
2756                         return -EINVAL;
2757                 }
2758         }
2759
2760         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2761             ctx->cipher.mode == CIPHER_MODE_CTR ||
2762             ctx->cipher.mode == CIPHER_MODE_OFB ||
2763             ctx->cipher.mode == CIPHER_MODE_XTS ||
2764             ctx->cipher.mode == CIPHER_MODE_GCM) {
2765                 rctx->iv_ctr_len =
2766                         ctx->salt_len +
2767                         crypto_aead_ivsize(crypto_aead_reqtfm(req));
2768         } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2769                 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2770         } else {
2771                 rctx->iv_ctr_len = 0;
2772         }
2773
2774         rctx->hash_carry_len = 0;
2775
2776         flow_log("  src sg: %p\n", req->src);
2777         flow_log("  rctx->src_sg: %p, src_skip %u\n",
2778                  rctx->src_sg, rctx->src_skip);
2779         flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2780         flow_log("  dst sg: %p\n", req->dst);
2781         flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2782                  rctx->dst_sg, rctx->dst_skip);
2783         flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2784         flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2785         flow_log("  authkeylen:%u\n", ctx->authkeylen);
2786         flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2787
2788         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2789                 flow_log("  max_payload infinite");
2790         else
2791                 flow_log("  max_payload: %u\n", ctx->max_payload);
2792
2793         if (unlikely(aead_need_fallback(req)))
2794                 return aead_do_fallback(req, is_encrypt);
2795
2796         /*
2797          * Do memory allocations for request after fallback check, because if we
2798          * do fallback, we won't call finish_req() to dealloc.
2799          */
2800         if (rctx->iv_ctr_len) {
2801                 if (ctx->salt_len)
2802                         memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2803                                ctx->salt, ctx->salt_len);
2804                 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2805                        req->iv,
2806                        rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2807         }
2808
2809         rctx->chan_idx = select_channel();
2810         err = handle_aead_req(rctx);
2811         if (err != -EINPROGRESS)
2812                 /* synchronous result */
2813                 spu_chunk_cleanup(rctx);
2814
2815         return err;
2816 }
2817
2818 static int aead_authenc_setkey(struct crypto_aead *cipher,
2819                                const u8 *key, unsigned int keylen)
2820 {
2821         struct spu_hw *spu = &iproc_priv.spu;
2822         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2823         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2824         struct crypto_authenc_keys keys;
2825         int ret;
2826
2827         flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2828                  keylen);
2829         flow_dump("  key: ", key, keylen);
2830
2831         ret = crypto_authenc_extractkeys(&keys, key, keylen);
2832         if (ret)
2833                 goto badkey;
2834
2835         if (keys.enckeylen > MAX_KEY_SIZE ||
2836             keys.authkeylen > MAX_KEY_SIZE)
2837                 goto badkey;
2838
2839         ctx->enckeylen = keys.enckeylen;
2840         ctx->authkeylen = keys.authkeylen;
2841
2842         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2843         /* May end up padding auth key. So make sure it's zeroed. */
2844         memset(ctx->authkey, 0, sizeof(ctx->authkey));
2845         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2846
2847         switch (ctx->alg->cipher_info.alg) {
2848         case CIPHER_ALG_DES:
2849                 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2850                         return -EINVAL;
2851
2852                 ctx->cipher_type = CIPHER_TYPE_DES;
2853                 break;
2854         case CIPHER_ALG_3DES:
2855                 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2856                         return -EINVAL;
2857
2858                 ctx->cipher_type = CIPHER_TYPE_3DES;
2859                 break;
2860         case CIPHER_ALG_AES:
2861                 switch (ctx->enckeylen) {
2862                 case AES_KEYSIZE_128:
2863                         ctx->cipher_type = CIPHER_TYPE_AES128;
2864                         break;
2865                 case AES_KEYSIZE_192:
2866                         ctx->cipher_type = CIPHER_TYPE_AES192;
2867                         break;
2868                 case AES_KEYSIZE_256:
2869                         ctx->cipher_type = CIPHER_TYPE_AES256;
2870                         break;
2871                 default:
2872                         goto badkey;
2873                 }
2874                 break;
2875         case CIPHER_ALG_RC4:
2876                 ctx->cipher_type = CIPHER_TYPE_INIT;
2877                 break;
2878         default:
2879                 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2880                 return -EINVAL;
2881         }
2882
2883         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2884                  ctx->authkeylen);
2885         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2886         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2887
2888         /* setkey the fallback just in case we needto use it */
2889         if (ctx->fallback_cipher) {
2890                 flow_log("  running fallback setkey()\n");
2891
2892                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2893                 ctx->fallback_cipher->base.crt_flags |=
2894                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2895                 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2896                 if (ret)
2897                         flow_log("  fallback setkey() returned:%d\n", ret);
2898         }
2899
2900         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2901                                                           ctx->enckeylen,
2902                                                           false);
2903
2904         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2905
2906         return ret;
2907
2908 badkey:
2909         ctx->enckeylen = 0;
2910         ctx->authkeylen = 0;
2911         ctx->digestsize = 0;
2912
2913         return -EINVAL;
2914 }
2915
2916 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2917                                const u8 *key, unsigned int keylen)
2918 {
2919         struct spu_hw *spu = &iproc_priv.spu;
2920         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2921         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2922
2923         int ret = 0;
2924
2925         flow_log("%s() keylen:%u\n", __func__, keylen);
2926         flow_dump("  key: ", key, keylen);
2927
2928         if (!ctx->is_esp)
2929                 ctx->digestsize = keylen;
2930
2931         ctx->enckeylen = keylen;
2932         ctx->authkeylen = 0;
2933         memcpy(ctx->enckey, key, ctx->enckeylen);
2934
2935         switch (ctx->enckeylen) {
2936         case AES_KEYSIZE_128:
2937                 ctx->cipher_type = CIPHER_TYPE_AES128;
2938                 break;
2939         case AES_KEYSIZE_192:
2940                 ctx->cipher_type = CIPHER_TYPE_AES192;
2941                 break;
2942         case AES_KEYSIZE_256:
2943                 ctx->cipher_type = CIPHER_TYPE_AES256;
2944                 break;
2945         default:
2946                 goto badkey;
2947         }
2948
2949         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2950                  ctx->authkeylen);
2951         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2952         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2953
2954         /* setkey the fallback just in case we need to use it */
2955         if (ctx->fallback_cipher) {
2956                 flow_log("  running fallback setkey()\n");
2957
2958                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2959                 ctx->fallback_cipher->base.crt_flags |=
2960                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2961                 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2962                                          keylen + ctx->salt_len);
2963                 if (ret)
2964                         flow_log("  fallback setkey() returned:%d\n", ret);
2965         }
2966
2967         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2968                                                           ctx->enckeylen,
2969                                                           false);
2970
2971         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2972
2973         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2974                  ctx->authkeylen);
2975
2976         return ret;
2977
2978 badkey:
2979         ctx->enckeylen = 0;
2980         ctx->authkeylen = 0;
2981         ctx->digestsize = 0;
2982
2983         return -EINVAL;
2984 }
2985
2986 /**
2987  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2988  * @cipher: AEAD structure
2989  * @key:    Key followed by 4 bytes of salt
2990  * @keylen: Length of key plus salt, in bytes
2991  *
2992  * Extracts salt from key and stores it to be prepended to IV on each request.
2993  * Digest is always 16 bytes
2994  *
2995  * Return: Value from generic gcm setkey.
2996  */
2997 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2998                                const u8 *key, unsigned int keylen)
2999 {
3000         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3001
3002         flow_log("%s\n", __func__);
3003         ctx->salt_len = GCM_ESP_SALT_SIZE;
3004         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3005         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3006         keylen -= GCM_ESP_SALT_SIZE;
3007         ctx->digestsize = GCM_ESP_DIGESTSIZE;
3008         ctx->is_esp = true;
3009         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3010
3011         return aead_gcm_ccm_setkey(cipher, key, keylen);
3012 }
3013
3014 /**
3015  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3016  * cipher: AEAD structure
3017  * key:    Key followed by 4 bytes of salt
3018  * keylen: Length of key plus salt, in bytes
3019  *
3020  * Extracts salt from key and stores it to be prepended to IV on each request.
3021  * Digest is always 16 bytes
3022  *
3023  * Return: Value from generic gcm setkey.
3024  */
3025 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3026                                   const u8 *key, unsigned int keylen)
3027 {
3028         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3029
3030         flow_log("%s\n", __func__);
3031         ctx->salt_len = GCM_ESP_SALT_SIZE;
3032         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3033         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3034         keylen -= GCM_ESP_SALT_SIZE;
3035         ctx->digestsize = GCM_ESP_DIGESTSIZE;
3036         ctx->is_esp = true;
3037         ctx->is_rfc4543 = true;
3038         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3039
3040         return aead_gcm_ccm_setkey(cipher, key, keylen);
3041 }
3042
3043 /**
3044  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3045  * @cipher: AEAD structure
3046  * @key:    Key followed by 4 bytes of salt
3047  * @keylen: Length of key plus salt, in bytes
3048  *
3049  * Extracts salt from key and stores it to be prepended to IV on each request.
3050  * Digest is always 16 bytes
3051  *
3052  * Return: Value from generic ccm setkey.
3053  */
3054 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3055                                const u8 *key, unsigned int keylen)
3056 {
3057         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3058
3059         flow_log("%s\n", __func__);
3060         ctx->salt_len = CCM_ESP_SALT_SIZE;
3061         ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3062         memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3063         keylen -= CCM_ESP_SALT_SIZE;
3064         ctx->is_esp = true;
3065         flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3066
3067         return aead_gcm_ccm_setkey(cipher, key, keylen);
3068 }
3069
3070 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3071 {
3072         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3073         int ret = 0;
3074
3075         flow_log("%s() authkeylen:%u authsize:%u\n",
3076                  __func__, ctx->authkeylen, authsize);
3077
3078         ctx->digestsize = authsize;
3079
3080         /* setkey the fallback just in case we needto use it */
3081         if (ctx->fallback_cipher) {
3082                 flow_log("  running fallback setauth()\n");
3083
3084                 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3085                 if (ret)
3086                         flow_log("  fallback setauth() returned:%d\n", ret);
3087         }
3088
3089         return ret;
3090 }
3091
3092 static int aead_encrypt(struct aead_request *req)
3093 {
3094         flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3095                  req->cryptlen);
3096         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3097         flow_log("  assoc_len:%u\n", req->assoclen);
3098
3099         return aead_enqueue(req, true);
3100 }
3101
3102 static int aead_decrypt(struct aead_request *req)
3103 {
3104         flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3105         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3106         flow_log("  assoc_len:%u\n", req->assoclen);
3107
3108         return aead_enqueue(req, false);
3109 }
3110
3111 /* ==================== Supported Cipher Algorithms ==================== */
3112
3113 static struct iproc_alg_s driver_algs[] = {
3114         {
3115          .type = CRYPTO_ALG_TYPE_AEAD,
3116          .alg.aead = {
3117                  .base = {
3118                         .cra_name = "gcm(aes)",
3119                         .cra_driver_name = "gcm-aes-iproc",
3120                         .cra_blocksize = AES_BLOCK_SIZE,
3121                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3122                  },
3123                  .setkey = aead_gcm_ccm_setkey,
3124                  .ivsize = GCM_AES_IV_SIZE,
3125                 .maxauthsize = AES_BLOCK_SIZE,
3126          },
3127          .cipher_info = {
3128                          .alg = CIPHER_ALG_AES,
3129                          .mode = CIPHER_MODE_GCM,
3130                          },
3131          .auth_info = {
3132                        .alg = HASH_ALG_AES,
3133                        .mode = HASH_MODE_GCM,
3134                        },
3135          .auth_first = 0,
3136          },
3137         {
3138          .type = CRYPTO_ALG_TYPE_AEAD,
3139          .alg.aead = {
3140                  .base = {
3141                         .cra_name = "ccm(aes)",
3142                         .cra_driver_name = "ccm-aes-iproc",
3143                         .cra_blocksize = AES_BLOCK_SIZE,
3144                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3145                  },
3146                  .setkey = aead_gcm_ccm_setkey,
3147                  .ivsize = CCM_AES_IV_SIZE,
3148                 .maxauthsize = AES_BLOCK_SIZE,
3149          },
3150          .cipher_info = {
3151                          .alg = CIPHER_ALG_AES,
3152                          .mode = CIPHER_MODE_CCM,
3153                          },
3154          .auth_info = {
3155                        .alg = HASH_ALG_AES,
3156                        .mode = HASH_MODE_CCM,
3157                        },
3158          .auth_first = 0,
3159          },
3160         {
3161          .type = CRYPTO_ALG_TYPE_AEAD,
3162          .alg.aead = {
3163                  .base = {
3164                         .cra_name = "rfc4106(gcm(aes))",
3165                         .cra_driver_name = "gcm-aes-esp-iproc",
3166                         .cra_blocksize = AES_BLOCK_SIZE,
3167                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3168                  },
3169                  .setkey = aead_gcm_esp_setkey,
3170                  .ivsize = GCM_RFC4106_IV_SIZE,
3171                  .maxauthsize = AES_BLOCK_SIZE,
3172          },
3173          .cipher_info = {
3174                          .alg = CIPHER_ALG_AES,
3175                          .mode = CIPHER_MODE_GCM,
3176                          },
3177          .auth_info = {
3178                        .alg = HASH_ALG_AES,
3179                        .mode = HASH_MODE_GCM,
3180                        },
3181          .auth_first = 0,
3182          },
3183         {
3184          .type = CRYPTO_ALG_TYPE_AEAD,
3185          .alg.aead = {
3186                  .base = {
3187                         .cra_name = "rfc4309(ccm(aes))",
3188                         .cra_driver_name = "ccm-aes-esp-iproc",
3189                         .cra_blocksize = AES_BLOCK_SIZE,
3190                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3191                  },
3192                  .setkey = aead_ccm_esp_setkey,
3193                  .ivsize = CCM_AES_IV_SIZE,
3194                  .maxauthsize = AES_BLOCK_SIZE,
3195          },
3196          .cipher_info = {
3197                          .alg = CIPHER_ALG_AES,
3198                          .mode = CIPHER_MODE_CCM,
3199                          },
3200          .auth_info = {
3201                        .alg = HASH_ALG_AES,
3202                        .mode = HASH_MODE_CCM,
3203                        },
3204          .auth_first = 0,
3205          },
3206         {
3207          .type = CRYPTO_ALG_TYPE_AEAD,
3208          .alg.aead = {
3209                  .base = {
3210                         .cra_name = "rfc4543(gcm(aes))",
3211                         .cra_driver_name = "gmac-aes-esp-iproc",
3212                         .cra_blocksize = AES_BLOCK_SIZE,
3213                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3214                  },
3215                  .setkey = rfc4543_gcm_esp_setkey,
3216                  .ivsize = GCM_RFC4106_IV_SIZE,
3217                  .maxauthsize = AES_BLOCK_SIZE,
3218          },
3219          .cipher_info = {
3220                          .alg = CIPHER_ALG_AES,
3221                          .mode = CIPHER_MODE_GCM,
3222                          },
3223          .auth_info = {
3224                        .alg = HASH_ALG_AES,
3225                        .mode = HASH_MODE_GCM,
3226                        },
3227          .auth_first = 0,
3228          },
3229         {
3230          .type = CRYPTO_ALG_TYPE_AEAD,
3231          .alg.aead = {
3232                  .base = {
3233                         .cra_name = "authenc(hmac(md5),cbc(aes))",
3234                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3235                         .cra_blocksize = AES_BLOCK_SIZE,
3236                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3237                                      CRYPTO_ALG_ASYNC |
3238                                      CRYPTO_ALG_ALLOCATES_MEMORY
3239                  },
3240                  .setkey = aead_authenc_setkey,
3241                 .ivsize = AES_BLOCK_SIZE,
3242                 .maxauthsize = MD5_DIGEST_SIZE,
3243          },
3244          .cipher_info = {
3245                          .alg = CIPHER_ALG_AES,
3246                          .mode = CIPHER_MODE_CBC,
3247                          },
3248          .auth_info = {
3249                        .alg = HASH_ALG_MD5,
3250                        .mode = HASH_MODE_HMAC,
3251                        },
3252          .auth_first = 0,
3253          },
3254         {
3255          .type = CRYPTO_ALG_TYPE_AEAD,
3256          .alg.aead = {
3257                  .base = {
3258                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
3259                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3260                         .cra_blocksize = AES_BLOCK_SIZE,
3261                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3262                                      CRYPTO_ALG_ASYNC |
3263                                      CRYPTO_ALG_ALLOCATES_MEMORY
3264                  },
3265                  .setkey = aead_authenc_setkey,
3266                  .ivsize = AES_BLOCK_SIZE,
3267                  .maxauthsize = SHA1_DIGEST_SIZE,
3268          },
3269          .cipher_info = {
3270                          .alg = CIPHER_ALG_AES,
3271                          .mode = CIPHER_MODE_CBC,
3272                          },
3273          .auth_info = {
3274                        .alg = HASH_ALG_SHA1,
3275                        .mode = HASH_MODE_HMAC,
3276                        },
3277          .auth_first = 0,
3278          },
3279         {
3280          .type = CRYPTO_ALG_TYPE_AEAD,
3281          .alg.aead = {
3282                  .base = {
3283                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
3284                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3285                         .cra_blocksize = AES_BLOCK_SIZE,
3286                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3287                                      CRYPTO_ALG_ASYNC |
3288                                      CRYPTO_ALG_ALLOCATES_MEMORY
3289                  },
3290                  .setkey = aead_authenc_setkey,
3291                  .ivsize = AES_BLOCK_SIZE,
3292                  .maxauthsize = SHA256_DIGEST_SIZE,
3293          },
3294          .cipher_info = {
3295                          .alg = CIPHER_ALG_AES,
3296                          .mode = CIPHER_MODE_CBC,
3297                          },
3298          .auth_info = {
3299                        .alg = HASH_ALG_SHA256,
3300                        .mode = HASH_MODE_HMAC,
3301                        },
3302          .auth_first = 0,
3303          },
3304         {
3305          .type = CRYPTO_ALG_TYPE_AEAD,
3306          .alg.aead = {
3307                  .base = {
3308                         .cra_name = "authenc(hmac(md5),cbc(des))",
3309                         .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3310                         .cra_blocksize = DES_BLOCK_SIZE,
3311                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3312                                      CRYPTO_ALG_ASYNC |
3313                                      CRYPTO_ALG_ALLOCATES_MEMORY
3314                  },
3315                  .setkey = aead_authenc_setkey,
3316                  .ivsize = DES_BLOCK_SIZE,
3317                  .maxauthsize = MD5_DIGEST_SIZE,
3318          },
3319          .cipher_info = {
3320                          .alg = CIPHER_ALG_DES,
3321                          .mode = CIPHER_MODE_CBC,
3322                          },
3323          .auth_info = {
3324                        .alg = HASH_ALG_MD5,
3325                        .mode = HASH_MODE_HMAC,
3326                        },
3327          .auth_first = 0,
3328          },
3329         {
3330          .type = CRYPTO_ALG_TYPE_AEAD,
3331          .alg.aead = {
3332                  .base = {
3333                         .cra_name = "authenc(hmac(sha1),cbc(des))",
3334                         .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3335                         .cra_blocksize = DES_BLOCK_SIZE,
3336                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3337                                      CRYPTO_ALG_ASYNC |
3338                                      CRYPTO_ALG_ALLOCATES_MEMORY
3339                  },
3340                  .setkey = aead_authenc_setkey,
3341                  .ivsize = DES_BLOCK_SIZE,
3342                  .maxauthsize = SHA1_DIGEST_SIZE,
3343          },
3344          .cipher_info = {
3345                          .alg = CIPHER_ALG_DES,
3346                          .mode = CIPHER_MODE_CBC,
3347                          },
3348          .auth_info = {
3349                        .alg = HASH_ALG_SHA1,
3350                        .mode = HASH_MODE_HMAC,
3351                        },
3352          .auth_first = 0,
3353          },
3354         {
3355          .type = CRYPTO_ALG_TYPE_AEAD,
3356          .alg.aead = {
3357                  .base = {
3358                         .cra_name = "authenc(hmac(sha224),cbc(des))",
3359                         .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3360                         .cra_blocksize = DES_BLOCK_SIZE,
3361                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3362                                      CRYPTO_ALG_ASYNC |
3363                                      CRYPTO_ALG_ALLOCATES_MEMORY
3364                  },
3365                  .setkey = aead_authenc_setkey,
3366                  .ivsize = DES_BLOCK_SIZE,
3367                  .maxauthsize = SHA224_DIGEST_SIZE,
3368          },
3369          .cipher_info = {
3370                          .alg = CIPHER_ALG_DES,
3371                          .mode = CIPHER_MODE_CBC,
3372                          },
3373          .auth_info = {
3374                        .alg = HASH_ALG_SHA224,
3375                        .mode = HASH_MODE_HMAC,
3376                        },
3377          .auth_first = 0,
3378          },
3379         {
3380          .type = CRYPTO_ALG_TYPE_AEAD,
3381          .alg.aead = {
3382                  .base = {
3383                         .cra_name = "authenc(hmac(sha256),cbc(des))",
3384                         .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3385                         .cra_blocksize = DES_BLOCK_SIZE,
3386                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3387                                      CRYPTO_ALG_ASYNC |
3388                                      CRYPTO_ALG_ALLOCATES_MEMORY
3389                  },
3390                  .setkey = aead_authenc_setkey,
3391                  .ivsize = DES_BLOCK_SIZE,
3392                  .maxauthsize = SHA256_DIGEST_SIZE,
3393          },
3394          .cipher_info = {
3395                          .alg = CIPHER_ALG_DES,
3396                          .mode = CIPHER_MODE_CBC,
3397                          },
3398          .auth_info = {
3399                        .alg = HASH_ALG_SHA256,
3400                        .mode = HASH_MODE_HMAC,
3401                        },
3402          .auth_first = 0,
3403          },
3404         {
3405          .type = CRYPTO_ALG_TYPE_AEAD,
3406          .alg.aead = {
3407                  .base = {
3408                         .cra_name = "authenc(hmac(sha384),cbc(des))",
3409                         .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3410                         .cra_blocksize = DES_BLOCK_SIZE,
3411                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3412                                      CRYPTO_ALG_ASYNC |
3413                                      CRYPTO_ALG_ALLOCATES_MEMORY
3414                  },
3415                  .setkey = aead_authenc_setkey,
3416                  .ivsize = DES_BLOCK_SIZE,
3417                  .maxauthsize = SHA384_DIGEST_SIZE,
3418          },
3419          .cipher_info = {
3420                          .alg = CIPHER_ALG_DES,
3421                          .mode = CIPHER_MODE_CBC,
3422                          },
3423          .auth_info = {
3424                        .alg = HASH_ALG_SHA384,
3425                        .mode = HASH_MODE_HMAC,
3426                        },
3427          .auth_first = 0,
3428          },
3429         {
3430          .type = CRYPTO_ALG_TYPE_AEAD,
3431          .alg.aead = {
3432                  .base = {
3433                         .cra_name = "authenc(hmac(sha512),cbc(des))",
3434                         .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3435                         .cra_blocksize = DES_BLOCK_SIZE,
3436                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3437                                      CRYPTO_ALG_ASYNC |
3438                                      CRYPTO_ALG_ALLOCATES_MEMORY
3439                  },
3440                  .setkey = aead_authenc_setkey,
3441                  .ivsize = DES_BLOCK_SIZE,
3442                  .maxauthsize = SHA512_DIGEST_SIZE,
3443          },
3444          .cipher_info = {
3445                          .alg = CIPHER_ALG_DES,
3446                          .mode = CIPHER_MODE_CBC,
3447                          },
3448          .auth_info = {
3449                        .alg = HASH_ALG_SHA512,
3450                        .mode = HASH_MODE_HMAC,
3451                        },
3452          .auth_first = 0,
3453          },
3454         {
3455          .type = CRYPTO_ALG_TYPE_AEAD,
3456          .alg.aead = {
3457                  .base = {
3458                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3459                         .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3460                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3461                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3462                                      CRYPTO_ALG_ASYNC |
3463                                      CRYPTO_ALG_ALLOCATES_MEMORY
3464                  },
3465                  .setkey = aead_authenc_setkey,
3466                  .ivsize = DES3_EDE_BLOCK_SIZE,
3467                  .maxauthsize = MD5_DIGEST_SIZE,
3468          },
3469          .cipher_info = {
3470                          .alg = CIPHER_ALG_3DES,
3471                          .mode = CIPHER_MODE_CBC,
3472                          },
3473          .auth_info = {
3474                        .alg = HASH_ALG_MD5,
3475                        .mode = HASH_MODE_HMAC,
3476                        },
3477          .auth_first = 0,
3478          },
3479         {
3480          .type = CRYPTO_ALG_TYPE_AEAD,
3481          .alg.aead = {
3482                  .base = {
3483                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3484                         .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3485                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3486                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3487                                      CRYPTO_ALG_ASYNC |
3488                                      CRYPTO_ALG_ALLOCATES_MEMORY
3489                  },
3490                  .setkey = aead_authenc_setkey,
3491                  .ivsize = DES3_EDE_BLOCK_SIZE,
3492                  .maxauthsize = SHA1_DIGEST_SIZE,
3493          },
3494          .cipher_info = {
3495                          .alg = CIPHER_ALG_3DES,
3496                          .mode = CIPHER_MODE_CBC,
3497                          },
3498          .auth_info = {
3499                        .alg = HASH_ALG_SHA1,
3500                        .mode = HASH_MODE_HMAC,
3501                        },
3502          .auth_first = 0,
3503          },
3504         {
3505          .type = CRYPTO_ALG_TYPE_AEAD,
3506          .alg.aead = {
3507                  .base = {
3508                         .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3509                         .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3510                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3511                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3512                                      CRYPTO_ALG_ASYNC |
3513                                      CRYPTO_ALG_ALLOCATES_MEMORY
3514                  },
3515                  .setkey = aead_authenc_setkey,
3516                  .ivsize = DES3_EDE_BLOCK_SIZE,
3517                  .maxauthsize = SHA224_DIGEST_SIZE,
3518          },
3519          .cipher_info = {
3520                          .alg = CIPHER_ALG_3DES,
3521                          .mode = CIPHER_MODE_CBC,
3522                          },
3523          .auth_info = {
3524                        .alg = HASH_ALG_SHA224,
3525                        .mode = HASH_MODE_HMAC,
3526                        },
3527          .auth_first = 0,
3528          },
3529         {
3530          .type = CRYPTO_ALG_TYPE_AEAD,
3531          .alg.aead = {
3532                  .base = {
3533                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3534                         .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3535                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3536                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3537                                      CRYPTO_ALG_ASYNC |
3538                                      CRYPTO_ALG_ALLOCATES_MEMORY
3539                  },
3540                  .setkey = aead_authenc_setkey,
3541                  .ivsize = DES3_EDE_BLOCK_SIZE,
3542                  .maxauthsize = SHA256_DIGEST_SIZE,
3543          },
3544          .cipher_info = {
3545                          .alg = CIPHER_ALG_3DES,
3546                          .mode = CIPHER_MODE_CBC,
3547                          },
3548          .auth_info = {
3549                        .alg = HASH_ALG_SHA256,
3550                        .mode = HASH_MODE_HMAC,
3551                        },
3552          .auth_first = 0,
3553          },
3554         {
3555          .type = CRYPTO_ALG_TYPE_AEAD,
3556          .alg.aead = {
3557                  .base = {
3558                         .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3559                         .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3560                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3561                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3562                                      CRYPTO_ALG_ASYNC |
3563                                      CRYPTO_ALG_ALLOCATES_MEMORY
3564                  },
3565                  .setkey = aead_authenc_setkey,
3566                  .ivsize = DES3_EDE_BLOCK_SIZE,
3567                  .maxauthsize = SHA384_DIGEST_SIZE,
3568          },
3569          .cipher_info = {
3570                          .alg = CIPHER_ALG_3DES,
3571                          .mode = CIPHER_MODE_CBC,
3572                          },
3573          .auth_info = {
3574                        .alg = HASH_ALG_SHA384,
3575                        .mode = HASH_MODE_HMAC,
3576                        },
3577          .auth_first = 0,
3578          },
3579         {
3580          .type = CRYPTO_ALG_TYPE_AEAD,
3581          .alg.aead = {
3582                  .base = {
3583                         .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3584                         .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3585                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3586                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3587                                      CRYPTO_ALG_ASYNC |
3588                                      CRYPTO_ALG_ALLOCATES_MEMORY
3589                  },
3590                  .setkey = aead_authenc_setkey,
3591                  .ivsize = DES3_EDE_BLOCK_SIZE,
3592                  .maxauthsize = SHA512_DIGEST_SIZE,
3593          },
3594          .cipher_info = {
3595                          .alg = CIPHER_ALG_3DES,
3596                          .mode = CIPHER_MODE_CBC,
3597                          },
3598          .auth_info = {
3599                        .alg = HASH_ALG_SHA512,
3600                        .mode = HASH_MODE_HMAC,
3601                        },
3602          .auth_first = 0,
3603          },
3604
3605 /* SKCIPHER algorithms. */
3606         {
3607          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3608          .alg.skcipher = {
3609                         .base.cra_name = "ecb(arc4)",
3610                         .base.cra_driver_name = "ecb-arc4-iproc",
3611                         .base.cra_blocksize = ARC4_BLOCK_SIZE,
3612                         .min_keysize = ARC4_MIN_KEY_SIZE,
3613                         .max_keysize = ARC4_MAX_KEY_SIZE,
3614                         .ivsize = 0,
3615                         },
3616          .cipher_info = {
3617                          .alg = CIPHER_ALG_RC4,
3618                          .mode = CIPHER_MODE_NONE,
3619                          },
3620          .auth_info = {
3621                        .alg = HASH_ALG_NONE,
3622                        .mode = HASH_MODE_NONE,
3623                        },
3624          },
3625         {
3626          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3627          .alg.skcipher = {
3628                         .base.cra_name = "ofb(des)",
3629                         .base.cra_driver_name = "ofb-des-iproc",
3630                         .base.cra_blocksize = DES_BLOCK_SIZE,
3631                         .min_keysize = DES_KEY_SIZE,
3632                         .max_keysize = DES_KEY_SIZE,
3633                         .ivsize = DES_BLOCK_SIZE,
3634                         },
3635          .cipher_info = {
3636                          .alg = CIPHER_ALG_DES,
3637                          .mode = CIPHER_MODE_OFB,
3638                          },
3639          .auth_info = {
3640                        .alg = HASH_ALG_NONE,
3641                        .mode = HASH_MODE_NONE,
3642                        },
3643          },
3644         {
3645          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3646          .alg.skcipher = {
3647                         .base.cra_name = "cbc(des)",
3648                         .base.cra_driver_name = "cbc-des-iproc",
3649                         .base.cra_blocksize = DES_BLOCK_SIZE,
3650                         .min_keysize = DES_KEY_SIZE,
3651                         .max_keysize = DES_KEY_SIZE,
3652                         .ivsize = DES_BLOCK_SIZE,
3653                         },
3654          .cipher_info = {
3655                          .alg = CIPHER_ALG_DES,
3656                          .mode = CIPHER_MODE_CBC,
3657                          },
3658          .auth_info = {
3659                        .alg = HASH_ALG_NONE,
3660                        .mode = HASH_MODE_NONE,
3661                        },
3662          },
3663         {
3664          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3665          .alg.skcipher = {
3666                         .base.cra_name = "ecb(des)",
3667                         .base.cra_driver_name = "ecb-des-iproc",
3668                         .base.cra_blocksize = DES_BLOCK_SIZE,
3669                         .min_keysize = DES_KEY_SIZE,
3670                         .max_keysize = DES_KEY_SIZE,
3671                         .ivsize = 0,
3672                         },
3673          .cipher_info = {
3674                          .alg = CIPHER_ALG_DES,
3675                          .mode = CIPHER_MODE_ECB,
3676                          },
3677          .auth_info = {
3678                        .alg = HASH_ALG_NONE,
3679                        .mode = HASH_MODE_NONE,
3680                        },
3681          },
3682         {
3683          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3684          .alg.skcipher = {
3685                         .base.cra_name = "ofb(des3_ede)",
3686                         .base.cra_driver_name = "ofb-des3-iproc",
3687                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3688                         .min_keysize = DES3_EDE_KEY_SIZE,
3689                         .max_keysize = DES3_EDE_KEY_SIZE,
3690                         .ivsize = DES3_EDE_BLOCK_SIZE,
3691                         },
3692          .cipher_info = {
3693                          .alg = CIPHER_ALG_3DES,
3694                          .mode = CIPHER_MODE_OFB,
3695                          },
3696          .auth_info = {
3697                        .alg = HASH_ALG_NONE,
3698                        .mode = HASH_MODE_NONE,
3699                        },
3700          },
3701         {
3702          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3703          .alg.skcipher = {
3704                         .base.cra_name = "cbc(des3_ede)",
3705                         .base.cra_driver_name = "cbc-des3-iproc",
3706                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3707                         .min_keysize = DES3_EDE_KEY_SIZE,
3708                         .max_keysize = DES3_EDE_KEY_SIZE,
3709                         .ivsize = DES3_EDE_BLOCK_SIZE,
3710                         },
3711          .cipher_info = {
3712                          .alg = CIPHER_ALG_3DES,
3713                          .mode = CIPHER_MODE_CBC,
3714                          },
3715          .auth_info = {
3716                        .alg = HASH_ALG_NONE,
3717                        .mode = HASH_MODE_NONE,
3718                        },
3719          },
3720         {
3721          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3722          .alg.skcipher = {
3723                         .base.cra_name = "ecb(des3_ede)",
3724                         .base.cra_driver_name = "ecb-des3-iproc",
3725                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3726                         .min_keysize = DES3_EDE_KEY_SIZE,
3727                         .max_keysize = DES3_EDE_KEY_SIZE,
3728                         .ivsize = 0,
3729                         },
3730          .cipher_info = {
3731                          .alg = CIPHER_ALG_3DES,
3732                          .mode = CIPHER_MODE_ECB,
3733                          },
3734          .auth_info = {
3735                        .alg = HASH_ALG_NONE,
3736                        .mode = HASH_MODE_NONE,
3737                        },
3738          },
3739         {
3740          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3741          .alg.skcipher = {
3742                         .base.cra_name = "ofb(aes)",
3743                         .base.cra_driver_name = "ofb-aes-iproc",
3744                         .base.cra_blocksize = AES_BLOCK_SIZE,
3745                         .min_keysize = AES_MIN_KEY_SIZE,
3746                         .max_keysize = AES_MAX_KEY_SIZE,
3747                         .ivsize = AES_BLOCK_SIZE,
3748                         },
3749          .cipher_info = {
3750                          .alg = CIPHER_ALG_AES,
3751                          .mode = CIPHER_MODE_OFB,
3752                          },
3753          .auth_info = {
3754                        .alg = HASH_ALG_NONE,
3755                        .mode = HASH_MODE_NONE,
3756                        },
3757          },
3758         {
3759          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3760          .alg.skcipher = {
3761                         .base.cra_name = "cbc(aes)",
3762                         .base.cra_driver_name = "cbc-aes-iproc",
3763                         .base.cra_blocksize = AES_BLOCK_SIZE,
3764                         .min_keysize = AES_MIN_KEY_SIZE,
3765                         .max_keysize = AES_MAX_KEY_SIZE,
3766                         .ivsize = AES_BLOCK_SIZE,
3767                         },
3768          .cipher_info = {
3769                          .alg = CIPHER_ALG_AES,
3770                          .mode = CIPHER_MODE_CBC,
3771                          },
3772          .auth_info = {
3773                        .alg = HASH_ALG_NONE,
3774                        .mode = HASH_MODE_NONE,
3775                        },
3776          },
3777         {
3778          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3779          .alg.skcipher = {
3780                         .base.cra_name = "ecb(aes)",
3781                         .base.cra_driver_name = "ecb-aes-iproc",
3782                         .base.cra_blocksize = AES_BLOCK_SIZE,
3783                         .min_keysize = AES_MIN_KEY_SIZE,
3784                         .max_keysize = AES_MAX_KEY_SIZE,
3785                         .ivsize = 0,
3786                         },
3787          .cipher_info = {
3788                          .alg = CIPHER_ALG_AES,
3789                          .mode = CIPHER_MODE_ECB,
3790                          },
3791          .auth_info = {
3792                        .alg = HASH_ALG_NONE,
3793                        .mode = HASH_MODE_NONE,
3794                        },
3795          },
3796         {
3797          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3798          .alg.skcipher = {
3799                         .base.cra_name = "ctr(aes)",
3800                         .base.cra_driver_name = "ctr-aes-iproc",
3801                         .base.cra_blocksize = AES_BLOCK_SIZE,
3802                         .min_keysize = AES_MIN_KEY_SIZE,
3803                         .max_keysize = AES_MAX_KEY_SIZE,
3804                         .ivsize = AES_BLOCK_SIZE,
3805                         },
3806          .cipher_info = {
3807                          .alg = CIPHER_ALG_AES,
3808                          .mode = CIPHER_MODE_CTR,
3809                          },
3810          .auth_info = {
3811                        .alg = HASH_ALG_NONE,
3812                        .mode = HASH_MODE_NONE,
3813                        },
3814          },
3815 {
3816          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3817          .alg.skcipher = {
3818                         .base.cra_name = "xts(aes)",
3819                         .base.cra_driver_name = "xts-aes-iproc",
3820                         .base.cra_blocksize = AES_BLOCK_SIZE,
3821                         .min_keysize = 2 * AES_MIN_KEY_SIZE,
3822                         .max_keysize = 2 * AES_MAX_KEY_SIZE,
3823                         .ivsize = AES_BLOCK_SIZE,
3824                         },
3825          .cipher_info = {
3826                          .alg = CIPHER_ALG_AES,
3827                          .mode = CIPHER_MODE_XTS,
3828                          },
3829          .auth_info = {
3830                        .alg = HASH_ALG_NONE,
3831                        .mode = HASH_MODE_NONE,
3832                        },
3833          },
3834
3835 /* AHASH algorithms. */
3836         {
3837          .type = CRYPTO_ALG_TYPE_AHASH,
3838          .alg.hash = {
3839                       .halg.digestsize = MD5_DIGEST_SIZE,
3840                       .halg.base = {
3841                                     .cra_name = "md5",
3842                                     .cra_driver_name = "md5-iproc",
3843                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3844                                     .cra_flags = CRYPTO_ALG_ASYNC |
3845                                                  CRYPTO_ALG_ALLOCATES_MEMORY,
3846                                 }
3847                       },
3848          .cipher_info = {
3849                          .alg = CIPHER_ALG_NONE,
3850                          .mode = CIPHER_MODE_NONE,
3851                          },
3852          .auth_info = {
3853                        .alg = HASH_ALG_MD5,
3854                        .mode = HASH_MODE_HASH,
3855                        },
3856          },
3857         {
3858          .type = CRYPTO_ALG_TYPE_AHASH,
3859          .alg.hash = {
3860                       .halg.digestsize = MD5_DIGEST_SIZE,
3861                       .halg.base = {
3862                                     .cra_name = "hmac(md5)",
3863                                     .cra_driver_name = "hmac-md5-iproc",
3864                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3865                                 }
3866                       },
3867          .cipher_info = {
3868                          .alg = CIPHER_ALG_NONE,
3869                          .mode = CIPHER_MODE_NONE,
3870                          },
3871          .auth_info = {
3872                        .alg = HASH_ALG_MD5,
3873                        .mode = HASH_MODE_HMAC,
3874                        },
3875          },
3876         {.type = CRYPTO_ALG_TYPE_AHASH,
3877          .alg.hash = {
3878                       .halg.digestsize = SHA1_DIGEST_SIZE,
3879                       .halg.base = {
3880                                     .cra_name = "sha1",
3881                                     .cra_driver_name = "sha1-iproc",
3882                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3883                                 }
3884                       },
3885          .cipher_info = {
3886                          .alg = CIPHER_ALG_NONE,
3887                          .mode = CIPHER_MODE_NONE,
3888                          },
3889          .auth_info = {
3890                        .alg = HASH_ALG_SHA1,
3891                        .mode = HASH_MODE_HASH,
3892                        },
3893          },
3894         {.type = CRYPTO_ALG_TYPE_AHASH,
3895          .alg.hash = {
3896                       .halg.digestsize = SHA1_DIGEST_SIZE,
3897                       .halg.base = {
3898                                     .cra_name = "hmac(sha1)",
3899                                     .cra_driver_name = "hmac-sha1-iproc",
3900                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3901                                 }
3902                       },
3903          .cipher_info = {
3904                          .alg = CIPHER_ALG_NONE,
3905                          .mode = CIPHER_MODE_NONE,
3906                          },
3907          .auth_info = {
3908                        .alg = HASH_ALG_SHA1,
3909                        .mode = HASH_MODE_HMAC,
3910                        },
3911          },
3912         {.type = CRYPTO_ALG_TYPE_AHASH,
3913          .alg.hash = {
3914                         .halg.digestsize = SHA224_DIGEST_SIZE,
3915                         .halg.base = {
3916                                     .cra_name = "sha224",
3917                                     .cra_driver_name = "sha224-iproc",
3918                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3919                         }
3920                       },
3921          .cipher_info = {
3922                          .alg = CIPHER_ALG_NONE,
3923                          .mode = CIPHER_MODE_NONE,
3924                          },
3925          .auth_info = {
3926                        .alg = HASH_ALG_SHA224,
3927                        .mode = HASH_MODE_HASH,
3928                        },
3929          },
3930         {.type = CRYPTO_ALG_TYPE_AHASH,
3931          .alg.hash = {
3932                       .halg.digestsize = SHA224_DIGEST_SIZE,
3933                       .halg.base = {
3934                                     .cra_name = "hmac(sha224)",
3935                                     .cra_driver_name = "hmac-sha224-iproc",
3936                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3937                                 }
3938                       },
3939          .cipher_info = {
3940                          .alg = CIPHER_ALG_NONE,
3941                          .mode = CIPHER_MODE_NONE,
3942                          },
3943          .auth_info = {
3944                        .alg = HASH_ALG_SHA224,
3945                        .mode = HASH_MODE_HMAC,
3946                        },
3947          },
3948         {.type = CRYPTO_ALG_TYPE_AHASH,
3949          .alg.hash = {
3950                       .halg.digestsize = SHA256_DIGEST_SIZE,
3951                       .halg.base = {
3952                                     .cra_name = "sha256",
3953                                     .cra_driver_name = "sha256-iproc",
3954                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3955                                 }
3956                       },
3957          .cipher_info = {
3958                          .alg = CIPHER_ALG_NONE,
3959                          .mode = CIPHER_MODE_NONE,
3960                          },
3961          .auth_info = {
3962                        .alg = HASH_ALG_SHA256,
3963                        .mode = HASH_MODE_HASH,
3964                        },
3965          },
3966         {.type = CRYPTO_ALG_TYPE_AHASH,
3967          .alg.hash = {
3968                       .halg.digestsize = SHA256_DIGEST_SIZE,
3969                       .halg.base = {
3970                                     .cra_name = "hmac(sha256)",
3971                                     .cra_driver_name = "hmac-sha256-iproc",
3972                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3973                                 }
3974                       },
3975          .cipher_info = {
3976                          .alg = CIPHER_ALG_NONE,
3977                          .mode = CIPHER_MODE_NONE,
3978                          },
3979          .auth_info = {
3980                        .alg = HASH_ALG_SHA256,
3981                        .mode = HASH_MODE_HMAC,
3982                        },
3983          },
3984         {
3985         .type = CRYPTO_ALG_TYPE_AHASH,
3986          .alg.hash = {
3987                       .halg.digestsize = SHA384_DIGEST_SIZE,
3988                       .halg.base = {
3989                                     .cra_name = "sha384",
3990                                     .cra_driver_name = "sha384-iproc",
3991                                     .cra_blocksize = SHA384_BLOCK_SIZE,
3992                                 }
3993                       },
3994          .cipher_info = {
3995                          .alg = CIPHER_ALG_NONE,
3996                          .mode = CIPHER_MODE_NONE,
3997                          },
3998          .auth_info = {
3999                        .alg = HASH_ALG_SHA384,
4000                        .mode = HASH_MODE_HASH,
4001                        },
4002          },
4003         {
4004          .type = CRYPTO_ALG_TYPE_AHASH,
4005          .alg.hash = {
4006                       .halg.digestsize = SHA384_DIGEST_SIZE,
4007                       .halg.base = {
4008                                     .cra_name = "hmac(sha384)",
4009                                     .cra_driver_name = "hmac-sha384-iproc",
4010                                     .cra_blocksize = SHA384_BLOCK_SIZE,
4011                                 }
4012                       },
4013          .cipher_info = {
4014                          .alg = CIPHER_ALG_NONE,
4015                          .mode = CIPHER_MODE_NONE,
4016                          },
4017          .auth_info = {
4018                        .alg = HASH_ALG_SHA384,
4019                        .mode = HASH_MODE_HMAC,
4020                        },
4021          },
4022         {
4023          .type = CRYPTO_ALG_TYPE_AHASH,
4024          .alg.hash = {
4025                       .halg.digestsize = SHA512_DIGEST_SIZE,
4026                       .halg.base = {
4027                                     .cra_name = "sha512",
4028                                     .cra_driver_name = "sha512-iproc",
4029                                     .cra_blocksize = SHA512_BLOCK_SIZE,
4030                                 }
4031                       },
4032          .cipher_info = {
4033                          .alg = CIPHER_ALG_NONE,
4034                          .mode = CIPHER_MODE_NONE,
4035                          },
4036          .auth_info = {
4037                        .alg = HASH_ALG_SHA512,
4038                        .mode = HASH_MODE_HASH,
4039                        },
4040          },
4041         {
4042          .type = CRYPTO_ALG_TYPE_AHASH,
4043          .alg.hash = {
4044                       .halg.digestsize = SHA512_DIGEST_SIZE,
4045                       .halg.base = {
4046                                     .cra_name = "hmac(sha512)",
4047                                     .cra_driver_name = "hmac-sha512-iproc",
4048                                     .cra_blocksize = SHA512_BLOCK_SIZE,
4049                                 }
4050                       },
4051          .cipher_info = {
4052                          .alg = CIPHER_ALG_NONE,
4053                          .mode = CIPHER_MODE_NONE,
4054                          },
4055          .auth_info = {
4056                        .alg = HASH_ALG_SHA512,
4057                        .mode = HASH_MODE_HMAC,
4058                        },
4059          },
4060         {
4061          .type = CRYPTO_ALG_TYPE_AHASH,
4062          .alg.hash = {
4063                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
4064                       .halg.base = {
4065                                     .cra_name = "sha3-224",
4066                                     .cra_driver_name = "sha3-224-iproc",
4067                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4068                                 }
4069                       },
4070          .cipher_info = {
4071                          .alg = CIPHER_ALG_NONE,
4072                          .mode = CIPHER_MODE_NONE,
4073                          },
4074          .auth_info = {
4075                        .alg = HASH_ALG_SHA3_224,
4076                        .mode = HASH_MODE_HASH,
4077                        },
4078          },
4079         {
4080          .type = CRYPTO_ALG_TYPE_AHASH,
4081          .alg.hash = {
4082                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
4083                       .halg.base = {
4084                                     .cra_name = "hmac(sha3-224)",
4085                                     .cra_driver_name = "hmac-sha3-224-iproc",
4086                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4087                                 }
4088                       },
4089          .cipher_info = {
4090                          .alg = CIPHER_ALG_NONE,
4091                          .mode = CIPHER_MODE_NONE,
4092                          },
4093          .auth_info = {
4094                        .alg = HASH_ALG_SHA3_224,
4095                        .mode = HASH_MODE_HMAC
4096                        },
4097          },
4098         {
4099          .type = CRYPTO_ALG_TYPE_AHASH,
4100          .alg.hash = {
4101                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4102                       .halg.base = {
4103                                     .cra_name = "sha3-256",
4104                                     .cra_driver_name = "sha3-256-iproc",
4105                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4106                                 }
4107                       },
4108          .cipher_info = {
4109                          .alg = CIPHER_ALG_NONE,
4110                          .mode = CIPHER_MODE_NONE,
4111                          },
4112          .auth_info = {
4113                        .alg = HASH_ALG_SHA3_256,
4114                        .mode = HASH_MODE_HASH,
4115                        },
4116          },
4117         {
4118          .type = CRYPTO_ALG_TYPE_AHASH,
4119          .alg.hash = {
4120                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4121                       .halg.base = {
4122                                     .cra_name = "hmac(sha3-256)",
4123                                     .cra_driver_name = "hmac-sha3-256-iproc",
4124                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4125                                 }
4126                       },
4127          .cipher_info = {
4128                          .alg = CIPHER_ALG_NONE,
4129                          .mode = CIPHER_MODE_NONE,
4130                          },
4131          .auth_info = {
4132                        .alg = HASH_ALG_SHA3_256,
4133                        .mode = HASH_MODE_HMAC,
4134                        },
4135          },
4136         {
4137          .type = CRYPTO_ALG_TYPE_AHASH,
4138          .alg.hash = {
4139                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4140                       .halg.base = {
4141                                     .cra_name = "sha3-384",
4142                                     .cra_driver_name = "sha3-384-iproc",
4143                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4144                                 }
4145                       },
4146          .cipher_info = {
4147                          .alg = CIPHER_ALG_NONE,
4148                          .mode = CIPHER_MODE_NONE,
4149                          },
4150          .auth_info = {
4151                        .alg = HASH_ALG_SHA3_384,
4152                        .mode = HASH_MODE_HASH,
4153                        },
4154          },
4155         {
4156          .type = CRYPTO_ALG_TYPE_AHASH,
4157          .alg.hash = {
4158                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4159                       .halg.base = {
4160                                     .cra_name = "hmac(sha3-384)",
4161                                     .cra_driver_name = "hmac-sha3-384-iproc",
4162                                     .cra_blocksize = SHA3_384_BLOCK_SIZE,
4163                                 }
4164                       },
4165          .cipher_info = {
4166                          .alg = CIPHER_ALG_NONE,
4167                          .mode = CIPHER_MODE_NONE,
4168                          },
4169          .auth_info = {
4170                        .alg = HASH_ALG_SHA3_384,
4171                        .mode = HASH_MODE_HMAC,
4172                        },
4173          },
4174         {
4175          .type = CRYPTO_ALG_TYPE_AHASH,
4176          .alg.hash = {
4177                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4178                       .halg.base = {
4179                                     .cra_name = "sha3-512",
4180                                     .cra_driver_name = "sha3-512-iproc",
4181                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4182                                 }
4183                       },
4184          .cipher_info = {
4185                          .alg = CIPHER_ALG_NONE,
4186                          .mode = CIPHER_MODE_NONE,
4187                          },
4188          .auth_info = {
4189                        .alg = HASH_ALG_SHA3_512,
4190                        .mode = HASH_MODE_HASH,
4191                        },
4192          },
4193         {
4194          .type = CRYPTO_ALG_TYPE_AHASH,
4195          .alg.hash = {
4196                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4197                       .halg.base = {
4198                                     .cra_name = "hmac(sha3-512)",
4199                                     .cra_driver_name = "hmac-sha3-512-iproc",
4200                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4201                                 }
4202                       },
4203          .cipher_info = {
4204                          .alg = CIPHER_ALG_NONE,
4205                          .mode = CIPHER_MODE_NONE,
4206                          },
4207          .auth_info = {
4208                        .alg = HASH_ALG_SHA3_512,
4209                        .mode = HASH_MODE_HMAC,
4210                        },
4211          },
4212         {
4213          .type = CRYPTO_ALG_TYPE_AHASH,
4214          .alg.hash = {
4215                       .halg.digestsize = AES_BLOCK_SIZE,
4216                       .halg.base = {
4217                                     .cra_name = "xcbc(aes)",
4218                                     .cra_driver_name = "xcbc-aes-iproc",
4219                                     .cra_blocksize = AES_BLOCK_SIZE,
4220                                 }
4221                       },
4222          .cipher_info = {
4223                          .alg = CIPHER_ALG_NONE,
4224                          .mode = CIPHER_MODE_NONE,
4225                          },
4226          .auth_info = {
4227                        .alg = HASH_ALG_AES,
4228                        .mode = HASH_MODE_XCBC,
4229                        },
4230          },
4231         {
4232          .type = CRYPTO_ALG_TYPE_AHASH,
4233          .alg.hash = {
4234                       .halg.digestsize = AES_BLOCK_SIZE,
4235                       .halg.base = {
4236                                     .cra_name = "cmac(aes)",
4237                                     .cra_driver_name = "cmac-aes-iproc",
4238                                     .cra_blocksize = AES_BLOCK_SIZE,
4239                                 }
4240                       },
4241          .cipher_info = {
4242                          .alg = CIPHER_ALG_NONE,
4243                          .mode = CIPHER_MODE_NONE,
4244                          },
4245          .auth_info = {
4246                        .alg = HASH_ALG_AES,
4247                        .mode = HASH_MODE_CMAC,
4248                        },
4249          },
4250 };
4251
4252 static int generic_cra_init(struct crypto_tfm *tfm,
4253                             struct iproc_alg_s *cipher_alg)
4254 {
4255         struct spu_hw *spu = &iproc_priv.spu;
4256         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4257         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4258
4259         flow_log("%s()\n", __func__);
4260
4261         ctx->alg = cipher_alg;
4262         ctx->cipher = cipher_alg->cipher_info;
4263         ctx->auth = cipher_alg->auth_info;
4264         ctx->auth_first = cipher_alg->auth_first;
4265         ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4266                                                     ctx->cipher.mode,
4267                                                     blocksize);
4268         ctx->fallback_cipher = NULL;
4269
4270         ctx->enckeylen = 0;
4271         ctx->authkeylen = 0;
4272
4273         atomic_inc(&iproc_priv.stream_count);
4274         atomic_inc(&iproc_priv.session_count);
4275
4276         return 0;
4277 }
4278
4279 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4280 {
4281         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4282         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4283         struct iproc_alg_s *cipher_alg;
4284
4285         flow_log("%s()\n", __func__);
4286
4287         crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4288
4289         cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4290         return generic_cra_init(tfm, cipher_alg);
4291 }
4292
4293 static int ahash_cra_init(struct crypto_tfm *tfm)
4294 {
4295         int err;
4296         struct crypto_alg *alg = tfm->__crt_alg;
4297         struct iproc_alg_s *cipher_alg;
4298
4299         cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4300                                   alg.hash);
4301
4302         err = generic_cra_init(tfm, cipher_alg);
4303         flow_log("%s()\n", __func__);
4304
4305         /*
4306          * export state size has to be < 512 bytes. So don't include msg bufs
4307          * in state size.
4308          */
4309         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4310                                  sizeof(struct iproc_reqctx_s));
4311
4312         return err;
4313 }
4314
4315 static int aead_cra_init(struct crypto_aead *aead)
4316 {
4317         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4318         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4319         struct crypto_alg *alg = tfm->__crt_alg;
4320         struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4321         struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4322                                                       alg.aead);
4323
4324         int err = generic_cra_init(tfm, cipher_alg);
4325
4326         flow_log("%s()\n", __func__);
4327
4328         crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4329         ctx->is_esp = false;
4330         ctx->salt_len = 0;
4331         ctx->salt_offset = 0;
4332
4333         /* random first IV */
4334         get_random_bytes(ctx->iv, MAX_IV_SIZE);
4335         flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4336
4337         if (!err) {
4338                 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4339                         flow_log("%s() creating fallback cipher\n", __func__);
4340
4341                         ctx->fallback_cipher =
4342                             crypto_alloc_aead(alg->cra_name, 0,
4343                                               CRYPTO_ALG_ASYNC |
4344                                               CRYPTO_ALG_NEED_FALLBACK);
4345                         if (IS_ERR(ctx->fallback_cipher)) {
4346                                 pr_err("%s() Error: failed to allocate fallback for %s\n",
4347                                        __func__, alg->cra_name);
4348                                 return PTR_ERR(ctx->fallback_cipher);
4349                         }
4350                 }
4351         }
4352
4353         return err;
4354 }
4355
4356 static void generic_cra_exit(struct crypto_tfm *tfm)
4357 {
4358         atomic_dec(&iproc_priv.session_count);
4359 }
4360
4361 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4362 {
4363         generic_cra_exit(crypto_skcipher_tfm(tfm));
4364 }
4365
4366 static void aead_cra_exit(struct crypto_aead *aead)
4367 {
4368         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4369         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4370
4371         generic_cra_exit(tfm);
4372
4373         if (ctx->fallback_cipher) {
4374                 crypto_free_aead(ctx->fallback_cipher);
4375                 ctx->fallback_cipher = NULL;
4376         }
4377 }
4378
4379 /**
4380  * spu_functions_register() - Specify hardware-specific SPU functions based on
4381  * SPU type read from device tree.
4382  * @dev:        device structure
4383  * @spu_type:   SPU hardware generation
4384  * @spu_subtype: SPU hardware version
4385  */
4386 static void spu_functions_register(struct device *dev,
4387                                    enum spu_spu_type spu_type,
4388                                    enum spu_spu_subtype spu_subtype)
4389 {
4390         struct spu_hw *spu = &iproc_priv.spu;
4391
4392         if (spu_type == SPU_TYPE_SPUM) {
4393                 dev_dbg(dev, "Registering SPUM functions");
4394                 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4395                 spu->spu_payload_length = spum_payload_length;
4396                 spu->spu_response_hdr_len = spum_response_hdr_len;
4397                 spu->spu_hash_pad_len = spum_hash_pad_len;
4398                 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4399                 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4400                 spu->spu_aead_ivlen = spum_aead_ivlen;
4401                 spu->spu_hash_type = spum_hash_type;
4402                 spu->spu_digest_size = spum_digest_size;
4403                 spu->spu_create_request = spum_create_request;
4404                 spu->spu_cipher_req_init = spum_cipher_req_init;
4405                 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4406                 spu->spu_request_pad = spum_request_pad;
4407                 spu->spu_tx_status_len = spum_tx_status_len;
4408                 spu->spu_rx_status_len = spum_rx_status_len;
4409                 spu->spu_status_process = spum_status_process;
4410                 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4411                 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4412                 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4413                 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4414                         spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4415                 else
4416                         spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4417         } else {
4418                 dev_dbg(dev, "Registering SPU2 functions");
4419                 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4420                 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4421                 spu->spu_payload_length = spu2_payload_length;
4422                 spu->spu_response_hdr_len = spu2_response_hdr_len;
4423                 spu->spu_hash_pad_len = spu2_hash_pad_len;
4424                 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4425                 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4426                 spu->spu_aead_ivlen = spu2_aead_ivlen;
4427                 spu->spu_hash_type = spu2_hash_type;
4428                 spu->spu_digest_size = spu2_digest_size;
4429                 spu->spu_create_request = spu2_create_request;
4430                 spu->spu_cipher_req_init = spu2_cipher_req_init;
4431                 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4432                 spu->spu_request_pad = spu2_request_pad;
4433                 spu->spu_tx_status_len = spu2_tx_status_len;
4434                 spu->spu_rx_status_len = spu2_rx_status_len;
4435                 spu->spu_status_process = spu2_status_process;
4436                 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4437                 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4438                 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4439         }
4440 }
4441
4442 /**
4443  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4444  * channel for the SPU being probed.
4445  * @dev:  SPU driver device structure
4446  *
4447  * Return: 0 if successful
4448  *         < 0 otherwise
4449  */
4450 static int spu_mb_init(struct device *dev)
4451 {
4452         struct mbox_client *mcl = &iproc_priv.mcl;
4453         int err, i;
4454
4455         iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4456                                   sizeof(struct mbox_chan *), GFP_KERNEL);
4457         if (!iproc_priv.mbox)
4458                 return -ENOMEM;
4459
4460         mcl->dev = dev;
4461         mcl->tx_block = false;
4462         mcl->tx_tout = 0;
4463         mcl->knows_txdone = true;
4464         mcl->rx_callback = spu_rx_callback;
4465         mcl->tx_done = NULL;
4466
4467         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4468                 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4469                 if (IS_ERR(iproc_priv.mbox[i])) {
4470                         err = PTR_ERR(iproc_priv.mbox[i]);
4471                         dev_err(dev,
4472                                 "Mbox channel %d request failed with err %d",
4473                                 i, err);
4474                         iproc_priv.mbox[i] = NULL;
4475                         goto free_channels;
4476                 }
4477         }
4478
4479         return 0;
4480 free_channels:
4481         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4482                 if (iproc_priv.mbox[i])
4483                         mbox_free_channel(iproc_priv.mbox[i]);
4484         }
4485
4486         return err;
4487 }
4488
4489 static void spu_mb_release(struct platform_device *pdev)
4490 {
4491         int i;
4492
4493         for (i = 0; i < iproc_priv.spu.num_chan; i++)
4494                 mbox_free_channel(iproc_priv.mbox[i]);
4495 }
4496
4497 static void spu_counters_init(void)
4498 {
4499         int i;
4500         int j;
4501
4502         atomic_set(&iproc_priv.session_count, 0);
4503         atomic_set(&iproc_priv.stream_count, 0);
4504         atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4505         atomic64_set(&iproc_priv.bytes_in, 0);
4506         atomic64_set(&iproc_priv.bytes_out, 0);
4507         for (i = 0; i < SPU_OP_NUM; i++) {
4508                 atomic_set(&iproc_priv.op_counts[i], 0);
4509                 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4510         }
4511         for (i = 0; i < CIPHER_ALG_LAST; i++)
4512                 for (j = 0; j < CIPHER_MODE_LAST; j++)
4513                         atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4514
4515         for (i = 0; i < HASH_ALG_LAST; i++) {
4516                 atomic_set(&iproc_priv.hash_cnt[i], 0);
4517                 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4518         }
4519         for (i = 0; i < AEAD_TYPE_LAST; i++)
4520                 atomic_set(&iproc_priv.aead_cnt[i], 0);
4521
4522         atomic_set(&iproc_priv.mb_no_spc, 0);
4523         atomic_set(&iproc_priv.mb_send_fail, 0);
4524         atomic_set(&iproc_priv.bad_icv, 0);
4525 }
4526
4527 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4528 {
4529         struct spu_hw *spu = &iproc_priv.spu;
4530         struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4531         int err;
4532
4533         /* SPU2 does not support RC4 */
4534         if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4535             (spu->spu_type == SPU_TYPE_SPU2))
4536                 return 0;
4537
4538         crypto->base.cra_module = THIS_MODULE;
4539         crypto->base.cra_priority = cipher_pri;
4540         crypto->base.cra_alignmask = 0;
4541         crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4542         crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4543                                  CRYPTO_ALG_ALLOCATES_MEMORY |
4544                                  CRYPTO_ALG_KERN_DRIVER_ONLY;
4545
4546         crypto->init = skcipher_init_tfm;
4547         crypto->exit = skcipher_exit_tfm;
4548         crypto->setkey = skcipher_setkey;
4549         crypto->encrypt = skcipher_encrypt;
4550         crypto->decrypt = skcipher_decrypt;
4551
4552         err = crypto_register_skcipher(crypto);
4553         /* Mark alg as having been registered, if successful */
4554         if (err == 0)
4555                 driver_alg->registered = true;
4556         pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4557         return err;
4558 }
4559
4560 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4561 {
4562         struct spu_hw *spu = &iproc_priv.spu;
4563         struct ahash_alg *hash = &driver_alg->alg.hash;
4564         int err;
4565
4566         /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4567         if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4568             (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4569             (spu->spu_type == SPU_TYPE_SPUM))
4570                 return 0;
4571
4572         /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4573         if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4574             (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4575                 return 0;
4576
4577         hash->halg.base.cra_module = THIS_MODULE;
4578         hash->halg.base.cra_priority = hash_pri;
4579         hash->halg.base.cra_alignmask = 0;
4580         hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4581         hash->halg.base.cra_init = ahash_cra_init;
4582         hash->halg.base.cra_exit = generic_cra_exit;
4583         hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4584                                     CRYPTO_ALG_ALLOCATES_MEMORY;
4585         hash->halg.statesize = sizeof(struct spu_hash_export_s);
4586
4587         if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4588                 hash->init = ahash_init;
4589                 hash->update = ahash_update;
4590                 hash->final = ahash_final;
4591                 hash->finup = ahash_finup;
4592                 hash->digest = ahash_digest;
4593                 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4594                     ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4595                     (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4596                         hash->setkey = ahash_setkey;
4597                 }
4598         } else {
4599                 hash->setkey = ahash_hmac_setkey;
4600                 hash->init = ahash_hmac_init;
4601                 hash->update = ahash_hmac_update;
4602                 hash->final = ahash_hmac_final;
4603                 hash->finup = ahash_hmac_finup;
4604                 hash->digest = ahash_hmac_digest;
4605         }
4606         hash->export = ahash_export;
4607         hash->import = ahash_import;
4608
4609         err = crypto_register_ahash(hash);
4610         /* Mark alg as having been registered, if successful */
4611         if (err == 0)
4612                 driver_alg->registered = true;
4613         pr_debug("  registered ahash %s\n",
4614                  hash->halg.base.cra_driver_name);
4615         return err;
4616 }
4617
4618 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4619 {
4620         struct aead_alg *aead = &driver_alg->alg.aead;
4621         int err;
4622
4623         aead->base.cra_module = THIS_MODULE;
4624         aead->base.cra_priority = aead_pri;
4625         aead->base.cra_alignmask = 0;
4626         aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4627
4628         aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4629         /* setkey set in alg initialization */
4630         aead->setauthsize = aead_setauthsize;
4631         aead->encrypt = aead_encrypt;
4632         aead->decrypt = aead_decrypt;
4633         aead->init = aead_cra_init;
4634         aead->exit = aead_cra_exit;
4635
4636         err = crypto_register_aead(aead);
4637         /* Mark alg as having been registered, if successful */
4638         if (err == 0)
4639                 driver_alg->registered = true;
4640         pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4641         return err;
4642 }
4643
4644 /* register crypto algorithms the device supports */
4645 static int spu_algs_register(struct device *dev)
4646 {
4647         int i, j;
4648         int err;
4649
4650         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4651                 switch (driver_algs[i].type) {
4652                 case CRYPTO_ALG_TYPE_SKCIPHER:
4653                         err = spu_register_skcipher(&driver_algs[i]);
4654                         break;
4655                 case CRYPTO_ALG_TYPE_AHASH:
4656                         err = spu_register_ahash(&driver_algs[i]);
4657                         break;
4658                 case CRYPTO_ALG_TYPE_AEAD:
4659                         err = spu_register_aead(&driver_algs[i]);
4660                         break;
4661                 default:
4662                         dev_err(dev,
4663                                 "iproc-crypto: unknown alg type: %d",
4664                                 driver_algs[i].type);
4665                         err = -EINVAL;
4666                 }
4667
4668                 if (err) {
4669                         dev_err(dev, "alg registration failed with error %d\n",
4670                                 err);
4671                         goto err_algs;
4672                 }
4673         }
4674
4675         return 0;
4676
4677 err_algs:
4678         for (j = 0; j < i; j++) {
4679                 /* Skip any algorithm not registered */
4680                 if (!driver_algs[j].registered)
4681                         continue;
4682                 switch (driver_algs[j].type) {
4683                 case CRYPTO_ALG_TYPE_SKCIPHER:
4684                         crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4685                         driver_algs[j].registered = false;
4686                         break;
4687                 case CRYPTO_ALG_TYPE_AHASH:
4688                         crypto_unregister_ahash(&driver_algs[j].alg.hash);
4689                         driver_algs[j].registered = false;
4690                         break;
4691                 case CRYPTO_ALG_TYPE_AEAD:
4692                         crypto_unregister_aead(&driver_algs[j].alg.aead);
4693                         driver_algs[j].registered = false;
4694                         break;
4695                 }
4696         }
4697         return err;
4698 }
4699
4700 /* ==================== Kernel Platform API ==================== */
4701
4702 static struct spu_type_subtype spum_ns2_types = {
4703         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4704 };
4705
4706 static struct spu_type_subtype spum_nsp_types = {
4707         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4708 };
4709
4710 static struct spu_type_subtype spu2_types = {
4711         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4712 };
4713
4714 static struct spu_type_subtype spu2_v2_types = {
4715         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4716 };
4717
4718 static const struct of_device_id bcm_spu_dt_ids[] = {
4719         {
4720                 .compatible = "brcm,spum-crypto",
4721                 .data = &spum_ns2_types,
4722         },
4723         {
4724                 .compatible = "brcm,spum-nsp-crypto",
4725                 .data = &spum_nsp_types,
4726         },
4727         {
4728                 .compatible = "brcm,spu2-crypto",
4729                 .data = &spu2_types,
4730         },
4731         {
4732                 .compatible = "brcm,spu2-v2-crypto",
4733                 .data = &spu2_v2_types,
4734         },
4735         { /* sentinel */ }
4736 };
4737
4738 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4739
4740 static int spu_dt_read(struct platform_device *pdev)
4741 {
4742         struct device *dev = &pdev->dev;
4743         struct spu_hw *spu = &iproc_priv.spu;
4744         struct resource *spu_ctrl_regs;
4745         const struct spu_type_subtype *matched_spu_type;
4746         struct device_node *dn = pdev->dev.of_node;
4747         int err, i;
4748
4749         /* Count number of mailbox channels */
4750         spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4751
4752         matched_spu_type = of_device_get_match_data(dev);
4753         if (!matched_spu_type) {
4754                 dev_err(dev, "Failed to match device\n");
4755                 return -ENODEV;
4756         }
4757
4758         spu->spu_type = matched_spu_type->type;
4759         spu->spu_subtype = matched_spu_type->subtype;
4760
4761         for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4762                 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4763
4764                 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4765                 if (IS_ERR(spu->reg_vbase[i])) {
4766                         err = PTR_ERR(spu->reg_vbase[i]);
4767                         dev_err(dev, "Failed to map registers: %d\n",
4768                                 err);
4769                         spu->reg_vbase[i] = NULL;
4770                         return err;
4771                 }
4772         }
4773         spu->num_spu = i;
4774         dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4775
4776         return 0;
4777 }
4778
4779 static int bcm_spu_probe(struct platform_device *pdev)
4780 {
4781         struct device *dev = &pdev->dev;
4782         struct spu_hw *spu = &iproc_priv.spu;
4783         int err;
4784
4785         iproc_priv.pdev  = pdev;
4786         platform_set_drvdata(iproc_priv.pdev,
4787                              &iproc_priv);
4788
4789         err = spu_dt_read(pdev);
4790         if (err < 0)
4791                 goto failure;
4792
4793         err = spu_mb_init(dev);
4794         if (err < 0)
4795                 goto failure;
4796
4797         if (spu->spu_type == SPU_TYPE_SPUM)
4798                 iproc_priv.bcm_hdr_len = 8;
4799         else if (spu->spu_type == SPU_TYPE_SPU2)
4800                 iproc_priv.bcm_hdr_len = 0;
4801
4802         spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4803
4804         spu_counters_init();
4805
4806         spu_setup_debugfs();
4807
4808         err = spu_algs_register(dev);
4809         if (err < 0)
4810                 goto fail_reg;
4811
4812         return 0;
4813
4814 fail_reg:
4815         spu_free_debugfs();
4816 failure:
4817         spu_mb_release(pdev);
4818         dev_err(dev, "%s failed with error %d.\n", __func__, err);
4819
4820         return err;
4821 }
4822
4823 static int bcm_spu_remove(struct platform_device *pdev)
4824 {
4825         int i;
4826         struct device *dev = &pdev->dev;
4827         char *cdn;
4828
4829         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4830                 /*
4831                  * Not all algorithms were registered, depending on whether
4832                  * hardware is SPU or SPU2.  So here we make sure to skip
4833                  * those algorithms that were not previously registered.
4834                  */
4835                 if (!driver_algs[i].registered)
4836                         continue;
4837
4838                 switch (driver_algs[i].type) {
4839                 case CRYPTO_ALG_TYPE_SKCIPHER:
4840                         crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4841                         dev_dbg(dev, "  unregistered cipher %s\n",
4842                                 driver_algs[i].alg.skcipher.base.cra_driver_name);
4843                         driver_algs[i].registered = false;
4844                         break;
4845                 case CRYPTO_ALG_TYPE_AHASH:
4846                         crypto_unregister_ahash(&driver_algs[i].alg.hash);
4847                         cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4848                         dev_dbg(dev, "  unregistered hash %s\n", cdn);
4849                         driver_algs[i].registered = false;
4850                         break;
4851                 case CRYPTO_ALG_TYPE_AEAD:
4852                         crypto_unregister_aead(&driver_algs[i].alg.aead);
4853                         dev_dbg(dev, "  unregistered aead %s\n",
4854                                 driver_algs[i].alg.aead.base.cra_driver_name);
4855                         driver_algs[i].registered = false;
4856                         break;
4857                 }
4858         }
4859         spu_free_debugfs();
4860         spu_mb_release(pdev);
4861         return 0;
4862 }
4863
4864 /* ===== Kernel Module API ===== */
4865
4866 static struct platform_driver bcm_spu_pdriver = {
4867         .driver = {
4868                    .name = "brcm-spu-crypto",
4869                    .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4870                    },
4871         .probe = bcm_spu_probe,
4872         .remove = bcm_spu_remove,
4873 };
4874 module_platform_driver(bcm_spu_pdriver);
4875
4876 MODULE_AUTHOR("Rob Rice <[email protected]>");
4877 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4878 MODULE_LICENSE("GPL v2");
This page took 0.320975 seconds and 4 git commands to generate.